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Abstract

Motivation: Expression quantitative trait loci (eQTLs), genetic variants associated with gene ex-

pression levels, are identified in eQTL mapping studies. Such studies typically test for an associ-

ation between single nucleotide polymorphisms (SNPs) and expression under an additive model,

which ignores interaction and haplotypic effects. Mismatches between the model tested and the

underlying genetic architecture can lead to a loss of association power. Here we introduce a new

haplotype-based test for eQTL studies that looks for haplotypic effects on expression levels. Our

test is motivated by compound heterozygous architectures, a common disease model for recessive

monogenic disorders, where two different alleles can have the same effect on a gene’s function.

Results: When the underlying true causal architecture for a simulated gene is a compound het-

erozygote, our method is better able to capture the signal than the marginal SNP method.

When the underlying model is a single SNP, there is no difference in the power of our method

relative to the marginal SNP method. We apply our method to empirical gene expression data

measured in 373 European individuals from the GEUVADIS study and find 29 more eGenes

(genes with at least one association) than the standard marginal SNP method. Furthermore, in

974 of the 3529 total eGenes, our haplotype-based method results in a stronger association sig-

nal than the standard marginal SNP method. This demonstrates our method both increases

power over the standard method and provides evidence of haplotypic architectures regulating

gene expression.

Availability and Implementation: http://bogdan.bioinformatics.ucla.edu/software/

Contact: rob.brown@ucla.edu or pasaniuc@ucla.edu

1 Introduction

Expression quantitative trait loci (eQTLs) are genetic variants, typic-

ally single nucleotide polymorphisms (SNPs), associated with gene

expression levels. eQTLs are found through association scans that

test for an additive effect of SNPs on expression (Pickrell et al.,

2010; Stranger et al., 2007). In addition to additive effects, effects

from interacting SNPs can moderate gene expression (Cordell,

2009; Hemani et al., 2014a; Lewinger et al., 2013; Prabhu and

Pe’er, 2012). Some types of cis-interactions can only be captured by

phase-aware methods (Buil et al., 2015; Dimas et al., 2008).

However, many estimated interaction effects are explained by un-

typed variants or confounders that cast doubt on the importance

and prevalence of interactions in humans (Fish et al., 2016; Hemani

et al., 2014b; Wood et al., 2014). Despite this, marginal SNP tests

and SNP interaction tests cannot represent the full range of possible

genetic architectures that can influence gene expression.
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Studies of monogenic disorders (i.e. diseases caused by damaging

mutations in a single gene) have been particularly successful in

determining the genetic mechanisms responsible for disease.

Recessive monogenic disorders can have an underlying compound

heterozygous architecture of causal mutations that are usually loss-

of-function (LOF) (Gilissen et al., 2011, 2012; Ng et al., 2010).

These architectures arise when a gene is heterozygous at two differ-

ent positions for LOF variants on different haplotypes. LOF com-

pound heterozygous architectures are known to be important in

complex traits as well (Lim et al., 2013), but are challenging to de-

tect due to multiple testing issues (Gibson, 2011). Intuitively, for

fully penetrant recessive disorders, additional LOF mutations on the

same haplotype have no additional effect since the gene function has

already been disrupted. With widespread evidence of compound het-

erozygote architectures in monogenic disorders, in this work we ex-

tend such ideas to finding their effects on gene expression.

Transcriptional processes are controlled through multiple layers of

genome organization (Grubert et al., 2015; Kilpinen et al., 2013;

Koch, 2015; Waszak et al., 2015). We hypothesize that specific sets of

SNP alleles have cis-acting effects (Larson et al., 2015) on transcrip-

tional processes. Specifically, in this work we assume the effect of hav-

ing one of the alleles on a haplotype is the same as having multiple.

For example, having either of two alleles on a haplotype may have the

same effect on an epigenetic state affecting expression from that

haplotype as having both alleles on that same haplotype (ENCODE

Project Consortium et al., 2007; Ernst et al., 2011; Guenther et al.,

2007; McVicker et al., 2013; Taudt et al., 2016). As an alternative ex-

ample under this model, if alleles of two SNPs can each alone disrupt

the function of an enhancer, then having both alleles on a haplotype

will have the same effect as just having one of either allele on that

same haplotype. To test this hypothesis, we define compound regula-

tory predictors (CRPs) that encode the number of haplotypes in each

individual carrying at least one alternate allele from a predefined set

of SNPs and test for association between the CRPs and gene expres-

sion levels. This does not preclude SNPs not in the set from having

other independent effects for the same gene. We restrict our analysis

to looking at CRPs composed from pairs of two SNPs.

Using simulations of multiple causal architectures, we demon-

strate our method is better able to capture the signal from underly-

ing CRP architectures leading to an increased number of eGenes

discovered after controlling the false discovery rate (FDR).

Importantly, the combined SNP and CRP method has no loss of

power relative to the marginal SNP test to detect single causal SNPs.

