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Auxin binding protein 1 (ABP1) has been studied for decades. It
has been suggested that ABP1 functions as an auxin receptor and
has an essential role in many developmental processes. Here we
present our unexpected findings that ABP1 is neither required for
auxin signaling nor necessary for plant development under normal
growth conditions. We used our ribozyme-based CRISPR technol-
ogy to generate an Arabidopsis abp1 mutant that contains a 5-bp
deletion in the first exon of ABP1, which resulted in a frameshift
and introduction of early stop codons. We also identified a T-DNA
insertion abp1 allele that harbors a T-DNA insertion located 27 bp
downstream of the ATG start codon in the first exon. We show
that the two new abp1 mutants are null alleles. Surprisingly, our
new abp1 mutant plants do not display any obvious developmen-
tal defects. In fact, the mutant plants are indistinguishable from
wild-type plants at every developmental stage analyzed. Further-
more, the abp1 plants are not resistant to exogenous auxin. At the
molecular level, we find that the induction of known auxin-regulated
genes is similar in both wild-type and abp1 plants in response to
auxin treatments. We conclude that ABP1 is not a key component in
auxin signaling or Arabidopsis development.

auxin | ABP1 | plant development | receptor | CRISPR

he auxin binding protein 1 (ABP1) was first isolated from

maize plants based on its ability to bind auxin (1). The crystal
structure of ABP1 demonstrated clearly that ABP1 has an auxin-
binding pocket and, indeed, binds auxin (2). However, the elu-
cidation of the physiological functions of ABP1 has been chal-
lenging because the first reported abp! T-DNA insertion mutant
in Arabidopsis was not viable (3). Nevertheless, ABPI has been
recognized as an essential gene for plant development and as
a key component in auxin signaling (4-9). Because viable abpl
null mutants in Arabidopsis were previously unavailable, alter-
native approaches have been used to disrupt ABPI function in
Arabidopsis to determine the physiological roles of the protein.
Cellular immunization approaches were used to generate ABP1
knockdown plants (10, 11). Inducible overexpression of the sin-
gle chain fragment variable regions (scFv12) of the anti-ABP1
monoclonal antibody mAb12 both in cell lines and in Arabidopsis
plants presumably neutralizes the endogenous ABP1 activities
(10, 11). Two such antibody lines, SS12S and SS12K, have been
widely used in many ABPI1-related studies (4, 6, 9-11). The
results obtained from the characterization of the antibody lines
suggest that ABP1 regulates cell division, cell expansion, meri-
stem activities, and root development (4, 6, 10, 12, 13). Trans-
genic plants that overexpress ABPI antisense RNA were also
used to elucidate the physiological functions of ABP1 (4, 10).
Moreover, missense point mutation alleles of abp! have also
been generated through the Arabidopsis TILLING project. One
such TILLING mutant, named abpl-5, harbors a mutation
(His94 >Tyr) in the auxin-binding pocket and has been widely
used in many ABP1-related studies (4, 8, 9). Previous studies
based on the antisense lines, antibody lines, and Arabidopsis
mutant alleles have led to the conclusion that ABP1 is essential
for embryogenesis, root development, and many other de-
velopmental processes. However, the interpretation of results
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generated by using the ABP1 antisense and antibody lines are not
straightforward and off-target effects have not been completely
ruled out. We believe that characterization of abpl null plants is
urgently needed to unambiguously define the roles of ABP1 in
auxin signaling and in plant development.

In the past several years, studies of the presumed ABP1-
mediated auxin signal transduction pathway were carried out
in several laboratories. It has been hypothesized that ABP1 is
an auxin receptor mediating fast, nongenomic effects of auxin
(4-6, 8, 9), whereas the TIR1 family of F-box protein/auxin
receptors are responsible for auxin-mediated gene regulation
(14, 15). One of the proposed functions of ABP1 is to regulate
subcellular distribution of PIN auxin efflux carriers (6, 9, 13).
Furthermore, a recent report suggests that a cell surface complex
consisting of ABP1 and transmembrane receptor-like kinases
functions as an auxin receptor at the plasma membrane by
activating the Rho-like guanosine triphosphatases (GTPases)
(ROPs) in an auxin-dependent manner (8). ROPs have been
reported to play a role in regulating cytoskeleton organization
and PIN protein endocytosis (5, 6). However, it is important to
unequivocally determine the biological processes that require
ABP1 before extensive efforts are directed toward elucidating
any ABP1-mediated signaling pathways.

