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SUMMARY
More than 40% of the germline variants in ClinVar today are variants of uncertain significance (VUSs). These
variants remain unclassified in part because the patient-level data needed for their interpretation is siloed.
Federated analysis can overcome this problem by ‘‘bringing the code to the data’’: analyzing the sensitive
patient-level data computationally within its secure home institution and providing researchers with valuable
insights from data that would not otherwise be accessible. We tested this principle with a federated analysis
of breast cancer clinical data at RIKEN, derived from the BioBank Japan repository. We were able to analyze
these data within RIKEN’s secure computational framework without the need to transfer the data, gathering
evidence for the interpretation of several variants. This exercise represents an approach to help realize the
core charter of the Global Alliance for Genomics and Health (GA4GH): to responsibly share genomic data
for the benefit of human health.
INTRODUCTION

One obvious and well-studied example of how genetic variation

can impact human health is the risk of cancer presented by path-

ogenic variation in the BRCA1 and BRCA2 genes. Pathogenic

BRCA1/2 variants greatly increase the risk of female breast

and ovarian cancer (as reviewed)1 and also confer significant

risk of pancreatic, prostate, and male breast cancer (as re-

viewed).1 Genetic testing that identifies a pathogenic variant in

these genes enables individuals and their families to better un-

derstand their heritable cancer risk and to manage that risk

through strategies such as increased screening, cascade testing

of family members, and risk-reducing surgery and medication

(as reviewed).1 However, these risk-reducing strategies are not

available to an individual found to carry a variant of uncertain sig-

nificance (VUS), a rare variant for which there is insufficient evi-

dence to assess its clinical significance. While individually rare,

these VUSs are collectively abundant. As of May 2021, ClinVar,2

the world’s leading resource on the clinical significance of ge-

netic variants, reports that 8,592/25,028 (34.3%) of BRCA1/2

variants therein are designated as VUSs, while an additional

1,204 (4.8%) have conflicting interpretations. In other words,

roughly 40%ofBRCA1/2 unique variants in ClinVar have no clear

clinical interpretation. Meanwhile, there are many more variants

that have been observed in individuals but are not yet in ClinVar:

the Genome Aggregation Database (gnomAD)3 includes an

additional 35,635 BRCA1/2 variants compiled from genomic
This is an open access article und
sequencing research cohorts. Patients of non-European

ancestry are significantly more likely to receive a VUS test report

fromBRCA1/2 testing,4 a disparity that stems largely from histor-

ical biases in genetic studies.5,6

The VUS problem persists in large part because VUSs are rare

variants; no single institution can readily gather a sufficient set of

observations for robust variant classification. Data sharing would

seem to be the natural solution, but it faces logistical challenges.

Variant interpretation often requires some amount of case-

derived information: clinical observations of the variant in

patients and their families together with their cancer history.

However, case-level data is sensitive and private and can rarely

be shared directly because of regulatory, legal, and ethical safe-

guards.7 Yet sharing data on rare genetic variants is critical for

the advancement of precision medicine, as advocated by orga-

nizations including the Global Alliance for Genomics and Health

(GA4GH),8 the American College of Molecular Geneticists

(ACMG),9 and the Wellcome Trust.10 Fortunately, most variant

interpretation does not require the case-level data per se, but

rather variant-level summaries of information derived from those

data. The ACMG/AMP guidelines for variant interpretation,11

which specify forms of evidence for interpreting genetic variants,

indicate use of variant-level summary evidence including popu-

lation frequencies (BA1, BS1, PM2), segregation of the variant

and the disorder in patient families (PP1, BS4), case-control

analysis (PS4), and observations of the VUS in cis and in trans

with known pathogenic variants (PM3 and BP2, depending on
Cell Genomics 2, 100109, March 9, 2022 ª 2022 The Authors. 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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the disorder). What is needed is an approach to derive this

variant-level evidence from siloed case-level datasets without

the need for direct access.

Federated analysis offers such an approach. Rather than an

institution sharing its case-level data with external collaborators,

those collaborators share an analysis workflow with the institu-

tion. The institution runs the workflow on their cohort, generating

variant-level data that is less sensitive and can be shared more

openly. This can yield valuable evidence for variant interpretation

without the sensitive data leaving the home institution.12

Container technologies support this approach by bundling the

software and all its dependencies into a single module for

straightforward installation and deployment on a collaborator’s

system.13 These technologies include Docker,14 Singularity,15

and Jupyter.16 Containers and workflows can be shared on the

Dockstore platform17 so that multiple institutions can execute

the same software, promoting reproducibility.

We developed analysis workflows to mine tumor pathology,

allele frequency, and variant co-occurrence data for BRCA1

and BRCA2 from breast cancer patient cohorts at RIKEN,

derived from BioBank Japan.18,19 This analysis allowed the

assessment of new variant interpretation knowledge from a

cohort that would not otherwise be accessible. In addition to

generating new knowledge on these genetic variants, this

yielded new knowledge on the genetics of the Japanese popula-

tion, which is underrepresented in most genetic knowledge ba-

ses. Moreover, we have generalized our container approach to

work with any genotype-phenotype combination of data.

