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Abstract

This dissertation presents the results and outcomes of an effort to design educa-

tional tools and curriculum to improve student learning in introductory program-

ming courses. The work was conducted at the University of California, Merced (UC

Merced), situated in the Central Valley of California, and home to a diverse student

population. The findings of this research are applicable to courses in other universi-

ties, where instructors face similar challenges with high enrollments in courses, and

students come from traditionally underserved communities, or are members of under-

represented minorities.

A significant portion of the work in this dissertation was the development of edu-

cational technology to support students and instructors in Computer Science courses,

as well as researchers in the field. The tools contributed include a plagiarism detection

tool based on fine-grained interaction data from students using an online Integrated

Development Environment, allowing instructors to observe and detect behavioral pat-

terns consistent with plagiarism.

This tool was used in a case study at UC Merced to discover unexpectedly high pla-

giarism rates in programming courses. In addition, we found students were spending

less time than expected on their programming assignments, which is thought to limit

their learning opportunities. Finally, the correlations between laboratory assignment

and midterm examination grades were very weak. Many students were demonstrat-

ing high proficiency with programming during laboratory sessions, but in midterm

examinations they exhibited a lack of understanding of programming concepts.

We attempted to create a curriculum and instructional methodology that would

motivate students to work more on their programming assignments, providing them

with more opportunities to practice and master the skill. We created a flavor of the

popular Project Based Learning philosophy, that we call Product Based Learning,

where students were asked to work on projects that resemble real-life software prod-

ucts, with Graphical User Interfaces (GUI), and a lot of room for creativity on their

part. Unlike traditional lower-division programming assignments, the Product Based

exercises are always graded by a human grader. We believe this additionally moti-

vates students to put in more effort, as they know their products will be seen (and

used) by other people.

To support the increased grading workload, we developed an online system to

streamline the grading process for instructors, by automating as many of the mundane

tasks as possible. It has the plagiarism detection tool we developed built in, allowing
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instructors to not only see the final state of the product, but also replay the creative

process the student employed while building it.

The teaching workload also increases, as there is additional material related to

GUI development that needs to be covered by instructors. We adopted an Active

Learning methodology inspired by the Apprenticeship Learning Model, where the

instructor demonstrates how to build the software products. Apprenticeship learning

is often more successful in lower apprentice to expert ratios. Too support the process

at larger scales, we created an Interactive Code Rewind tool, where the instructor

encodes some of their knowledge and thought process in a version controlled Git

repository, that the students can then review efficiently, and get help directly from

the tool when needed.

The curriculum and teaching methods described above were deployed in the same

introductory programming course at UC Merced, where incoming students had the

same experience as before. We repeated the experiments from the previous case

study, and found that students were spending an average of 357 minutes a week on

their programming assignments, up from 89 minutes a week. We found programming

behaviors indicative of plagiarism for 6% of students submissions, down from 48%.

Finally, the midterm exam grades went from an average of 68% to 75%, while average

laboratory assignment grades dropped from 96% to 80%, which is a better correlation

between practical and formal exam grades. The three observations taken together can

be interpreted as improved learning rates for students in the course.

This work reported in this dissertation lays the foundations for promising research

directions that can improve student learning of computer programming, especially for

underserved populations with limited resources.
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Chapter 1

Introduction

The work presented in this dissertation was a multi-year effort to design curriculum

and instructional methods that improve student learning in introductory program-

ming courses. The work was carried out at the University of California, Merced (UC

Merced), situated in the heart of the San Joaquin Valley. UC Merced, a Hispanic

Serving Institution (HSI), is home to a diverse student population, many of whom are

members of underrepresented minorities, coming from underserved communities, of-

tentimes the first in their family to attend college. UC Merced is a suitable setting for

efforts related to Broadening Participation in Computing (BPC), as the Computer

Science student population faces similar challenges to Computer Science students

from other underserved areas.

The first phase of the work was to evaluate the effectiveness of an introductory

programming course at UC Merced: CSE 24 - Advanced Programming. This is the

second course in the typical CS1 - CS2 sequence, focused on teaching students the

process of writing programs to solve computational problems of increasing difficulty

and complexity. In terms of curriculum, CSE 24 is similar to introductory Computer

Science courses at other institutions, as it is articulated to courses offered at all other

University of California campuses, all California State University campuses, and all

Community Colleges in California, among other institutions. CSE 24 is delivered in

a traditional format, with a large practical component, and formal examinations.

A pattern that emerged early on was that despite completing the programming

courses, students were not developing adequate programming skills. This puts them

at a disadvantage in their future Computer Science courses, and possibly in the job

market, where a candidate must demonstrate strong programming and problem solv-

ing skills during the interview process. We compared the grades our students earned

1
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in practical laboratory assignments to the grades they earned in midterm examina-

tions and found low correlations. We included questions in the midterm examinations

asking students to essentially reproduce parts of their programming assignment solu-

tions. Many of the students who lost points on these questions showed no evidence of

any programming ability, raising the question of how they were able to successfully

complete their programming assignments.

Plagiarism is a well documented phenomenon in Computer Science Education,

and has been a problem in programming courses for as long as they have existed

[104, 127]. Unfortunately, in recent years it has become easier than ever for students

to plagiarize solutions to programming assignments. Complete solutions to simple

(traditional) programming exercises are available on websites, usually one Google

search away. Some students make use of online forums, like Stack Overflow, to ask

technical questions and receive expert assistance, while others make use of platforms

like Chegg, which specifically allow students to upload homework questions and get

complete solutions. This is counter-productive to learning as students are simply

turning in the work of others as their own. With the latest advancements in Artifi-

cial Intelligence (AI), students now have access to Large Language Models (LLMs)

that can successfully solve most (if not all) programming assignments from introduc-

tory programming courses [47]. These platforms and tools allow students to commit

plagiarism without having to obtain the solution of a classmate, thereby evading

traditional plagiarism detection tools that rely on a measure of software similarity

between submissions of different students in a class.

In order to properly quantify the levels of academic dishonesty in programming

assignments, it is necessary to be able to observe the entire process the student under-

took to develop their solution, not only its final state at the time of submission. To

accomplish this, we adopted an online Integrated Development Environment (IDE),

that students can access through a web browser, and use to complete all their pro-

gramming tasks. Since the system is online, it automatically saves all text entered

into it at every keystroke, for each individual student. By examining system logs,

we are able to reconstruct the entire programming process of every student as they

were generating their solution to a programming exercise, including the source code

they wrote, as well as the terminal commands they used to compile, run, and test

their code. We built a tool that made it possible to observe dishonest patterns, such

as pasting in complete solutions, copying code by manually typing it out, oftentimes

without making any mistakes, editing existing lines of code, or compiling/running
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the program. Our analysis of these fine-grained data revealed that 48% of students

exhibited suspicious patterns consistent with plagiarism. We also submitted all solu-

tions to MOSS, the most widely used plagiarism detection tool in Computer Science

education, and it only flagged half the cases that we suspected, as the other half were

not similar to one another.

Imposing stricter punishment for offenders has been shown to be an ineffective

plagiarism deterrent. We suspect that at least in part, students commit plagiarism

because the programming exercises they are asked to complete are not interesting or

motivating enough. Project Based Learning has been reported to improve learning

outcomes and increase motivation for students as they are asked to work on real-life

projects they find interesting [74]. Project Based Learning strategies have been suc-

cessfully implemented in Computer Science capstone courses, which lend themselves

well to the methodology, but adoption in lower division courses is more difficult.

We adopted a flavor of Project Based Learning, where the projects that students

work on always take the form of software products. The specifications for these

products usually outline a set of required features, with a lot of room for student

creativity. All products are required to have a Graphical User Interface (GUI), and

should resemble real-life software products that are used by real users. Students

develop a software product over the course of several laboratory sessions, building

on their previous work, but receiving feedback at intermediate stages. We call this

instructional methodology Product Based Learning.

With the introduction of Product Based Learning we anticipated in increase in

student motivation and effort, which we expected to translate to improved learning,

but we also recognized that there would be an increased labor cost for both course in-

structors and teaching assistants (TAs). Course instructors would have the additional

burden of covering more extensive material related to GUI programs. As a simple

example, a “hello world” program is 1-5 lines of code, depending on the program-

ming language, whereas a GUI equivalent requires more lines of code and oftentimes

employs more advances programming topics. In addition, GUI-based, open-ended

programs are not as amenable to automated assessment as command line programs

following a strict specification. This would lead to an increase in TA workload, or

take time away from their other activities such as leading discussion, or office hours.

Since Product Based Learning requires instructors to cover additional material in

the same amount of lectures as before, we sought to make better use of lecture time,

through the adoption of Active Learning methods, including live coding demonstra-
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tions, and Peer Instruction activities. Our initial attempts were not successful and

students were failing the in-class exercises and assignments because they could not

internalize the material after seeing it earlier in the lecture. To remedy this situation

we started recording the live coding demonstrations, so students could revisit the

explanations if they needed to at a later time. This led to the development of the

Git-based “Interactive Code Rewind” tool, incorporated into our online IDE, which

allows students to revert the source code of the lecture demonstration to an earlier

point in time, and interact with the code as it existed at that point. The increased

labor cost for the instructor amounts to invoking a “commit” command at various

points during the course of the demonstration. Optionally, the instructor can pro-

vide a note for the commit, which can be edited at a later stage. This allows the

instructor to encode their thought process and problem solving strategies into the

demonstrations, and provide stopping points at natural milestones. This allows the

students to experience the demonstration as many times as necessary, at their own

pace. The design was inspired by the Apprenticeship Learning Model, which is widely

used in vocational training, where an apprentice learns a skill by observing the ex-

pert, initially mimicking their actions, before starting to work more independently,

and finally generalizing the skill. Since the Interactive Code Rewind tool is based on

the Git version control system, it can also be used to share code with students during

lecture in real time. This allows us to make lectures more interactive and engaging

for students.

We also attempted to mitigate the increased grading workload for Product Based

assignments by building an online grading system that automates the mundane tasks

associated with grading programming assignments. Since all assignments have GUIs,

our grading system is capable of compiling and running graphical applications inline,

so there is no need for TAs to install any compilers, and GUI libraries in order to be

able to compile student submissions. The fine-grained data collected by the online

IDE is also useful in the grading process, so the entire grading system runs on top

of our plagiarism detection tool, with the added capability of entering grades and

feedback comments directly into the course grade book. The text entry visualization

tool we used to detect plagiarism can also be used to follow along with the thought

process of the student as they were building their software product, which is helpful

in grading. Seeing how the code comes about is easier for the TA rather than having

to read the entire source code in its final state, allowing the TA to get a better idea

of the student’s skill level more quickly and efficiently. If the TA suspects plagiarism,
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they can flag the submission for further investigation by the instructor. The abilities

described above, and the convenience features of the grading system have resulted in

students receiving feedback on their programs in a timely manner, allowing them to

continue work on their products in subsequent laboratory sessions.

We believe the introduction of Product Based Learning, in combination with as-

pects of Apprenticeship Learning has resulted in a measurable reduction in plagiarism.

This is likely due to a combination of factors including the graphical user interfaces

and open-ended nature of the assignments being more interesting and naturally more

motivating for students. We also believe that students feel more ownership of the

products, as they are longer term projects, developed over the course of several weeks,

rather than simple throw-away scripts. It could also be that since the Product Based

assignments are still new, with no existing solutions available from prior course offer-

ings, plagiarism rates were naturally low. Further research would confirm this, but

in the worst case scenario, the labor cost of coming up with completely new Product

Based assignments is relatively low compared to traditional, automatically graded

exercises. This is because the open-ended nature of the projects requires little ex-

planation, and there is no need for generating test cases to be used in automated

assessment. The visual nature of the programs also makes them easier to grade com-

pared to traditional command line interfaces.

We have noticed a significant increase in the amount of time students are spending

on their weekly programming exercises, and the amount of source code they generate,

compared to prior course offerings that had no Product Based assignments. While

this is not a reliable measure of effort and engagement, we expect that by spending

more time on task, and writing more code, students are practicing their programming

skills more, which could translate into improved learning rates. To confirm this, we

repeated the experiment from prior course offerings where we included questions in

the midterm that ask students to reproduce aspects of their practical laboratory

exercises. In comparing the laboratory assignment grades to the midterm grades, we

now see a correlation, meaning students who did well in their laboratory assignments

are better able to demonstrate that knowledge under test conditions, which could be

indicative of improved learning rates.

The rest of the dissertation is organized as follows. Chapter 2 presents relevant

background information on plagiarism detection and prevention, automated assess-

ment in programming assignments, and innovative instructional methods in Com-

puter Science. Chapter 3 describes the educational software tools we developed to
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help with course delivery. Chapter 4 presents a study on plagiarism in our practi-

cal programming component, as well as the engagement levels and effectiveness of

our programming assignments. Chapter 5 describes our efforts in redesigning our

course curriculum and programming assignments to follow the Apprenticeship Learn-

ing Model and Product Based Learning, as well as a study to determine the effective-

ness of our new curriculum. Chapter 6 contains some concluding remarks and future

work.



Chapter 2

Background and Related Work

In this chapter we review prior work in literature relating to common problems which

plague undergraduate Computer Science Education, namely high rates of plagiarism,

low pass rates, and the implications of automated assessment for programming as-

signments. We present information on innovative instructional methods to improve

teaching and learning outcomes in Computer Science Education. We review popu-

lar plagiarism detection tools used by undergraduate Computer Science instructors.

Lastly, we review the Apprenticeship Learning Model and outline the challenges of

adoption in the Computer Science classroom.

2.1 Plagiarism Detection and Prevention

There is abundant research evidence summarizing that academic dishonesty is widespread

among students [40, 70, 97, 98, 156]. Most relevant to this work, many studies suggest

that Computer Science is the discipline with the highest cheating rates. High rates

of plagiarism in Computer Science have been documented since the 1970’s [104, 127].