In this paper, we generate and characterize new abpl null
mutants in Arabidopsis. We are interested in elucidating the
molecular mechanisms by which auxin regulates flower de-
velopment because our previously identified auxin biosynthetic
mutants display dramatic floral defects (16-18). Because ABPI
was reported as an essential gene and ABP1 binds auxin (2, 3),
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we decided to determine whether ABP1 plays a role in flower
development. We used our recently developed ribozyme-based
CRISPR gene editing technology (19) to specifically inactivate
ABPI during flower development. Unexpectedly, we recovered
a viable abpl mutant (abpl-cl, c stands for alleles generated by
using CRISPR) that contains a 5-bp deletion in the first exon of
ABPI. We also isolated a T-DNA abp! allele (abpI-TDI) that
harbors a T-DNA insertion in the first exon of ABP1. We show
that both abpI-cl and abpl-TDI are null mutants. Surprisingly,
the mutants were indistinguishable from wild-type (WT) plants
at all of the developmental stages we analyzed. Our data clearly
demonstrate that ABPI is not an essential gene and that ABP1
does not play a major role in auxin signaling and Arabidopsis
development under normal growth conditions.

Results and Discussion

Generation of Loss-of-Function abp? Mutants in Arabidopsis Using
CRISPR Technology. In an attempt to determine the roles of
ABPI in Arabidopsis flower development, we used the latest
CRISPR technology (19) to specifically knockout the ABPI gene
during Arabidopsis flower development. We designed a ribozyme—
guide RNA-ribozyme (RGR) unit that specifically targets a
stretch of DNA in the first exon of ABPI gene (Fig. 14). The
RGR unit was placed under the control of the strong constitutive
CaMV 35S promoter. Primary transcripts of RGR undergo self-
processing to release the mature functional guide RNA (gRNA)
as we demonstrated (19). We controlled the expression of the
Cas9 nuclease by using the APETALA 1 (API) promoter (Fig.
14). We expected that the gRNA would bring the Cas9 protein
to the ABPI target site where it will generate double-stranded
breaks. Deletions and insertions will be produced during non-
homologous end joining repair of the double-stranded break. We
hypothesized that the gene editing will take place only during
flower development as the expression of the Cas9 nuclease is
under the control of a floral meristematic promoter.

We were disappointed that no obvious floral defects were
observed in the T1 transgenic plants that contained the expres-
sion cassettes for Cas9 and the RGR. We then grew T2 plants to
identify homozygous Cas9/RGR insertion plants, which may have
higher efficiency of editing ABPI because of potentially higher
expression of RGR and Cas9 in the homozygous lines. Un-
expectedly, we recovered T2 plants that are homozygous abpl
deletion mutant plants (named abpI-cl). The abpl-cI contains
a 5-bp deletion in the first exon (Fig. 1B). The deletion pre-
sumably leads to a frameshift and would generate premature
stop codons. Therefore, abpI-cl is likely a null mutant. Because
our abpl-cl results appear to contradict a previous report that
a T-DNA insertion abp! mutant was embryo lethal (3), we hy-
pothesized that perhaps the Cas9 protein or the CRISPR
construct or an off-target site mutation partially rescued the
presumed embryo lethal phenotypes of abpl-cl. We then back-
crossed the abpl-cl to WT plants to segregate out the CRISPR
construct and potential off-target background mutations. We
genotyped the F, population generated from the backcross and
identified Cas9 free, abpl-c1 homozygous plants. It was clear
that abpl-cl plants were not embryo lethal. The mutation in
abpl-cl was stable and transmitted to next generations in a
Mendelian fashion (Fig. S1).

The abp1-c1 Mutant Is a Null Allele. The 5-bp deletion in the first
exon is predicted to cause a frameshift and to introduce several
early stop codons. Because our results were not consistent with
what was previously reported regarding an abpl null mutant, we
investigated whether the 5-bp deletion in ABPI might generate
cryptic splicing junctions that might still lead to the production of
functional ABPI mRNA and ABP1 protein. We extracted
mRNA from abpl-cI and WT plants, and amplified ABP1
cDNAs by RT-PCR. The ABPI cDNA from WT plants was the
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Fig. 1. Generation of a null allele of abp7 mutant using the ribozyme-based
CRISPR gene editing technology. (A) A schematic description of the CRISPR
construct that contains a Cas9 expression cassette and a CaMV 35S promoter
controlled gRNA production unit. (B) A 5-bp deletion was detected in ge-
nomic DNA of abp7-c1 mutants. The intron sequences are in lowercase and
in red. (C) The abp7-c1 cDNA also contained the same 5-bp deletion. (D)
There was no detectable ABP1 protein in abp7-c1 as shown in this Western
blot image.