DESIGN

In principle, one could share access to a protected genomics da-

taset by transferring that data to a trusted third party, such as a

secure cloud, but a dataset that contains personally identifiable

information generally cannot or should not be moved from its

secure source location. Indeed, the BioBank Japan data is pro-

hibited from anonymous export. Federated analysis leaves the

data securely in place and instead moves the analytic software

(which tends to be many orders of magnitude smaller in size

than a research cohort) to the data host institution. We designed

our federated analysis software to be transparent, modular, and

extensible. The analysis software creates multiple reports that

capture data quality, associated phenotype, allele frequency,

and variant co-occurrence.

Any researcher analyzing a dataset must first ensure that the

data values are interpreted correctly; this is especially true

when the researcher cannot interact with the data locally. The

first report is the data quality report, which addresses that

need by providing basic statistics (such as minimum, maximum,

mean, mode, and median) and reporting any missing or unex-

pected data values. For this report, we provide a Javascript ob-

ject notation (JSON) configuration file that defines each of the

fields of interest, as exemplified here for the content of the tumor

pathology file. The report could be used to check data quality for

any delimited file, with or without a header. This data quality

report represents a general solution that can be reused for other

datasets. Document S1 includes two full examples of a data

quality report.
2 Cell Genomics 2, 100109, March 9, 2022
The second report we generate is the genotype-phenotype

report. This report is optional and can only be run when there ex-

ists both the variant call format (VCF) file as well as a phenotype

tab-separated values (TSV) file. The purpose of this report is to

associate a sample’s genotype and phenotype directly in the

same record. Document S1 includes two full examples of a ge-

notype-phenotype report.

The third and last report is the variant frequency and co-occur-

rence report. It was written to summarize the variant counts

stratified by patient group (affected versus control) for estimating

allele frequencies and to report on VUSs that co-occur in trans

either with known pathogenic variants in complex heterozygous

genotypes or with themselves as homozygous genotypes. The

program takes as input a VCF file and outputs JSON files with

the variant counts and the co-occurring variant information. If

associated phenotype data are provided, then our software will

intersect those phenotype data with the genotype data in the

VUS reports. This requires using a tab-separated file with the

string ‘‘ID’’ as the primary key of this table whose values match

those in the VCF file. Document S1 includes three full examples

of variant frequency and co-occurrence reports.

To extend on the reporting functionality and generalizability,

we provide the ability to integrate and call a custom, domain-

specific report that can be leveraged to identify data anomalies

in a known domain. This report is optional. In our research, we

leveraged this feature to implement a tumor pathology report

in which we calculate the number and proportion of triple-

negative breast cancers of all breast cancers for which receptor

status test results are available. This pathology report reads a

tab-delimited file that is indexed by the sample identifier. Even

though these sample identifiers are anonymized, we did not

want to risk exposing any identifier in the results. Our tumor pa-

thology report takes as input that same tumor pathology file and

for each pathology feature outputs a summary of the number and

proportion of patients stratified by pathogenic variant status,

with an odds ratio, confidence interval, and Fisher’s exact

p value for the comparison. Additionally, the report includes a

comparison of mean age at diagnosis (and entry) for the different

patient groups. This can be extended to measure the statistics

for any stratification of gene and pathology data. Importantly,

this optional custom report can be independently used to vali-

date that the researcher and the collaborator are reading and

interpreting the data equivalently. In federated computing, the

researcher never has direct access to the data, so any anomalies

in the data could be identified if the researcher and collaborating

institution agree to independently generate the same report and

then compare the results. Indeed, we used this pathology report

to validate our federated approach and to verify that there were

no data anomalies that would preclude our analysis.

While our research focuses on VUSs in BRCA1 and BRCA2

genes and associated tumor pathologies, the software was writ-

ten to work with any genotype-phenotype combinations of data.

In Document S1, we provide an illustration of how one might

assess genetic variation in cardiomyopathy by evaluating

VUSs in the MYH7 gene along with associated cardiac pheno-

type data. All the configuration is passed as command-line op-

tions to the program to define such parameters as gene name,

whether the data are phased, and which human genome version
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to use as genomic coordinates. Moreover, all the Python libraries

required to run this code are included in the Docker container.

Methods
The dataset

Our analysis revolved around case-control association study

data of individuals of Japanese ancestry.18,19 These data reside

at RIKEN and cannot be accessed outside of that institution. The

dataset reports the variants in coding regions of 11 genes asso-

ciated with hereditary breast, ovarian, and pancreatic cancer

syndrome, including BRCA1 and BRCA2. Additionally, the data-

set reports the tumor pathology of the breast cancer patients,

including estrogen receptor (ER), progesterone receptor (PR),

and human epidermal growth factor receptor 2 (HER2) status.

