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Abstract

Energy decomposition analysis (EDA) is a widely used tool for extracting physical

and chemical insights from electronic structure calculations of intermolecular interac-

tions, as well as for the development of advanced force fields for describing those inter-

actions. Recently the absolutely localized molecular orbital (ALMO) EDA has been

extended from the self-consistent field level to the second order Møller-Plesset (MP2)

theory level. This paper reports an efficient implementation of the MP2 ALMO-EDA

that scales optimally, employs the resolution of the identity (RI) approximation for

post-SCF matrix elements, and is shared-memory parallel. The algorithms necessary

to achieve this implementation are described in detail. Performance tests using the

aug-cc-pVTZ basis set for water clusters of up to 10 molecules are reported. The

timings suggest that the MP2 ALMO-EDA is computationally feasible whenever MP2

energy calculations themselves are feasible, and the cost is dominated by the SCF itself

in this size regime. The MP2 ALMO-EDA is applied to study the origin of substituent

effects in anion-π interactions between chloride and benzene and mono through hexa-

fluorobenzene. The effect of fluoro substituents was primarily to change the frozen

interaction. Detailed analysis supports the interpretation that anion-π interactions are

favorable because of electrostatic interaction with the substituents.

1 Introduction

Second order Møller-Plesset (MP2) theory1 is perhaps the simplest wave-function theory that

includes the effects of dynamic electron correlation.2 MP2 thus corrects the self-consistent

field (SCF) Hartree-Fock (HF) molecular orbital model with missing physics that includes

reduced ionic character in the electron density and thus reduced dipole moments,3–6 and dis-

persion interactions7,8 that provide a universal long-range attraction. Both of these effects

are important for intermolecular interactions, and therefore MP2 theory provides a great

improvement over HF theory in the accuracy obtained for ion-water interactions,9 hydrogen
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bonds,10 electrostatically bound complexes,11,12 and dispersion-bound systems.11 MP2 tends

to overestimate dispersion interactions, particularly in stacking interactions of aromatic sys-

tems, as is well known.11,13,14 However, despite its simplicity, MP2 theory often matches more

expensive methods such as coupled cluster singles and doubles (CCSD) for hydrogen-bonded

systems such as water clusters.15 Triples corrections, such as CCSD(T) are needed to reliably

outperform MP2 theory on such systems, although spin-component scaling is a successful

semi-empirical alternative,16–19 and even attenuated MP220,21 is valuable in smaller basis

sets. MP2 theory also outperforms almost all density functionals for ion-water interactions,

particularly for multiply charged ions.22

Because of their usefulness, as well as their low computational cost compared to CCSD,

CCSD(T), etc, it is desirable to be able to analyze the results of MP2 calculations of inter-

molecular interactions. This is the task of an energy decomposition analysis (EDA). An EDA

takes a calculated intermolecular binding energy and ascribes portions of it to different phys-

ical contributions such as permanent and induced electrostatics, dispersion, Pauli repulsions,

and charge transfer.23–26 Most EDAs that have been proposed and widely used to date apply

to SCF wavefunctions, such as HF and/or Kohn-Sham DFT.27 While it is beyond our scope

to review them in any detail, it is worth mentioning that the Kitaura-Morokuma (KM) de-

composition28 is perhaps the seminal method, followed soon afterwards by the Ziegler-Rauk

approach.29 More recent significant developments have been the separation of polarization

from charge transfer using fragment-blocked molecular orbital coefficients,25,30–33 the devel-

opment of density-based EDA approaches for DFT,34–37 and very recent efforts to obtain

stable basis set limits for polarization and charge transfer.38–40 It is noteworthy that ap-

plication of the KM EDA41 has helped to inform the development of advanced force field

approaches, such as the effective fragment potential method.42–44

There has been much less effort devoted to developing EDAs that unravel the contribu-

tions to post-HF binding energies, as given by MP2 or CC methods. The very simplest model

is to ascribe the post-HF correlation binding in an intermolecular interaction to dispersion,

3
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as has sometimes been advocated.45 However, since MP2 reduces the ionicity of HF charge

distributions, the electrostatics are also affected, and thus the correlation contribution can

even be net repulsive.12 Local correlation models46,47 are a good basis for identifying corre-

lation contributions to specific intermolecular interactions,48,49 with efforts along these lines

continuing to the present day.50 Local correlation models are quite naturally able to sep-

arate intermolecular correlation effects that are associated with dispersion from those that

correspond to charge transfer. Difficulty arises in distinguishing post-HF contributions to

polarization from charge transfer.