In 1993, Lipson reports on a study performed at MIT regarding undergraduate

academic dishonesty [91]. When participants were asked if cheating was more likely

to occur in certain disciplines, 75% of students stated it was more likely to occur

in subjects for which there are regularly organized and updated compilations of old

homework assignments, quizzes and exams. Additionally, 50% of students believed

that cheating was more likely to occur in computer programming subjects. Other

references support this claim and discuss factors which contribute to higher academic

dishonesty rates in Computer Science compared to other fields [119, 129, 132].

Roberts [119] found that Computer Science courses at Stanford University account

7
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for the majority of the academic dishonesty cases, some 20 to 54 percent of the total

cases, depending on the year. Stanford is not alone, at MIT in 1991, 73 students out

of 239 were disciplined for academic dishonesty in an introductory Computer Science

course [22]. There are various other news reports and studies [8, 15, 79, 101, 103, 110]

that show the prevalence of plagiarism in Computer Science, and [24, 64, 88, 153, 159]

confirm that this problem is both widespread and international.

2.1.1 Fraud Triangle

Albluwi [9] performs a systematic review of work in the computing education literature

on plagiarism. They review and categorize papers according to the field of Fraud

Deterrence named the Fraud Triangle [25, 41]. The Fraud Triangle is a framework

which is used to explain the reason or reasons behind an individual’s decision to

commit fraud. According to the theory, fraudulent behavior is affected by three

elements, or sides of a triangle: opportunity, pressure, and rationalization. In this

case, we can define plagiarism as the fraudulent behavior and apply the Fraud Triangle

framework as follows:

Opportunity: This is the first leg of the Fraud Triangle, and it refers to the

circumstances that allow fraud to occur. Examples of plagiarism opportunities include

readily available solutions to assignments, recycled assignments, weak consequences

for offenders, and the lack of plagiarism detection tools [9]. There is a significant

amount of research in attempting to reduce the opportunity to cheat. These efforts fall

under three categories: designing assignments that are difficult to plagiarize [53, 134],

using grading methods that make plagiarism more difficult [40, 45, 62, 72, 19] and

using tools to detect plagiarism [6, 113, 56].

Pressure: This is the second leg of the Fraud Triangle, and it refers to the

individual’s incentive towards committing fraud. Sheard et al. [129, 130] found that

time pressure, workload pressure, difficulty of the work, and fear of failure are among

the top factors that contribute to student plagiarism. Additionally, Kyrilov and

Noelle [86] studied the effects of binary automated feedback on cheating and found

that students who received binary feedback were twice as likely to cheat as those

who did not receive any feedback until after the assignment deadline. Their findings

suggest that binary feedback can prompt undesirable behaviors and tempt struggling

students to cheat.

Rationalization: This is the third leg of the Fraud Triangle, and it refers to
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the individual’s justification for committing fraud. Students who plagiarize often

resort to rationalizing their behavior so that it fits into their ethical standards, which

in turn leads to increased chances of acting dishonestly in the future. Common

rationalizations include taking inspiration from other’s work [28], taking large chunks

of programs and modifying small portions of it [30, 31], and suggesting that it fine to

use other’s code as long as you understand the code and learn from the assignment

[30, 31, 128]. To combat this, educators have proposed educating students regarding

the ethics and academic integrity [58, 118, 149], clearly communicate to students

which acts are considered dishonest [54, 118, 131, 132, 141], and teaching students

how to properly cite code [54, 131].

Fraudulent behavior can be avoided by removing one of the three sides (opportu-

nity, pressure, or rationalization). A majority of the literature on plagiarism focuses

on the opportunity side of the Fraud Triangle [9]. More specifically, the literature is

skewed towards the use of strategies or tools to reduce plagiarism. There are several

studies that provide empirical evidence for the effectiveness of using similarity based

plagiarism detection tools [16, 20, 65, 139]. Among these tools, the most popular are:

MOSS, JPlag, and SIM.

2.1.2 Similarity Based Detection

To combat high rates of plagiarism, educators have been relying on similarity based

plagiarism detection software. These plagiarism detection tools work by measuring

the similarity between student programs; they typically count and compare program

attributes, such as the number of characters, lines, and keywords. More sophisticated

tools also take the structure of the program into account. Below are descriptions of

the most widely used plagiarism tools by educators.

MOSS (Measure of Software Similarity), is an automatic system for determining

the similarity of programs [6]. MOSS was developed by Aiken et al. in 1994 at

Stanford University. It supports 26 different programming languages and is provided

as a web service that can be accessed via a script. Using MOSS is simple, you just

need to supply a list of files to compare, and the analysis of the submitted codes

is done remotely on a server at Stanford University. The MOSS server produces an

HTML page listing the pairs of programs with high similarity, and it also highlights

sections of code that are identical. Lastly, MOSS can ignore matches of code that

one expects to be shared (libraries or instructor supplied code), thereby eliminating
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false positives that arise from legitimate sharing of code. MOSS uses a document

fingerprinting algorithm known as winnowing [125]. Document fingerprinting works

by dividing a document into k contiguous substrings, called k-grams, and computing

a hash value for each one. The document fingerprint is a subset of the k-gram hashes.

The value of k is typically controlled by the user.

JPlag is a system that finds similarities among multiple sets of source code files

[113]. JPlag was developed in 1996 by Guido Mahlpohl and others, at Karlsruhe

Institute of Technology. It started out as a research project in 1996, but was later

developed into an online system. It supports 12 programming languages, and it is

provided as a web service [78]. JPlag presents its results in an HTML page, listing the

most similar pairs of programs. Additionally, their clustering of pairs makes it easier

to see whether certain submissions are similar to several other submissions. JPlag

uses an optimized version of Michael Wise’s Greedy String Tiling algorithm [160].

JPlag works by taking all the programs that need to be compared and converts them

into token strings. Then, these token strings are compared, in pairs, for determining

the similarity of each pair. During each comparison, JPlag attempts to cover a token

string with a substring taken from another program, and the percentage of token

strings that are covered determines the similarity score.

SIM is a software similarity tester developed by Dick Grune in 1989 at the VU

University Amsterdam [56, 60]. It supports 8 programming languages, and is provided

as a command line tool. SIM takes two source files and passes them through a

lexical analyzer to produce a compact form of its structure in the form of a stream

of integers, known as tokens. The tokens for the programming language keywords,

special symbols and comments are predefined, while the tokens for identifiers are

assigned dynamically from a shared symbol table. The whitespace is discarded. The

purpose of tokenizing the source files is to remove any unwanted information, such as

whitespace and comments, effectively producing a parse tree of the programs. After

the tokenization of the source files, SIM takes the tokens of the second source file and

groups them into sections, each representing a module of the program. Each module

is then aligned with the token stream of the first source file separately, this allows SIM

to detect similarity even when modules between the programs have permutations.

Ahadi et al. [5] performed a comparison on the three most popular similarity based

plagiarism detection tools described above. Based on their findings, SIM seemed to

have the highest precision, while JPlag was the most sensitive tool, but suffered from

low precision. MOSS and SIM appeared to be the most promising tools for identi-
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fying instances of plagiarism. However, SIM identified a larger number of potential

plagiarism cases compared to MOSS. The authors suggest using SIM first to get a

list of potential plagiarism cases and then running MOSS through this list to further

reduce the cases and perform manual inspection.

Although the similarity based plagiarism detection tools mentioned above report

good performance and good agreement with how educators judge similarity [52], these

tools all share a common limitation. By understanding how these tools work and

detect similarity, exploits can be performed to successfully bypass these tools and

avoid detection. However, these similarity based plagiarism detection tools work on

the premise that the cost of defeating the tool must be high. In other words, the

difficulty of evading detection will take the same amount of effort, if not more, than

completing the assignment honestly.

A recent study showed that bypassing similarity based plagiarism detection tools

is not as difficult as conventional wisdom states Devore-McDonald et al. [38] present

Mossad, an automated program transformation tool used to bypass plagiarism de-

tection tools. The authors focus on MOSS, since it is the most popular plagiarism

detection tool. They performed an in depth analysis on MOSS, and identified a key

weakness to exploit, specifically, the hashing and winnowing approach it uses. Given

an input file and a target similarity, Mossad uses genetic programming transformation

techniques to introduce benign statements within a program to produce semantically

equivalent variants that are less than or equal to the target similarity provided. The

authors demonstrate that Mossad is fast and effective in defeating four plagiarism

detection tools, including MOSS and JPlag, two of the most widely used tools by edu-

cators. In addition, they performed a study which revealed that the program variants

produced by Mossad are just as readable and no more suspicious than legitimate

programs produced by students.

2.1.3 Detection Based on Programming Behavior

Despite the popularity and high accuracy of similarity based plagiarism detection

tools, they are unable to detect other common forms of plagiarism, such as applying

transformations, as described above, or outsourcing, where students obtain an orig-

inal solution generated by an expert, and present it as their own. To address these

limitations, educators have proposed analyzing student’s code at different stages of

development, rather than just the final state of the submission.
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Tahaei et al. [144] proposed a plagiarism detection method based on the sequence

of submissions made by an individual student. The authors calculated submission

difference using a common diff algorithm [71]. After preprocessing two consecutive

submissions, the submission difference is simply the minimum number of line addi-

tions and deletions needed to transform one file into the other. The authors found

that the number of submissions paired with the maximum difference between con-

secutive submissions resulted in the greatest accuracy for measuring the likelihood

of plagiarism. Using these two features, they were able to get a probability score by

using logistic regression. They applied this method to data from four exercises from

an undergraduate programming course and their results strongly correlated with the

assessments of plagiarism made by an instructor. Comparing their results to MOSS,

they concluded that the patterns of resubmissions made by an individual student

can be more predictive of plagiarism, compared to similarity measures performed on

final submissions across students in a course. However, one major weakness of their

method is students who make only a single submission.

Yan et al. [162] developed TMOSS (Temporal Measure of Software Similarity), a

tool that analyzes the intermediate steps a student takes to complete a programming

assignment. TMOSS extends the traditional similarity detection software, in this

case MOSS, by analyzing student’s code at intermediate snapshots, and not just the

final code submission. In the study, the authors focus on the first large programming

assignment of an undergraduate CS 1 course. The data set includes submissions of

the assignment from 3 offerings, all taught by the same instructor: Fall 2012 (416

students), Fall 2013 (476 students), and Fall 2014 (528 students). The students used

a modified Integrated Development Environment (IDE) which would take a snapshot

of their code and upload to a Git repository every time the student compiled their

assignment. After using TMOSS with human verification on this data set, the authors

found 61 students plagiarized, compared to 35 by only using MOSS with human

verification.

Fonseca et al. [55] developed CodeInsights, a monitoring tool that captures student

performance information based on code snapshots produced by students while they

solve their programming assignments. This information is available to the instructor

in real time so that they can identify struggling students and intervene in a timely

manner. In order to use CodeInsights, students only need to download a plugin

for their IDE. This plugin will automatically take a snapshot of the source code

every time the student runs their program. These snapshots will automatically be
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uploaded to a server which compiles and tests the code, and generates information.

This information is then used to provide visualizations and preprocessed data for the

instructor on CodeInsights, which allows the instructor to easily see the performance

of their students. Additionally, CodeInsights sends a notification to the instructor

when it notices situations that can lead to problems, such as unusual number of lines

of code, compilation errors, excessive number of attempts per assignment, assignments

not attempted, or even unfinished assignments.

Fonseca et al. [48] present a new feature to CodeInsights which detects potential

occurrences of plagiarism, in real time. The authors focus on the detection of low-

level plagiarism, such as copy/paste or similar code with minimal modifications. Since

CodeInsights already gets code snapshots every time the student compiles their code,

the similarity between this new submission and the latest submissions from all other

students are compared. A simple string comparison algorithm is used to compare the

code snapshots and produce a similarity percentage. CodeInsights generates online

and offline notifications to alert the instructor of potential plagiarism cases. The

authors have seen some encouraging results when using this new plagiarism detection

feature, as it allows instructors to identify students facing difficulties, and intervene

in a timely manner.

Ljubovic et al. [94] propose a new method of detecting plagiarism that combines

software repository mining with similarity based plagiarism detection tools. The au-

thors use a cloud based IDE, to log all activities that students perform while working

on their programming assignments, in the form of ultra-fine grained repositories. They

then extract dynamic features from the repository that describe the student’s behav-

ior and habits while coding. These dynamic features reflect the process of coding, and

not just the final result. The authors focus on the following dynamic features: lines

of code added, lines of code deleted, lines of code modified, average paste length, max

paste length, number of compilations, number of successful compilations, number of

unit tests ran, average unit test score, characters per second, time spend coding, small

breaks, and large breaks. The authors use a backpropogation artificial neural network

that uses the dynamic features to create a binary classifier that outputs a probability

in the range [0, 1] representing the probability of plagiarism. After this filtering step,

another artificial neural network is trained in a similar way to improve the similarity

ranking obtained from SIM, a substring matching plagiarism detection tool. The re-

sults show a significant improvement compared to other popular plagiarism detection

tools such as MOSS [125], JPlag [113], SIM [61], SIM+NN, and fvpd [105].
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2.2 Automated Assessment in Programming

Automated grading works on the premise of extracting a measurement value from

a submitted program and comparing it to assignment requirements or a given solu-

tion [7]. There are numerous testing techniques at the core of automated grading.

Functionality testing determines if a program functions according to the given re-

quirements. This process, widely known as output comparison, involves running the

submitted code through predefined test cases and comparing the generated output to

the expected results [35, 150, 163, 92]. Another form of functionality testing involves

the static analysis of the source code. This oftentimes involves parsing the program

and constructing syntax trees [102, 157, 165] and pattern matching techniques which

look for certain constructs in the code [66]. Automated grading can also involve the

analysis of time complexity [14], and code quality [93, 11], which is designed to un-

cover programming flaws and bugs such as unused variables, empty catch blocks, and

dead code. More modern automated grading tools also include plagiarism detection

out-of-the-box [140, 26].