The controls within this cohort are individuals who were at least

60 years old when sequenced andwho have neither personal nor

family history of cancer. The variant data were stored in a VCF file

and the associated phenotype (pathology) data were stored in a

tab-delimited file. No other files were required for this analysis.

Variant interpretation evidence

We developed Docker containers to collect data for two forms

of evidence (ACMG code/codes designated in parentheses):

allele frequencies (BA1, BS1) and variant co-occurrences

(BS2). In addition, we estimated in silico predictions of variant

pathogenicity (BP4, PP3) using the BayesDel method for anno-

tation of predicted missense substitutions and insertion-dele-

tion changes.20

Allele frequencies

By the ACMG/AMP standards, the frequency of a variant in a

large, outbred population can offer three different forms of evi-

dence for variant interpretation. First, when the variant is

observed at a far greater frequency than expected for the disor-

der in question, this is such a strong indicator of benign impact

(BA1) that the variant can be considered benign without any

further evidence. Second, when the variant’s frequency does

not meet the BA1 threshold but is still greater than expected

for the disorder, the frequency represents strong evidence

(BS1) that can contribute to a benign interpretation. Third,

when the variant is absent from controls or reference population

datasets, its absence represents moderate evidence (PM2) that

can contribute to a pathogenic interpretation.11While gnomAD is

commonly used as a source of population frequencies, gnomAD

3.1 contains data from only 2,604 East Asian genomes,3 while

gnomAD 2.1 contains data from 9,977 exomes.21 Similarly, gno-

mAD 2.1 contained 76 Japanese exomes, while the number of

Japanese genomes in gnomAD 3.1 is unknown. Therefore, a

Japanese biobank with tens of thousands of samples might

plausibly contain additional evidence not available through gno-

mAD. When considering population frequencies, one must

consider the source of the samples and whether individuals

affected by the disorder are likely to be present in the dataset.22

Accordingly, we evaluated the non-cancer subset of gnomAD

and the control samples from BioBank Japan. Each ClinGen

variant curation expert panel (VCEP) determines the precise

rules for applying the ACMG/AMP standard to the genes and dis-

eases under their purview, including the population frequency

thresholds for BA1 and BS1 evidence. By the proposed rules

of the BRCA ClinGen VCEP, the threshold for BA1 evidence is
an allele frequency of greater than 0.001, while the BS1 fre-

quency threshold is 0.0001 (A. Spurdle, M. Parsons, personal

communication, March 12, 2021).

In silico prediction

By ACMG/AMP standards, if multiple lines of computational ev-

idence predict that a variant will impact either protein function or

RNA splicing, that observation can contribute to a pathogenic

interpretation (PP3). Conversely, if multiple lines of computation

evidence predict that the variant will have no functional impact,

that observation can contribute to a benign interpretation

(BP2).We estimated the probability that the variant would impact

protein function with BayesDel,20 ameta-predictor that has been

shown to outperformmost others.23 By the proposed rules of the

BRCA ClinGen VCEP, a BayesDel score of less than 0.3 predicts

a benign interpretation, while a BayesDel score of greater than

0.3 predicts a pathogenic interpretation.24

In trans co-occurrence

In fully penetrant diseases with dominant patterns of inheritance,

if one observes a VUS in trans (on the opposite copy of the gene)

with a known pathogenic variant in the same gene in an individual

without the disease phenotype, that observation represents ev-

idence of a benign impact. For BRCA2 (and more recently

BRCA1), co-occurrences of two pathogenic variants in the

same gene are associated with Fanconi anemia, a rare debili-

tating disorder characterized by deficient homologous DNA

repair activity, bone marrow failure, early cancer onset, and a

life expectancy that rarely extends past 40.25 Consequently,

when an older individual is observed with a BRCA1 or BRCA2

VUS as either a homozygous genotype or a compound heterozy-

gous genotype (in trans with a pathogenic variant in the same

gene), that observation suggests a benign interpretation for the

VUS. One caveat is that most clinical sequencing does not report

phase; any single co-occurrence of two variantsmight be in trans

or in cis. However, if a VUS co-occurs with two different patho-

genic variants in two different patients, one can assume that at

least one of those co-occurrences is in trans.26 Based on these

clinical observations, VUS homozygosity or compound hetero-

zygosity with a known pathogenic variant in an individual known

or inferred to be without Fanconi anemia features provides

strong evidence against pathogenicity (BS2).23,25

Collaboration details

In advance of developing the containers, the authors communi-

cated to determine which data were available and in which

format the data were stored. In our research, the variant data

were stored in a single VCF file with anonymized sample identi-

fiers, and the pathology data were stored in a single TSV file in-

dexed by the same sample identifiers. The data were already

prepared in these files in the research that generated the data

in the first place,18,27 so no additional data preparation steps

were required. RIKEN provided a pair of files (one VCF file and

one tumor pathology TSV file) with bogus data to preserve pri-

vacy but simultaneously allow the University of California Santa

Cruz (UCSC) researchers to develop their containers. As previ-

ously mentioned, the UCSC team initially developed the

container to generate a tumor pathology report. When the

UCSC team finished preparing the container for that report,

they notified the team at RIKEN to download the container

code and run it against the dataset. The instructions for running
Cell Genomics 2, 100109, March 9, 2022 3
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the container are straightforward and well documented in the

