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Abstract—We describe the replacement of MPI with UPC++
in an existing Kokkos code that simulates heat conduction within
a rectangular 3D object, as well as an analysis of the new code’s
performance on CUDA accelerators. The key challenges were
packing the halos in Kokkos data structures in a way that allowed
for UPC++ remote memory access, and streamlining synchroniza-
tion costs. Additional UPC++ abstractions used included global
pointers, distributed objects, remote procedure calls, and futures.
We also make use of the device allocator concept to facilitate
data management in memory with unique properties, such as
GPUs. Our results demonstrate that despite the algorithm’s good
semantic match to message passing abstractions, straightforward
modifications to use UPC++ communication deliver vastly im-
proved performance and scalability in the common case. We
find the one-sided UPC++ version written in a natural way
exhibits good performance, whereas the message-passing version
written in a straightforward way exhibits performance anomalies.
We argue this represents a productivity benefit for one-sided
communication models.

Index Terms—PGAS, RMA, CUDA, Exascale Computing,
Performance Portability, Productivity

I. INTRODUCTION

The Kokkos [1] programming model is designed to allow
for parallelism abstraction within a heterogeneous node, but
on its own does not extend that parallelism to multiple nodes
across a network. There are multiple frameworks available
for accomplishing that. In their tutorial repository [2], the
Kokkos developers assume that MPI is used for internode
communication.

Traditionally, MPI uses a message-passing programming
model, where data is explicitly sent from the private address
space of one processor to that of another in a two-sided com-
munication. This contrasts with the Partitioned Global Address
Space (PGAS) programming model, where the processors
involved in a program have both local memory and a segment
of globally-shared memory. Data in this global memory is then
transferred using one-sided communication. UPC++ [3-5] is
a library that implements asynchronous PGAS programming
using the GASNet-EX communication layer [6], which aides
performance by streamlining communication operations, for
example leveraging Remote Direct Memory Access (RDMA)
network hardware. To exemplify its interoperability with
Kokkos, the UPC++ team sought to demonstrate that our
library is both easy to substitute for MPI in situations where
the latter is commonly used, and delivers at least comparable
performance across a variety of node counts.

(©2021 LBNL doi:10.25344/S4630V

II. UPC++ BACKGROUND

Although UPC++ has many conceptual differences from
MPI, they are both libraries for developing SPMD programs
on distributed-memory platforms. Programs are typically run
with a fixed number of processes. Regarding the memory
model, UPC++ allows processes to access both their own local
memory and global memory. The latter is distributed across
the machine in segments, where each segment has affinity to a
unique process. While conventional C++ pointers are suitable
for accessing local data, working with data in a remote shared
segment requires use of a global pointer. Although global
pointers have limitations like the inability to be downcast
(unless they are local to the calling rank), they are still useful
for pointer arithmetic.

UPC++ programs most commonly work with global point-
ers via Remote Memory Access (RMA) or Remote Proce-
dure Call (RPC) operations. The former is one-sided, and
often takes the form of either a remote get or remote put
operation. While an RMA moves data to computation, an
RPC moves computation (including any arguments and lambda
captures) so it can operate on data at the target process.
Remote operations such as these are asynchronous by default
in UPC++, meaning that there must be a way to query their
completion status. Upon injection into the network, a future
object (templated on the return type of the remote operation)
is returned by default, allowing the programmer to not only
check data readiness, but also chain additional asynchronous
work dependent on the completion of the communication.

In addition to encouraging performant code through explicit
global memory accesses and asynchronous remote operations,
UPC++ also makes it transparent to the programmer how the
application is using its available computation resources. It does
this by avoiding the use of hidden threads inside the runtime.
As such, work that arrives via the network (such as RPCs) or
depends on the completion of asynchronous operations (such
as future callbacks) is executed at well-defined points when
the application threads make calls into the UPC++ library.
Programmers have the flexibility to choose when this happens
by using the upcxx: :progress () routine.