Nonetheless, we feel that an important criterion for a successful post-HF EDA is to

organize the correlation contributions to an intermolecular interaction so as to correspond

directly to the terms that are well-accepted at the SCF level. We recently presented51 the

theory and a pilot implementation for an MP2 EDA that meets this criterion for the first

time, to our knowledge. This approach employs the fragment-blocked absolutely localized

molecular orbitals (ALMOs) that were used in the earlier HF-level ALMO-EDA,31,33 rather

than the virtual orbitals derived from linear response39 to electric fields and gradients that

are used in the recent second generation ALMO-EDA40 to ensure a valid complete basis set

limit for polarization. The MP2 ALMO-EDA identifies the correlation contributions to the

so-called frozen interaction (permanent electrostatics + Pauli repulsion), induced electro-

statics, and charge transfer. In addition, using local correlation arguments,47 a dispersion

term is defined. The main purpose of this paper is to report an efficient production-level

implementation of the MP2 ALMO-EDA, which will enable its application to any system

for which MP2 calculations are themselves feasible.

The outline of the remainder of the paper is as follows. In Sec. 2, the theory defining the

MP2 ALMO-EDA is briefly reviewed, to clearly define all relevant terms. In Sec. 3, we then

address the critical issues needed to achieve an efficient implementation, and discuss the way

in which we have chosen to address them. To assess the success of the implementation, a

series of benchmark timing tests are reported in Sec. 4, including the question of how well our

4
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OpenMP parallelization performs. We then turn to an example of the application of the new

MP2 ALMO-EDA implementation in Sec. 5, which is the question of the origin of substituent

effects in anion-π interactions. Anion-π interactions52 have become a topic of considerable

interest over recent years, as it has become evident that such interactions are not weak, and

are relevant in systems ranging from biomolecules to supramolecular complexes.53–56 Wheeler

and Houk have previously analyzed substituent effects in halide-aryl interactions,57 and using

high level calculations together with calculated electrostatic potentials, they concluded that

direct through-space interactions of the anion with the substituents are the dominant factor

controlling substituent effects.

2 Brief review of the MP2 EDA

The MP2 EDA is an extension of the HF version of the ALMO-EDA. At the HF level, the

EDA uses ALMOs to create two constrained intermediate Slater determinants and defines its

three components as the differences between these, the isolated system energies, and the full

system energy. The first intermediate is the initial wave function. It is simply the HF solu-

tions for the individual molecules as isolated systems joined into a single Slater determinant.

The difference between its energy and the sum of the energies of isolated systems is the frozen

term, describing the permanent electrostatics and Pauli repulsion. The second intermediate

is the SCF for molecular interactions (SCF-MI) solution.58–61 This is produced by finding

the minimum energy solution subject to the constraint that molecular orbitals belonging

to one molecule do not include any atomic orbital basis functions belonging to any other

molecule. This produces the ALMOs that are key to the method. The difference between

the SCF-MI energy and the initial energy is the polarization term, which describes induced

electrostatics. Finally, the difference between the full system HF energy and the SCF-MI

energy is the charge transfer term. Therefore, the three terms sum to the supermolecule

binding energy by construction.

5
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The MP2 version of the ALMO-EDA also decomposes the correlation contribution to the

binding energy, by defining a MP2 to correction to each of the HF components and adding

another one for dispersion. It does so through the definition an MP2 version of each energy,

along with one additional intermediate to describe dispersion. The equivalent of the initial

energy is referred to as E(frag/frz). It is complicated by the need for all virtual orbitals

to be orthogonal to all occupied orbitals. This requires a projection scheme. The MP2

amplitudes from the isolated systems are frozen and used for the energy in the presence of

the full system. The standard MP2 energy formula only applies to the MP2 solution. Since

the presence of the other molecules is a one-electron perturbation, it is necessary to use the

Hylleraas functional62 for the MP2 energy. Additionally, the fact that the amplitudes of the

MP2 solution are not variationally optimized parameters means that MP2 does not meet

the criteria for the Hellmann–Feynman theorem,63 so the relaxed density matrix64 must be

used in the Hylleraas functional in place of the ordinary “unrelaxed” MP2 response density

matrix.

Both of the remaining intermediates are calculated by constrained MP2 using the ALMO

basis. The ALMO basis allows each occupied and virtual orbital to be assigned to a particular

molecule (though the ALMO virtuals must be projected into the complement of the occupied

space). The first ALMO intermediate, E(frag/ALMO) is analogous to the SCF-MI energy.