software repository. After a few iterations and email communica-

tions, the reports generated by each team were found to match

exactly, thereby validating that accurate analysis could be per-

formed on this data using a federated approach. Subsequently,

the UCSC team developed the container to create the co-occur-

rence and allele frequency report along with the intersection and

data quality report. Once those reports were generated, they

were sent to the Queensland Institute of Medical Research

(QIMR) team to analyze for variant interpretation. In all, the total

amount of interaction required to collaborate was minimal, in

part because the QIMR team had previously collaborated with

the RIKEN team using this same data.18

Analysis approach

We created our Docker containers with Python 3.73 code, which

(1) collects observational statistics on tumor pathology, (2)

gathers variant counts for estimating allele frequencies, and (3)

identifies VUSs that either co-occur with a known pathogenic

variant in the same gene or co-occur with themselves (i.e., homo-

zygous VUSs). When reporting co-occurrences, we also reported

the age of the patient to review data against expectations of age

at presentation of Fanconi anemia. To identify VUSs, we checked

the classifications provided by ClinVar and validated against the

ClinGen-approved evidence-based network for the interpretation

of germline mutant alleles (ENIGMA) expert panel in BRCA

Exchange.28 If the clinical significance was ‘‘Unknown,’’ or if the

variant did not appear in BRCA Exchange, then we labeled the

variant a VUS. We applied this container to the BioBank Japan

samples. We identified BRCA1 or BRCA2 variants that appeared

as homozygotes and/or co-occurred with a known pathogenic

variant in the same gene. Sequencing data were not phased,

but details on the co-occurring variant(s) were provided to aid

inference of whether a VUS was in cis or in trans.

RESULTS

We describe here an example of how federated analysis can add

information of value for variant interpretation. We analyzed a

case-control study of Japanese individuals whose case-level

data reside at RIKEN.18,27 Because these data are not accessible

to external researchers, theUCSC teamdeveloped analysis soft-

ware, in the form of a Docker container, and shared it with the

RIKEN team. The RIKEN team applied the container to analyze

this cohort in situ, within their secure institutional environment,

generating variant-level summary data that contain no personal

information and can be shared more openly. The QIMR

Berghofer team then applied these data to variant interpretation.

As an initial quality control exercise, we replicated the con-

tents of Table S4 from a previous publication on these data18 us-

ing the tumor pathology data. This table contrasts the patients

with or without pathogenic variants in terms of factors, including

family history of seven types of cancer; estrogen, progesterone,

and herceptin receptor status; and age at diagnosis. We were

able to replicate this table precisely, indicating that we were

able to process the data accurately. This exercise also demon-

strated that our container can be used to generate scientifically

meaningful results. While this step was not mandatory for our

analysis, we recommend it for the reasons just stated.
4 Cell Genomics 2, 100109, March 9, 2022
Subsequently, we applied the Docker container to analyze the

complete patient cohort. We observed 19 BRCA variants that

have not yet been interpreted by the ClinGen BRCA1/2 expert

panel. For each VUS, we reported its allele frequency in the con-

trols and any observations of the VUS co-occurring with a known

pathogenic variant in the same gene (Table 1). We also anno-

tated variants for single-submitter curations in ClinVar.

Eleven VUSs met the standard for stand-alone evidence of

benign impact (BA1) on the basis of the allele frequencies in the

BioBank Japan controls; all of these VUSs were predicted bio-

informatically to have benign impact (BP4). All 11 VUSs will

meet thestandardofbenign interpretationon thebasisof their fre-

quency evidence from the Japanese cohort. Additionally, two of

these variants (BRCA1 c.4729T>C; BRCA2 c.964A>C) were

observed to co-occur with at least two different pathogenic vari-

ants in the same gene, evidence sufficient to apply the BS2 crite-

rion. Of these 11 VUSs, four have single-submitter classifications

in ClinVar as Benign or Likely Benign, five have conflicting inter-

pretations, and two are designated by ClinVar as VUSs. Based

on observations currently in gnomAD,3 seven of these variants

would have met the BA1 criterion, three would have met the

BS1 criterion, and one was absent (meeting the PM2 criterion).