To investigate the extent of CRPs in real data, we apply our

method to data from the GEUVADIS eQTL study (Lappalainen et al.,

2013). We find that 2222 of the 3529 identified eGenes (genes with at

least one association) contain both a SNP eQTL and a CRP eQTL. Of

these genes, 822 have more of the expression variance captured with a

CRP eQTL than a SNP eQTL. Of all eGenes, 974 (27.6%) have a

CRP as the top association. There are 153 genes with a CRP eQTL but

no SNP eQTL. Our combined SNP and CRP test finds 29 (0.8%)

more eGenes than the marginal SNP test despite a larger multiple test-

ing burden. Although this is only a small increase in overall power, the

results as a whole demonstrate that some underlying genetic architec-

tures affecting expression are better captured using a CRP model.

2 Materials and methods

We start with an overview of our proposed approach. We first regress

gene expression on marginal SNP genotypes (the SNP test) in a 1 Mb

window centered on a transcription start site. We then re-encode

genotypes so that the alternate allele is positively associated with ex-

pression levels. This way alternate alleles forming CRPs will have the

same effect direction on expression levels. We then encode CRPs as the

number of haplotypes in an individual with at least one alternate allele

at either of two SNP positions ðgCRP 2 f0;1;2gÞ. Last, we regress gene

expression on gCRP. To avoid a large increase in the number of tests,

we limit multiple testing through a SNP pair selection process.

We illustrate the importance of the CRP model with a toy ex-

ample in Figure 1. Alternate alleles, encoded as g1 and g2, can each

affect a transcriptional process in such a way as to completely pre-

vent gene expression from the haplotype(s) carrying the alternate al-

lele(s). Since most eQTLs have small to modest effect sizes(Aguet

et al., 2016; GTEx Consortium, 2015; Lappalainen et al., 2013),

full loss of expression due to a SNP allele is an extreme example for

illustrative purposes and not assumed by our model. Both the SNP

test and the SNP � SNP interaction test (Cordell, 2009; Lewinger

et al., 2013) have reduced power since neither g1, g2 nor g1g2 are

perfectly correlated with gCRP. Since the alternate alleles have a cis-

acting effect on the transcriptional process, gene expression is de-

pendent both on the genotypes and the phase of the alleles in the

special case of (g1,g2) ¼ (1,1).

2.1 The CRP model
A general additive two-SNP haplotype model in which each possible

haplotype has an effect on the phenotype y is

y ¼ b00h00 þ b10h10 þ b01h01 þ b11h11 þ e (1)

Here h indicates the number (0, 1 or 2) of each of the four possible

haplotypes carried by an individual, b is the effect size of each haplo-

type, and e � Nð0; r2
e Þ. The subscripts specify the allele combin-

ations for each haplotype. We focus on the model in which alternate

alleles form a CRP (bCRP ¼ b10 ¼ b01 ¼ b11 6¼ 0). We introduce a

new variable (gCRP ¼ h01þ h10þ h11) to indicate the number of

haplotypes containing at least one alternate allele. We rewrite the

model in terms of gCRP as

y ¼ bCRP gCRP þ e (2)

Given genotype data gi for SNPi (or gCRP) and phenotype data y for

n individuals, a standard measure of association is the Wald

statistic:

Fig. 1. Example of a causal CRP architecture. Each pair of vertical bars repre-

sents a maternal and paternal haplotype (unordered). A dot represents an al-

ternate allele with g1 and g2 denoting the genotypes of the SNPs for an

individual. The number of haplotypes carrying at least one alternate allele is

given by gCRP. The example phenotype, expressed mRNA, represents the per-

centage of the maximum amount of mRNA that can be produced and is lin-

early dependent on gCRP. Full loss of expression due to the alleles is an

extreme example for illustrative purposes. The term g1g2 represents the prod-

uct of the two genotypes. The example shows two instances of (g1,g2)¼ (1,1)

where the phase will lead to different values for gCRP and expression
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zi ¼
bbi

SE bb i

� � ¼ Cov gi; yð Þ
ffiffiffi
n
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var gið Þr2
e

p (3)

which asymptotically follows a normal distribution with variance 1

and a non-centrality parameter (NCP) given by

ki

ffiffiffi
n
p
¼ bi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var gið Þ

p
re

ffiffiffi
n
p

: (4)

The NCP governs the power of rejecting the null hypothesis that

there is no association between gi and the phenotype at a specified

family wise error rate (FWER). Non-causal SNPs (b ¼ 0) have an

induced-NCP if they are in linkage disequilibrium (LD) with a

causal SNP (Hormozdiari et al., 2014; Kichaev et al., 2014; Kostem

et al., 2011; Pritchard and Przeworski, 2001; Wang et al., 2015;

Zaitlen et al., 2010). Similarly, an induced-NCP can exist for SNPs

comprising or tagging a causal CRP. We let x and y* represent mean

0 and variance 1 transformed genotypes and phenotypes and b� rep-

resent the b for the transformed data. We obtain an estimate for

each b� in a linear additive model.