Automated assessment systems provide many benefits for educators and students

alike. Educators will spend significantly less time grading programming assignments,

allowing them to increase the number of weekly programming assignments, providing

students with more practice to improve their programming skills [161]. Studies have

shown that automated assessment systems are popular because of their convenience,

efficiency, and objectivity [151]. In some cases automated assessment can provide

students with feedback which can help students learn from their mistakes. How-

ever, most automated assessment systems only provide students with instant binary

feedback.

Educators argue that instant binary feedback is not as useful as feedback generated

by human instructors [13]. Not only is this limited to a predefined criteria, resulting

in lack of personalized feedback [145], some studies have found that it can reduce

student engagement and promote cheating [86]. Moreover, automated assessment

is not possible when educators assign open-ended programming assignments which

allow for student engagement and creativity.
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2.3 Innovative Instructional Methods

The lecture based teaching approach is an instructor-centered teaching method in

which students passively listen to information presented to them. Lectures are one of

the oldest teaching methods, and they are still widely used in education, especially

at the college and university level. Not too long ago, these lectures were typically

delivered using a combination of a projector, for displaying visuals, and chalkboard

or whiteboard for writing. Nowadays, this has largely been replaced by the use of

presentation software such as Microsoft PowerPoint, Apple Keynote, or Google Slides,

and digital whiteboards.

It is very common for educators to teach introductory Computer Science courses

using this traditional lecture based teaching modality, through the use of lecture slide

presentations with static code examples, which are snippets of code shown during lec-

ture that students cannot directly access and test [122]. Moreover, these static code

examples are generally correctly coded final solutions. Programming involves problem

solving, similar to mathematics, where educators generally teach by explaining the

theory first and then solving example problems from start to finish. By fully solving

and walking through example problems during class, math educators are effectively

showing their students the steps, logic, and techniques required to solve the prob-

lems. However, when educators use static code examples to teach Computer Science,

students miss out on the programming process required to state of the final code.

Since the 1980s, researchers have been proposing Active Learning methods for

Computer Science [18], with the promise of increased effectiveness. Active Learning is

a student-centered teaching approach in which students actively engage in the learning

process by reading, writing, discussing, and problem solving, rather than just sitting

and passively listening [18]. There is an abundance of research outlining different

active learning strategies which have been implemented in the Computer Science

classroom, such as live-coding demonstrations, Peer Instruction, Flipped Classroom,

and Project Based Learning.

2.3.1 Live-Coding Demonstrations

Since programming involves problem solving, it has been suggested that educators

should focus on teaching the process of programming, and not just the theory, syntax,

and knowledge required to program [120]. Rubin [122] proposes live-coding as the

primary teaching method for introductory Computer Science. A live-coding demon-
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stration is defined as “the process of designing and implementing a coding project in

front of class during lecture period” [108]. This requires the instructor to start lecture

with a blank text editor and teach by developing, compiling, and testing code. Rubin

examined the effectiveness of live-coding demonstrations in introductory Computer

Science courses and found that it led to significant increases in student performance

on projects. Furthermore, he found that 90% of students in the study agreed that

code examples were more educational than traditional lecture slides.

2.3.2 Peer Instruction

Peer Instruction (PI), coined by physics professor Eric Mazur in 1991, is a teaching

method which modifies the traditional lecture format into a more evidence based,

interactive teaching pedagogy [96, 33]. Peer instruction engages students during

class through interactive activities that require students to discuss core concepts with

their fellow students. In Peer Instruction, the traditional lecture is intermixed with

conceptual questions called “Concept Test”, which are used to probe the students’

understanding on topics covered during lecture or on assigned pre-class readings. Fol-

lowing a mini-lecture, students are asked to answer a conceptual question individually

via flash cards or “clickers”. The instructor then asks the students to discuss their

response with their neighbors and convince each other that they have the correct

answer. Following the discussion, the instructor repeats the question and collects the

new responses. Finally, the instructor explains the correct answer and continues with

the lecture.

Peer Instruction has been extensively studied in physics. The result of a ten

year study at Harvard University found that Peer Instruction dramatically improves

student’s conceptual and quantitative problem solving, compared to traditional lec-

tures, doubling the normalized learning gains [138]. Peer Instruction has also been

adopted in other natural sciences [23, 50, 82]. More recently, Peer Instruction has

also been adopted in Computer Science [34, 106, 112, 111, 135, 136, 164]. Studies

have shown that Peer Instruction has been valued by students as a positive learning

tool [112, 135], valued by instructors as it improves student engagement [112], and

results in increased individual learning [111, 136].
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2.3.3 Project Based Learning

Project Based Learning is a student-centered pedagogy in which students learn by

solving real world problems. This teaching idealogy dates back to the early 1900s,

with John Dewey being regarded as the founder of Project Based Learning, as his

work focused on the “learn by doing” approach, advocating that learning happens

when students interact with real life tasks [39]. Education research has advanced the

ideas of Project Based Learning into what it is today, and it has been explored in

various contexts and levels of education, ranging from pre-school and primary school

to higher education and pre-service teacher trainings [85].

In the last decade, Project Based Learning has become increasingly popular in

Computer Science Education, as it promotes collaboration, problem solving, and ac-

tive learning [117]. Project Based Learning has been widely adopted in capstone

courses, where students collaborate with industry on real world projects, gaining

practical experience and further developing their technical skills such as communica-

tion, teamwork, and self-management [76]. This helps students acquire the hard and

soft skills required to become industry ready.

One of the fundamental advantages of Project Based Learning is the increased

motivation levels because students are working on interesting, real world projects

[74]. The hands-on approach of Project Based Learning also increases engagement,

leading to improved learning outcomes, as well as the development of enhanced prob-

lem solving and critical thinking skills [32]. Studies have shown that Project Based

Learning also encourages cooperation and communication skills [3], improved time

management [63] and sense of ownership and autonomy, leading to students taking

responsibility of their own learning [85], as well as decreasing the drop-out rate of

students in programming courses [44].

Although Project Based Learning yields numerous positive outcomes, the adoption

of this active learning methodology is not without difficulties. There are also many

challenges of adopting Project Based Learning in Computer Science, such as faculty

reluctance, inadequate resources, student evaluation challenges, and uneven work-

loads for students working in groups [117]. Many institutions do not have the funds

and resources required to support Project Based Learning effectively [10]. Instructors

are often required to adopt new teaching modalities, oftentimes requiring additional

training, professional development, and updating of the curriculum [133]. Evaluat-

ing students’ learning outcomes is also more difficult because traditional assessment

methods, such as formal exams, may be unable to capture the diverse abilities and
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knowledge that students acquire from Project Based Learning [114, 121].

2.3.4 Flipped Classroom

The flipped classroom, also known as the inverted classroom, is an active learning

methodology in which events that traditionally occur outside the classroom now occur

inside the classroom, and vice-versa [87]. Although there are many different methods

to flip the classroom, they all follow the same class model. The flipped classroom

model consists of out of class content prepared by the professor. The out of class

content includes assigned book readings, videos, scientific papers, podcasts, self as-

sessments, etc. The in class content includes programming exercises, problem based

learning, mini lectures, unit testing, etc. This allows the instructor to act as a learning

mediator and gives students the ability to engage in active learning during class time.

This changes the instruction method to a learner-centered model allowing students

to review and learn the content before class, so that during class the topics can be

covered more in depth, creating meaningful learning opportunities in the classroom.

The use of learning technologies, especially multimedia, has provided students with

new opportunities and methods to learn, greatly facilitating the institution of the

flipped classroom.

Active learning methodologies are a core component of the flipped classroom.

Based on the work of Vujovic, et.al [158], in-class activities for the flipped classroom

can be classified into one of the six categories: Problem Based Learning, Project Based

Learning, Team Based Learning, E-learning, Lifelong Learning, and Self-directed

Learning. Problem Based Learning and Self-directed Learning are among the most

popular for designing in class activities, which include examinations, quizzes, and

classroom instructions such as presentations and discussions [49, 134], timed program-

ming exercises [77], interactive group activities [59], case studies [4], pair activities

such as pair programming [107], and interactive lectures [57].

Many researchers have used the flipped classroom approach with different peda-

gogical strategies and technologies [17]. Studies on flipping the classroom have yielded

two impacts on student learning: the first is improved understanding of the subject

studied, and the second is increased student performance [152]. Paschoal [107] ob-

served that a cohort of students in a flipped classroom model gained more knowledge

than another cohort of students in a traditional classroom. It was observed that stu-

dents in the flipped classroom learned more, but they also spent a greater amount
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of time to do so. Similarly, Elliott [42] reported notions of increased vigor and inter-

action in the classroom with the flipped classroom pedagogy. Davies [36] and Stone

[142] also reported that flipping the classroom has resulted in large learning gains and

positive student attitudes towards learning. Acharya [4] reported that students work

in flipped classroom setting was superior compared to the traditional setting, and

Day [37] reported significantly higher grades and strong positive attitudes between a

cohort of students taught using web based lectures and active learning, compared to

traditional lecture cohort.

Numerous studies have shown that flipping the classroom leads to improvement

in student satisfaction, motivation, dedication and confidence [42, 46, 77, 81, 90, 95,

123, 137], improvement in learning [27, 59, 95, 107, 115, 124, 146], increased student

engagement in the classroom [4, 43, 59, 68, 84, 109, 137, 143, 148], and optimization

of class time [4, 43, 69, 95, 107, 143], and enhancement of instructor-student and

student-to-student relationships [43, 137].

There are also challenges that arise when flipping the classroom, including signif-

icant initial overhead cost, as well as difficulties in class preparation and, in general,

it is very time-consuming for instructors [27, 43, 67, 59, 68, 69, 81, 90, 95, 107, 115].

Other challenges include difficulty in keeping the students engaged and motivated

[43, 81, 90, 95, 109, 124, 146], scalability for large courses [4, 43, 67, 90, 107, 137],

and lack of feedback from students [27, 67, 84].

2.4 Apprenticeship Learning Model

Apprenticeship is the process in which an expert teaches an apprentice a skill or trade

through observation and guided practice. It is one of the oldest forms of knowledge

transmission and largely accepted as the natural way to learn. In apprenticeship, the

learning process can be easily witnessed, as it generally involves learning something

tangible which involves physical activity, such as learning to plant and harvest crops,

sewing, tailoring cloths, or building furniture. This approach has proved to be highly

effective in developing vocational skills and can be seen extensively used plumbing,

carpentry, welding, and many more professions.

The Apprenticeship Learning Model has five phases [126]:

• Modeling where the teacher demonstrates and articulates all the steps involved

in the process of completing a task.
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• Scaffolding where the learner begins to mimic the actions of the teacher.

• Fading where the teacher slowly reduces scaffolds for learners to complete tasks

more independently.

• Self Directed Learning where the learner is performing the actual task and only

seeking assistance when needed from the expert.

• Generalization where the learner generalizes what they have learned and they

conduct open-ended tasks with minimal to no involvement of the teacher.

The Cognitive Apprenticeship model was proposed by Collins et al. [29] as a

method of incorporating traditional apprenticeship in the modern education system;

it was first introduced in primary and secondary education to teach reading, writing,

and mathematics, and now it has also been extended and applied to a range of disci-

plines in higher education. There are three important differences between traditional

apprenticeship and Cognitive Apprenticeship, outlined by Collins.

• First, in traditional apprenticeship, the task being learned is easily observable.

Building furniture, growing crops, or even learning to play a musical instrument,

are all tasks which are tangible and the physical processes required to learn are

easily visible. However, teaching subjects such as math, reading, writing, and

problem solving are not always tangible and observable. In Cognitive Appren-

ticeship, the expert and apprentice need to deliberately express their thinking

and problem solving.

• Second, in traditional apprenticeship, tasks arise naturally, making it easy for

the apprentice to understand the subtasks involved in creating the finished

product. For example, if an apprentice is learning to create furniture, it is

natural for them to understand why the expert is showing them how to cut

the wood, design different components, and assemble them into the finished

product. However, in education, the curriculum is centered around reading,

writing, math, science, and history. Students oftentimes do not understand

how the concepts learned in these subjects translate to their everyday life. In

Cognitive Apprenticeship, the challenge is to teach the students abstract tasks

which are not easily perceivable. It is suggested that teachers express abstract

tasks as the building blocks of authentic contexts, helping students understand

the relevance of the work.
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• Third, in traditional apprenticeship, the derived skills are relevant for the task

learned, making unlikely that the apprentice will encounter situations that re-

quire transfer of skills. For example, an apprentice learning wood work would

not need to know anything related to sewing. However, in education, students

are oftentimes required to transfer knowledge across domains. In Cognitive

Apprenticeship, the challenge is to provide students with a diverse background

of knowledge and practice with a variety of tasks which require students to

generalize certain skills across different contexts. It is suggested that teachers

introduce a well rounded experience to students so they can better witness the

transfer of skills.

Numerous studies have shown that Cognitive Apprenticeship improves student

enthusiasm [75, 80, 155, 89], increases interests in programming [147], and improves

course pass rates and student performance [12, 83, 100, 154]. Although there are

many positive outcomes of Cognitive Apprenticeship in Computer Science, one of the

key challenges is scalability. Numerous studies express the difficulty of scaling this

approach in settings with high student to teacher ratios [154, 12, 83].



Chapter 3

Educational Software Tools

In this chapter, we present the educational software tools used in our introductory pro-

gramming courses, as well as the additional software that was developed specifically

to support this work. Section 3.1 describes the existing online Integrated Develop-

ment Environment (IDE) deployed in our courses, with all its tools and features to

support programming courses.

The tools that were developed specifically for this dissertation include, a plagiarism

detection tool based on fine-grained data, presented in Section 3.2, a Git repository

navigation tool, called “Interactive Code Rewind”, outlined in Section 3.4, and a

specialized grading platform for programming assignments, described in Section 3.3.

All tools created for this dissertation were developed entirely by the author.

