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Background: Laboratory testing is routinely used to assay blood biomarkers to provide information on physio-
logic state beyond what clinicians can evaluate from interpreting medical imaging. We hypothesized that
deep learning interpretation of echocardiogram videos can provide additional value in understanding disease
states and can evaluate common biomarkers results.
Methods: We developed EchoNet-Labs, a video-based deep learning algorithm to detect evidence of anemia,
elevated B-type natriuretic peptide (BNP), troponin I, and blood urea nitrogen (BUN), as well as values of ten
additional lab tests directly from echocardiograms. We included patients (n = 39,460) aged 18 years or older
with one or more apical-4-chamber echocardiogram videos (n = 70,066) from Stanford Healthcare for train-
ing and internal testing of EchoNet-Lab’s performance in estimating the most proximal biomarker result.
Without fine-tuning, the performance of EchoNet-Labs was further evaluated on an additional external test
dataset (n = 1,301) from Cedars-Sinai Medical Center. We calculated the area under the curve (AUC) of the
receiver operating characteristic curve for the internal and external test datasets.
Findings: On the held-out test set of Stanford patients not previously seen during model training, EchoNet-
Labs achieved an AUC of 0.80 (0.79-0.81) in detecting anemia (low hemoglobin), 0.86 (0.85-0.88) in detecting
elevated BNP, 0.75 (0.73-0.78) in detecting elevated troponin I, and 0.74 (0.72-0.76) in detecting elevated
BUN. On the external test dataset from Cedars-Sinai, EchoNet-Labs achieved an AUC of 0.80 (0.77-0.82) in
detecting anemia, of 0.82 (0.79-0.84) in detecting elevated BNP, of 0.75 (0.72-0.78) in detecting elevated tro-
ponin [, and of 0.69 (0.66-0.71) in detecting elevated BUN. We further demonstrate the utility of the model in
detecting abnormalities in 10 additional lab tests. We investigate the features necessary for EchoNet-Labs to
make successful detection and identify potential mechanisms for each biomarker using well-known and
novel explainability techniques.
Interpretation: These results show that deep learning applied to diagnostic imaging can provide additional
clinical value and identify phenotypic information beyond current imaging interpretation methods.
Funding: ].W.H. and B.H. are supported by the NSF Graduate Research Fellowship. D.O. is supported by NIH
K99 HL157421-01. J.Y.Z. is supported by NSF CAREER 1942926, NIH R21 MD012867-01, NIH P30AG059307
and by a Chan-Zuckerberg Biohub Fellowship.
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1. Introduction

Diagnostic medical testing provides insight into human physiol-
ogy and disease conditions, with testing ranging from blood based
biomarkers and genetics testing to imaging studies that provide deep
insight into anatomy and changes over time [1-3]. Blood based
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Research in context

Evidence before this study

In the last few years, deep learning algorithms applied to medi-
cal imaging have demonstrated the ability to identify clinical
phenotypes and diagnoses beyond conventional use of imaging.
Electrocardiogram (ECG) waveforms have been shown to iden-
tify signals for hyperkalemia, heart failure, anemia, age, sex,
mortality, and other phenotypes not traditionally associated
with ECGs. Echocardiograms, or cardiac ultrasounds, provide
high temporal and spatial resolution videos of the heart and
applying deep learning algorithms have shown the ability to
estimate age and sex and predict mortality.

Added value of this study

This is the first study to our knowledge to use deep learning on
echocardiograms to evaluate the values of numerous bio-
markers, including both biomarkers related to heart health
(troponin I and B-type natriuretic peptide) as well as systemic
disease (hemoglobin for anaemia and blood urea nitrogen for
kidney disease). This algorithm was validated in two separate
healthcare systems to demonstrate robustness and to avoid
bias or overfitting. Interestingly, the estimated B-type natri-
uretic peptide levels were more predictive of subsequent heart
failure hospitalization than the actual biomarker levels.