For each of the variants present in gnomAD, East Asian was the

continental population with the greatest allele frequency at the

95% confidence level (popmax),29 a fact that itself adds confi-

dence to the BioBank Japan observations. While seven of the

variants could have been interpreted as benign using data in gno-

mAD, the federated analysis supported the interpretation of four

additional variants. This greater sensitivity in the BioBank Japan

results reflects the greater cohort size: while gnomAD contains

2,604EastAsiangenomesand9,977EastAsianexomes, theBio-

Bank Japan control group contains 23,731 Japanese individuals.

Five VUSs showed strong evidence of benign impact (BS1)

based on their BioBank Japan allele frequencies and evidence

predictive of benign impact according to BayesDel (BP4). These

five VUSsmeet the standard of likely benign interpretation based

on their frequency and bioinformatic evidence combined. Addi-

tionally, two of these VUSs had a single co-occurrence with a

pathogenic variant in control individuals; while one should not

put too much weight on any single homozygous observation,

together with the BS1 and BP4 evidence, the data present a

consistent picture of benign interpretation supported by multiple

lines of evidence. One of these five variants is classified in Clin-

Var as likely benign, while the other four are classified as VUSs.

Four of these VUSs would reach the BS1 evidence standard

based on their gnomAD population frequencies, while a fifth is

absent from gnomAD. The BioBank Japan analysis supports re-

classifying five variants, only four of which could be reclassified

using data in gnomAD.

Finally, three additional variants were each observed in a sin-

gle heterozygous co-occurrence and have BayesDel scores

predictive of benign impact (BP4). With one co-occurrence

observation apiece, we cannot predict whether the co-occur-

rence is in trans or in cis, so these observations are not them-

selves sufficient for evidence of benign impact. However, these

co-occurrences could contribute to benign evidence when and if

the same VUSs are observed to co-occur with other pathogenic

variant(s) in another cohort. These VUSs are rare variants absent



Table 1. Summary of the variant data

Gene BRCA2 BRCA2 BRCA2 BRCA1 BRCA2 BRCA2 BRCA2

Variant (cDNA HGVS) c.6325G>A c.7052C>G c.943T>A c.4729T>C c.4365A>G c.6131G>T c.964A>C

Variant (protein HGVS) p.A2351G p.A2351G p.C315S p.S1577P p.A2351G p.G2044V p.K322Q

ClinVar classification (May 1, 2021) B/LB B/LB B/LB B/LB LB Conflict Conflict

gnomAD 2.1.1 exome frequency (EAS) 2.55E�03 1.87E�03 5.30E�03 2.65E�04 Absent 4.52E�04 4.31E�04

gnomAD 3.1.1 genome frequency (EAS) 2.39E�03 2.02E�03 5.03E�03 2.02E�04 2.01E�03 4.52E�03 2.41E�03

ACMG/AMP code from gnomAD BA1 BA1 BA1 BS1 BS1 BA1 BA1

Biobank Japan frequency (Controls) 1.46E�02 3.16E�03 1.56E�03 1.14E�02 4.64E�04 3.29E�02 2.31E�03

ACMG/AMP frequency from BioBank

Japan

BA1 BA1 BA1 BA1 BS1 BA1 BA1

BayesDel score �0.61 �0.24 �0.41 0.03 �0.52 �0.16 �0.08

Bioinformatic code BP4 BP4 BP4 BP4 BP4 BP4 BP4

ACMG/AMP class based on frequency and

bioinformatics

B B B B LB B B

Gene BRCA1 BRCA1 BRCA2 BRCA2 BRCA2 BRCA2 N/A

Variant (cDNA HGVS) c.154C>T c.811G>A c.5969A>C c.3395A>G c.9733T>G c.5660C>T N/A

Variant (protein HGVS) p.L52F p.V271M p.D1990A p.K1132R p.S3245A p.T1887M N/A

ClinVar classification (May 1, 2021) Conflict Conflict Conflict VUS VUS VUS N/A

gnomAD 2.1.1 exome frequency (EAS) 1.36E�03 1.32E�03 0 Absent Absent 1.13E�04 N/A

gnomAD 3.1.1 genome frequency (EAS) 4.03E-04 1.21E-03 4.03E-04 0.000201 Absent Absent N/A

ACMG/AMP code from gnomAD BA1 BA1 BS1 BS1 PM2 BS1 N/A

Biobank Japan frequency (Controls) 6.78E�03 6.28E�03 2.61E�03 3.75E�03 1.01E�03 1.69E�04 N/A

ACMG/AMP frequency from BioBank

Japan

BA1 BA1 BA1 BA1 BA1 BS1 N/A

BayesDel score 0.14 0.06 �0.08 �0.2 �0.47 �0.29 N/A

Bioinformatic code BP4 BP4 BP4 BP4 BP4 BP4 N/A

ACMG/AMP class based on frequency and

bioinformatics

B B B B B LB N/A

Gene BRCA2 BRCA2 BRCA2 BRCA2 BRCA2 BRCA2 N/A

Variant (cDNA HGVS) c.2672T>A c.587G>T c.8040C>G c.358G>A c.3983G>A c.6637T>C N/A