bb�ibb�jbb�CRP

26664
37775 ¼ 1

n
xT

i xT
j xT

CRP

h i
y� (5)

¼ 1

n
xT

i xT
j xT

CRP

h i xi

xj

xCRP

2664
3775b� þ e

0BB@
1CCA (6)

¼

1 ri;j ri;CRP

ri;j 1 rj;CRP

ri;CRP rj;CRP 1

2664
3775b� þ 1

n
xT

i xT
j xT

CRP

h i
e (7)

¼ Vb� þ 1

n
xT

i xT
j xT

CRP

h i
e (8)

We rewrite the bb� estimates as random variables drawn from a

multivariate normal distribution with means given by Vb� and vari-

ance r2
e Vn�1, in which V is the correlation matrix of the standar-

dized genotypes.

bb� �MVN Vb�;
r2

e

n
V

� �
(9)

For a causal CRP architecture in which b� ¼ 0 0 b�CRP½ �T, k ¼ Vb�

is the mean values of bb�,
ki

kj

kCRP

2664
3775 ¼

1 ri;j ri;CRP

ri;j 1 rj;CRP

ri;CRP rj;CRP 1

2664
3775

0

0

b�CRP

2664
3775 ¼

ri;CRPkCRP

rj;CRPkCRP

kCRP

2664
3775 (11)

Here a SNP i that comprises or tags the CRP will appear to have a

mean effect size ki ¼ ri,CRP kCRP. The mean effect size k gives the

NCP when testing a SNP or CRP for association with a phenotype

for a given sample size.

2.2 Correlation between SNPs and CRPs
Each 2-SNP haplotype is characterized by the presence or absence of

an alternate allele at the first and second SNP position (h1 and h2).

The variable hCRP indicates if a haplotype carries either of the two

alternate alleles. The allele frequencies (f1 and f2) and the linkage

between the SNPs (D) govern the haplotype probability in a sample.

We calculate the correlation ri,CRP for SNPs from a hypothetical

sample where the probability of each two-SNP haplotype is a func-

tion of the allele frequencies and linkage (D) (see Table 1). Here two

SNPs define each haplotype, with h1 and h2 representing the pres-

ence of an alternate allele at the first and second SNP positions. The

maximum linkage (Dmax) between SNPs is a function of their allele

frequencies (f1 and f2) and puts an upper bound on their correlation

(r) (Hill and Robertson, 1968).

D ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f1ð Þ 1� f2ð Þf1f2

p
(12)

Dmax ¼
min f1f2 ; 1� f1ð Þ 1� f2ð Þf g when D < 0

min f1 1� f2ð Þ; 1� f1ð Þf2f g when D > 0

(
(13)

Assuming that haplotypes are inherited independently, there are 16

possible maternal and paternal two-SNP haplotype combinations

for each individual. The haplotype probability (p) is the probability

of drawing a specific haplotype with replacement. For each pair of

haplotypes (indexed with superscripts k and l) we can compute the

probability of the haplotype pair as pkpl. The equations gk;l
i ¼ hk

i

þhl
i and gk;l

j ¼ hk
j þ hl

j give the genotypes of an individual at SNPs i

and j who has one kth and one lth haplotype. The gk;l
CRP term, given

by gk;l
CRP ¼ hk

CRP þ hl
CRP is the number of haplotypes in an individual

with one kth and one lth haplotype that contain either alternate

allele. From these values, the correlation between gi and gCRP is

computed using the following relationships:

ri;CRP¼

X4

k¼1

X4

l¼1

pkpl gk;l
CRP �lCRP

� �
gk;l

i �li

� �
rCRPri

r2
i ¼
X4

k¼1

X4

l¼1

pkpl gk;l
i �li

� �2
where li¼

X4

k¼1

X4

l¼1

pkplgk;l
i

r2
CRP¼

X4

k¼1

X4

l¼1

pkpl gk;l
CRP�lCRP

� �2
where lCRP¼

X4

k¼1

X4

l¼1

pkplgk;l
CRP

(14)

2.3 Power analysis to detect CRP effects
Using the model given in Equation (2) with the phenotype standar-

dized to have mean 0 and variance 1 (r2
Y ¼ 1) we compute the

power to reject the null hypothesis with a 0.05 significance threshold

for a given sample and effect size. Let fCRP be the frequency of risk

haplotypes (fCRP ¼ E½gCRP�=2).

r2
Y ¼ 2fCRPð1� fCRPÞb2

CRP þ r2
e (15)

Let r2
CRP ¼ 2fCRPð1� fCRPÞb2

CRP such that r2
Y ¼ r2

CRP þ r2
e ¼ 1

where r2
CRP is the variance of the phenotype explained by the CRP.

We can then estimate the variance of bbCRP and approximate the

NCP for the Wald statistic.