same as reported (3). The ABP1 cDNAs from abpl-cl all con-
tained the 5-bp deletion (Fig. 1C). The mutant abpl-cI cDNA
contained several premature stop codons and was unlikely to
produce a functional ABP1 protein. To further demonstrate that
our abpl-cl is a null allele, we performed a Western blot by using
anti-ABP1 polyclonal antibody (8). The results in Fig. 1D show
that the antibody detected ABP1 and several nonspecific bands.
Although both the WT and abpl-cl lanes had the same non-
specific bands, the ABP1 band in abpl-cl sample was clearly
missing, demonstrating that the abpI-cl is a null mutant.

The abp1-c1 Plants Are Indistinguishable from WT Plants. In previous
studies, ABP1 knockdown was associated with a number of de-
velopmental defects including changes in root and hypocotyl
elongation, leaf expansion, and maintenance of the root meri-
stem (4, 10, 11, 20-23). To determine whether abpl-c1 plants
exhibited any of these defects, we compared them to WT plants
grown under the same growth conditions. As shown in Fig. 24,
light grown abpl-cI seedlings looked similar to WT seedlings.
Both WT and abpI-cl plants had similar hypocotyl lengths (Fig.
2B). Hypocotyl elongation is sensitive to changes in auxin con-
centration or auxin response (24, 25). The length of primary
roots of abpI-cl seedlings was also like that of WT plants (Fig. 2
A and C), and the cellular organization of primary roots of the
mutant, including the meristem, appeared similar to that of WT
plants (Fig. 2 D and E). We did not observe any alterations of
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Fig. 2. The abp7-c1 and WT plants display no significant differences at various developmental stages. (A) Seven-day-old seedlings on regular MS plates. (B
and C) Hypocotyl length and root length of 7-d-old WT and abp1-c7 seedlings. Shown are average + SD (n = 50). (D and E) Root cell shape of 7-d-old WT and
abp1-c1. (F, G, and /) Phenotype of WT and abp7-cT at juvenile stage (F), floral transition stage (G), and mature plant stage (/). (H) Flowers and floral organs of

WT and abpT-c1.

cell size or changes in spatial arrangement of the different cell
types (Fig. 2 D and E). The microscopic structure of abpl-cl
roots is not different from that of WT plants. At young adult
stages, abpl-cl plants developed normally and appeared as
healthy as WT plants (Fig. 2F). WT plants and abpI-cl plants
had similar flowering time (Fig. 2G). Flowers of abpl-cI had the
same numbers of floral organs as WT flowers (Fig. 2H). Lastly,
mature abpl-cl plants and WT plants had similar architecture
and abpl-cl plants were as fertile as WT plants (Fig. 21).

Dark-grown seedlings of the ABP1 antibody lines were par-
tially de-etiolated with short hypocotyls and lacked an apical
hook (11). However, the abpl-5 weak allele was indistinguish-
able from WT when grown in total darkness (26). Because
dark-grown conditions vary little from laboratory to laboratory,
we tested whether abpl-cI displayed any phenotypes in the
dark. Dark-grown abpl-cl appeared similar to WT seedlings
in terms of hypocotyl length and the formation of an apical hook
(Fig. S2).

One of the key phenotypic readouts of abpl knockdown or
weak alleles in previous studies is a reduction of pavement cell
interdigitation (8, 9). The reduction of interdigitation in abpl
knockdown lines or abpl-5 cannot be rescued by exogenous auxin
(8, 9). We analyzed pavement cell interdigitation in both WT and
abpI-cI with and without auxin treatments (Fig. 3). In the absence
of exogenous auxin, abpl-cI and WT showed the same levels of
pavement cell interdigitation (Fig. 3). Auxin treatments slightly in-
creased interdigitation of pavement cells in both WT and abpI-cl
(Fig. 3). We did not observe any differences between abpI-cI and
WT plants in terms of pavement cell interdigitation.

Overall, the abpl-cl plants were indistinguishable from WT
plants at the various developmental stages we analyzed, dem-
onstrating that ABP1 probably does not play a major role in
Arabidopsis development under normal growth conditions.