Variant (protein HGVS) p.V891D p.S196I p.D2680E p.V120M p.S1328N p.S2213P N/A

ClinVar classification (May 1, 2021) VUS VUS VUS Absent Conflict Conflict N/A

gnomAD 2.1.1 exome frequency (EAS) Absent 1.78E-04 Absent Absent 0 Absent N/A

gnomAD 3.1.1 genome frequency (EAS) Absent Absent 0.000202 Absent Absent Absent N/A

ACMG/AMP code from gnomAD PM2 BS1 BS1 PM2 PM2 PM2 N/A

Biobank Japan frequency (Controls) 9.69E�04 4.64E�04 9.69E�04 0 0 0 N/A

ACMG/AMP frequency from BioBank

Japan

BS1 BS1 BS1 PM2 PM2 PM2 N/A

BayesDel score �0.05 �0.22 �0.05 �0.48 �0.57 �0.06 N/A

Bioinformatic code BP4 BP4 BP4 BP4 BP4 BP4 N/A

ACMG/AMP class based on frequency and

bioinformatics

LB LB LB VUS VUS VUS N/A

The HGVS terms reflect the NM_007294.3 transcript for BRCA1 and NM_000059.3 for BRCA2. Variants are designated as B (Benign), B/LB (Benign or

Likely Benign), LB (Likely Benign), Conflict (Conflicting Interpretations), VUS (Uncertain Significance), or Absent (Not Found). All variants scored against

the BayesDel in silico predictor with a score of less than 0.3, within the BP4 scoring range. Additionally, two variants were observed to co-occur with

two more pathogenic variants in the same gene, indicating that at least one of these co-occurrences must be in trans, which meets the standards of

BS2 evidence. In BRCA1, we observed co-occurrences of c.4729T>C with c.1518del and c.188T>A and in BRCA2, we observed co-occurrences of

c.964A>C with c.6952C>T, c.5645C>A, and c.6244G>T. While these VUSs had sufficient evidence for classification on allele frequencies only, these

co-occurrences add further support to benign classification. We further observed co-occurrences of BRCA2 c.5660C>T with c.1261C>T and

c.4365A>G with c.7480C>T, evidence that could support a benign classification if these variants are observed in co-occurrences with different path-

ogenic variants in other patient cohorts.
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from gnomAD and have either conflicting or VUS interpretations

in ClinVar.

DISCUSSION

With this demonstration of federated analysis, we analyzed a pro-

tected cohort that we would not have been able to access

directly, and we gathered knowledge on Japanese genetics to

further the interpretation of BRCA1/2 variants. Of 19 variants

currently tagged as VUSs by the ClinGen BRCA expert panel,

12 were VUSs or conflicting in ClinVar. The suggested interpreta-

tions based on bioinformatic and frequency analysis assign a

Benign or Likely Benign classification for 16 variants and highlight

the value of extending data capture to a subpopulation not yet

well represented in gnomAD. We also demonstrated the feder-

ated collection of variant co-occurrences and age at presentation;

these data together provided further evidence supporting the

Benign and Likely Benign variant interpretations. This analysis

would not be feasible with the existing population frequency re-

sources. For example, gnomAD, the resource selected by

ClinGen as its standard, does not yet have a large Japanese

cohort and now shares variant co-occurrences but without the

patient age information that is needed for ruling out Fanconi ane-

mia under ENIGMA’s variant interpretation rules. These samples

had been analyzed previously by the RIKEN and ENIGMA

teams,18,27 a fact that explains why an analysis of nearly 30,000

samples revealed only 19 VUSs. This federated analysis allowed

us to revisit these data with updated classification criteria, as

well as collect new evidence on variant co-occurrences. Further,

by developing a tumor pathology report, we provide proof of prin-

ciple that federated analysis can be designed to capture other

clinical features relevant for variant interpretation. These addi-

tional data types are generally provided only in summary-level

data presentations from published cohorts, at best. Additionally,

this method can be applied to any other phenotype-genotype

relationship that could benefit from otherwise siloed datasets.

We have also demonstrated that there are international

sequencing projects that contain valuable information that could

be applied today to variant interpretation but are not yet repre-

sented in major population data repositories. This is illustrated

by the number of Japanese samples analyzed in this study

(7,104 cases plus 23,731 controls) versus the size of gnomAD’s

East Asian cohort (2,604 genomes plus 9,977 exomes). In princi-

ple, the gnomAD and the related population genomics resources

will grow with time to comprehensively represent all global popu-

lations. Inpractice, becauseof thehighcostofprocessingexternal

sequence data, gnomAD mostly imports data from cohorts that

were sequenced at the Broad, where sequencing data are pro-

cessed to a common standard (H. Rehm, personal communica-

tion, October 4, 2021). For these reasons, capturing global genetic

diversity can benefit from gathering evidence from international

sources. Because traditional data sharing is blocked by barriers,

including laws that prohibit exporting genomic sequences, feder-

ated analysis can advance data sharing by limiting the scope of

data to be shared to the information most needed.