Implications of all the available evidence

Our study suggests that important disease and physiology spe-
cific patterns are present in cardiac videos that might be invisi-
ble to the human eye but contain important diagnostic and
prognostic information. The ability to identify patients with
abnormal biomarkers has important implications for disease
screening and patient management.

laboratory testing is a fundamental tool for disease diagnosis and
management as changes in assayable biomarkers can be some of the
earliest signs of physiological perturbations [5—7]. Despite the fre-
quent utilization of both laboratory testing and medical imaging in
routine clinical practice, the deeper connections between medical
images and biomarker values are relatively underexplored [4]. It
remains unknown whether routinely obtained imaging studies might
contain information that can broadly estimate common biomarker
values and more deeply inform clinicians about the patient condi-
tion.

Recent advances in Artificial Intelligence have shown that deep
learning applied to medical images can identify phenotypes beyond
what is currently possible by observation from human clinicians
alone [8—11]. Such discoveries have spanned across a variety of
imaging modalities in many medical specialties and have uncovered
imaging correlates for a wide range of disease states, molecular sig-
natures, and physiologic conditions [12—15]. Given that orthogonal
and complimentary information is obtained from the many different
forms of diagnostic testing, subtle associations and relationships can
be missed in conventional clinical assessment.

Echocardiograms, or cardiac ultrasounds, are the most common
form of cardiovascular imaging, combining rapid image acquisition,
lack of ionizing radiation, and high temporal resolution to capture
spatiotemporal information on cardiac motion and function [16,17].
Previous works have shown deep learning based assessment of echo-
cardiograms can identify physiological state and hints of both sys-
temic as well as cardiac diseases [9,18,19]. In the extremes, abnormal
blood chemistry can influence cardiac function [20], and over time,
structure, but it is unknown whether transient or subtle variations

biomarkers are reflected in the physiologic state that can be extracted
from medical imaging. A deep learning assessment of frequently
obtained, no radiation, low cost, and information dense imaging,
such as echocardiogram videos, could provide additional diagnostic
information that alleviates the need for other invasive, costly, or bur-
densome forms of testing. This is the first demonstration that echo-
cardiograms can be used to detect abnormal blood biomarkers
through deep learning analysis of the ultrasound videos, and our arti-
ficial intelligence algorithms generalize imaging and biomarker
results across healthcare systems.

2. Methods
2.1. Data sources, study population, and ethics

We used the Stanford Research Repository (STARR) and the Echo-
cardiography Lab Database to identify the population of patients who
received at least one lab test and one echocardiogram study at Stan-
ford Healthcare. We selected 108,521 full transthoracic echocardio-
gram studies between January 1, 2006 and December 31, 2018. Of
the 108,521 studies, 70,066 studies had associated biomarker infor-
mation within 30 days between echocardiogram study and bio-
marker blood draw. An additional external test dataset of 1,301
videos from January 1, 2019 to June 30, 2019 with corresponding bio-
marker results was obtained from Cedars-Sinai Medical Center and
processed using the same preprocessing pipeline and used as an
external test dataset without further model training or fine tuning.

A single apical-4-chamber 2D gray-scale video was identified
from each study and used to represent the study for mapping to labo-
ratory values. Previously described methods [19] were used to pre-
process echocardiogram videos to standard resolution and remove
extra information outside of the ultrasound sector such as text, ECG
and respirometer data, as well as identifying information. The 70,066
videos were split by patient into 59,434 videos for training, 5319 vid-
eos for validation, and 5313 videos for internal testing, such that the
same patient never appeared in multiple splits of the data. If there
were multiple videos from the same patient, we treated them as indi-
vidual samples for training. During model training, the lab closest in
time to each video was used as the training label, and videos were
excluded from training if the patient did not have a corresponding
video-laboratory value pair. This research was approved by the Stan-
ford University (Protocol 43721) and Cedars-Sinai Medical Center
(STUDY00001049) Institutional Review Boards.. This research was
deemed minimal risk and a waiver of consent was obtained for retro-
spective chart review of deidentified medical information.