The abp1-c1 Plants Are Not Auxin Resistant. Several studies have
reported changes in auxin response in ABP1 knockdown lines (20,
21). We used a classic root elongation assay (27) to determine

Gao et al.

whether abpi-cl had altered sensitivity to exogenous auxin. We
tested both the natural auxin indole-3-acetic acid (IAA) and the
synthetic auxin 1-naphthaleneacetic acid (NAA), because ABP1
has been reported to have a higher affinity for NAA than IAA
(28). In the presence of increasing concentrations of auxin in the
growth media, primary roots of WT plants became progressively
shorter (Fig. 4). Both auxins also inhibited the elongation of
primary roots of abpI-cl (Fig. 4). The dose-response curves to
IAA treatments for WT and abpl-cl were almost superimpos-
able, indicating that there was not a significant difference be-
tween WT and abpl-cI plants in response to auxin treatments
(Fig. 4A4). Similar results were also observed when NAA was
used in the treatments (Fig. 4B).

The abp1-c1 and WT Plants Respond to Auxin Similarly at the Molecular
Level. Although ABP1 was suggested to mainly function in non-
genomic pathways, several studies have reported that reduction in
ABP1 function affects auxin-regulated gene expression (10, 20, 21).
Furthermore, it was recently reported that ABP1 regulates the
degradation of AUX/IAA proteins (7). Therefore, we analyzed the
expression levels of a set of well-characterized auxin inducible genes
in both abpl-cI and WT plants with and without auxin treatments
to determine whether disruption of ABPI affects auxin signaling.
The tested auxin responsive genes were induced by auxin in WT
plants (Fig. 5). The same set of auxin-inducible genes was also in-
duced in abpI-cl plants (Fig. 5). The overall expression levels of the
genes in abpI-cl and WT were similar, indicating that disruption of
ABPI did not affect auxin-mediated gene expression.

A New T-DNA abp1 Null Mutant Was Not Embryo Lethal and Displayed
No Obvious Developmental Defects. We have provided clear evi-
dence that abpl-cl is a null mutant and that abpl-c1 plants do
not display any obvious defects at the various developmental
stages we analyzed. Further, the abpl-cl plants did not show
altered auxin responses. Because of the lack of any visible and
molecular phenotypes in abpI-cl, it is difficult to completely rule
out the possibility that a tight-linked unknown abp! suppressor

PNAS | February 17,2015 | vol. 112 | no.7 | 2277
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Fig. 3. Pavement cell development in abp7-c7 and WT. Confocal images of
cotyledon pavement cells of WT (A and C) and abp1-c7 (B and D) with auxin
(C and D) and without auxin (A and B) treatments. Five-day-old light-grown
seedlings were transferred to MS plates with or without 25 nM NAA for 2 d.
Samples were treated with 5 ug/mL FM1-43 (Life Technologies; F-35355) for
30 min before confocal imaging. (F) Quantification of pavement cell lobes.
One hundred fifty cells for each treatment and each genotype were quan-
tified. Images were gridded to 25 of 20,000 pm? squares by using Image)J
before counting. Error bars are SD.

may have completely masked the effects of abp! mutation. We
believe that analysis of additional alleles of abpl that were
generated by using non-CRISPR methods will help us to further
confirm our findings. We obtained a T-DNA insertion mutant
from the Arabidopsis stock center (Fig. 6). The mutant (abpI-TDI)
had a T-DNA insertion at 27 bp downstream of the ATG start

Fig. 4.
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Effects of auxin treatments on abp7-c7 root elongation. Quantifi-
cation of root elongation of WT and abp7-c7 with various concentrations of
IAA (A) or NAA (B) for 2 d. Shown are average + SD (n = 50).
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Fig. 5. AUXJ/IAA transcripts abundance in abp7-cT with NAA treatments.
Light grown, 7-d-old seedlings were treated with or without 1 uM NAA for
2 h and were collected for RNA extraction. For each genotype and treat-
ment, five biological replicates were performed. Expression of IAA3, IAA7,
IAA14, and IAA17 with reduced y axis are shown as inset. Error bars are SD.