In this instance, the data sharing was simplified by the fact that

the RIKEN team had already assembled a case-control dataset

on breast cancer, and in doing so, had already reduced the com-
6 Cell Genomics 2, 100109, March 9, 2022
plex phenotypic data to a set of simplified terms. In a typical

variant interpretation scenario, the situation is more involved.

In genetic testing, the phenotypic data is often absent, or pro-

vided in unstructured text fields that must be curated manually

prior to any analysis—traditional or federated.Where phenotypic

data is available in a structured, electronic form, federated anal-

ysis can be viable. The cancer diagnosis (or lack thereof) can be

represented through Human Phenotype Ontology (HPO)

terms,19 with Disease Ontology30 terms representing the tumor

pathology. For example, if the phenotype file had represented

the disease phenotype with HPO terms rather than the simplified

representation, one might distinguish between cases and con-

trols in the genotype-phenotype report by recognizing breast

cancer cases with the HPO term HP:0003002 (Breast Carci-

noma), or potentially the less specific HPO term HP:0100013

(Neoplasm of the Breast). Similarly, if the phenotypic data were

associated with cardiomyopathy, one could use the HPO term

HP:0001639 to represent hypertrophic cardiomyopathy as a

phenotype, or the more general HPO term HPO:0001639 to

represent cardiomyopathy. Structured models for phenotypic

and genomic data exchange, such as Phenopackets,31 increase

the opportunity for federated approaches by improving the data

interoperability. With the growth in standards developed by the

GA4GH and other organizations and increasing adoption of elec-

tronic data standards worldwide,31 this federated analysis model

can be generalized and extended into more areas within geno-

mics. Emerging GA4GH technologies including Beacon V2,

Matchmaker Exchange, and Data Connect can suggest the

presence of samples of interest in remote, siloed cohorts, such

as cases with rare monogenic disorders. This federated analysis

approach complements such approaches by allowing further

analysis of these samples while safeguarding patient privacy.

While gnomAD is a comprehensive source of allele frequency

data in genomic research,27 our federated solution does not, per

se, require using it. Any database deemed more appropriate for

a particular use case or cohort may be used as the source of allele

frequencies if the data are formatted in a VCF sites file. Similarly,

we used ClinVar as our source of ground truth for variant classifi-

cation, and the ClinVar database may be substituted with another

classification database if the data are formatted properly. These

data formats are discussed in the supplemental information.

Limitations of the study
Federated computing is beingwidely adopted, but it doespresent

its own challenges in data privacy and system security. Docker

containers are, to an extent, ‘‘black boxes.’’ In order to ascertain

whether the analysis is truly both secure and privacy preserving,

an auditor would need to carefully inspect theDockerfile definition

of the container as well as all the software that runs in the

container. We mitigated this risk by writing our reports to local

text files that could be examined by the RIKEN team before being

sharedexternally. Additionally,wepublished the software asopen

source so itmaybedirectly inspected by collaborators. A second,

relatedproblem is that one cannot readily determinewhether soft-

ware might damage or compromise the security of the system on

which it runs. One promising solution to this problem is certifica-

tion. Within the emerging field of applications security testing,

there are software platforms that can dynamically assess the
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system accesses of the software under test. While the current

platforms are commercial, there will likely be an open-source

version in time. Eventually, this may become an element of the

GA4GH Cloud Testbed, currently under development. This

testbed infrastructure will initially serve as a platform for testing

compliancewithGA4GHstandards andwill extend to encompass

performance benchmarking. In the future, this platform could

potentially report activity that suggests a security risk, such as

thedetails of outgoingnetworkordisk traffic; andpublishing these

certification results could fitwell within the framework of container

libraries suchasDockstore.Asan immediate solution to this prob-

lem, collaborating institutions should run such otherwise unse-

cured containers in a virtual machine sandbox environment that

is completely isolated from their internal network.

Another limitation of our approach is that it requires getting

data into the format that our software recognizes, namely tab-

separated files and VCF files. In other words, the software is

not agnostic of the file format. Moving forward, we will be able

to generalize this approach by leveraging the data standards un-

der development by the GA4GH, which will allow methods to

compute over generalized data representation models rather

than restricting their input to specific file formats. In particular,

the standards of theGA4GHCloudWorkstreamare alreadymak-

ing it easier to leverage software methods across many different

computing platforms. Further development will facilitate the

streamlined execution of containerized workflows, the represen-

tation of phenotypic data, and the sharing of genetic knowledge.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Sequence and phenotype data Japanese Genotype-Phenotype Archive Japanese Genotype-Phenotype Archive:

JGAS00000000140

Software and algorithms

Co-occurrence GitHub repository This manuscript https://github.com/BRCAChallenge/

federated-analysis

Co-occurrence Dockstore repository This manuscript https://dockstore.org/my-workflows/

github.com/BRCAChallenge/

federated-analysis/cooccurrence

Python 3.7.3 Python Software Foundation https://www.python.org

Scikit-allel 1.3.1 Miles et al.32 https://scikit-allel.readthedocs.io/en/

stable/

Pandas 1.3.2 Pandas development team33 https://pandas.pydata.org/

Bcftools 1.10.2 Danecek et al.34 https://github.com/samtools/bcftools

Pyensembl 1.8.5 N/A https://github.com/openvax/pyensembl
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact for this study, James

Casaletto (jcasalet@ucsc.edu).

Materials availability
There are no materials that were generated in this study.

Data and code availability
d This paper analyzes existing data from BioBank Japan. The accession number for the dataset is listed in the key resources

table.

d All original code has been deposited at GitHub and Dockstore and is publicly available as of the date of publication. URLs are

listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

To run our container, Docker must be installed in the runtime environment at the institution where the data are stored. We tested our

container on Docker versions 18.03 and 19.03. The container also requires the appropriate ClinVar VCF file (for GRCh37 or GRCh38)

which can be downloaded from their HTTP or FTP site (https://ftp.ncbi.nlm.nih.gov/pub/clinvar/). We used the bcftools command to

reduce the size of this file to include only the genes of interest. Last, the container requires the gnomAD sites VCF file which can be

downloaded from their HTTP site (https://gnomad.broadinstitute.org/downloads). Again, we used the bcftools command to reduce

the size of this file to include only the genes of interest.

We created a variant co-occurrence and allele frequency report for BRCA1 and BRCA2, but our software has been generalized to

find co-occurrences on other genes. Users can specify which version of the human genome (37 or 38), the chromosome and the gene

onwhich to find VUS co-occurring in transwith themselves or with known pathogenic variants. The software runs on both phased and

un-phased data, though inferring the genotype phase from un-phased data requires VCEP expertise.

To determine variant classification, users must provide a delimited file with the following fields: Clinical_significance and

Genomic_Coordinate_hg37 (or Genomic_Coordinate_hg38). Genomic coordinates must have the form of this example variant:

‘‘chr13:g.32314514:C>T,’’ where this represents the variant on chromosome 13, position 32314514 which changes a C nucleotide

to a T nucleotide. If the Clinical_significance field is defined as ‘‘Pathogenic,’’ ‘‘Likely pathogenic,’’ ‘‘Likely_pathogenic,’’ or

‘‘Pathogenic/Likely_pathogenic,’’ then we interpret that variant as being pathogenic. Similarly, if the Clinical_significance field is
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defined as ‘‘Benign,’’ ‘‘Likely benign,’’ ‘‘Likely_benign,’’ or ‘‘Benign/Likely_benign,’’ then we interpret that variant as being benign. We

interpret any other value in the Clinical_significance field as being of uncertain significance.

To successfully mine co-occurrence data, our code performs the following steps.

1. Read VCF files

The genomic variants are defined in a VCF file which our application reads using the read_vcf() method of the Python scikit-allel

package. We store the variants in a Python dictionary which contains the chromosome, position, reference allele, and alternate

allele along with the genotype. The variant classifications are defined in a VCF file which our application reads using the read_csv()

method of the Python pandas package. We store these classifications in a Python dictionary which contains 3 sets: one for

pathogenic variants, one for benign variants, and one for VUS. Last, the allele frequencies are defined in a VCF sites file which

our application reads using the read_csv() method of the Python pandas package. We store these allele frequencies in the

same Python dictionary as the genomic variants.

2. Find variants per sample

Our application uses multi-threading in Python to parallelize the construction of 3 lists of variants per cohort sample: benign var-

iants, pathogenic variants, and VUS. The classification of variants is determined using the ClinVar VCF file.

3. Intersect variants with phenotype data

The phenotype data are defined in a tab-delimited file and are read using the read_csv() method from the Python pandas package.

The ID field of the phenotype file is used to match keys in the dictionary of variants per sample. In this way, any phenotypic data

can then be associated directly with those variants and not with the samples themselves.

4. Find and annotate co-occurring VUS

Our application examines the dictionary of variants per sample and the associated genotypes to determine if those VUS co-occur

in transwith themselves (homozygous) or with known pathogenic variants (heterozygous).We use the pyensembl Python package

to annotate the variants with information such as whether it is exonic or intronic, and whether the variant falls within the known

boundary of the gene of interest. Our application then generates the reports which contain the homozygous co-occurring

VUS, VUS co-occurring with known pathogenic variants, any associated phenotype data per VUS, and the allele frequency data.
e2 Cell Genomics 2, 100109, March 9, 2022
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