2.2. Outcomes for model estimation

The primary outcome of the study was the ability of the Al-
enhanced echocardiogram video to identify patients with abnormal
lab biomarkers. We chose the most relevant cardiac biomarkers (tro-
ponin [, BNP) as well as commonly obtained biomarkers (hemoglobin,
white blood cell count, platelet count, sodium, chloride, BUN, creati-
nine, aspartate aminotransferase, and alanine aminotransferase) and
biomarkers of relevant complementary disease states (hemoglobin
Alc, and C-reactive protein) as targets for our study. Binary thresh-
olds for model performance assessment were determined by the ref-
erence range of the particular laboratory’s assay, and for biomarkers
with significant variance, model training was performed on the loga-
rithm of the result value (Supplemental Tables 1). Notably, the Echo-
Net-Labs estimate for BNP was trained on paired echocardiogram
videos and NT-proBNP results from Stanford Medicine, and tested on
BNP data from Cedars-Sinai, which uses a different assay. In addition
to different patient demographics, date ranges of data acquisition,
and geographic locations, the two institutions use different picture
archiving and communication systems (Philips Xcelera and Scimage
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PICOM PACS respectively) to obtain the echocardiographic data. In
the validation and test sets, the same process was applied with the
additional constraint that only labels acquired within 30 days of the
echocardiogram were included. In the case of CRP, a window of
365 days was used to increase sample size.

2.3. Model development and training

Models were built using Python 3.8 and PyTorch 1.4. Extending on
previous work [19], EchoNet-Labs uses a (2+1)D-ResNet consisting of
34 layers of alternating spatial and temporal convolutions in a ResNet
structure [24]. We chose the same hyperparameter configuration as
in previous work [19] and found that architecture choice (e.g. R3D
and MC3) and temporal step size (e.g. 1/1, 1/2, or 1/4 the sampling
rate of the original video) do not significantly affect results. All mod-
els were pretrained on the Kinetics-400 dataset [25]. Independent
video regression models were trained for each lab value, taking as
input a randomly selected 32 x 112 x 112 sub-video and estimating
the lab value. Training a single model to estimate all lab values
decreased or did not change performance on the top performing lab
values. Videos were augmented during training by randomly shifting
by up to 12 pixels.

The models were trained to minimize the mean squared error
between the estimated and true lab values. Model training used a sto-
chastic gradient descent optimizer with an initial learning rate of
0.001, momentum of 0.9, and batch size of 20 for 45 epochs. The
learning rate was decayed by a factor of 0.1 every 15 epochs. Estimat-
ing was set up as a binary classification task, detecting abnormal ver-
sus normal lab value, based on standard thresholds. For these
biomarkers, clinicians recognize inherent heterogeneity on retesting
and often make clinical decisions on whether broadly these bio-
markers are either normal or abnormal. To understand model gener-
alization, each model was evaluated on a held-out test set not used in
any way during model development, from a set of patients
completely disjoint from those used during training. Finally, for the
four most successful biomarkers we report results on the Cedars-
Sinai external validation dataset. For each lab, we report the AUC on
the validation and test sets, with bootstrapped 95% confidence inter-
vals. We additionally compute the positive predictive value (PPV),
negative predictive value (NPV), recall, and F1 score on the test set,
based on the optimal F1 cutoff on the validation set. To understand
the impact of input sample size on EchoNet-Labs, we trained separate
models with datasets at different sized subsets for each biomarker.
Models were trained by randomly selecting 1000, 2000, 4000, and
8000 training examples for each model. We also explored training a
single model to estimate all values through multi-task learning, but
found for key lab values that training individual models performed
better.

For all models, the weights from the epoch with the highest vali-
dation AUC was selected for final testing. Our final model averaged
estimates across the entire echocardiogram video over all possible 32
frame sub-videos rather than randomly selecting one to account for
potential variance between beats. We report area under the receiver
operator characteristic curve (AUC) as the primary performance met-
ric in Figure 2 and Supplementary Table 3. All confidence intervals
are 95% confidence intervals generated by bootstrapping on the rele-
vant test set. Estimating a single lab value with EchoNet-Labs, with
all test-time augmentation, takes less than 5 seconds.