3.1 Learning Management System

Similarly to other introductory programming courses, we use a Learning Management

System (LMS) for CSE 24. It offers a fully-fledged IDE accessible through a web

browser, based on Theia, an open-source online platform, feature equivalent to the

popular Visual Studio Code. A major benefit of using an online IDE is that it

provides a consistent user experience for all students and instructors, and has all the

compilers and other development tools preinstalled, eliminating the need for students

to administer their own computers.

Figure 3.1 shows a view of the basic IDE features, including a file tree viewer on

the left, a text editor with the contents of the selected file, and a terminal emulator,

along the bottom of the interface. There are additional developer tools, such as a

visual debugger interface, and standard version control tools.

22
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Figure 3.1: The Learning Management System interface showing basic IDE features

In addition to the standard IDE features described above, the system has Learning

Management features to support course delivery. They take the form of widgets,

accessible through the main interface. Each educational widget is described below.

3.1.1 Lecture Materials Widget

This interface allows the instructor to provide reading materials written in rich text

format, as well as support files, which the students can copy to their workspace,

with a button click. Support files typically include boilerplate code to be used as a

foundation for a programming demonstration.

Figure 3.2, shows the interface of a student who has navigated to “Lecture 3: User

Events in OpenGL Application” and has bootstrapped the lecture materials. The

lecture readings and materials are displayed in the main portion of the window. In the

file tree viewer, visible on the left sidebar of the interface, the system has created the

appropriate lecture 03 folder (highlighted in red) and copied the necessary support

files into it.
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Figure 3.2: The Lecture Materials Widget interface

3.1.2 Assignments Widget

The system also supports programming exercises, with automated grading capabili-

ties. The exercise creation process involves writing a problem statement, which can

include sample input/output pairs, and suite of test cases, written in a unit-testing

framework. The system automatically executes the test suite upon receiving a sub-

mission in order to determine its correctness.

Students are able to navigate the programming assignments and view the in-

structions for selected programming exercises. For convenience, the system has a

“Bootstrap” feature which creates a project folder for the selected exercise and copies

all support files needed.

Figure 3.3, shows a student who has navigated to “Lab 4” and has bootstrapped

the “Gregorian Calendar Date” exercise. The instructions for the exercise are dis-

played in the main portion of the window, with the “Bootstrap Exercise” button on

the top-right, and the “Submit” button on the bottom-left, as shown in Figure 3.4.

In the file tree viewer, visible on the left sidebar of the interface, the system has

created the appropriate lab 04/exercise-2/ folder (highlighted in red) and copied

all the necessary support files, which always include a Makefile for convenience. A

student can begin generating their solution by simply clicking the main.cpp file from
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Figure 3.3: The Assignments Widget interface showing exercise instruction

the project folder and typing the code in the editor. The student can use the terminal

emulator to compile and run their code.

Figure 3.4: The Assignments Widget interface showing submission history for a stu-
dent
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The submission history, visible on the bottom portion of the interface (highlighted

in red) in Figure 3.4, shows a student who has submitted their work for the “Gregorian

Calendar Date” exercise of “Lab 4” and passed the suite of unit tests provided by the

instructor.

3.1.3 Library Widget

The LMS also allows the instructor to create textbook reading materials, as well as

end-of-chapter programming exercises, and distribute them to students. The reading

material process can include code snippets, GIFs, images, videos, as well as links to

other resources.

Figure 3.5: The Library Widget interface

Figure 3.5, is a screenshot of the interface of a student who has navigated to

“Chapter 4: Programs that Take Input”. The chapter content is displayed on in the

main portion of the window, with the table of contents on the left sidebar of the

interface (highlighted in red), showing that this chapter has four sections, followed

by the end-of-chapter exercises.
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3.1.4 Slides Widget

The LMS allows the instructor to import Google Slide presentations and distribute

them to students. The process of importing slides only requires the url link of the

presentation.

Figure 3.6: The Slides Widget interface

Figure 3.6 shows a student who has navigated to “Lecture 19: Arrays”. The

content of the slide is displayed on the main portion of the window, with the navigation

buttons and slide information located on the bottom-left of the interface.

3.1.5 Fine-Grained System Logs

The online IDE produces fine-grained log data, by taking a snapshot of a student’s

file system at every interaction event, such as file change events, terminal command

events, bootstrap events (recorded when a student begins working on their exercise),

and submission events. These system logs are stored in BigQuery, a cloud-based

database service that offers large storage capacity.

The system writes logs in response to the following 4 interaction events:

• Bootstrap: initialization of a new project folder for a selected programming

exercise;
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• File Change: any file on the file system is modified (entering text in an editor);

• Terminal: any command is invoked on the terminal emulator;

• Submission: submission of a programming exercise.

The data stored for each of the events above is described in Table 3.1.

Event Type Field Description
Bootstrap Event userId The ID of the user

timestamp The timestamp (in milliseconds) of the
event

exercisePath The full path of the exercise
File Change
Event

userId The ID of the user

timestamp The timestamp (in milliseconds) of the
event

filePath The full path of the file that changed
content The content of the file that changed
cursorPosition The cursor position (distance in characters)

Terminal Event userId The ID of the user
timestamp The timestamp (in milliseconds) of the

event
workingDirectory The full path of current working directory
command terminal command

Submission
Event

userId The ID of the user

timestamp The timestamp (in milliseconds) of the
event

exercisePath The full path of the exercise

Table 3.1: Table representing the system logs stored in BigQuery.

Processing log data from the system allows instructors to compute useful informa-

tion, such as the exact amount of time a student spent editing a given file, or compute

the sequence of transformations needed to recreate the process of entering text into

an editor.
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3.2 Plagiarism Detection Tool

We developed a plagiarism detection tool that enables the instructor to view all

interaction events, between a student and the IDE, on a scrollable timeline. At each

interaction event, the tool displays the state of the student’s solution files. A diff

editor can be used to highlight changes between consecutive interaction events. The

tool can be used by instructors to examine the programming behavior of students,

and look for potential signs of academic dishonesty. An obvious, and easy to detect

pattern is pasting a complete solution from external sources, and either submitting

it directly or performing basic text transformations, such as renaming variables. A

more subtle form of plagiarism is the process of student manually typing in an external

solution, instead of pasting it in. To find this type of plagiarism, an instructor could

look for clues such as long typing sessions, with minimal to no intermediate testing,

and the lack of any errors along the way. The tool presented in this section provides

convenient interfaces that highlight the behaviors described above.

3.2.1 Data Processing Module

We developed a data processing module that is responsible for analyzing the raw

system logs, given student and lab assignment, producing structured data capable of

powering the plagiarism detection tool.

Listing 3.1: Data Processing Algorithm

1 pFiles = fetchProjectFiles(ASSIGNMENT_ID)

2 bootstraps = fetchBootstrapEvents(USER_ID , ASSIGNMENT_ID)

3 fileEvents = fetchFileEvents(USER_ID , ASSIGNMENT_ID)

4 terminalEvents = fetchTerminalEvents(USER_ID , ASSIGNMENT_ID)

5 submissions = fetchSubmissionEvents(USER_ID , ASSIGNMENT_ID)

6

7 events = MERGE(bootstraps , fileEvents , terminalEvents , submissions)

8 SORT(events)

9

10 allInteractions = []

11 files = {}

12

13 for i = 0 to events:

14 if events[i].type == BOOTSTRAP_EVENT:

15 for j in pFiles:

16 files[pFiles[j]. filePath] = i
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17 INSERT(events[i].userId , pFiles[j].filePath , pFiles[j].content , i)

18

19 allInteractions.push("Bootstrap", files , events[i].data)

20

21 else if events[i].type == FILE_EVENT:

22 files[events[i]. filePath] = i

23 INSERT(events[i].userId , events[i].filePath , events[j].content , i)

24 allInteractions.push("File", files , events[i].data)

25

26 else if events[i].type == TERMINAL_EVENT:

27 allInteractions.push("Terminal", files , events[i].data)

28

29 else if events[i].type == SUBMISSION_EVENT:

30 allInteractions.push("Submission", files , events[i].data)

31

32 INSERT(allInteractions)

Listing 3.1 is the algorithm developed to process the raw system logs into struc-

tured data. Line 1 is responsible for fetching the support files for a given assignment.

Lines 2-5 query the system logs (bootstrap events, file events, terminal events, and

submission events) from BigQuery, and lines 7-8 merge and sort the data into a com-

mon collection consisting of all interaction events ordered by timestamp. Lines 10

defines the allInteractions data that we will be inserting into the Interaction

Events table. Line 11 defines the files map which is used to store the filePath-

eventIndex (key-value pairs) that can be used to query the file content at a given

interaction event. This mapping is updated at every interaction event. Line 13 defines

a loop that will iterate over all of the interaction events, with the main goal of track-

ing the file changes for all project files and inserting them into the File Changesets

table. Lines 14-19, conditionally executed only for bootstrap events, inserts the con-

tent of the support files into the File Changesets table. Lines 21-24, conditionally

executed only for file change events, inserts the content of the modified file into the

File Changesets table. Lines 26-30, conditionally executed only for terminal and

submission events, do not result in changes to the project files, so there is not need

to update the File Changesets table. Instead, we simply push the interaction event

data and files mapping to the allInteractions collection. Line 32 inserts the

allInteractions collection into the Interaction Events table.

Suppose that a student used the online IDE to complete a “Hello World” pro-



CHAPTER 3. EDUCATIONAL SOFTWARE TOOLS 31

userId eventIndex filePath fileContent
0000000 0 exercise-1/main.cpp ...
0000000 0 exercise-1/Makefile ...
0000000 0 exercise-1/test.cpp ...
0000000 1 exercise-1/main.cpp ... c
0000000 2 exercise-1/main.cpp ... co
0000000 3 exercise-1/main.cpp ... cou
0000000 4 exercise-1/main.cpp ... cout
... ... ... ...
0000000 30 exercise-1/main.cpp ... cout << “Hello World” <<

endl;

Table 3.2: Example File Changesets Table.

gramming exercise. The exercise has three support files: main.cpp, Makefile, and

test.cpp. The student worked exclusively inside the main.cpp file and completed

their exercise in 35 interaction events: 1 bootstrap event, 30 file change events, and

3 terminal events, and 1 submission event. More specifically, after bootstrapping the

exercise, the student typed cout << "Hello World" << endl; one keystroke at a

time, followed by three terminal commands and then a submission.

Table 3.2 shows the rows of data inserted into the File Changeset table by the

algorithm described above. The first three rows of the table contain the file contents

of the three files at eventIndex 0 (bootstrap event). The following 30 rows denote

the file changes in main.cpp that resulted from the student typing their solution

one character at a time (file change events). The last four interactions, whereby the

student submitted their work after using the terminal to compile, run, and unit test

their code, did not result in any files being changed, therefore, the File Changeset

table does not contain any more rows of data.

Listing 3.2 is the allInteractions object that was produced by the data process-

ing algorithm, and stored in the Interaction Events table. There are 35 objects

in the collection, each representing one of the 35 interactions events that the student

engaged in while completing their programming exercise. Using this object, we can

power the scrollable timeline of events. Instead of directly passing the file content at

every file change event, we can use the event’s index to fetch the content of any file

from the database. This optimization enables the plagiarism detection tool to handle

large amounts of data.

Figure 3.7 illustrates how the object from Listing 3.2 is used to power the in-
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Listing 3.2: Example of processed Interaction Events data

[

{

type: Bootstrap ,

files: {

exercise -1/ main.cpp: 0,

exercise -1/ Makefile: 0,

exercise -1/ test.cpp: 0

},

data: {...}

},

{

type: File ,

files: {

exercise -1/ main.cpp: 1,

exercise -1/ Makefile: 0,

exercise -1/ test.cpp: 0

},

data: { ... cursorPosition: 62, fileSize: 78, ... }

},

...

{

type: Submission ,

files: {

exercise -1/ main.cpp: 30,

exercise -1/ Makefile: 0,

exercise -1/ test.cpp: 0

},

data: { ... }

}

]
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Figure 3.7: File History Viewer at first interaction (bootstrap event).

terface of the plagiarism detection tool. The draggable scrollbar, located at the top

of the interface (highlighted in red), is populated using the processed interaction

events collection. Five events of interest are shown: interaction 0 (bootstrap event),

interactions 31 to 33 (terminal events), and interaction 34 (submission event). The

instructor is currently viewing interaction 0, whereby the file content, displayed in the

main portion of the window (highlighted in blue), is shown for the main.cpp file. The

file content was fetched by querying the File Changeset table using the processed

data from interaction 0, as seen in Listing 3.2: userId = 0000000, eventIndex = 0,

and filePath = exercise-1/main.cpp. The PREV and NEXT buttons can be used to

navigate to the previous and next interaction event, respectively. The terminal can

be used to compile, run, and unit test the code.

3.2.2 File History Viewer

The File History Viewer puts all interaction events on a scrollable timeline and dis-

plays the state of the student solution file before and after the selected event, in a

diff editor. A screenshot of this interface appears in Figure 3.8.

The instructor is able to replay the entire file creation process by dragging the

timeline. In Figure 3.8, the particular student solution contained 2790 interaction
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Figure 3.8: The File History Viewer interface. This example shows that interaction
event 773 was the insertion of a semicolon at the end of line 21 in the file.

events. The interface also displays the points of interest, which are interaction events

that resulted in a large amount of text being inserted, marked in green, or deleted,

displayed in red.

Student solutions with few keystrokes, usually 2 or 3, where the entire file content

was input in a single interaction event, are clear instances of copy-paste plagiarism.

In some cases the solution being pasted in was “borrowed” from another student in

the class, in which case, traditional plagiarism detection tools would have identified

it, but in many cases, the solution pasted in was sufficiently different from all others,

indicating that it was external.

3.2.3 Cursor Position Plots

The Cursor Position Plots display the cursor position, relative to the file size, at every

file change event (keystroke). These plots are helpful in identifying students that copy

complete solutions from an external source, typing it in one line at a time, from top

to bottom, resulting in a cursor that is always at or near the end of the file.