It is the MP2 solution when constrained to only allow double excitations entirely on one

molecule. This allows the system to polarize at the correlation level, but does not allow

dispersion-like excitations. As a function of the number of fragments, N , this contains

only O (N) excitations. The second ALMO intermediate is Eccc(sys/ALMO), or the charge

conserving correlation (CCC) energy. This is the MP2 solution when constrained to allow

double excitations involving two molecules, but only if they do not change the number of

electrons associated with each molecule. CCCMP2 allows dispersion-like excitations, but

not transfer of charge. It is a fragment analog of the ”Diatomics-in-Molecules” (DIM) local

correlation model,47,65 and includes O (N2) excitations. The difference between the two

6

Page 6 of 43

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



ALMO intermediates is the dispersion term of the EDA. The other three terms are also the

differences between successive energies, the same as their HF counterparts. For the final

energy decomposition, the HF and MP2 contributions to each term are summed together to

produce four terms that decompose the MP2 binding energy.

3 Implementation

The terms of the EDA to be calculated are as follows.

∆ECT = E(sys)− Eccc(sys/ALMO)− (BSSE− ABSSE) (1a)

∆Edisp = Eccc(sys/ALMO)−
∑

frag

E(frag/ALMO) (1b)

∆Epol =
∑

frag

E(frag/ALMO)− E(frag/frz) (1c)

∆Efrz =
∑

frag

E(frag/frz)− E(frag)− ABSSE (1d)

Several terms, E(sys), E(frag), and BSSE are calculated exactly as in a standard coun-

terpoise corrected binding energy job, and need not be discussed here. (If decomposing

a non-counterpoise corrected binding energy, the BSSE term is simply omitted, but AB-

SSE must still be included.) The remaining terms can be broken into two groups based on

which molecular orbital basis is used. The first uses the modified ALMO basis and includes

Eccc(sys/ALMO) and E(frag/ALMO), while the second uses the isolated fragment basis and

includes E(frag/frz) and ABSSE. ABSSE is the difference between E(frag) calculated with

the full system’s auxiliary functions and calculated with only the particular fragment’s aux-

iliary functions. The latter is computed as part of a normal binding energy calculation, but

the former must also be computed for the EDA.

7
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3.1 ALMO terms

Calculation begins by preparing the common basis for the two ALMO terms. As input, the

calculation requires the polarized ALMO solution for the system as well as the corresponding

Fock matrix. However, the ALMO basis is modified to be suitable for MP2. The full system

occupied space is symmetrically orthogonalized. The new occupied orbitals are used to create

an orthogonal projector and each virtual orbital is projected into the orthogonal complement

of the occupied space. Then, the resulting virtual orbitals are orthonormalized within each

fragment’s virtual space, but not between fragments. The Fock matrix is transformed to this

basis. As a final transformation, the system is canonicalized on each fragment. To do so, on

each fragment, both the occupied-occupied and virtual-virtual blocks of the Fock matrix are

diagonalized and the resulting eigenvectors are used to transform the corresponding ALMOs.

This results in a new basis where the Fock matrix is diagonal within the fragment o-o and

v-v blocks. These preparation steps take a negligible amount of time (both practically and

asymptotically) compared to later steps, so further detail is not necessary. The new ALMO

basis has the required property of strong orthogonality between the full system occupied

and virtual spaces as well as a desirable amount of sparsity in both the overlap and Fock

matrices. The overlap matrix is identity in the o-o block, zero in the o-v block, and identity

in each fragment’s v-v block, but it has no special properties in the cross-fragment parts

of the v-v block. The Fock matrix is diagonal on each fragment’s o-o block and v-v block,

but has no special properties in the cross-fragment parts of the blocks. The o-v part is not

relevant to MP2. This sparsity allows faster calculation of Eccc(sys/ALMO).

The three-center resolution-of-the-identity integrals must also be transformed. This step

is the only one that scales as N4 with an increasing number of identical fragments, so it is

asymptotically dominant, though for most practical systems the actual construction of the

four center electron repulsion integrals will take longer despite scaling as N3. Calculation

proceeds the same as in standard RIMP2, through the creation of a B matrix such that
∑

P BP
iaB

P
jb ≈ (ia|jb). Unfortunately, the locality of CCCMP2 (MP2 with only charge con-

8

Page 8 of 43

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



serving correlation) is not enough to allow creation of a smaller B matrix. Integrals of the

form (ia|jb) and (ib|ja) are needed where i and a share a fragment as do j and b. For the

first type of integral, only the entries in the on-fragment blocks of the B matrix are required.