Table 1. Two-SNP haplotype characterization

Haplotype h1 h2 hCRP Haplotype probability (p)

h00 0 0 0 (1�f1) (1�f2)þD

h01 0 1 1 f1 (1�f2) �D

h10 1 0 1 (1�f1) f2�D

h11 1 1 1 f1f2þD

Each 2-SNP haplotype is characterized by the presence or absence of an al-

ternate allele at the first and second SNP position (h1 and h2). The variable

hCRP indicates if a haplotype carries either of the two alternate alleles. The al-

lele frequencies (f1 and f2) and the linkage between the SNPs (D) govern the

haplotype probability in a sample.
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Var bbCRP

� �
¼ r2

e

nVar gCRPð Þ �
r2

e

2nfCRP 1� fCRPð Þ (16)

kCRP

ffiffiffi
n
p
� bCRPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var bbCRP

� �r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

r2
CRP

1� r2
CRP

s
(17)

This result is identical to that of testing a single SNP for association

with a phenotype, but uses gCRP as the predictor as opposed to a

SNP genotype. Assuming the true causal architecture is a CRP, SNPs

will have induced-NCPs given by Equation (11). We calculate the

power of a test to have a significant association given that the true

causal architecture is a CRP:

Power ¼ UðU�1ða=2Þ þ k
ffiffiffi
n
p
Þ þ 1�Uð�U�1ða=2Þ þ k

ffiffiffi
n
p
Þ (18)

Here k can be either the NCP of the CRP (kCRP) or the induced-NCP

at SNPi (ri,CRP kCRP). a ¼ 0:05=M is the desired FWER, where M is

the number of tests performed for each gene.

2.4 CRPs in gene expression data
In order to search for SNP and CRP eQTLs in both real and simu-

lated gene expression, we begin with the SNP test that regresses ex-

pression levels on centered and standardized SNP genotypes in a

1 Mb window around the gene’s transcription start site. Following

the GEUVADIS analysis, we included the top three genotype-based

principal components as covariates as well as a binary variable

denoting whether individuals were originally obtained from the

1000 Genomes (1000 Genomes Project Consortium et al., 2012)

Phase 1 or imputed. We only use SNPs with estimated maf >0.05.

We re-encode the genotype data so that alternate alleles are posi-

tively associated with expression levels.

We limit the number of tests by only performing the CRP test on

selected SNP pairs. To select SNP pairs, we look at all possible pairs

of SNPs in the window being tested; when both SNPs in the pair

pass a suggestive 0.4 significance threshold (Bonferroni corrected

based on the number of SNP tests performed) and when each SNP in

the pair has jri,CRPj < 0.8, we test the CRP formed by the SNP pair

for association with expression. This process looks for CRPs primar-

ily in genes that already have a significant or near significant mar-

ginal association, so it is not expected that this test will greatly

increase power.

For real data analysis we determine an empirical P-value using

an adaptive permutation procedure following the GTEx approach

(GTEx Consortium, 2015). We perform at least 1000 permutations

and at most 10 000 permutations. After the first 1000 permutations,

an exit criteria is reached if 15 permutations have a stronger associ-

ation than the observed association. Therefore, all P-values are esti-

mated with at least 1000 permutations. For each gene, we permute

the expression levels and then rerun the entire SNP test as well as

the entire SNP and CRP test including the SNP selection. We then

control for a 0.05 FDR across genes using the Benjamini-Hochberg

procedure. In the real data analysis the largest significant P-value

after FDR control was 0.0095, which indicates that all significant

genes required more than 1000 permutations before reaching the

exit criteria.

For simulated data, we permute each gene on chromosome 22

10 000 times and use the resulting null distribution of association

statistics for each gene to determine the P-values for simulated

genes.

2.5 Simulations for multiple causal architectures
We base our simulations on the chromosome 22 genotypes of

Europeans (n ¼ 373) from the GEUVADIS study(Lappalainen et al.,

2013). We ran Beagle 4.1(Browning and Browning, 2007, 2016) to im-

pute and phase missing or unphased genotypes for both the simulations

and for the real expression analysis. Simulations draw either 0, 1 or 2

SNPs to be causal from a 1 Mb window centered on a randomly drawn

transcription start site. After simulating a phenotype (see below), we

run the tests as explained in Section 2.4. We also run an interaction

test where we use an f-test to compare the model containing just the

top marginal association to the model the contains the top marginal as-

sociation as well as the product of the SNP genotypes for the same

SNPs that are being evaluated as a CRP. For each causal architecture,

we simulate 200 sets of 18 000 genes and report the mean number of

genes with a significant association after controlling for the FDR.

Phenotypes are simulated using an additive model so that the

causal genetic architecture explains a fixed r2
g ¼ 0:08 proportion of

the variance in expression. We simulate five underlying causal archi-

tectures using either common SNPs with maf > 0.05 or rare SNPs

with 0.01 < maf < 0.05: (i) We randomly choose a single common

or rare SNP to be causal. (ii) Two causal common SNPs are ran-

domly chosen and each explains half of r2
g after accounting for link-

age disequilibrium. (iii) A causal CRP formed by two randomly

chosen SNPs with either both common or both rare. We also simu-

late CRPs with two common SNPs but require that the SNPs are

correlated either with r2 > 0.8 or <0.2. The high LD simulation rep-

licates conditions likely seen in a regulatory element where SNPs are

often strongly linked. (iv) The genotypes of two randomly chosen

common SNPs are multiplied to form a causal interaction effect. (v)

A null model where the phenotype is simply a draw from a normal

distribution. We run the simulations using either masked or un-

masked causal SNPs to determine how the methods will perform

with un-typed variation and confounders.