The blue line in the plot (area under the line shaded for clarity) represents the file

size at each interaction event, while the red line represents the position of the cursor

at that event. It is clear that the student who generated the plot in Figure 3.9b typed
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(a) The large RSS between the file size and
the cursor position curves is indicative of
honest programming behavior.

(b) The small RSS between the file size and
the cursor position curves indicates manual
entry of an external solution.

Figure 3.9: Cursor position plots for a student coding session.

their solution without ever removing text from the editor, always typing at or near

the end. This is indicated by the small distance between the two lines. Formally, we

compute Residual Sum of Squares (RSS) between the two curves by:

RSS =
n∑

i=1

(fi − ci)
2

Where fi is the file size at event i, and ci is the cursor position taken as the

number of characters from the beginning of the file, to the cursor position (not line

number, and column number). A small RSS value can be indicative of plagiarism.

For comparison purposes, Figure 3.9a is a plot generated by a student whose text

editing patterns are indicative of honest programming behavior.

The cursor plot in Figure 3.9a is representative of honest programming behavior

mainly because the student is editing the file in different locations at various points

in time, which is consistent with typical programming, for example defining a new

variable several lines above the current cursor location, and then going back down to

use the variable. The other characteristic to note is that the file size is not a strictly

increasing sequence, indicating that the programmer deleted lines of code, which is

also a common programming behavior.

3.2.4 Event Timing Graphs

The Event Timing Graphs serve as a visual representation of the time a student

spends programming, capturing the bursts of active coding (typing), idle time (breaks
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from typing), and the number of times students compile their program. The active

coding and idle time are calculated by taking the difference between two consecutive

keystroke events. If the difference in time is less than 10 seconds, it is considered

active typing. However, if the difference in time is greater than 10 seconds, but less

than 10 minutes, it is considered a break from typing.

The Keystrokes to Recover is computed by taking the average number of file

change events it takes a student to go from an unsuccessful compilation to a successful

compilation. The Time to Recover is computed similarly, except that it reports the

average time it took a student to go from an unsuccessful to a successful compilation.

Figure 3.10 shows the Event Timing Graphs, whereby the blue time intervals in-

dicate active typing, while green vertical lines are successful compilations, and red

vertical lines indicate unsuccessful compilations. These graphs are helpful in identi-

fying suspicious behavior that may be consistent with plagiarism.

(a) Timing events for a student who likely engaged in honest programming.

(b) Timing events for a student who likely plagiarized by typing in a complete solution
obtained from an external source.

Figure 3.10: Timing events for a student coding session.

Figure 3.10b shows a student that likely engaged in copying a complete external

solution because they completed their programming exercise in less than 15 minutes,

without taking any breaks to read, compile, or test their code.

For comparison purposes, Figure 3.10a shows another student that likely engaged

in honest programming. This student exhibited a large number of short typing inter-

vals with a substantial amount of testing at intermediate stages.

3.2.5 File Analytics

The File Analytics, presented in Figure 3.11, serves as a bird’s eye view of a student’s

programming behavior. The interface contains useful statistics, like total session

duration, with typing time and total break time (idle time) in minutes. It also displays

the number of keystroke events, starting file size in bytes (number of characters), the
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file size at the end of the session, and the number of characters in the largest paste

operation, if any. The Residual Sum of Squares is the value computed from the cursor

position plot, described in the previous section. The interface also shows the number

of successful and unsuccessful compilation commands.

(a) File analytics events for a student who
likely engaged in honest programming.

(b) File analytics for a student who likely
committed external plagiarism.

Figure 3.11: File analytic events for a student coding session.

Figure 3.11a shows the file analytics features for a student who likely engaged in

honest programming. This student spent over 1 hour generating their solution, with

the majority of the time spent not typing, which typically means that the student

is reading their code and reasoning about their future work. It is also clear that

this student did not have any major pastes, and they tested and compiled their code

extensively. With 117 compilation commands, 3 of which were unsuccessful, but the

student was able to quickly address the issues and get back to a working state.

Alternatively, Figure 3.11b shows the file analytics features for a student who

likely copied a complete external solution because for 15 minutes out of the 16-

minute session, the student was continuously typing, without stopping to possibly

think about their code, without making a single mistake, and testing their code only

3 times, all of which succeeded.

3.3 Grading Platform

We developed a grading platform on top of the existing LMS and plagiarism detection

systems in an effort to streamline the grading process for instructors. It is a web-
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based solution that allows instructors to view and run students’ code in the same

environment in which it was developed, eliminating potential compatibility issues.

Upon selecting a student’s programming exercise, the submission files, as well as

interaction events, are fetched from the database. This allows the human grader

to verify the correctness of the solution, examine the thought process and problem

solving strategies employed by the student, and flag any suspicious behaviors for

further investigation.

Figure 3.12: The Grading Platform interface showing the submission for student 107.

Figure 3.12 shows the Grading Platform. The right sidebar, labeled as the Submis-

sion Navigator, features several dropdown menus that enable the instructor to select

a student’s submission for a specific assignment exercise. The Section dropdown dis-

plays the various course sections, allowing Teaching Assistants to easily select their

assigned section and filter the students accordingly. The two buttons adjacent to the

Student dropdown facilitate navigation to the previous and next student, respectively.

The Comments and Grade fields provide the teaching team with the means to offer

feedback and assign grades.

Figure 3.12 shows the Grading Platform being used to assess submission 3, of

exercise 1 (OpenGL Complete Paint Application) from Lab 7, for student 107 of CSE

24-10 (Advanced Programming). The submission files are accessible via the file tree

viewer, located on the left sidebar. The text editor, displayed on the left portion of the
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interface, shows the contents of the Color.h file, while the OpenGL View window on

the right showcases the graphical window which is rendering the program submitted

by the student, which constitutes a paint application.

3.4 Interactive Code Rewind Tool

We developed the Interactive Code Rewind tool that enables navigation and anno-

tation of Git repositories. In the context of educational settings, Git repositories are

useful for reviewing the thought process of the programmer at intermediate stages

of development. Git stores snapshots of file contents at different milestones (com-

mit points), and requires a message at each one, describing the changes introduced

to the code since the previous commit point. Educators can use commit messages

to describe their thought process and problem solving strategies while developing a

coding demonstration, but commit messages are brief, contain only plain text, and

are immutable after creation. To augment instructors’ ability to describe the changes

introduced at each commit, we built a database layer to store additional notes in rich

text format, associated with a particular commit, which instructors have the ability

to edit after the fact.

Database

Commit 1

Commit 2

Commit 3

Snapshot BHEAD

Snapshot A

Snapshot C

Checkout Commit

Write to Filesystem

Write to Filesystem

Write to Filesystem

Select Commit Notes

Is Instructor?

Update Notes

Yes

Move HEAD

Fetch Notes

Figure 3.13: A flowchart of the Interactive Code Rewind tool.
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Figure 3.13 illustrates the workings of Interactive Code Rewind system. The

HEAD pointer, seen in the diagram above, represents the commit that is currently

checked out, which is to say that the contents of the repository files are synchronized

to the corresponding snapshot. The notes stored in the database are associated to a

specific commit, which is uniquely identified by the Git system using a 40-character

hash. Students typically have read-only access to the database, allowing them to view

the notes written by the instructor, who has full database access.

Figure 3.14: The Interactive Code Rewind interface for lecture 9 at commit 3,
showing the notes and a diff editor with content that changed.

The Interactive Code Rewind tool, presented by Figure 3.14, shows a student who

has selected “Commit 3: Reading input from the keyboard” of the solution branch

from the exercise-9 repository (highlighted in red). The four buttons adjacent to

the Commit heading allow users to navigate to the first commit, previous commit,

next commit, and last commit, respectively. The Changed Files section (highlighted

in magenta) lists the files that were modified during that commit, while the diff editor

shows the lines of code that were added (shown in green), as well as the lines which

were deleted (shown in red). The Notes section (highlighted in green) displays the

rich text annotations that were written by the instructor. The terminal (highlighted

in blue), shows the result of the student compiling and running the code, as it exists

at the current commit.



Chapter 4

Case Study: An Introductory

Programming Course

4.1 Introduction

The case study reported here was performed at the University of California, Merced

(UC Merced), in an introductory programming course, during the Spring 2022 semester.

UC Merced is a suitable setting for work of this kind, as it hosts a diverse student

population, with a high percentage of first-generation students, many of whom are

members of under-represented minority groups, coming from underserved areas, es-

pecially in terms of access to computing. Characteristics of the student population

are explained in Section 4.2.

The study was performed in an introductory programming course, called CSE 24,

described in Section 4.3, which is considered similar to other introductory program-

ming courses in the state of California, as it articulates to every major educational

institution in the state.

We observed that the average lab grades for students in the course were signifi-

cantly higher than their midterm grades, with many students who appeared proficient

in programming during their lab assignments failing to demonstrate any knowledge

of programming in their midterm exams. The details of the study appear in Section

4.4. We also looked at the amount of time students are spending on programming,

as an indication of the amount of effort and engagement, with details presented in

Section 4.5.

The disconnect in performance between programming assignments and exams, as

41
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well as the minimal amount of time students in the course spent programming, led us

to suspect high levels of plagiarism as a possible explanation for these results. Section

4.6 presents the results of an investigation into plagiarism levels in the course.

4.2 Student Population

In Fall 2023, there were a total of 8,373 undergraduate students, of whom 65% are

first-generation [2]. The distribution according to race and ethnicity can be seen in

Figure 4.1. Over half the student population at UC Merced is Hispanic, therefore the

university is classified as a Hispanic Serving Institution (HSI).

Total Headcounts-2

Demographics Fall 2022 Spring 2023 Total

Asian 1,855 1,724 3,579

Two or More Races 343 314 657

Hispanic 4,763 4,389 9,152

International 711 661 1372

African-American 402 374 776

White 887 843 1730

White
10%

African-American
4%

International
8%

Hispanic
53%

Two or More Races
4%

Asian
21%

1

Figure 4.1: Student distribution according to race

A large percentage of the student population of UC Merced can be characterized

as low-income. The university has the highest percentage of undergraduate students

who receive need-based financial aid, among all public universities in the United

States. In Fall 2023 61% of students were Pell grant eligible, while another 13.5%

received other forms of federal assistance. In total 90% of UC Merced undergraduate

students receive financial aid of some form.

Low income has been shown to negatively affect college readiness levels of students.

The ACT defines college readiness benchmarks in four areas, including English, Math-

ematics, Reading, and Science. The chart in Figure 4.2 shows students’ attainment

of the four readiness benchmarks according to family income levels (dark blue), as

well as their self-reported family income (light blue) [1].
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For UC Merced students, the vast majority are eligible for financial aid, indicating

that their annual family income is below $60K. This suggests that only 10-20% of

them may meet all four college readiness benchmarks, based on the trends observed

in the national study. However, it is important to note that these figures are inferred

from the broader data and may not directly reflect the specific outcomes for UC

Merced students. College readiness levels tend to increase sharply for students whose

family income is on the higher end.
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Figure 4.2: National ACT college readiness benchmark attainment by annual family
income

Exposure to computing early in life has clear benefits for students pursuing a

degree in Computer Science. Students from low-income backgrounds are at a dis-

advantage due to the lack of adequate access to such resources in their families and

communities. Research has also shown that first generation students face challenges

in their undergraduate studies, making them more likely to switch away from Com-

puter Science, or to leave the university entirely [51]. The lack of role models has also

been identified as a barrier to success for students from underrepresented minorities.

4.3 Course Description

CSE 24 is the second course in the introductory programming sequence, and is the

equivalent of a CS2 course. The course introduces students to object-oriented pro-

gramming, pointers and dynamic memory management, while providing additional

practice for students to develop their programming and problem solving skills. By the

end of this course students are expected to be competent programmers, in at least the
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C++ language, setting them up to be successful in upper-division Computer Science

courses.

The course earns 4 academic credits, equating to 12 hours of effort per week over

a 15-week semester. There are two weekly lectures of 1 hour 15 minutes each, and a

laboratory session of 2 hours 50 minutes. Lectures are conducted in large auditoriums,

where the instructor uses a combination of lecture slides, live-coding demonstrations

and notes written on a whiteboard, to deliver the material to the students. Due

to the large number of students in the classroom, instructors typically spend class

time lecturing to the students, with limited opportunities for individual attention.

Students are expected to practice the material they learn in lectures by completing

their weekly programming assignments, which they can work on at home, and/or

during their dedicated laboratory sessions.

A weekly programming assignment is a collection of programming exercises, where

the number of tasks is typically 5-6, but could vary depending on the scope and diffi-

culty of each task. Students are presented with a prompt, explaining the programming

task, as well as sample input and output pairs that they can use to test their solutions.

Students are expected to produce fully working programs that can be compiled and

executed. Solutions to programming exercises are graded automatically by a system,

described in Section 3.1, that compiles and runs the code submitted by the students,

and compares the outputs produced to the expected outputs provided by the instruc-

tor. Students receive immediate feedback on the correctness of their solution, and are

allowed an unlimited number of resubmission attempts until the specified deadline.

Every student is assigned to a weekly laboratory session where they can work on

their programming assignments. These sessions are led by Teaching Assistants (TAs)

and are restricted to 30 students per session. This is to allow the TA to spend time

with individual students who may require additional help with their programming

exercises.

The course has a formal assessment component made up of a midterm, and a final

examination. Due to the practical nature of the course, formal examinations typically

ask students to demonstrate their understanding or mastery of programming concepts

they had learned in lectures and practiced during lab sessions. Exam questions are

structured similarly to programming interviews, where the candidate is asked to write

working code on paper (without the aid of a compiler), trace or explain given code

snippets, or answer conceptual questions related to programming.

A student’s course grade is calculated as a combination of their scores from formal
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assessments, such as midterm and final examinations, class participation grades, and

their lab assignments grade. Although it varies from semester to semester, the labo-

ratory grade makes up to 30% of a student’s course grade, so it carries a significant

amount of weight.