codon in the first exon (Fig. 64). Interestingly, the T-DNA in-
sertion site was close to the previously reported embryonic lethal
T-DNA insertion mutant, which had an insertion at 51 bp from the
ATG (3). The abpl-TDI plants were viable and displayed no
obvious differences from WT plants (Fig. 6B). At the mature
stage, abpl-TD1 and WT were similar in size and both were fertile
(Fig. 6C). We investigated whether abpI-TD]1 still produced ABP1
mRNA by RT-PCR analysis. We first used a pair of primers
(ASP + A3P, please see Table S1 for primers used in this study)
(Fig. 64) that can amplify the entire ORF from ATG start codon
to the TAA stop codon. It was clear that the primers efficiently
amplified the ABPI ¢cDNA from WT samples, whereas no ABPI
c¢DNA was amplified in the abpI-TD1 sample (Fig. 6D). We then
used another pair of primers (A2E and A3P) (Fig. 64) to de-
termine whether abpl-TDI can produce partial ABPI mRNA,
which might still produce functional ABP1 protein. As shown in
Fig. 6D, abpl-TDI did not produce such partial mRNA. More-
over, our Western blot analysis (Fig. 6F) indicated that abpl-TD1
is a null allele. The finding that abpI-TDI was viable, normal, and
fertile further supports the conclusions that ABP1 is not essential.

In summary, the new abp! mutants presented in this paper
offer the genetic materials needed to unambiguously define the
physiological roles of ABP1. The mutants are viable, stable, and
more importantly, they are nulls. Moreover, the mutants are
generated by using different methods and the abpI-cI and abpi-
TD harbor different types of mutations. Our results clearly
demonstrate that plants do not need ABP1 for auxin signaling
and for their growth and development under normal growth
conditions. At this point, the reasons for the differences between
the phenotype of our mutants and previously described ABPI
knockdown lines are not clear. However, both cellular immuni-
zation and antisense approaches can be susceptible to off-target
effects. For example, a recent study in zebrafish showed that
80% knockdown mutants induced by Morpholinos (antisense)
were not recapitulated by true null mutants (29).

Materials and Methods

Plant Materials. The abp1-TD1 (SK21825) was obtained from the Arabidopsis
stock center. All plants were grown under long-day conditions (16-h light
and 8-h darkness) at 22 °C if not otherwise specified. For hypocotyl and root
length measurements, seedlings were grown on Murashige and Skoog (MS)
media containing 1% sucrose under long-day conditions on vertical plates
for 7 d. The plates were scanned, and NIH Image J software was used to
quantify hypocotyl and root lengths.

Generation of abp7-c1 using CRISPR technology. Our ribozyme-based CRISPR
technology was described (19). WT Arabidopsis plants, Columbia-0 ecotype,
were transformed with the CRISPR construct by floral dipping. The abp7-c1
plants were identified at the T2 stage.

Gao et al.
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Identification of a T-DNA insertion null allele of abp1. (A) Schematic presentation of the T-DNA insertion site in abp7-TD1. The T-DNA insertion is

27 bp downstream of ATG start codon of the first exon. (B) abp1-TD1 is viable and does not have obvious developmental defects. (C) abp7-TD1 is fertile and
similar to WT in size. (D) RT-PCR results indicate that abp7-TD1 plants do not produce ABPT mRNA. The A5P and A3P pair amplifies the full length ABP1 cDNA
from the start codon to the stop codon. The A2E and A3P primers amplify the ABPT cDNA that does not contain the sequences of the first exon. The positions
of the PCR primers are schematically indicated in the panel A. The RT-PCR products were amplified with 45 saturated cycles and loaded onto 1.2% agarose gel.
(E) A Western blot image indicates that abp1-TD1 lacked ABP1 protein. The band between 25 and 20 kDa in WT lane is ABP1, which has a predicted size of 22 kDa.

Genotyping abp1 Mutants. The T-DNA insertion mutant was genotyped by
using a PCR-based method described (30, 31). Genotyping primers for abp1-
TD1 were as follows: ABP1-U409F, ABP1-586R, and the T-DNA specific primer
PSKTAIL-L3 (please see Table S1). For genotyping abp7-c1, we amplified an
ABP1 fragment by PCR using the following two primers: ABP1-U409F and
ABP1-586R. The resulting PCR product was digested with the restriction
enzyme Bsll, which cuts WT PCR product once and does not cut the mutant
band (Fig. S1).

Western Blot. Plant extracts were loaded onto SDS/PAGE gels. The gel was run
until bromophenol blue was approximately 1 cm above the bottom of the gel,
and the proteins were transferred to a PVDF membrane. The membrane was
blocked in 5% (wt/vol) nonfat milk overnight at 4 °C and with anti-ABP1
antibody at room temperature for 3 h. The membranes were washed in TBST
(20 mM Tris, 150 mM NaCl, pH = 8.0 plus 0.05% Tween 20) three times,
incubated with goat anti-rabbit secondary antibody for 3 h, and washed in
TBST three times. Results were visualized by ECL Plus Western Blotting De-
tection System (Amersham; RPN2232).
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