However, the second type has no such restriction and requires the construction of the entire

B matrix. There are two steps to transforming the AO basis three center integrals into the

B matrix. The first is transforming from the atomic orbital basis (mn|P ) to the ALMO

basis (ia|P ). This can be done in two BLAS calls per auxiliary function. Without taking

advantage of sparsity, this requires time O (n2oxN4) where n in the number of basis func-

tions, o is the number of occupied orbitals, v is the number of virtual orbitals, and x is the

number of auxiliary functions on a fragment and N is the number of fragments. However,

for a sufficiently large system, many integrals are zero. The next step is the multiplication

by the (P |Q)−
1

2 matrix, which can be done in a single BLAS call and takes time O (ovx2N4).

As x > n for the RI approximation to be accurate, this is the slower of the two steps. In

addition to the normal B matrix, a fragment blocked B matrix is created where only entries

(ia|P ) with i and a on the same fragment are included.

With this, the preliminary work is complete. The first thing to calculate is E(frag/ALMO)

for each fragment. Since the basis is orthonormal and canonical on each fragment, this pro-

ceeds exactly as in normal RIMP2 with the only exception being that the t amplitudes are

saved. The required integrals can be constructed easily from the fragment blocked B matrix.

The most complex step is the calculation of Eccc(sys/ALMO). The basis is neither

globally orthonormal nor canonical, so the standard MP2 methods cannot be used. While

we may use the energy equation,

E = −
∑

ijab

tabij (ia|jb) (2)

9
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to get tabij we must solve the linear system

∑

ijab

∆aba′b′

iji′j′ · tabij = 2 (i′a′|j′b′)− (i′b′|j′a′) (3)

with ∆ as an eighth-rank tensor defined as

∆aba′b′

iji′j′ = −fii′gaa′gjj′gbb′ + gii′faa′gjj′gbb′ − gii′gaa′fjj′gbb′ + gii′gaa′gjj′fbb′ (4)

Equation (2) is simple to compute as (ia|jb) can be formed from the fragment blocked B

matrix with a single BLAS call in time O(o2v2xN3). Equation (3) is more interesting and

has two challenging pieces. One is calculating the right hand side and the other is solving

the equation.

3.1.1 Electron repulsion integrals

Calculating the right hand side is challenging because of the (ib|ja) term. This presents more

of a challenge here than in ordinary MP2 because the fragment locality does not directly

help. In ordinary MP2, every (ib|ja) integral is also a (ia|jb) integral, so they do not need

to be calculated separately. However, when i/a are on a different fragment from j/b, (ib|ja)

does not appear as a (ia|jb) integral in CCCMP2. Though calculating them has the same

O(o2v2xN3) scaling as the other integrals, poor locality means that they cannot be computed

as efficiently. Calculating the (ib|ja) integrals involves all ovN2 entries of the B matrix each

used in ov different integrals, while the (ia|jb) integrals involve only ovN entries of the B

matrix used in each ovN different integrals.

The simplest way to compute these integrals is best, with some modifications to prevent

duplicated work. A procedure to compute Iabij = 2 (ia|jb)− (ib|ja) appears in figure 1 (this is

specific to the restricted, closed-shell case). OpenMP parallelism can be exploited to speed

up the process considerably.

The algorithm ensures that only one out of each pair of equivalent entries in I need be

10
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Allocate space for a temporary I for each thread and set all entries to 0
Compute the upper triangle:

Loop over all auxiliary basis functions P
using OpenMP to divide the work among different threads

Loop over all occupied orbitals i
Loop over virtual orbitals a that share a fragment with i

I
aa
ii += BP

iaB
P
ia

Loop over virtual orbitals b > a that share a fragment with i
I
ba
ii += BP

ibB
P
ia

Loop over occupied orbitals j > i
Loop over virtual orbitals b that share a fragment with j

I
ba
ji += 2BP

jbB
P
ia − BP

ibB
P
ja

Combine the temporary copies of I:

Loop over the temporary copies of I for each thread beyond the first
Loop over all entries in I

Add the thread’s temporary I to the main I

Free the temporary I

Copy to lower triangle:

Loop over all occupied orbitals i
Loop over virtual orbitals a that share a fragment with i

Loop over virtual orbitals b > a that share a fragment with i
I
ab
ii = I

ba
ii

Loop over occupied orbitals j > i
Loop over virtual orbitals b that share a fragment with j

I
ab
ij = I

ba
ji

Figure 1: Algorithm for I

calculated. Each duplicate value can then be copied at the end. The looping order P , i, a is

the same as the order of the indices in B, taking advantage of as much locality as possible.

The choice of which of Ibaji and I
ab
ij to assign to in the main loop is also significant, as the

right indices of I are the fast ones, so this helps increase locality of references to I.