2.6 Real data analysis
We re-analyzed data from the GEVUDADIS project (Lappalainen

et al., 2013). Following the original work (Lappalainen et al., 2013),

we filter out non-autosomal genes and genes that did not have >0

quantification in >90% of individuals resulting in 18 621 genes. We

standardize the RPKM and PEER normalized gene expression levels

sampled from human lymphoblastoid cells after removing non-

European data. Last, we run the tests as described in Section 2.4.

We compute a centered and standardized gCRP from the phased

genotype data for SNP pairs selected for the CRP test.

To determine if the top CRP eQTL is confounded due to correl-

ation with the top SNP eQTL, we perform conditional regression

that removes the effect of the top SNP eQTL if it is has an empirical

P-value < 0.05. We then re-run the CRP analysis. Significance of the

CRP is determined using the permutation method described earlier.

3 Results

3.1 Underlying SNPs poorly tag CRPs
The test statistic (zi) is drawn from a normal distribution with a

mean given by the NCP or induced-NCP. Under certain frequency

and linkage conditions, the induced-NCPs at SNPs that comprise a

causal CRP can be significantly lower than the CRP’s NCP (see Figs

2 and 3). For example, two SNP genotypes (g1 and g2) each with

maf ¼ 0.5 and under no LD (r1,2 ¼ 0) each have a correlation

(r1,CRP and r2,CRP) of 0.58 with the CPR (gCRP). In this case, if the

2310 R.Brown et al.
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CRP were causal, the SNP test’s induced-NCP is only 58% the NCP

of the CRP. This could result in a significant loss of power.

3.2 Power to detect CRPs
We computed the power at a 0.05 Bonferroni corrected significance

level of the SNP test and the combined SNP and CRP test to have an

association with a trait having an underlying CRP architecture.

Because this does not take SNP selection into account for testing

CRPs, the combined test results represent the power achievable if

testing the causal CRP directly. We correct using the number of SNP

(2266) or SNP and CRP (3064) tests performed on average per gene

in the real gene expression data. As the variance explained due to a

causal CRP decreases, the combined test outperforms the SNP test

(see Fig. 4). The combined test has 92% maximum possible power

to detect a CRP with r2
CPR ¼ 0:08, assuming the CRP is directly

tested, as opposed to 62% power with the SNP test.

We simulate gene expression under different causal architectures

to evaluate the effect of confounders and to determine how the SNP

selection process affects the power of the combined SNP and CRP

test versus the marginal SNP test (see Table 2). In our simulations,

we fix the percentage of phenotypic variance due to the underlying

architecture at r2
g ¼ 0:08 and simulate 200 sets of 18 000 genes

under each architecture.

Using the null simulations, we observe that the SNP test, com-

bined SNP and CRP test, and the combined SNP and interaction

tests have mean false positive rates of 4.97, 4.96 and 4.97% respect-

ively, each having a standard error of 0.01%. This indicates that the

three tests are well calibrated under the null.

We evaluate the power of each test by comparing the average

number of genes that have a significant association after controlling

FDR at 0.05 in each 18 000 gene set using Benjamini-Hochberg (see

Fig. 2. Correlation structure between the SNP genotypes (g1 and g2) and the

CRP (gCRP). The phenotype y is dependent on the CRP

Fig. 3. The correlation between SNPs and CRPs. The greyscale represents the

absolute maximum of r1,CRP and r2,CRP given the SNP frequencies indicated

by the x- and y-axis and a correlation (r1,2) of�0.2 between the SNPs. From

darkest to lightest, the greyscale represents absolute maximum ri,CRP from

(1,0.75), (0.75,0.5), (0.5,0.25) and (0.25,0)

Fig. 4. Power to detect a causal CRP with 373 individuals and a 0.05

Bonferroni corrected significance level

Table 2. Average number of eGenes identified after controlling the

FDR for different underlying causal genetic architectures

Causal

architecture

SNP

test

SNP and

interaction test

SNP and

CRP test

Null 0 0 (0) 0 (0)

Unmasked

SNP (c) 17 404 17 404 (0) 17 405 (7)

CRP (c) 14 421 14 422 (1) 14 514* (117)

CRP (c) low LD 14 402 14 403 (1) 14 502* (124)

CRP (c) high LD 16 135 16 136 (0) 16 135 (9)

2 SNPs (c) 14 529 14 529 (0) 14 640* (134)

G1G2 (c) 10 477 10 485 (9) 10 538* (124)

Masked

SNP (c) 16 395 16 395 (0) 16 400 (18)

SNP (r) 3298 3303† (6) 3278 (150)