2.4. Model interpretation

To further understand the features needed to make classifications,
we retrained models for anemia, BNP, troponin I, and BUN on differ-
ently ablated inputs. For each input ablation, we trained and tested
on identically ablated data. To understand if motion-based features
are necessary for classification, we trained and tested a model on a

single randomly selected frame of each echo, repeated 32 times in a
video to fairly compare to other 3D ResNet models. To understand if
the motion of the left ventricle on its own is sufficient for classifica-
tion, we trained and tested a model on a video of the segmented out-
line of the left ventricle generated by Echonet-Dynamic, with none of
the original video data present. To understand if only the information
in and around the left ventricle is sufficient to classify, we trained
and tested a model with all data outside of a bounding box around
the left ventricle obscured. To produce a video of just the left ventri-
cle, we found the smallest bounding box which contained the left
ventricle in all frames, expanded it by 5 pixels, and set all pixels out-
side of that region to 0.

2.5. Comparison to benchmark for event prognostication

One way a model might learn to estimate a biomarker value
would be to identify features which are already known to be con-
tained in echocardiogram data, and use those covariates as well as
discrete demographic information to estimate the biomarker value.
Age and sex have been previously shown to be associated from echo-
cardiogram videos with high accuracy [9,19], and echocardiogram
videos contain information about left ventricular ejection fraction,
heart rate, and right ventricular systolic pressure. To determine if the
model truly learned novel features, we trained logistic regression and
XGBoost models using these demographics and echocardiography
derived metrics to compare with EchoNet-Labs. To evaluate the prog-
nostic value of estimated vs. actual biomarker values, single variable
logistic regression was performed on the input biomarker value to
predict 1-year heart failure hospitalization as identified by the elec-
tronic health record through admission ICD9 code.

2.6. Role of the funding source

No entity other than the authors listed played any role in the
design of the study; the collection, analysis, or interpretation of the
data; writing of the report; or in the decision to submit the paper for
publication.

3. Results

We developed a deep learning framework, EchoNet-Labs, to
answer whether medical imaging might be able to estimate bio-
marker values and whether these results generalize across different
clinical settings and healthcare systems (Fig. 1). EchoNet-Labs is a
convolutional neural network with residual connections and spatio-
temporal convolutions that provides a beat-by-beat estimate for bio-
marker values. Extending our prior work on deep learning applied to
echocardiogram videos [19], EchoNet-Labs incorporates both spatial
and temporal information to perform both regression and classifica-
tion tasks. To train and evaluate EchoNet-Labs, we curated a dataset
of 70,066 echocardiogram videos from 39,460 patients at Stanford
Medicine and 1,301 videos from 819 patients from Cedars-Sinai Med-
ical Center. Echocardiogram videos from Stanford Medicine were pre-
processed and curated for apical 4-chamber view videos and divided
based on patient into 59,434 training, 5,319 validation, and 5,313
internal test examples. An additional dataset of 1,301 apical 4-cham-
ber view videos from Cedars-Sinai Medical Center were never seen
during model training and served as a hold-out external test set for
this study (Table 1).

On the held-out test set from Stanford Medicine that was not pre-
viously seen during model training, EchoNet-Labs estimated bio-
marker values from echocardiogram videos with high sensitivity and
specificity (Fig. 2). EchoNet-Labs achieved an area under the curve
(AUC) of 0.80 (0.79-0.81) in detecting anemia (low hemoglobin), of
0.86 (0.85-0.88) in detecting elevated BNP, of 0.75 (0.73-0.78) in
detecting elevated troponin I, of 0.74 (0.72-0.76) in detecting
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Fig. 1. Overview of EchoNet-Labs system and study design. a. A training dataset of over seventy thousand echocardiogram videos and paired biomarker values from the same
patient were used to train a video-based Al system for estimation of laboratory values. b. Our deep learning based Al system used spatio-temporal convolutions to infer biomarker
values from both anatomic (spatial) and physiologic (temporal) information contained with echocardiogram videos. c. To understand the relative importance of spatial and temporal
information, ablation datasets removing texture, motion, and extracardiac structures were adopted to perform interpretations experiments.

elevated BUN, and up to 0.72 in detecting abnormalities in ten other
common laboratory tests (Supplementary Table 2). EchoNet-Labs’
also provides calibrated uncertainties for each of its estimates using
Platt scaling (Supplementary Fig. 2).