3.1.2 Solving the linear equation

With the right-hand side of equation (3), the task becomes solving the linear system. Since ∆

is an fourth-rank tensor over occupied-virtual pairs with side length ovN , the system can be

solved in time O(o4v4N4) without taking advantage of any of its internal structure. However,

11
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this has unacceptable eight-order scaling with respect to the size of the fragments and un-

desirable fourth-order scaling with respect to the number of fragments. Taking advantage of

some internal structure allows the application of an explicit inverse of ∆ in time O(o3v3N3).

This achieves the desired third-order scaling with respect to the number of fragments, but

still has less-than-ideal sixth-order scaling with respect to the size of the fragments, when

MP2 scales as fifth-order. While ∆ cannot easily be inverted, forward application is possible

in time O(o2v3N3), matching MP2’s scaling. Since this is much faster than inversion and

∆ is a symmetric, positive definite operator, the iterative conjugate gradients method can

be used to solve the system. The one requirement for conjugate gradients is a fast forward

application of the operator. It can be significantly sped up with a good initial guess for the

solution to the system and a simple approximate inverse of the operator as a preconditioner.

While the zero vector may be used as the initial guess for iteration, convergence can be

significantly faster with a better guess. A reasonable guess is available from the calculation of

E(frag/ALMO). The t amplitudes can be combined into an initial guess for the CCC t where

all double excitations involving two fragments are set to 0 (the CCC constraint excludes

double excitations involving more than two fragments). As the correlation between fragments

is generally small compared to the correlation on fragments (though more significant when

it comes to binding), this will be a reasonably close first guess.

As the convergence of conjugate gradients depends on the condition number of the sys-

tem, preconditioning can drastically improve convergence. This can be thought of as an

approximate inverse, as it brings the operator closer to the identity. The preconditioner

must be fast to apply, as it is used each iteration of the method. The fastest preconditioner

is a diagonal one. We will use the inverse of the diagonal elements of ∆, as this can be

applied with one division per double excitation, which is negligible time compared to the

full forward application of ∆. This is same as the inverse of ∆ in the limit where overlap

between virtual orbitals on different fragments is 0. In large or weakly interacting systems,

most of these overlaps will be 0 and most of the remaining ones will be small, making this

12
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is a good preconditioner.

The only remaining piece is an efficient application of ∆. Remember that ∆ is defined

as

∆aba′b′

iji′j′ = −fii′gaa′gjj′gbb′ + gii′faa′gjj′gbb′ − gii′gaa′fjj′gbb′ + gii′gaa′gjj′fbb′ (4)

subject to the constraint that each pair i/a, j/b, i′/a′, and j′/b′ shares a fragment. Since

this is a linear operator, the four pieces can be applied separately. Furthermore the last two

are the same as the first two, but with different indices. This leaves two pieces to consider.

The second piece, gii′faa′gjj′gbb′ is the simpler one. Because of the global orthogonalization

of the occupied orbitals, gjj′ = δjj′ . This along with the fragment constraint ensures that

b and b′ share a fragment. As each fragment’s virtual space is orthonormal, gbb′ = δbb′ . A

similar argument applies to gii′ and faa′ , so taking advantage of the sparsity placed in f an g

during the basis set-up, the second piece of ∆ becomes faδii′δaa′δjj′δbb′ . As this is diagonal,

it is trivial to apply.

The first piece, fii′gaa′gjj′gbb′ , is more complicated. It is the same, except f and g switch

places. The argument for gjj′gbb′ = δjj′δbb′ still holds, but the argument for the first two terms

does not. The virtual-virtual overlap matrix gaa′ does not have any special properties, so it

doesn’t require that i and i′ share a fragment. The between fragments part of fii′ also lacks

any special properties. Therefore, the two matrices will actually have to be applied. Keeping

the fragment constraint is tricky and requires two separate matrix multiplications per pair

of fragments. Luckily, these are standard matrix multiplications and can be performed

by BLAS. The first and third pieces can also be combined, cutting in half the number of

matrix multiplications. The procedure for computing r = ∆t appears in figure 2. It also

parallelizable with OpenMP. The structure of f and g allow considerable time savings. The

bulk of the time will be spent on the BLAS calls. The slower of the two requires time O(ov2),

and is done N2 times for each of the ovN j/b pairs, for a total time complexity of O(o2v3N3).