CRP (c) 13 565 13 565 (0) 13 670* (132)

CRP (r) 2863 2864 (2) 2909* (211)

2 SNPs (c) 13 701 13 701 (0) 13 824* (153)

This table reports the mean number of simulated genes with at least one

significant association for a given test and simulated causal architecture after

controlling the FDR at 0.05. The * represents a significant difference in the

number of eGenes discovered between the SNP and CRP test and both other

tests and the † represents a significant difference between the SNP and inter-

action test and the SNP and CRP test (using a t-test with a significance thresh-

old of 0.05/22). The SNP and interaction test was never significantly different

form the SNP test. The italicized values in parentheses represent the number

of genes found by the specified combined test but not included in the set of

eGenes found by the SNP test. The (c) and (r) represent architectures using

common or rare SNPs.
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Table 2). No genes from the Null simulations are significant after

controlling the FDR. When the underlying causal model is a single

causal SNP, the three tests find approximately the same number of

eGenes: 17 404 (SNP test), 17 404 (SNP and interaction test) and

17 405 (SNP and CRP test). Even though the tests find only one dif-

ference in the total number of eGenes, the sets of eGenes found by

each test are not subsets of the most powerful test. The SNP and

CRP test on average finds seven unique eGenes not included in the

set of eGenes found by the SNP test. Interestingly, the rare single

SNP causal model is the only simulated architecture where the com-

bined SNP and CRP model is outperformed by the other models,

indicating that CRPs poorly tag SNPs with maf < 0.05.

For simulated CRP architectures, the combined SNP and CRP

test significantly outperforms the SNP test (and the SNP and inter-

action test) by finding 93 (and 92) more eGenes. However it found

117 unique eGenes not found by the SNP test indicating that in

those genes marginal SNPs were much poorer tags of the underlying

CRP. The most extreme example of this is found when looking at

CRPs formed by two rare SNPs where the SNP and CRP test finds

211 eGenes not found by the SNP test even though it only finds 46

total more eGenes.

The combined SNP and CRP test has increased power over the

SNP test when SNPs forming a CRP are in low LD. In this case the

combined test finds 100 more eGenes than the SNP test, 124 being

unique to the SNP and CRP test. Conversely, for the high LD CRP

simulations, the combined test finds the same number of eGenes

with 9 being unique. There is no increase in the total number of

eGenes discovered since CRPs formed by high LD SNPs are very

well tagged by single SNPs (see Figs 2 and 3). This also explains why

the number of unique eGenes found by the SNP and CRP test is

similar to what was found with the single causal SNP architecture.

For the two causal SNP and interaction architectures, the com-

bined SNP and CRP test significantly outperforms the SNP and com-

bined SNP and interaction tests. This is likely due to the CRP test

being able to tag combinations of haplotypes poorly tagged by single

SNPs and the fact that the SNP selection method used for both the

CRP and the interaction tests is optimized for finding CRPs.

3.3 CRPs in real gene expression data
Looking at all 18 621 genes that passed the filtering criteria, our

combined SNP and CRP test identifies 3529 eGenes while the mar-

ginal SNP test only finds 3500. Of the 3529 eGenes, 1154 have a

SNP eQTL but no CRP eQTL and 2222 have both a SNP and a CRP

eQTL. In 37.0% of the 2222, the CRP eQTL has a larger effect size

than the SNP eQTL. For these eGenes, the top CRP eQTL from the

combined test on average captures 12.6% of the variance in expres-

sion, as opposed to 10.8% with the top SNP eQTL. Finally, 153

identified eGenes have a CRP eQTL but no SNP eQTL. In these

eGenes the top CRP eQTL captures 7.1% of the expression variance

while the top (not significant) SNP captures 4.9%. These results

demonstrate that the combined test is both more powerful than the

marginal SNP test and in many eGenes better captures the signal

from the genetic effect on expression.

The CRP model makes two predictions. The first is that the mean

expression levels of individuals who are heterozygous at the two SNPs

(g1,g2)¼ (1,1) that form a CRP will depend on the phase of the alleles.

The individuals will have gCRP ¼ 1 if the alleles are in phase or gCRP ¼
2 if they are out of phase (see Fig. 1). The second prediction is that

there should be no difference in mean expression levels between indi-

viduals with (g1,g2) ¼ (2,0) and the individuals with (g1,g2) ¼ (0,2).

Both of these groups of individuals will have gCRP ¼ 2.

There are 887 eGenes with a CRP eQTL where at least four indi-

viduals fall into each of the groups. Using a Hochberg-Benjamini

FDR control (a ¼ 0.05 applied to a t-test, we find 11 CRPs where

there is a significant difference in mean expression levels between in-

dividuals with (g1,g2) ¼ (1,1) and (gCRP ¼ 1) and individuals with

(g1,g2) ¼ (1,1) and (gCRP ¼ 2) but found no significant difference be-

tween individuals with (g1,g2) ¼ (0,2) and those with (g1,g2) ¼ (2,0).