III. CODE OVERVIEW

The topic of our study is a heat conduction simulation
code contained within the Kokkos team’s tutorial example
repository. They designed it to demonstrate their software’s
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use alongside MPIL. The code is available online [2], and
was used as our baseline for comparisons with only minimal
modification to instrument performance. Our UPC++/Kokkos
version of this example is also available online [7].

The main routines called within each timestep are shown in
Listing 1. First, the processes pack each of their boundary cells
from the encapsulating Kokkos: : View (a multidimensional
array abstraction) into separate contiguous buffers, using a
distinct cudaStream per halo boundary. The code does
not have periodic boundary conditions, so domains on the
object’s surface have fewer than six halo boundaries. In an
additional stream, temperature calculations for interior cells
are performed. Processes wait for their pack operations to
complete before exchanging halo elements with their neigh-
bors. Using MPI, this exchange takes the form of posting an
MPI_TIRecv immediately followed by an MPI_ISend. Each
of these functions takes an MPI_Request object, which the
program stores in arrays whose length equals the number of
neighbors. The MPI_Requests are then waited upon for
completion in compute_surface_dT () before updating
temperature values for boundary cells. The fence operation
ensures that all calculations are done before temperatures
across the program’s domain are accumulated using a parallel
sum reduction to determine the global average temperature.

pack_T_halo();
compute_inner_dT () ;
exchange_T_halo();
compute_surface_dT () ;
Kokkos::fence () ;

double T_ave = compute_T();

Listing 1: Routines performed in each timestep

IV. MODIFICATIONS

The main challenge when porting the heat conduction exam-
ple to UPC++ was redesigning the halo exchanges, which in-
cluded altering how the corresponding data is stored. While the
original example used Kokkos managed Views that allocate
their memory during construction, an alternative constructor
can take a pointer to preallocated memory. This form of the
constructor was necessary for our use case since we needed
to allocate halo buffers in UPC++ global device memory,
something Kokkos is incapable of doing. Downcasting to
a local pointer allowed our buffers to be compatible with
construction of unmanaged Views.

UPC++ has a specialized way of interacting with memory
having unique properties (such as that found on CUDA-
enabled GPUs), which we refer to as the memory kinds inter-
face. UPC++’s abstractions for dealing with device memory
center around a upcxx: :device_allocator object. The
entire memory segment that a process will use on a device is
allocated during the object’s construction. Partitions from this
segment are assigned to each halo boundary region using the
device_allocator::allocate () method.

To properly facilitate remote memory access, neighboring
processes need to not only allocate buffers for incoming and
outgoing halo elements in global memory, but must also
exchange the global pointers to these buffers with neighboring
processes during program startup. The UPC++ version facil-
itates this by encapsulating the buffer for a specific surface
and direction in a upcxx: :dist_object, a class template
providing a global name for a location on each process that
holds a value (in this case, the corresponding global pointer).
The upcxx: :dist_object::fetch member function is
called with the desired process rank as an argument to obtain
the buffer’s location during program startup.

Pseudocode for the stage of the algorithm at which halo
buffers are exchanged is shown in Listing 2. We designed it
in a way that preserves the nonblocking communication of
the original code so that data movement may be overlapped
with computation of the internal cells. As such, after fencing
on the output buffer at line 3 to ensure all halo data has
been packed, matching calls to MPI_TIRecv and MPI_ISend
were replaced with a one-sided call to upcxx: : copy, which
is used for asynchronous data transmission between two global
memory buffers, potentially of different memory kinds. In this
call, both outbuf and inbuf arguments represent global
pointers to device memory, with the former being local and
the latter being remote.