4.4 Average Formal Exam and Laboratory Scores

In the Spring 2022 semester there were 115 students in the class, the average pro-

gramming assignment grade was 96%, while the average midterm grade was 68%.

Figure 4.3 shows these averages, with the error bars representing Standard Devia-

tion.
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Figure 4.3: Average laboratory grades compared to midterm grades in Spring 2022.

In addition to the large difference in terms of mean, the correlation between lab-

oratory grades and midterm grades is weak, with a Pearson Correlation Coefficient

of ρ = 0.28. The scatter plot in Figure 4.4, with laboratory scores on x-axis and

midterm scores on the y-axis, also illustrate the weak correlation. 70% or above is

considered a passing grade, and the pass rate for laboratory assignments was 99.1%,

while the pass rate for the midterm examination was 49.6%.

The weak correlations observed above are an indication that students are not learn-

ing from their practical assignments. A possible explanation for this was that students

commit plagiarism. Practical programming exercises are assigned on a weekly basis,

and students have ample opportunity to seek outside assistance, from platforms like

Chegg and Stack Overflow, from fellow students in the course, or from generative
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Figure 4.4: Scatter plots of laboratory and midterm grades in Spring 2022.

Artificial Intelligence tools. Furthermore, the automated nature of grading for these

assignments contributes to plagiarism.

4.5 Time Spent on Programming Assignments

The fine-grained log data available from our IDE, described in Chapter 3, can be used

to obtain an accurate measure of the amount of time students spend on programming

assignments. In this course offering, we there were seven laboratory sessions, each

containing between one and ten programming exercises. The first lab included ten

exercises designed to review topics from previous courses, such as printing a person-

alized greeting, unit converters, and creating a dinner bill calculator that takes in as

inputs the bill amount, tip percentage, and number of people, and computes the price

each person must pay. The second lab had five exercises focusing on problem-solving,

including finding the longest consecutive increasing sequence of numbers in an array,

printing a parameterized ASCII triangle, and calculating the number of years, weeks,

and days given a certain number of days (37 days = 0 years, 5 weeks, and 2 days).

The third lab consisted of five exercises centered on strings, such as finding the longest

hyphenated word in a text, reversing a string without using STL libraries, and per-

forming shift cipher encryption. The fourth lab comprised five exercises on vectors,

including removing or updating elements from a vector, interleaving two vectors, and

visualizing a two-dimensional vector on the terminal. The fifth lab featured two ex-

ercises on pointers, such as calculating the distance in bytes between the memory
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locations of two variables. The sixth lab had one exercise on pointer arithmetic and

manipulation, where students were tasked with creating a cryptographic library. The

seventh lab included one exercise on dynamic memory management, tasking students

with creating a resizable container capable of storing elements of different data types

(bool, int, float, char), similar to a Python list. A complete listing of assignment

questions can be found in Appendix A.

Lab Time on Task

1 151
2 77
3 76
4 67
5 56
6 72
7 62

Table 4.1: Time in minutes spent by students on programming assignments in CSE
24 for Spring 2022

Table 4.1 shows the average time students spent working on their programming

assignments during the Spring 2022 offering of CSE 24. On average, students spent

about 80 minutes a week working on their programming exercises.

4.6 Plagiarism on Programming Assignments

The observations presented in this chapter, namely poor correlation between labora-

tory and exam grades, paired with the short periods of time students spend on their

programming assignments, roused our suspicion that plagiarism must be a significant

factor in the course. We set out to determine an accurate plagiarism rate, so it can

be used to draw conclusions about student learning in the course.

For this task, we selected two exercises from the course and used the tool described

in Chapter 3 to analyze the programming process of each student who submitted a

solution. This is a highly labor-intensive task, as it requires an instructor to replay

process of text entry for each submission and look for suspicious patterns. Students

who copy/pasted complete solutions were detected efficiently, as the instructor had to

scroll through a relatively small number of interaction events. Students who manually

typed in plagiarized solutions had on the order of 1500 keystrokes, so it was a time-

consuming process to examine them all, whereas students who worked honestly had
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several thousand keystrokes to examine. It is important for instructors to complete

this review carefully as a student may appear to be working honestly on a solution,

only to paste an external one late in the process.

There were a total of 210 unique students who made submissions, and we found

suspicions of plagiarism in 101, or 48% of them. For comparison, the popular pla-

giarism detection tool MOSS was only able to flag 49 of them. Our intuition is

that MOSS was only able to detect half of the suspected plagiarism cases because

many students are making use of external resources, where they can obtain unique

solutions, or are able to perform a sufficient number of code transformations on a

borrowed solution so as to evade detection based on similarity.

4.7 Conclusion

The overall conclusion from the case study described here is that students are not

acquiring as much programming skills as they should from the course. This is evident

from the uncorrelated grades in laboratory assignments and formal exams, where

students are apparently proficient in programming but are unable to demonstrate this

during formal testing, which is designed to be similar to interviews for programming

jobs. Since UC Merced students are behind their nationwide peers in terms of college

readiness, they would benefit from spending more time and putting in more effort

on their programming assignments. The high levels of suspected plagiarism also

contribute to the perceived low learning rates. It is hard to imagine how so many

students complete their programming assignments correctly in so little time, in the

presence of so much suspicious behavior.



Chapter 5

Apprenticeship and Product Based

Learning

As is common in many introductory programming courses, CSE 24 at UC Merced

makes use of laboratory assignments to provide opportunities for students to inter-

nalize concepts covered in lectures through practical exercises. Despite the presence

of a strict Academic Honesty Policy at the department, plagiarism rates have re-

mained consistently high, as reported in Chapter 4. Plagiarism, and to some extent

disengagement/non-attendance, are believed to be contributing factors for the low

exam scores in CSE 24, reported in Chapter 4. We believe the low exam scores are

indicative of low learning rates, since the exams are structured similarly to program-

ming interviews, asking students to demonstrate their understanding of programming

concepts. We hypothesize that if students worked more on their programming assign-

ments, without committing plagiarism, then their exam scores will increase, which

will be an indication of better learning rates.

An easy way to increase the amount of time students spend programming is to

increase the size of their assignments, either by including more exercises or increas-

ing the scope of each task. An equally simple method of reducing plagiarism is to

increase detection efforts, possibly with the help of specialized software tools, and in-

stitute harsher punishments for offenders. Both of these strategies have been proven

ineffective.

We believe that if programming assignments were more interesting and/or re-

latable to students, they would be naturally more motivated. This could lead to

increased effort, as well as a reduction in plagiarism. Project Based Learning, de-

scribed in Chapter 2, has seen much success in Computer Science, especially in cap-

49
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stone courses, where students work in teams on real-world projects. Adoption in

introductory classes is more challenging, with researchers and educators citing dif-

ficulties in evaluating student performance, as well as the necessity to adopt new

teaching modalities and modify existing curriculum.

We introduced a flavor of Project Based Learning, less reliant on teamwork, mak-

ing it more suitable for individual student assessment, as is common in introductory

programming courses. Our approach, called Product Based Learning, is presented in

Section 5.1. The additional course material needed to support Product Based Learn-

ing necessitated the adoption of new course delivery techniques, inspired by Appren-

ticeship Learning. Section 5.2 describes our applications of Apprenticeship Learning,

including the lecture delivery methods and software tools needed to support them.

5.1 Product Based Learning

Reflecting on our traditional assignments, we identified significant issues related to

their rigid structure, which not only hindered student creativity, but also made it

easy for students to find ideal solutions online. Furthermore, the assignments had a

definitive ending point; once students passed all the unit tests, it meant that they had

completed the assignment, leaving no further incentive for continued programming.

Given students’ inexperience with command line environments, we observed an

apparent lack of interest and motivation on the part of students when working on

traditional programming assignments. When tasked with developing command line

programs that produce textual output, students struggled to perceive this as creating

real software. Additionally, many students expressed interest in developing websites

or mobile applications, likely influenced by their frequent interaction with these tech-

nologies in their daily lives.

We decided to adopt a Project Based Learning approach for programming as-

signments, where students would be asked to work on projects with the following

requirements:

• completed individually;

• graded by a human;

• employ graphical user interfaces;

• have open-ended specifications;



CHAPTER 5. APPRENTICESHIP AND PRODUCT BASED LEARNING 51

• resembles a real-world product.

We place strong emphasis on the last point, which is that whatever programs

students write, those programs should resemble real software products, hence we

named our instructional methodology: Product Based Learning.

We believe that creating graphical user interfaces will motivate students, as it

aligns more closely with their perception of what constitutes software, and the open-

ended nature of the project specification will increase engagement as students will

be free to use their creativity when implementing features in their product. Since

students know that their projects will be graded by a human grader, we expect

that some of them may put in additional effort in order to impress the grader, a

phenomenon known as the Hawhtorne Effect, which is the tendency of people to

change their behavior due to their knowledge that they are being observed. It is also

expected to have a significant effect on reducing plagiarism.

It is a common practice to show students a “hello world” program sometime near

the beginning of an introductory course. Depending on the programming language of

choice, this program could be 1 line of code, as in Python or Ruby, or about 5 lines

of code, as in Java or C++. The result of running the program is always a variation

of the text Hello World appearing on the command line where the program was

invoked.

In contrast, a Product Based version of the “hello world” program would involve a

graphical window with the “Hello World” message on it. Figure 5.1 shows a screenshot

of a sample GUI based “hello world” program, while Figure 5.2 lists the source code

a student would need to produce.

While it can be argued that the number of lines of code for the GUI based “hello

world” program is not significantly larger than the number of lines needed to produce a

command line version of the program in C++, the GUI based version employs more

advanced programming concepts such as variable declaration, object instantiation,

and inheritance, even if one is to ignore the use of pointers and dynamic memory

management in the snippet above. Furthermore, in a command line C++ program,

reading input from the user would amount to writing a correct cin statement, whereas

in the GUI version there would need to be a button object instantiated, and a callback

defined for handling click events.

The added complexity would be worth the effort, if it resulted in a significant

reduction in plagiarism, increased effort and engagement levels on the part of students,

and higher learning rates. In order to increase the changes of success in Product Based
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Figure 5.1: Screenshot of GUI based “Hello World” program

#ifndef WINDOW_H

#define WINDOW_H

#include "AppWindow.h"

#include "Label.h"

class Window : public AppWindow {

Label* message;

public:

Window (){

message = new Label("Hello World");

addControl(message );

}

~Window (){

delete message;

}

};

#endif

Figure 5.2: Source code of GUI based “Hello World” program written in C++
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Learning, we also adopt a new teaching philosophy based on the Apprenticeship

Learning Model.

5.2 Apprenticeship Learning

The Apprenticeship Learning Model, described in Chapter 2, is an educational model

in which an apprentice learns a skill or trade through observation and practical experi-

ence under guidance of an expert. Apprenticeship has proven to be highly effective in

the development of skills which involve tangible processes that can be easily observed,

such as learning to play an instrument or building furniture. Learning to program

and building furniture share similarities in that they both require understanding the

components involved, whether it’s the syntax and logic of a programming language

or the various materials and assembly techniques for furniture. Both activities also

involve an incremental work process, and they demand problem solving skills to over-

come challenges and errors encountered along the way, oftentimes requiring the use

of specific tools and techniques to achieve the desired outcome. Furthermore, they

generally follow an iterative process, where the initial version of the project is refined

and improved over time.

5.2.1 Lecture Delivery

A live coding demonstration involves the design and implementation of code in front

of an audience. Many studies have shown positive outcomes of live coding demon-

strations in Computer Science, such as improved programming and debugging under-

standing [21, 108, 116, 73]. We adopted live coding demonstrations as the primary

teaching method for delivering our lectures. Using the classroom projector, we share

our screen with students as we explain and develop code in real time. We typically be-

gin with an empty text editor and develop all portions of the code during lecture. This

approach gives students the opportunity to observe our cognitive processes, problem

solving strategies, and debugging techniques firsthand. The live coding demonstra-

tions offer a comprehensive insight into the entire programming process, extending

beyond mere code composition within a text editor. Through these demonstrations,

we showcase other important skills which are essential in programming, such as nav-

igating the file system, using the command line, as well as compiling, running, and

testing programs.
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Although live coding demonstrations effectively fulfill the Modeling phase of ap-

prenticeship learning, by providing instructors with a platform to demonstrate and

articulate the programming process to students, they present scalability challenges in

large courses. In traditional apprenticeship settings, the learner-to-expert ratio is typ-

ically small, often comprising only one or a few apprentices per expert. This enables

the expert to allocate one-on-one time to each apprentice, allowing for individualized

attention. In typical introductory programming classes, the number of students is

usually in the hundreds, and there is a high degree of variance in preparation and

programming skill levels among students. This makes it difficult, if not impossible,

for instructors to execute the Scaffolding phase during lecture.

5.2.2 Interactive Lecture Code Rewind

In apprenticeship learning, scaffolding is when students begin to mimic the actions

of the instructor, after having witnessed the demonstration. To facilitate this, we

started recording the live coding demonstrations, including both the computer screen

and external audio, allowing students to view the live coding demonstration and listen

to the instructor’s explanations. The source code associated with the programming

demonstration was made available along with each recording.

Despite these efforts, the lecture recordings proved ineffective for several reasons.

Students expressed that re-watching the recordings was time-consuming and mentally

exhausting. To fully replicate the live coding experience, students would need to

simultaneously play the lecture recording while writing the code themselves in a text

editor to run and experiment with the code, similar to the instructor’s actions during

the live lecture.

Recognizing the limitations of the existing method, it became apparent that we

needed to provide students with a more efficient means to revisit the live programming

demonstration, as close as possible to how they experienced it during the live lecture.