In order to determine if the top CRP eQTL tags the top SNP

eQTL, we condition gene expression on the top SNP eQTL with an

empirical P-value < 0.05 and then re-run the CRP analysis and per-

mutations. This results in 3218 eGenes where there is only a SNP

eQTL, 158 eGenes that contain both a SNP and a CRP eQTL and

38 eGenes that contain only a CRP eQTL. This analysis shows that

while the top CRP eQTLs are highly correlated with the top SNP

eQTLs for most genes, in some cases the CRP eQTLs are capturing

signal not included with the top SNP eQTL.

After running the SNP test and the combined SNP and CRP test,

there are three SNPs of interest: gm is the SNP that has the strongest

marginal association with gene expression, gCRP,1 and gCRP,2 are

the two SNPs that form the top CRP (gCRP). We use Akaike infor-

mation criterion (AIC) to compare eight models that use the follow-

ing predictors: (1) gm, with k ¼ 3 (2) gCRP,1 with k ¼ 3, (3) gCRP,2

with k ¼ 3, (4) gCRP with k ¼ 3, (5) gCRP,1*gCRP,2 with k ¼ 3, (6) gm

and gCRP,1*gCRP,2 with k ¼ 4 (7) gm and gCRP with k ¼ 4 (8) gCRP,1

and gCRP,2 and gCRP,1*gCRP,2. with k ¼ 5.

Using AIC we determine if a CRP (gCRP) effect is more likely

than a SNP interaction (gCRP,1*gCRP,2) by comparing models (6) and

(7) that each include the main marginal effect as well (gm). For the

2222 eGenes with both a SNP eQTL and a CRP eQTL, the model

with the CRP is 100 times more likely than the model with the inter-

action effect for 263 of the eGenes. When looking at the 153 eGenes

that only have a CPR eQTL, the model with the CRP is 100 times

more likely than the model with the interaction effect in 21 of the

eGenes.

We then compare the model that only includes the CRP effect

(model 4) to all other models. For the 2222 eGenes, the CRP only

model is most likely compared with all other models in 154 of the

eGenes. When looking at the 153 eGenes that only have a CPR

eQTL, the CRP only model is most likely in 31 of the eGenes.

4 Discussion

In this work we introduce a new method to detect haplotype effects on

gene expression. Motivated by monogenic disorders, we extend ideas

behind compound heterozygotes to gene expression through a CRP.

Our method performs almost identically to the standard marginal SNP

methods when the underlying architecture is a single causal, but out-

performs it when there are more complex underlying architectures.

The main limitation of our combined test is that it only allows for

CRPs composed of two SNPs. It is possible that any number of SNPs

affects a transcriptional process or tag haplotypes with similar effect

size. Due to the conservative SNP selection process, our method is

best able to find CRP associations in genes that already have signifi-

cant or close to significant associations. It is underpowered to find

CRPs when the CRPs are poorly tagged by all marginal SNPs.

Though the gain in power of the combined test over the marginal

SNP test is small in real data, the eGenes identified using the CRP

model suggest that marginal tests of common SNPs do not fully tag

the genetic architectures that influence gene expression. Without

comprehensive functional analysis, it is impossible to know if a CRP

eQTL causally changes expression levels, or if it is simply tags an
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un-typed causal variant, interaction or a more complex causal

mechanism.

Given the stronger CRP eQTL signals seen in many genes,

our model may be useful for imputing gene expression that can

then be leveraged in transcript-wide association studies (Gamazon

et al., 2015; Gusev et al., 2016) Finally, the CRP eQTLs motivate

two future directions. First, the method can be adapted to increase

the power of genome-wide association studies to find novel associ-

ated loci. Second, fine-mapping methods used to prioritize poten-

tially causal variants may become more accurate by explicitly

modeling CRP architectures.

Acknowledgements

We would like to acknowledge Valerie Arboleda, Kathryn Burch, Huwenbo

Shi, Kikuye Koyanu, Malika Kumar and Megan Roytman for assisting in the

article preparation.

Funding

Research reported in this publication was supported by the National

Institutes of Health under Awards [R01-HG009120 to B.P.], [T32-

HG002536 to R.B.], [R01-GM053275 to B.P.] and [T32-CA201160 to

G.K.]. The content is solely the responsibility of the authors and does not ne-

cessarily represent the official views of the National Institutes of Health.

Conflict of Interest: none declared.

References

1000 Genomes Project Consortium. et al. (2012) An integrated map of genetic

variation from 1,092 human genomes. Nature, 491, 56–65.

Aguet,F. et al. (2016) Local genetic effects on gene expression across 44

human tissues.

Browning,B.L. and Browning,S.R. (2016) Genotype Imputation with Millions

of Reference Samples. Am. J. Hum. Genet., 98, 116–126.

Browning,S.R. and Browning,B.L. (2007) Rapid and accurate haplotype phas-

ing and missing-data inference for whole-genome association studies by use

of localized haplotype clustering. Am. J. Hum. Genet., 81, 1084–1097.