To assess the cross-healthcare-system reliability of the model,
EchoNet-Labs was additionally tested, without any tuning, on an
external test dataset of 1,301 patients from Cedars-Sinai Medical
Center. On the external test dataset, EchoNet-Labs achieved an AUC
of 0.80 (0.77-0.82) in detecting anemia, of 0.82 (0.79-0.84) in detect-
ing elevated BNP, of 0.75 (0.72-0.78) in detecting elevated troponin I,
and of 0.69 (0.66-0.71) in detecting elevated BUN, which is similar to
the model’s accuracy on the Stanford test patients.

To assess the clinical utility of EchoNet-Labs generated lab values,
we compared the performance of estimated BNP levels vs. true BNP
levels for predicting future heart failure hospitalization within 1 year.

Prediction of heart failure hospitalization using estimates BNP values
achieved an AUC of 0.76 (0.72 — 0.80) while actual BNP values
achieved an AUC of 0.71 (0.67 — 0.76), suggesting deep learning esti-
mation of biomarker values can identify additional information about
disease states not fully represented by the standard, often noisy,
measurements of individual biomarkers. EchoNet-Dynamic’s perfor-
mance was superior to a model for predicting rehospitalization from
standard echocardiographic parameters with an AUC of 0.55 (0.53-
0.57), suggesting that there is additional prognostic information in
the echocardiogram videos not fully captured by human interpreta-
tion or clinical biomarker assays.

To provide context for EchoNet-Labs’ estimation results, we also
trained logistic regression and XGBoost models to estimate each bio-
marker using demographics and standard quantitative metrics from
echocardiograms (age, gender, race, ethnicity, heart rate, LVEF, RVSP,

Table 1
Baseline characteristics of the Stanford and Cedars-Sinai study participants.