This structure minimizes the number of writes to the r matrix, which cannot be local for

both rabij and rbaji . Within the final loop, adding to rabij takes care of the −fii′gaa′gjj′gbb′ and
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Loop over all fragments n
Loop over all pairs j and b such that j and b share a fragment
using OpenMP to divide the work among different threads

Loop over all fragments n′

Set the temporary matrix “block” to zero
If n = n′

On a fragment, f and g are diagonal

Loop over pairs of i and a on fragment n
blockai −= fiit

ab
ij

blockai += faat
ab
ij

Otherwise
With BLAS, compute tempa

i′ = gaa′t
a′b
i′j

(with a constrained to fragment n and a′ and i′ constrained to fragment n′)
With BLAS, compute blockai −= fii′tempa

i′

(with a and i constrained to fragment n and i′ constrained to fragment n′)
Loop over pairs of i and a on fragment n

Atomically, rabij += blockai
Atomically, rbaji += blockai

Figure 2: Algorithm for multiplication by ∆

gii′faa′gjj′gbb′ pieces of ∆, while adding to rbaji takes care of −gii′gaa′fjj′gbb′ and gii′gaa′gjj′fbb′

without recomputing the identical blocks of the update matrix.

With this, all the ingredients for conjugate gradients are in place and the CCCMP2

equation can be set up and solved.

3.2 Isolated terms

The remaining terms use the isolated fragment orbital basis. Since they do involve any

global calculations like Eccc(sys/ALMO), they are simpler to compute. The total amount

of work associated with them scales only linearly with the number of fragments. The first

step is E(frag). This is the same as the canonical MP2 energy of each isolated fragment,

but with the auxiliary functions from all fragments included. However, the z vector must be

computed to be used for E(frag/frz). In addition, the t amplitudes are saved. For computing

E(frag/frz), projected basis versions of the Fock matrix and the B matrix are required. The
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Hylleraas functional is used is for energy. This includes the normal MP2 energy evaluation

and one using the relaxed response density matrix of the isolated fragment t amplitudes and

z vector. These steps are not substantially different in implementation than ordinary MP2

and do not need to be described in further detail.

4 Performance

The algorithms described above have been implemented in a development version of the Q-

Chem quantum chemistry program package.66 The only two subcalculations that scale both

as fifth order in the size of the fragments and third order in the number of fragments are the

calculation of the right hand side of equation (3) and finding its solution. Therefore, these

are the most important to benchmark

4.1 Benchmarking solving the linear equation

Because of the iterative nature of the conjugate gradients algorithm, the two factors deter-

mining the speed of solving the system are the number of iterations and the time taken for

each iteration. The number of iterations should grow very slowly or not at all with the size

of the system. This was tested by performing test calculations with water clusters from two

to ten molecules. The main and auxiliary basis sets used were aug-cc-pVTZ and rimp2-aug-

cc-pVTZ, which have 92 main and 198 auxiliary basis functions per molecule. This system

was also used as a test of the initial guess and the preconditioning for reducing the number

of iterations. As can be seen in table 1, with any of the algorithms, the number of iterations

roughly stabilizes after about 6 water molecules. The preconditioner leads to a greater than

factor of ten reduction in the number of iterations, reducing conjugated gradients from tak-

ing the large majority of overall computational time to being merely one of several roughly

equally sized steps. The initial guess is less important, but is worthwhile if it can save even

one iteration as it is trivial to compute. Between the two of them, conjugate gradients takes
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interaction between the ion and theπ system are not important and that the interactions

with each of the individual substituents can simply be summed together. Others, mean-

while, have claimed that charge transfer68 or “multi-center covalency”69 is the key force in

the bonds. These claims are evaluated here through the EDA. Structures for the substituted

benzene rings were obtained from Wheeler and Houk’s supplementary information.

5.1 Perpendicular path

The test system is a chloride ion moved along a perpendicular path from the center of a

benzene ring with a varying number of substituted fluorine atoms. PhF2 is in the para

isomer, PhF3 is in the sym (1,3,5) isomer, and PhF4 is in the 1,2,4,5 isomer. Therefore,

other than PhF, no molecule studied here has a net dipole moment. The results support a

picture where the influence of the additional fluorine atoms on the anion-π interaction is an

electrostatic effect and the overall interaction only become attractive when there are enough

fluorine atoms to reverse the overall quadrupole moment of a benzene molecule. As can be

seen in figure 9, the interaction between benzene and a chloride ion is not attractive, though

there is a shallow local minimum. Every additional fluorine atom to the benzene ring makes

the interaction more favorable. The long range behavior of each curve is the R−3 decay

characteristic of ion-quadrupole interactions (though even at 10 Ä, not all curves are yet

close to their asymptotic behavior). For 2 or fewer fluorine atoms, the long range interaction

is repulsive, and for 3 or more, it is attractive. Each additional fluorine atom adds nearly

the same amount of favorable effect to the overall interaction.