Instead of recording lectures as video and audio, we started each programming demo

as an empty Git repository. Git is a popular version control system, allowing devel-

opers to track changes to their codebase, among other features. During live coding

demonstrations, the instructor would develop their code as usual, with the addition of

pausing at important developmental milestones, and performing a commit operation,

which is the process of storing a snapshot of the current state of the codebase in the

version control database, and allowing users to revert to that state in the future.
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It is possible to share entire Git repositories through online platforms, such as

GitHub or GitLab, both of which offer this service free of charge. After every commit

point in a lecture demonstration, we share the code with the students in the class,

through an online Git platform. This gives our students access to the code that we

have written in real time, without the need for them to frantically keep up with the

instructors typing, allowing them to focus on the instructors’ explanations during

lectures.

This mechanism allows the instructor to provide code to students with a high

degree of control in terms of timing, as well as partitioning. Students can use the

code they receive for in-class exercises, and other forms of active learning. Due to its

dynamic nature, the instructor can easily share materials with the class, even code

they came up with on the fly, lending itself well to the live nature of the lecture.

The main reason for structuring lecture demonstrations as Git repositories is to

allow students to use the Interactive Code Rewind tool, described in Chapter 3 to

re-create the lecture experience after the fact. Figure 5.3 shows a student is viewing

commit 2 of lecture 7. To provide context, the goal of this lecture was to introduce

the basics of drawing simple objects (points, lines, and polygons) with OpenGL. The

diff editor makes it clear that lines 24 to 33 were added to the file Controller.h,

and the notes explain that the newly added lines of code simply draw two points on

the canvas, a red point at coordinates (0, 0), and a blue point at coordinates (0.5,

0.5). Figure 5.4 shows the output of the student running the program, in its current

state (commit 2).

There are many advantages of using the Interactive Code Rewind tool compared

to watching a video recording of the lecture. When students revert the lecture demon-

stration to a prior state, the tool displays the notes relevant for that state, and all the

lines of code that were introduced since the last checkpoint, allowing efficient naviga-

tion between all the important milestones in the development. In a video recording,

there is a significant amount of time between the important milestones of the pro-

gram, because it takes time for the instructor to type the code, and explain their

thought process. The video does not highlight the important changes in a diff editor,

the way the Interactive Code Rewind tool does, as seen in Figure 5.3. Having a bird’s

eye view of the changes introduced in a given milestone is more efficient and less

boring than watching the code appear character-by-character.

The second important advantage of the Interactive Code Rewind tool is that

navigating to a prior state of the codebase affects the user’s file system, which means
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Figure 5.3: Interactive Code Rewind tool for lecture 7 at commit 2. Includes in-
structor notes and diff editor with content that changed.

Figure 5.4: Interactive Code Rewind tool showing the output of running the program
from lecture 7 as it existed in commit 2.
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that the source code of the project as it existed in a prior state is made available on

the user’s local file system, allowing them view it in a text editor, and scroll to sections

that may not have been visible in a video recording. Since the code is available in the

file system, the student can also compile and run it, as seen in Figure 5.4. To be able

to do the same from a video recording would have required the student to manually

type the code as it appeared in the video, which is a very mundane and error-prone

process.

5.2.3 Self Guided Supplementary Exercises with Solutions

In addition to lecture demonstrations, students can also use the Interactive Code

Rewind tool, described in Chapter 3, to assimilate course material, especially in the

form of programming examples and optional exercises. Traditional programming

textbooks and course materials often provide code listings for entire programs. For

anything but the most trivial programs, the source code includes nested structures,

function definitions, and possibly multiple modules, defined in separate files. This

makes listing a complete example impractical and difficult to read, follow and un-

derstand. Furthermore, compiling, running, and experimenting with only part of the

source code is challenging.

If the programming examples are created as Git repositories, with commits at im-

portant milestones, instructors can provide notes for each commit, thereby encoding

their thought process and problem solving strategy into the repository. Optionally,

the solution can be stored on a separate branch of the repository, that students can

switch to and from as needed. The advantage of presenting programming examples

with this tool is that the code appears for students in small, manageable chunks,

clearly highlighted in the diff editor, and explained in the notes section.

Figure 5.5 is a screenshot of a student viewing the solution branch of a program-

ming example, currently at commit 2. The instructor has decided to provide a solution

that begins with reading two integers from Standard Input and printing their values

to the console. The text editor contains only the code relevant for this step, which is

highlighted in green in on the right-hand side of the diff editor, and it is described in

the notes. The student has also decided to compile and run the code in its current

state and experiment with different input values.

Had the solution been provided in the traditional way, which would have been the

entire solution to the problem, with explanations referring to lines in the source code,
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Figure 5.5: The Interactive Code Rewind interface showing solution branch for self
guided programming exercise.

the student would have had to read the entire source code, and pick out the relevant

lines for the current step that they are on, which may not be in order from top to

bottom of the text file. The ability to compile and run the program at earlier stages

of its development would have also been removed.

Finally, the exercise depicted in Figure 5.5 includes a suite of test cases that

students can execute to determine the correctness of the code written. This allows the

student to navigate to a prior state of the source code, including to the first commit,

and attempt to solve the exercise from that point. They can use the test suite to

verify the correctness of their solution. If they are unsuccessful, or do not know how

to get started, they need to only navigate to the next commit, where the interface

will provide explanatory notes, written by the instructor, as well as relevant code to

get started on a solution. In the example presented here, the problem being solved

is to produce an ASCII rectangle, given its dimensions. Commit 2 of the example is

for students who may not know how to properly get started, so it is suggesting that

reading in the dimensions and storing them as integer variables is a good start.

Since examples and exercises of this nature are not assigned for course credit,

but merely for additional practice and academic enrichment, there is no incentive for

students to plagiarize solutions for them. The provided step-by-step solutions are



CHAPTER 5. APPRENTICESHIP AND PRODUCT BASED LEARNING 59

only meant to serve as guidelines for students wishing to receive additional practice,

with expert guidance available upon request.

The self-guided supplementary exercises with solutions, described above are useful

tools for the Fading and Self-directed learning phases of the Apprenticeship Learning

Model.

5.2.4 Product Based Programming Assignments

To fulfill the Generalization phase of the Apprenticeship Learning Model, we intro-

duced open-ended laboratory assignments, according to the Product Based Learn-

ing philosophy, described is Section 5.1. In the first course offering where this was

adopted, students were asked to develop a working clone of the popular Paint appli-

cation, with only a high level description of the set of features the product needed to

have. Each week, students were asked to add features to their existing application,

building up a product that was interesting and motivating enough to keep students

engaged, with a lot of room for their own creative input to the process.

All students were given boilerplate code that generates a blank graphical window,

with sample functions to handle certain events such as mouse clicks, mouse motion,

and keyboard input. Students could modify the code in these event handlers in order

to implement the desired functionality. At first students were asked to make their

application paint and erase anywhere on a given canvas. This was followed by the

ability to select various shape tools, as well as a color for the brush tool from a palette

of choices. The third iteration asked students to implement a color tool that allows

the user to create any color in the RGB spectrum, with the freedom to pick any

design they wish, as long as the user is able to perform the task.

Figure 5.6 presents various student implementations for the generic color tool. It

is worth noting that despite receiving identical instructions, each student produced a

distinct and unique product.

5.3 Evaluation

In this section, we report and discuss the results of adopting of Apprenticeship and

Product Based Learning. The original goals of this work were to find instructional

and assessment methods that would motivate students to spend more time on their

programming, without committing plagiarism. We believe in the “learn by doing”



CHAPTER 5. APPRENTICESHIP AND PRODUCT BASED LEARNING 60

(a) (b)

(c) (d)

Figure 5.6: Student solutions for Product Based Learning paint application assign-
ment.
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approach to computer programming, so it is imperative for students to do more

programming. It is equally important for students to work earnestly and follow

academic honesty practices, otherwise no learning is taking place. If successful, the

teaching methodologies introduced here should also result in higher exam scores,

indicative of improved student learning.

5.3.1 Increased Time On Task

In the Spring 2024 offering of CSE 24, we introduced the graphical-based Product

Based assignments. Table 5.1 presents the average time students spent working on

these assignments. We observed a significant increase in the amount of time stu-

dents devoted to coding. Students were spending nearly 6 hours per week on their

programming assignments, marking a threefold increase compared to the Spring of

2022.

Lab Spring 2022 Spring 2024

1 151 102
2 77 305
3 76 607
4 67 274
5 56 469
6 72 388
7 62 -

Table 5.1: Average time in minutes spent by students on programming assignments
in Spring 2022 and Spring 2024

A possible reason for the additional time and apparent effort students put into

their Product Based assignments is the Hawthorne Effect [99], which arises due to

the fact that student assignments were assessed by a human grader. Since students

knew that their work will be scrutinized by a person, some of them are likely to have

tried to impress the grader, who is their instructor or teaching assistant.

Another reason is that programming assignments were long-lived, meaning their

products evolved over the course of weeks, and were resembling real software that

the students are likely to know or have used. Creating their own versions of such

products may invoke a sense of ownership and pride in one’s work.

From informal interactions with students, we heard that comments like: “It was

fun creating entire programs and applications in OpenGL”. Another student com-

mented “What I liked the most about the course was getting to learn how to make



CHAPTER 5. APPRENTICESHIP AND PRODUCT BASED LEARNING 62

code that would allow me to render graphics in OpenGL. It was fun trying to figure

out how to create different colors and a color picker for the paint app”.

5.3.2 Decreased Plagiarism in Programming Assignments

Graphical-based Product Based Learning assignments have also mitigated issues re-

lated to plagiarism. As discussed in Chapter 4, traditional programming assignments

we used previously were plagued with plagiarism. We found that 48% of students were

committing plagiarism on the weekly programming assignments they were given. In

addition to being an academically dishonest practice, it is also

During the grading process of graphical-based programming assignments, we ob-

served that almost no two students had the exact same visual interface for any pro-

gramming assignment. We ran MOSS and used our visualization tool and found an

average of 8 out of 118 students committed plagiarism on their Product Based Learn-

ing assignments. This is only 6.7%, compared to the 48% in prior course offerings.

We believe this was in part due to the open-ended nature of our assignment

instructions, which encouraged student creativity. For instance, when tasked with

developing a simple paint application, we deliberately refrained from prescribing spe-

cific requirements regarding the visual interface’s appearance or the implementation

details of individual features.

Instead, we provided a set of broad guidelines, outlining features such as a drawing

tool and an eraser tool, various shape tools, and color selector. By giving students

the freedom to make independent choices in designing their products, we fostered a

sense of ownership, thereby increasing their engagement and motivation levels. Con-

sequently, students were motivated to invest longer periods of time to programming,

driven by the opportunity to express their creativity and tailor their solutions to their

unique preferences.

5.3.3 Improved Learning Rates for Programming Assignments

Given the reduced rates of suspected plagiarism, and the increased time spent on task

for programming assignments indicates that students are writing more code without

cheating. It is therefore reasonable to expect formal exam scores to increase, as

that would be evidence that students have learned. An increased correlation between

programming assignment and exam scores would also be indicative of better learning.

In the Spring 2024 semester there were 118 students in the class, the average
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programming assignment grade was 80%, while the average midterm grade was 75%.

Figure 5.7 shows these averages, with the error bars representing Standard Deviation.

Compared to the Spring 2022 semester where the average programming assignment

grade was 96% and the average midterm grade was 68%.
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Figure 5.7: Average laboratory grades compared to midterm grade in Spring 2022
and Spring 2024

The increase in average midterm grades, from 68% to 75% is an indication that

students have a better understanding of the material, since in both courses, midterm

exams tested students on concepts seen in laboratory assignments, asking students

to demonstrate their understanding. Laboratory grades drop significantly, from 96%

in the previous course offering, to 80%. The reduction is not necessarily a negative

aspect because grades in Spring 2022 were artificially inflates by plagiarism, which

did not happen as much in 2024.

The scatter plot for Spring 2024 in Figure 5.8, with laboratory scores on x-axis

and midterm scores on the y-axis, also illustrates a stronger correlation between the

grade students receive on their programming assignments compared to their midterm

exams. The plots also show a significant reduction in the number of students who

score close to perfect on their laboratory assignment, yet fail their exam. We recognize

the additional stress associated with taking formal exams, compared to laboratory

assignments, so it is reasonable to expect students to perform worse, but the difference

should not as drastic as what is observed in Spring 2022.

Table 5.2 shows some statistical factors between the Spring 2022 and Spring 2024

offerings of CSE 24. The Pearson Correlation Coefficient has increased from ρ = 0.28

to ρ = 0.59, the pass rate on midterm exams has increased from 49.6% to 65.3%,
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Figure 5.8: Scatter plots of laboratory and midterm grades for Spring 2022 and Spring
2024

and the percentage of students who pass their laboratory assignments but fail the

midterm exam has decreased from 49.5% to 19.4%.

Feature Spring 2022 Spring 2024

Pearson Correlation Coefficient ρ = 0.28 ρ = 0.59
Midterm Exam Pass Rate 49.6% 65.3%
Pass Laboratory Assignment Fail Midterm Exam 49.5% 19.4%
Average Time Spent Programming Per Week 89 min 357 min
Percentage of Students Committing Plagiarism 48% 6.7%

Table 5.2: Summary of comparisons between 2022 and 2024 course offerings

The stronger correlations observed above are an indication that students are learn-

ing more from their practical assignments. A possible explanation for this is the de-

creased plagiarism rates, which dropped from 48% to 6.5%. Additionally, students are

spending more time working on their GUI based programming assignments. The av-

erage time that students spent programming per week was increased from 89 minutes

to 357 minutes. We interpret these findings as improved learning rates.



Chapter 6

Conclusion and Future Work

6.1 Dissertation Summary and Discussion

The work presented in this dissertation is motivated by Broadening Participation in

Computing (BCP) efforts. It aims to design, evaluate, and deploy curriculum and

teaching methodologies that improve student learning of computer programming.

The work began with a case study of an introductory programming course at the

University of California, Merced. It is believed that challenges faced by UC Merced

students are similar to challenges faced by students elsewhere, especially underserved

regions where prior access to computing resources has been limited.

The course that served as the vehicle for the initial case study is a typical introduc-

tory programming course, with a large practical component, for students to practice

their skills, as well as formal exams for students to demonstrate understanding and

mastery of the concepts.