Stanford CSMC

Total Training Validation Test External Test
Number of Patients 40,104 33,662 3,223 3,339 1,301
Number of echocardiogram studies 70,066 59,433 5,319 5313 1,301
Demographics
Age, years (SD) 60.1(16.9) 60.0 (16.9) 60.6 (16.6) 61.0(16.5) 70.3(21.1)
Female, n (%) 31,134 (444)  26,329(443) 2,358(44.3) 2,447(46.1) 536(41.2)
Characteristics
Heart Failure, n (%) 14,688 (21.0)  12,231(20.6) 1,273(23.9) 1,274(24.0) 275(21.2)
Diabetes Mellitus, n (%) 13,617 (194) 11,335(19.1)  1,131(21.3)  1,204(22.6) 281(21.6)
Hypertension, n (%) 26,074(37.2)  21,795(36.8)  2,144(40.3) 2,217 (41.7) 430(33.1)
Hyperlipidemia, n (%) 21,737(31.0)  18,224(30.7)  1,747(32.8) 1,846(34.7) 320(24.6)
Coronary Artery Disease, n (%) 14,731 (21.0) 12,312 (20.7) 1,223 (23.0) 1,268 (23.9) 382(294)
Renal Disease, n (%) 11,254 (16.1)  9.266 (15.6) 996 (18.7) 1,042 (19.6) 391 (30.0)
Biomarker
B-type Natiuretic Peptide (BNP), n (% above threshold) 23,451(0.70) 21,011 (0.69) 1,179 (0.73) 1,261(0.76) 898 (0.70)
Hemoglobin, n (% above threshold) 58,048 (0.85) 50,256 (0.86)  3,912(0.79) 3,880(0.79) 1,226 (0.69)
Troponin I, n (% above threshold) 15,847 (0.63) 14,599 (0.63) 629 (0.64) 619 (0.60) 683(0.71)
Blood urea nitrogen (BUN), n (% above threshold) 9,134 (0.18) 8,088 (0.18) 542 (0.22) 504 (0.20) 1,056 (0.29)
Creatinine, n (% above threshold) 12,221 (0.17)  10,212(0.17) 991 (0.19) 1,018(0.20) NA
Alanine aminotransferase (ALT), n (% above threshold) 959 (0.01) 781 (0.01) 91(0.02) 87(0.02) NA
C-Reactive Protein (CRP), n (% above threshold) 9,684 (0.54) 8,612 (0.54) 545 (0.55) 527(0.61) NA
Aspartate aminotransferase (AST), n (% above threshold) 970 (0.01) 779 (0.01) 93(0.02) 98 (0.02) NA
Sodium, n (% above threshold) 68,352 (0.99) 58,366(0.99) 5,003(0.97) 4983(0.97) NA
White blood cell (WBC) count, n (% above threshold) 6,266 (0.10) 5,114 (0.09) 583(0.12) 569 (0.12) NA
Hemoglobin Alc, n (% above threshold) 9,083 (0.22) 8,004 (0.21) 539(0.32) 540(0.31) NA
Alkaline Phosphatase, n (% above threshold) 4,776 (0.13) 3,991 (0.11) 359(0.19) 426 (0.22) NA
Platelet, n (% above threshold) 54,607 (0.80)  47,180(0.81)  3,772(0.77) 3,655(0.75) NA
Chloride, n (% above threshold) 21,318(0.31)  18,169(0.31)  1,617(0.31)  1,532(0.30) NA
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Fig. 2. Performance of EchoNet-Labs on Internal and External Test Datasets. a-d. Scatterplots (top) and receiver-operating characteristic (ROC) curves (bottom) for detection of
abnormal (a) hemoglobin (Stanford n=3,880, CSMC n=1,226), (b) B-Type Natriuretic Peptide (1,261, 898), (c) Blood Urea Nitrogen (504, 1,056), and (d) Troponin I (619, 683). Blue
points and curves denote to a held-out test set of patients from Stanford Medicine not previously seen during model training. Red points and curves denote to performance on the
external test set from Cedars-Sinai Medical Center. Black curves denote a benchmark with XGBoost using demographics and echocardiogram features on the Stanford test set.

E/e', TVVel, LA volume, MV_E, A wave, €', E/A). This baseline models
achieved AUC of 0.65-0.68, 0.77, 0.67, and 0.65-0.68 for detecting
anemia, and abnormal BNP, troponin I, and BUN respectively, which
is substantially lower than EchoNet-Labs’ performance. This compari-
son suggests that EchoNet-Labs captures novel features in the videos
beyond correlates of patient demographics and commonly annotated
cardiac features.

We primarily evaluate the ability of EchoNet-Labs to classify lab
values above or below clinically meaningful cutoffs because the most
straightforward to clinically interpret. EchoNet-Labs estimation can
also be thresholded at different cutoffs to classify different levels of

the same lab value. To demonstrate this, we used the EchoNet-Labs
hemoglobin model to detect severe anemia (hemoglobin below 10),
moderate to severe anemia (hemoglobin below 13), and polycythe-
mia (hemoglobin above 16). For all three tasks, AUCs were between
0.767 and 0.790 (Supplementary table 3).