Applying the EDA to these binding energy curves shows that the difference between

the different π systems is an electrostatic one. Figure 10a shows the frozen interaction for

the different systems, while figure 10b shows the sum of the other components. As can be

seen, in the frozen interaction, each fluorine atom makes the interaction more favorable.

However, the other components show almost no change between the systems. The difference

is barely visible on the graph. This is not a cancellation of larger differences – each individual
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close range part is dominated by Pauli repulsion, which should be similarly sized in each of

these systems. Every additional fluorine adds a favorable interaction, which is similarly sized

and shaped each time. This is the electrostatic interaction between the dipole of the carbon–

fluorine bonds and the charge of the chloride ion. Other than PhF, the molecules have no

net dipole, so the interaction can be understood in terms of the higher multipole moments.

Even in the case of PhF, the path of the ion is perpendicular to the plane of the benzene

ring and therefore also to the dipole. This means the leading term of the interaction decays

as a quadrupole’s characteristic R−3 in the long range rather than R−2. Since the different

in-plane components of the dipoles do not effect the energy, so there is no cancellation effect

as the second fluorine atom added, even though it cancels the net dipole of the first. This

makes it possible to closely approximate the effect of an additional fluorine atom by simply

adding the scalar energy of the interaction.

The insignificant changes in the non-frozen components of the EDA strong supports

Wheeler and Houk’s argument that the substituents primarily affect the interaction through

electrostatics. We see that despite the electron withdrawing effect of the fluorine atoms,

there is no significant increase in charge transfer from the chloride ion to the π system.

Neither is there any noticeable change in polarization. Even dispersion changes little with

the increasing number of electrons as more fluorine atoms are added.

Therefore, the non-electrostatic parts of the interaction are not changed significantly

with the addition of substituents. Accordingly, studying the interaction with benzene is

sufficient to understand these effects for all of the systems considered here. The full EDA

for that system is shown in figure 11. At the distance of the interaction, charge transfer

is not significant as expected from the fact that both systems are electron rich. The local

minimum that this interaction displays is primarily due to polarization and dispersion. The

local minimum is a result of its faster R−4 decay compared to the dominant frozen interaction.

In the case of PhF3, where the quadrupole moment and thus the electrostatic interaction are

nearly zero, polarization and dispersion are the two significant forces and do make a fairly
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z and ℓ have the same parity).

In many situations, the long range electrostatic interaction can be closely approximated

by its leading term — the lowest nonzero multipole moment. However, that is not sufficiently

accurate in the case of the chloride–benzene interaction. As can be seen on the quadrupole

line in figure 13, the quadrupole does not match the frozen term particularly well, even at

10 Å of separation. Adding in the hexadecapole moment makes the curves match much

more closely, but are still visibly different in the region closer than 6 ÅĖvidently, even higher

multipole moments are needed. Figure 13 also shows the addition of the sixth (hexacontate-

trapole) and eighth (hecatonicosaoctopole) moments. With all of those multipole moments

the expression for the approximation becomes V (z) = −
Q0

2

z−3 −
Q0

4

z−5 −
Q0

6

z−7 −
Q0

8

z−9 . The sixth

order approximation is closer to the frozen curve than the eight order one is. However, the

frozen term also includes Pauli repulsion at close range, so the electrostatic curve should not

necessarily match the frozen one at distances of a few angstroms. We can confirm the correct

order of truncation by looking at the difference between the two curves. This is plotted in a

lin-log plot in figure 14. This curve shows Pauli repulsion’s characteristic exponential decay

until about 7 Å and then slows down. However, due to limitations with finite basis sets

and subtractive calculation of Pauli repulsion, this is about as far as we should expect an

accurate decomposition to go. With truncation at sixth order, deviation from exponential

decay is clear, and the multipole approximation becomes less repulsive than the frozen en-

ergy beyond about 5 Å. Therefore, eighth order is the correct truncation for analyzing the

electrostatics.

Therefore, the effect of the additional fluorine substituents on the frozen interaction can

be analyzed by looking at changes in the first several multipoles of the substituted benzene

molecule. They are shown in table 2. To show that these accurately describe the interaction,

the difference for all of them is plotted in figure 15. The plot only goes to 7 Å for reasons

described above. Even at this distance, the PhF6 and PhF3 can be seen decaying too quickly.