1 for (n in neighbors) {

2 // sync Kokkos data packing:

3 n.outbuf.fence();

4 // RMA put halo to remote GPU:
5 upcxx::copy (n.outbuf, n.inbuf,
6 n.outbuf.size (),

7 remote_cx::as_rpc([] () {

8 count++; }));

9 }

10 // await incoming copies:

11 while(count < neighbors.size())

12 upcxx::progress () ;

13 count = 0; // reset for next timestep

Listing 2: exchange_T_halo pseudocode for UPC++

Instead of tracking completion with an object like
MPI_Request, our algorithm uses a remote procedure call: a
function that is invoked by one process but executes on another
using the target process’s data. The upcxx: : copy operation
at line 5 specifies a remote_cx::as_rpc completion,
which instructs UPC++ to enlist an RPC for execution at
the target process after arrival of the data payload. In this
case, the RPC callback at line 8 increments an arrival counter
in the memory of the target process. Just before the surface
cell temperature calculations are done, the while loop at
line 11 calls upcxx: :progress, which invokes the UPC++
runtime progress engine so that asynchronous user-provided
operations (like RPCs) can be performed. Once the counter
variable reaches the number of neighboring processes, all of
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the incoming halo data has arrived in GPU memory at the
target and is ready to be consumed by subsequent computation.

V. RESULTS

Benchmarking data was collected on the supercomputer
OLCF Summit [8]. Each node was assigned six processes,
mapped 1:1 to each of a node’s six NVIDIA V100 GPUs,
which were used via Kokkos to perform all the floating-
point computations. Runs of the MPI version use the
vendor-supplied IBM Spectrum MPI library version 10.3.1.2-
20200121 and were configured with CUDA-awareness enabled
to maximize performance of transfers to and from GPU
memory. Similarly, the UPC++ version was compiled with
support for GPUDirect RDMA (GDR), enabling the GPUs
and network hardware to perform upcxx::copy to and
from GPU memory without staging through host memory.
This GDR capability [9] of the GASNet-EX communications
library has been available in mainline UPC++ releases since
2021.3.0 (the library version measured here). All experiments
were compiled with GNU g++ v8.1.1 and utilized Kokkos
library v3.4.0 and CUDA v10.1.243.

All benchmarks at each node count were executed within the
same job to minimize variability of job placement and other
effects on network performance. The heat conduction example
was executed for 500 timesteps after discarding the first three
as warm-up iterations. Problem sizes were chosen as power
of two increases from a starting size of 100 grid cells until
the GPU memory resource limit was reached. Timing data
was collected using the Kokkos infrastructure and saved in a
std: :map until program termination to reduce the impact of
benchmarking instrumentation in the time-sensitive portion of
the program.

Figure 1 shows the measured performance for the UPC++
and MPI versions of the heat conduction example for a range
of cube dimensions denoted by the the length of each side.
For clarity, the data was plotted separately for small and large
problem sizes. In the graph of small problem sizes, fig. la,
it can be seen that the UPC++ version achieved improved
absolute performance at 1003-200° problem sizes for all levels
of parallelism. This graph shows the UPC++ and MPI versions
approaching different performance limits, with UPC++ both
outperforming MPI by a large margin on absolute time and
maximum scalability. For instance, it can be seen that with
a problem size of a cube with lengths of 800 units, MPI
reaches maximum performance at approximately 16 nodes,
whereas UPC++ scales to between 256 and 512 nodes for
the same problem size. Past a problem size of 4003, as shown
in fig. 1b, the UPC++ and MPI performances are comparable
at low levels of parallelism but begin to diverge as UPC++
exhibits improved scalability. The trend of converging towards
disparate performance limits continues at these larger problem
sizes.

The MPI version of the heat conduction example exhibited
a far larger variance in its performance than the UPC++
version, as can be seen in fig. 2. Due to the overlapping of
communication and computation and loose synchronization,
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(a) Cubes of sizes 1003 — 16003
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Fig. 1: Comparison of UPC++ and MPI performance in the
heat conduction example. Colors indicate problem size by the
side length of the computed cube while solid and dashed line
styles indicate UPC++ and MPI versions respectively.
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Fig. 2: Histogram of execution time for two time steps (sliding
window) on 128 nodes with problem sizes 8003 and 64003
This selection is a representative sample of the variance in
MPI vs UPC++ timings. The dotted vertical lines indicate the
median of each histogram.

load imbalance may result in early arrival of incoming data
in local memory. A sliding window of two time steps is
reported to ensure that each interval reflects every portion of
one global timestep, with any associated delays. The UPC++
version uses one-sided RMA with GDR acceleration, meaning
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the receiving process is not an active participant in receiving
the halo data. In the MPI message-passing version, the high
communication latency exhibited by some time steps raises
the median execution time, leading to degraded performance
and scalability.