To investigate which features are most relevant to EchoNet-Labs’
estimation of each biomarker, we trained a series of models on vari-
ous transformations of the input data to remove different types of
information (Fig. 3). This demonstrates that both the motion of the
ventricle in the absence of fine-grained pixel and texture, and the
fine-grained pixel and texture in the absence of motion information,
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Fig. 3. EchoNet-Labs input ablations and impact on model performance. Experiments showing performance of models trained on ablated input data that hides specific information.
(a) Results on standard video input. (b) Results with input where region outside of the left ventricle are obscured. (c) Results with removing temporal information with single frame
input. (d) Results with removing texture information and showing location of the left ventricle. For each ablation setting, a separate model was trained on that type of ablated data
to quantify the information content in the data. The width of each bar indicates the bootstrap 95% CI for each detection AUC. LV = Left Ventricle.
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each contain a large amount of the information. EchoNet-Labs
achieved high performance in detecting elevated BNP, Troponin I,
and BUN based on video of only the region around the left ventricle
(AUCs of 0.88, 0.74, and 0.74 respectively, compared to 0.89, 0.73,
and 0.75 on the full video), suggesting information from that region
alone might be sufficient for biomarker estimation. EchoNet-Labs’
performance was slightly worse but still quite accurate when making
estimation based on video of only the tracing of the left ventricle
endothelium (AUCs of 0.84, 0.71, and 0.71), and based on a single ran-
domly selected frame of video (AUCs of 0.84, 0.69, and 0.71). When
evaluating results of detecting anemia, model performance depended
more on texture information as performance was greatly limited by
restricting input to the left ventricular border (AUC dropped from
0.81 to 0.67, versus 0.73 on single frame).

We performed sensitivity analysis with regard to training sample
size to understand the effect of quantity of data (Supplementary Fig.
1). Upward trends were observed for all values as dataset size
increased without a clear inflection point, suggesting that further
growth in the dataset size could further increase accuracy. In particu-
lar, doubling the size of the datasets consistently leads to uniform
increases, suggesting that partnering with other healthcare systems
to produce multiplicatively larger datasets would lead to further
gains in accuracy. Even with large sample sizes of up to 58,000 train-
ing examples, we do not see an inflection in improvement in perfor-
mance, suggesting EchoNet-Labs can be improved with additional
training examples.

To understand whether the model performed differently on dif-
ferent subgroups, we compared performance on the Stanford test set
in racial, ethnic, and age subgroups, as well as subgroups based on
normal, mildly reduced, and moderately-severely reduced LVEF (Sup-
plementary Fig. 3). Not all patients had demographic information
available, and subgroups are based only on patients confirmed to be
members of that subgroup. We found that the model did not perform
significantly worse on any racial or ethnic group, although in some
cases data was limited leading to wide confidence intervals. The
model was more accurate in detecting anemia in patients above the
age of 60 and in detecting abnormal BNP in patients with moderately
reduced LVEF, and was less accurate in detecting abnormal BNP in
patients with normal LVEF and BUN in patients with moderately-
severely reduced LVEF.

4. Discussion

EchoNet-Labs is a video-based deep learning algorithm that
achieves state-of-the-art estimation of biomarkers from echocardio-
gram videos. Using 70,066 echocardiogram videos and paired bio-
marker results, EchoNet-Labs has high accuracy in detecting
abnormal hemoglobin, BNP, troponin I, and BUN, and this perfor-
mance was superior to a model using traditional risk factors. The
model performance was robust to changing the clinical environment,
and experiments degrading the input data show EchoNet-Labs incor-
porates both motion and texture based information for its assess-
ment. The results of this study support a growing body of literature
highlighting that deep learning analysis of medical imaging can iden-
tify correlative findings of systemic physiology that was previously
thought to be only obtained from orthogonal diagnostic testing
[8,23].

With deep learning models and model interpretation techniques,
our study highlights the association between imaging phenotypes
and biomarkers of both cardiovascular and systemic disease. Echocar-
diogram videos are commonly used to diagnose heart failure, which
has a strong association with some biomarkers (e.g. BNP) and can
help explain the strong performance of EchoNet-Labs for BNP. Simi-
larly troponin I is most abundantly found in cardiac myocardium and
is frequently used as a marker of myocardial injury and myocardial
infarction. Our analysis was restricted to a corpus of apical-4-

chamber view echocardiogram videos, which does not capture all the
relevant structures seen on ultrasonographic study, and future work
should evaluate the benefit of ensembling additional information and
views to identify prognostic features. For example, the apical-4-
chamber view does not contain the posterior wall and the addition of
other echocardiographic videos can more fully capture the relation-
ship with troponin I, particularly if capturing interpretable features
such as posterior wall motion abnormalities. Such localization might
be more tenuous for evaluation of hemoglobin and other biomarkers
less associated with particular structures, however future experi-
ments could identify which cardiac structures could explain strong
associations with biomarkers.