However, in the short range, all curves show exponential decay. Differences are small, but
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not resemble each other. The benzene to PhF difference is dominated by the interaction

with the molecular dipole. The long range of the PhF to PhF2 is opposite and roughly

equal as the dipole is canceled by the second fluorine atom. However, in the close range,

the added interaction is attractive. This happens because the second fluorine atom (like the

first) increases the favorability of the quadrupole and of some higher moments. Therefore,

simply adding the interaction energy with each atom is not sufficient, as the quadrupole is

reinforced and the dipole is canceled. However, the situation is somewhat more complicated

than this. The dipole moment is not the only one that is canceled with the addition of the

second fluorine atom. At the quadrupole level, in the x-z plane, Qz2 is not the only important

moment. Qx2
−y2 also contributes. As shown earlier, Qz2 is approximately doubled from PhF

to PhF2 because the two C-F bonds reinforce each other. However, Qx2
−y2 is 0 for benzene

and PhF2 by symmetry, but −6.6 D·Å for PhF. It is another example of a mulitpole moment

that is canceled rather than reinforced, so even at the quadrupole level, the interaction

energies cannot simply be added.

This continues for higher moments. Symmetry also requires benzene and PhF2 to have no

octopole moment, but PhF has nonzero Qxz2 and Qx(x2
−3y2) moments. At the hexadecapole

level, all moments reinforce. Beyond that, the pattern continues. This could be ignored

for the perpendicular path, since none of the canceling moments contribute to the energy

along the z axis. This left only reinforcing moments, allowing the total interaction energy

with several fluorine atoms to be approximated as the sum of several identical interactions.

However, along any other path, the interaction must be considered as described here. If the

second fluorine atom were not in the para position, then the interactions would not exactly

cancel or double, but would be somewhere in between. Therefore, the simple, linear changes

in interaction energy with additional substituents is a result of the path examined and not

a property of anion-π interactions in general.
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significant improvements in accuracy.70–74

The MP2 ALMO-EDA was then applied to an anion-π system. Results show that polar-

ization, charge transfer, and dispersion were nearly unaffected by the presence of substituents,

and that all of change was in the frozen interaction. This supports the idea that favorable

anion-π interactions are favorable because of electrostatic interaction with the substituents,

rather than because the substituents cause the π system to become electron deficient, or any

other more complicated explanation.
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(52) Quiñonero, D.; Garau, C.; Rotger, C.; Frontera, A.; Ballester, P.; Costa, A.; Deyà, P. M.

Anion-π Interactions: Do They Exist? Angew. Chem., Int. Ed. 2002, 41, 3389–3392.

(53) Mooibroek, T. J.; Black, C. A.; Gamez, P.; Reedijk, J. What’s New in the Realm of

Anion-π Binding Interactions? Putting the Anion-π Interaction in Perspective. Cryst.

Growth Des. 2008, 8, 1082–1093.

(54) Salonen, L. M.; Ellermann, M.; Diederich, F. Aromatic Rings in Chemical and Biological

Recognition: Energetics and Structures. Angew. Chem., Int. Ed. 2011, 50, 4808–4842.

(55) Wang, D.-X.; Wang, M.-X. Anion-π Interactions: Generality, Binding Strength, and

Structure. J. Am. Chem. Soc. 2013, 135, 892–897.

(56) Chifotides, H. T.; Dunbar, K. R. Anion-π Interactions in Supramolecular Architectures.

Acc. Chem. Res. 2013, 46, 894–906.

39

Page 39 of 43

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(57) Wheeler, S. E.; Houk, K. N. Are Anion/π Interactions Actually a Case of Simple Charge-

Dipole Interactions? J. Phys. Chem. A 2010, 114, 8658–8664.

(58) Stoll, H.; Wagenblast, G.; Preuß, H. On The Use of Local Basis Sets for Localized

Molecular Orbitals. Theoret. Chim. Acta 1980, 57, 169–178.

(59) Gianinetti, E.; Raimondi, M.; Tornaghi, E. Modification of the Roothaan Equations to

Exclude BSSE From Molecular Interaction Calculations. Int. J. Quantum Chem. 1996,

60, 157–166.

(60) Nagata, T.; Takahashi, O.; Saito, K.; Iwata, S. Basis Set Superposition Error Free

Self-Consistent Field Method for Molecular Interaction in Multi-Component Systems:

Projection Operator Formalism. J. Chem. Phys. 2001, 115, 3553–3560.

(61) Khaliullin, R. Z.; Head-Gordon, M.; Bell, A. T. An Efficient Self-Consistent Field

Method for Large Systems of Weakly Interacting Components. J. Chem. Phys. 2006,

124, 204105.
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