We speculate that our findings using UPC++ RMA may gen-
eralize to other RMA libraries offering similar capabilities, for
example MPI “one-sided” RMA using active-target synchro-
nization to enforce the necessary dependencies. However at
the time of this writing, IBM Spectrum MPI does not support
RMA communication using GPU memory [10]. This limitation
prevents leveraging zero-copy GDR hardware support for the
HALO exchange as we did in UPC++, and would necessitate
an additional host-device copy on each side of every boundary
exchange that seems likely to degrade performance. Similar
limitations have been reported or observed in some other MPI
implementations.

VI. CONCLUSION

At this time, the authors are not prepared to conclusively
prove why the MPI version suffers from a large number of
costly outliers in performance. However, one possible expla-
nation is missed rendezvous in the communication. The MPI
example is written “naturally,” without excessive effort ap-
plied towards performance tuning and ensuring that matching
MPI_TIrecvs are posted before the corresponding sends. This
could lead to unexpected messages and additional protocol
overheads.

The primary advantage of the UPC++ implementation is
programmer productivity. As long as both communications
libraries are able to effectively leverage the performance of
the underlying network hardware and the programmer utilizes
each optimally, there should not be vast differences in per-
formance. The key to performance thus becomes a matter of
how difficult it is to achieve optimal communications. The
one-sided programming model of UPC++ has a significant
advantage in this regard, as no effort is needed to ensure that a
receive operation is preposted to accept an incoming message.
Writing a program to make such guarantees can sometimes
require complicated code restructuring and benchmarking to
identify regions where such optimizations are necessary. In
UPC++, the initiating process simply injects the data transfer
operation, and there is no requirement for coordination with
the target process. For a well-studied problem such as halo
exchange on a regular grid [11], the burden of optimizing the
invocation of MPI calls relative to each other and the com-
putation is not a significant obstacle for a programmer with
sufficient knowledge and insight. However as the algorithmic
complexity and irregularity of the network communication
increases, achieving optimal placement of message-passing
handshakes becomes an increasing burden to productivity.

Future work of improving the MPI implementation of the
heat conduction example will allow confirmation of the reason
behind the MPI performance variability.
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REPRODUCIBILITY APPENDIX
A. Artifact Description

o Instrumented UPC++ and MPI Heat Conduction Example source code:
https://bitbucket.org/camaclean/upcxx-extras/src/paw2 1-kokkos/examples/kokkos_3dhalo/
— No external data required to initialize
— There are unresolved bugs with concurrent database writing when saving results. Running multiple benchmarks
simultaneously may result in missing data.
— Harded coded variables to adjust in upcxx_heat_conduction.cpp:

x The location of the sqlite3 database results.db
* The number of GPUs per node recorded for the database entry
* The network type description recorded for the database entry

« Software Dependencies:

GCC v8.1.1
Kokkos v3.4.0
CUDA v10.1.243
— IBM Spectrum MPI v10.3.1.2-20200121 with CUDA-awareness enabled
UPC++ v2021.3.0
Red Hat Enterprise Linux Server release 7.6 (4.14.0-115.21.2.el7a.ppc64le)
« Hardware in each IBM Power System AC922 node of OLCF Summit:

— Dual-socket 22-core 3.07GHz POWER9
Six NVIDIA Tesla V100 CUDA GPUs each with 16 GB HBM2
Dual-rail Mellanox EDR InfiniBand with GPUDirect RDMA support
512 GB DDR4-2666 DRAM


https://bitbucket.org/camaclean/upcxx-extras/src/paw21-kokkos/examples/kokkos_3dhalo/
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