Surprisingly, we show disease states and biomarkers not directly
related to cardiovascular function can be readily estimated from
echocardiogram videos. While critical illness can manifest with
multi-system presentations (anemia of chronic disease and many
types of cardiorenal syndrome), biomarkers most commonly associ-
ated with kidney function and cellular proliferation might be more
strongly correlated with cardiac function than previously shown,
extending prior work in other modalities that show medical imaging
might have additional value in understanding the patient condition
[21,22]. Biomarkers, such as hemoglobin and BUN, are associated
with systemic disease but now shown convincingly to be estimated
accurately both by imaging and electrical signals of the cardiovascu-
lar system [23]. How hemoglobin and BUN values are associated with
cardiac motion has not been previously characterized. Our findings
provide the first evidence that variation in these values are visually
detectable in heart motion. The physiological response to anemia
includes tachycardia and compensatory changes in cardiac function
which could be picked up by deep learning models in the detection
of abnormal hemoglobin. Improved understanding of the close rela-
tionships between imaging and laboratory testing can lead to further
understanding of the relationship between imaging phenotypes and
disease processes.

While laboratory testing is cheaper than echocardiogram studies,
there might be multiple reasons and scenarios where deep learning
generated lab values can be useful. First, we show that EchoNet-Labs
estimates for BNP are more prognostic for heart failure admissions
than from conventional lab testing, suggesting that the model could
have denoising properties which deserves further exploration. Sec-
ond, although laboratory testing is more common than echocardio-
grams, it is far from ubiquitous and requires phlebotomy. In our
cohort of all echocardiograms, 35.4% of studies did not have any labo-
ratory testing within 30 days. Additionally, for studies with any asso-
ciated biomarkers, 26.7% of other biomarkers were not obtained at
the same time. EchoNet-Labs can fill in the lab values for these
patients, and facilitate downstream screening, longitudinal analysis
and clinical follow-up.

Performance in deep learning estimates of biomarkers varied con-
siderably by biomarker, with the highest AUCs for some biomarkers
associated with cardiovascular disease (troponin I and BNP) while
other blood chemistries had less dynamic range and were not able to
be estimated confidently. Integrating echocardiograms and lab values
can help inform the interpretation of both tests and in doing so pro-
vide an overall more accurate picture of disease. It may also help clar-
ify how certain lab abnormalities might correspond to changes in
cardiac structure and function. Additionally, our experiments suggest
EchoNet-Labs can continue to be improved with additional training
examples, which suggest a promising direction of further exploration.
The ability of EchoNet-Labs to evaluate laboratory values from echo-
cardiogram does not imply that a causal relationship between them,
however it demonstrates that these different phenotyping modalities
capture common patient and disease information not previously
identified. Further work must be undertaken to understand how sex
and age can be evaluated from fundoscopic imaging and biomarkers
can be evaluted from echocardiogram videos.
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If proven to be reliable, biomarker evaluation from fast, cheap
imaging could be useful in numerous clinical contexts. In the emer-
gency room, point-of-care echocardiography is already used to triage
procedures and assist medical decision-making in medical emergen-
cies. While laboratory testing requires phlebotomy and processing,
often offsite, ultrasound is often readily available and rapidly
attained, even in resource-limited settings. As a rapid adjunct to con-
ventional testing, EchoNet-Labs can help stratify patients by risk or
guide medical decision making in obtaining expensive laboratory
testing when there is low clinical suspicion and low probability for
abnormal testing results.
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