The first finding of the study was that students were earning nearly full credit

on their programming assignments, while getting significantly lower scores in their

midterm exams. This was seen as unusual and suspicious because midterm exams

were testing the students on the same concepts as the laboratory exercises. The

two forms of assessment highlighted some contradictory cases where students would

produce a perfect solution to a programming exercise, demonstrating mastery of the

concepts being tested, while exhibiting a complete lack of programming knowledge in

the midterm exam only a short time later.

In addition to the discrepancy between laboratory and midterm grades, we also

found students were spending short periods of time on their weekly programming

assignments. This is interpreted as a missed opportunity by students to practice and

65
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improve their programming skills.

We also suspected high levels of plagiarism in the courses. Traditional plagia-

rism detection tools reported that about 20-25% of students engage in academically

dishonest practices. To investigate the issue further, we built an interface to visual-

ize fine-grained log data available from online Integrated Development Environments

(IDEs), allowing us to observe the entire process each student followed while complet-

ing their programming assignments. The interface also highlights commonly occurring

behavior patterns associated with plagiarism, such as copy/pasting entire solutions to

assignments, with or without transformations, or manually entering an externally ob-

tained solution line-by-line, completing an entire assignment in one continuous typing

session without making mistakes, or stopping to test the code at intermediate stages,

among others. Using the tool we built, we were able to identify twice as many cases

of suspected plagiarism as we had from the traditional, similarity-based tools.

To address the issues described above, we created a curriculum, along with sup-

porting teaching methods, and deployed it to the same course as we had originally

studied. The curriculum was centered around the open-ended, graphical program-

ming projects that resemble real-world products, thus we named our approach Prod-

uct Based Learning. Another important feature of Product Based Learning is that

projects are graded by human graders. We believe this is a crucial component of

motivating students to work on their assignments, since knowing that they will be

observed by another person, may motivate them to try and impress that person, a

phenomenon known as the Hawthorne Effect.

There is additional labor costs associated with grading graphical products, espe-

cially when compared to automatically graded exercises, which are commonly found

in Computer Science courses. We argue that the extra effort is worth it because of

the motivation it could provide to students, not only through the Hawthorne Effect,

but also because they are asked to work on products that resemble real-life software,

and because they are allowed to be creative and have input into the process, including

user experience (UX) design, problem solving strategies, and others. To streamline

the process as much as possible, we built an online grading system, allowing the in-

structor to examine the source code, not only in its final state, but throughout all its

stages of development. It also highlights cases of suspected plagiarism, and provides

easy navigation between student submissions, and convenient grade and comment

entry, all in one interface.

We also borrow ideas from Apprenticeship Learning for course material deliv-
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ery. Many instructors employ live-coding demonstrations in their lectures, which is

the first part of apprenticeship learning, having an expert model the process for an

apprentice. In lower-division Computer Science courses however, the apprentice to

expert ratio could be hundreds to one, so the rest of the Apprenticeship Learning

principles of scaffolding, fading, and generalization, are not easily accomplished in a

lecture setting.

For a large percentage of students who are still learning the basics, a good scaf-

folding exercise would be for them to do exactly as the instructor did during the

lecture. This has been attempted with video recording of the instructor, or providing

the source code of the lecture demonstration, but in our case study, none of these

methods were effective.

To address this issue, we started saving the lecture demonstrations as Git repos-

itories, where the instructor can create checkpoints at important milestones in the

development of the codebase. Git is widely used in the industry, so even simply us-

ing Git in front of the students provides useful exposure for them. In addition to

the standard commits, we built an external annotation feature that instructors can

use to provide additional notes at each commit. This means that students can fol-

low along the development of the code and get additional explanations at important

milestones. The final component of the system was a visual interface, called the In-

teractive Code Rewind tool, for convenient navigation between the commit points of

a demonstration.

Navigating a lecture demonstration with the Interactive Code Rewind tool is like

watching the demonstration numerous times, but much more efficiently than watching

a recorded video, as the user does not have to wait for the code to be typed in real

time. The interface snaps to the next milestone, but it highlights in green the code

that has been added since, or in red for code that has been removed. The most

valuable aspect of navigating to a milestone in the Interactive Code Rewind tool is

that it allows the user to immediately compile and run the code as it existed at that

point in time. It is akin to scrubbing to a specific moment in a video of the lecture

demonstration to look at the instructor’s screen at that time, and have the ability to

compile and run the code in the video in the state that it is currently in. The inability

to do that is one of the reasons students were not watching the lecture recordings in

video format.

The introduction of these modifications in Spring 2024 resulted in various positive

outcomes in the course. First, plagiarism was down significantly. Using the same tools
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as we did for the 2022 version of the course, we found suspicious behaviors indicative

of plagiarism for 6% of the students in the class, whereas it was 48% before. We

recognize that since the Product Based assignments are newly introduced, there were

no solutions available from previous course offerings, and in future courses there will

be, so plagiarism rates may increase.

If the increase is significant, it may be necessary to create completely new Prod-

uct Based assignments, which is easier than regular, automatically graded exercises,

because the instructor needs to only provide high level guidelines of how the product

should work. For example, if we find that a solution for the current tic-tac-toe game

is available for students, we can add a requirement to the specification that says

“Modify your game to include power-ups”, without specifying how the power-ups

should work, or where they should be integrated. Each student should come up with

a different idea for this, and similarities between different students should be easy to

spot in the grading platform.

Another potential plagiarism deterrent that can easily be introduced in Product

Based Assignments is assigning credit for how impressive the product is, thereby

amplifying the Hawthorne Effect because students not only know that they will be

observed, but the observer will expect to be impressed.

With the reduction of plagiarism in the 2024 version of the course came an increase

in the time students spend on their programming assignments. This is likely due

to increased motivation, fewer opportunities to cheat, and the increased size of the

assignments. It can be argued that implementing graphical products simply requires

more lines of code than implementing a command line program that computes the

average of a given list of numbers. We believe that all three reasons are at play, but we

argue that no matter the reason for writing more code, a novice programmer benefits

from that. Even if the increased time spent on programming assignments was not

due to pure interest and motivation, the fact remains that the student wrote more

code, spent more time doing it, and did it without cheating, which only increases

their learning opportunities.

It also appears that students in the course were learning more effectively, as ev-

idenced by the improved exam grades. The change from 68% to 75% in average

midterm grades is a modest increase, but it is in the right direction. An alternative

metric is to consider the improved midterm pass rate, which went from 49.6% in 2022,

to 65.3% in 2024, which is about a 30% improvement.

Finally, we recognize that drawing definitive conclusions from only one semester
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of data is difficult, and further research is needed. We will continue to apply, evaluate

and improve the methods presented in this work, in the hopes that it can help more

students learn programming more effectively and efficiently, broadening participation

in the field from as many people as possible.

6.2 Future Work

6.2.1 Automated Plagiarism Detection with Fine-Grained Data

The plagiarism detection tool described in Chapter 3, allow the instructor to recreate

the entire programming process the student followed, by leveraging fine-grained log

data collected by our online IDE.

These data are suitable for training Machine Learning models to automatically rec-

ognize plagiarism in student submissions, as well as other signs of academic struggle.

As a proof-of-concept, we built a binary classification model for plagiarism detection,

using TensorFlow and Keras. Table 6.1 shows our machine learning model setup, and

Table 6.2 shows the dynamic features used to train our model.

Hyperparameter Description
Input Layer 11 features
Hidden Layer 1 8 neurons - sigmoid activation
Hidden Layer 2 8 neurons - sigmoid activation
Output Layer 1 neuron - sigmoid activation
Optimizer Stochastic Gradient Descent (Adam)
Loss Function Binary Cross Entropy
Training Time 2000 epochs

Table 6.1: Machine learning model setup

We established ground truth values for the model from the process of grading

student submissions for two programming exercises, manually classifying each sub-

mission as plagiarized or honest.

We trained our model with data from one course section and tested it with data

from a different one. The training set consisted of 198 submissions, 56 of which

were plagiarized, while the test set had 224 submissions, 78 of which were labeled as

plagiarized.

The model achieved an accuracy of 84.85%. This is a promising result, given the

limited amounts of data used to train it. It is significantly better than traditional
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Feature Description
Session Duration Time elapsed during a coding session
Coding Time Time spent coding (typing)
Idle Time Time spent idling (not typing)
Keystrokes Total number of keystrokes
Start File Size File size at beginning of session
End File Size File size at end of session
Max Paste Largest paste length in bytes
Sum Squared Residual Value used to determine top to bottom programming
Terminal Commands Total number of terminal commands
Successful Compilations Total number of successful compilations
Unsuccessful Compilations Total number of unsuccessful compilations

Table 6.2: Dynamic features extracted from every coding session

plagiarism detection tools, relying on code similarity between different submissions.

We expect accuracy to improve further as more data is added to the training set over

time.

6.2.2 Elimination of Formal Exams

We also plan to explore the feasibility of eliminating formal examinations and basing

the course grade entirely on the practical programming component. Historically, prior

to the introduction of Product Based programming assignments, students excelled in

the practical programming component but performed poorly on formal exams. This

discrepancy was partly attributed to the nature of our textbook-style programming as-

signments and the high occurrences of plagiarism, which made the practical program-

ming grades ineffective for accurately assessing our students’ programming knowledge

and proficiency. Consequently, we primarily relied on formal exams for this purpose.

Since the implementation of Product Based Learning, we have observed that not all

students are achieving perfect scores on their programming assignments. Preliminary

data indicates that grades on practical programming assignments are fairly correlated

with formal exam grades. This correlation suggests that, with further revisions and

improvements to our curriculum and programming assignments, we may be able to

predict formal exam scores based solely on the practical programming component. If

this proves to be the case, it could allow us to eliminate the need for formal exams

entirely.



Appendix A

Data Sets

A.1 Programming Assignments

A.1.1 CSE 24 - Spring 2022

Lab Exercise Instructions

Lab 1 Exercise 1 Create a program that prints “I love CSE! C++ is fun.”.

Lab 1 Exercise 2 Create a program that prints an ASCII rectangle.

Lab 1 Exercise 3 Create a program that prints an ASCII triangle.

Lab 1 Exercise 4 Create a program that prints a shipping label for UC Merced.

Lab 1 Exercise 5 Create a program that prints a personalized greeting given a

person’s name and their favorite hobby.

Lab 1 Exercise 6 Create a program that prints a generic shipping label for a

given address.

Lab 1 Exercise 7 Create a program that converts from miles to kilometers.

Lab 1 Exercise 8 Create a program that performs generic arithmetic operations

on two integers (Addition, subtraction, multiplication, divi-

sion, and modulo).

Lab 1 Exercise 9 Create a program that splits the dinner bill between the num-

ber of attendees.

Lab 1 Exercise

10

Create a program that splits the dinner bill, including tip

percentage, between the number of attendees.
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Lab Exercise Instructions

Lab 2 Exercise 1 Create a program that converts any number of days into the

equivalent number of years, weeks and days (37 days = 0

years, 5 weeks, and 2 days).

Lab 2 Exercise 2 Create a program that takes in integers, as command line

arguments, and determines the ratio of even to odd numbers

(More even numbers, more odd numbers, same number of

even and odd numbers).

Lab 2 Exercise 3 Create a program that determines the longest consecutive in-

creasing sequence given a list of integers.

Lab 2 Exercise 4 Create a program that prints a parametrized ASCII triangle

of a given base and height.

Lab 2 Exercise 5 Create a program that determines the largest 3 digit number

that can be created given a sequence of numbers between 0

and 9.

Lab 3 Exercise 1 Create a program that reverses a string (without using any

Standard Template Libraries).

Lab 3 Exercise 2 Create a program that finds the longest word in a text (as-

sume words can only be delimited by spaces, commas, or pe-

riods).

Lab 3 Exercise 3 Create a program that determines the number of times a sub-

string appears in a string.

Lab 3 Exercise 4 Create a program that uses a shift cipher method to encrypt

a string.

Lab 3 Exercise 5 Create a program that determines the number of occurrences

of a word in a text.

Lab 4 Exercise 1 Create a function that takes in a reference to a vector and

converts all negative integers to their positive counterpart.

Lab 4 Exercise 2 Create a function that returns a vector of the first n prime

numbers.

Lab 4 Exercise 3 Create a function that interleaves two vectors.

Lab 4 Exercise 4 Create a function that returns the indices of every pair of

consecutive integers in a vector that sum up to a target value.

Lab 4 Exercise 5 Create a function that visualizes a 2D vector.

Lab 5 Exercise 1 Create a program that finds the distance (in bytes) between

two variables (in memory).

Lab 5 Exercise 2 Create a program that implements a decode function, given

the source code of the encode function and an encoded mes-

sage.
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Lab Exercise Instructions

Lab 6 Exercise 1 Create a cryptographic library that takes in an 8-letter word

and converts it into a big number.

Lab 7 Exercise 1 Create a resizable data structure which is capable of storing

elements of different data types (bool, int, float, char).

A.1.2 CSE 24 - Spring 2024

Lab Exercise Instructions

Lab 1 Exercise 1 Create an OpenGL application which draws your initials.

Lab 2 Exercise 1 Create an OpenGL paint application which allows the user

to draw, erase, clear the screen, select a stroke thickness, and

select a color.

Lab 3 Exercise 1 Update your existing OpenGL paint application and add the

ability to draw three different shapes and a selector tool which

can be used to move a selected shape.

Lab 4 Exercise 1 Update your existing OpenGL paint application and add an

RGB color selector.

Lab 5 Exercise 1 Update your existing OpenGL paint application and add the

ability to draw points as a scribble, make all shapes and scrib-

bles moveable by dragging, and have the ability to bring/send

selected shapes/scribbles to the front/back.

Lab 6 Exercise 1 Create an OpenGL tic-tac-toe game.

Lab 7 Exercise 1 Update your existing OpenGL tic-tac-toe game and add the

ability to play on different board sizes, as well as the ability

to play against an AI.
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