Buil,A. et al. (2015) Gene-gene and gene-environment interactions detected by

transcriptome sequence analysis in twins. Nat. Gene., 47, 88–91.

Cordell,H.J. (2009) Detecting gene-gene interactions that underlie human dis-

eases. Nat. Rev. Genet., 10, 392–404.

Dimas,A.S. et al. (2008) Modifier effects between regulatory and protein-

coding variation. PLoS Genet., 4, e1000244.

ENCODE Project Consortium. et al. (2007) Identification and analysis of

functional elements in 1% of the human genome by the ENCODE pilot pro-

ject. Nature, 447, 799–816.

Ernst,J. et al. (2011) Mapping and analysis of chromatin state dynamics in

nine human cell types. Nature, 473, 43–49.

Fish,A.E. et al. (2016) Are interactions between cis-regulatory variants evi-

dence for biological epistasis or statistical artifacts? Am. J. Hum. Genet.,

99, 817–830.

Gamazon,E.R. et al. (2015) A gene-based association method for mapping

traits using reference transcriptome data. Nat. Genet., 47, 1091–1098.

Gibson,G. (2011) Rare and common variants: twenty arguments. Nat. Rev.

Genet. 13, 135–145.

Gilissen,C. et al. (2012) Disease gene identification strategies for exome

sequencing. Eur. J. Hum. Genet., 20, 490–497.

Gilissen,C. et al. (2011) Unlocking Mendelian disease using exome sequenc-

ing. Genome Biol., 12, 228.

Grubert,F. et al. (2015) Genetic Control of Chromatin States in Humans

Involves Local and Distal Chromosomal Interactions. Cell, 162,

1051–1065.

GTEx Consortium (2015) Human genomics. The Genotype-Tissue Expression

(GTEx) pilot analysis: multitissue gene regulation in humans. Science, 348,

648–660.

Guenther,M.G. et al. (2007) A chromatin landmark and transcription initi-

ation at most promoters in human cells. Cell, 130, 77–88.

Gusev,A. et al. (2016) Integrative approaches for large-scale transcriptome-

wide association studies. Nat. Genet., 48, 245–252.

Hemani,G. et al. (2014a) Detection and replication of epistasis influencing

transcription in humans. Nature, 508, 249–253.

Hemani,G. et al. (2014b) Hemani et al. reply. Nature, 514, E5–E6.

Hill,W.G., and Robertson,A. (1968) Linkage disequilibrium in finite popula-

tions. Theor. Appl. Genet., 38, 226–231.

Hormozdiari,F. et al. (2014) Identifying causal variants at loci with multiple

signals of association. Genetics, 198, 497–508.

Kichaev,G. et al. (2014) Integrating functional data to prioritize causal vari-

ants in statistical fine-mapping studies. PLoS Genet., 10, e1004722.

Kilpinen,H. et al. (2013) Coordinated Effects of Sequence Variation on DNA

Binding, Chromatin Structure, and Transcription. Science, 342, 744–747.

Koch,L. (2015) Genomics: Adding another dimension to gene regulation. Nat.

Rev. Genet., 16, 563–563.

Kostem,E. et al. (2011) Increasing power of genome-wide association studies

by collecting additional single-nucleotide polymorphisms. Genetics., 188,

449–460.

Lappalainen,T. et al. (2013) Transcriptome and genome sequencing uncovers

functional variation in humans. Nature, 501, 506–511.

Larson,N.B. et al. (2015) Comprehensively evaluating cis-regulatory variation

in the human prostate transcriptome by using gene-level allele-specific ex-

pression. Am. J. Hum. Genet., 96, 869–882.

Lewinger,J.P. et al. (2013) Efficient two-step testing of gene-gene interactions

in genome-wide association studies. Genet. Epidemiol., 37, 440–451.

Lim,E.T. et al. (2013) Rare complete knockouts in humans: population distri-

bution and significant role in autism spectrum disorders. Neuron, 77,

235–242.

McVicker,G. et al. (2013) Identification of genetic variants that affect histone

modifications in human cells. Science, 342, 747–749.

Ng,S.B. et al. (2010) Exome sequencing identifies the cause of a mendelian dis-

order. Nat. Genet., 42, 30–35.

Pickrell,J.K. et al. (2010) Understanding mechanisms underlying human gene

expression variation with RNA sequencing. Nature, 464, 768–772.

Prabhu,S., and Pe’er,I. (2012) Ultrafast genome-wide scan for SNP-SNP inter-

actions in common complex disease. Genome Res., 22, 2230–2240.

Pritchard,J.K., and Przeworski,M. (2001) Linkage disequilibrium in humans:

models and data. Am. J. Hum. Genet., 69, 1–14.

Stranger,B.E. et al. (2007) Population genomics of human gene expression.

Nat. Genet., 39, 1217–1224.

Taudt,A. et al. (2016) Genetic sources of population epigenomic variation.

Nat. Rev. Genet., 17, 319–332.

Wang,Z. et al. (2015) Gene-Gene Interactions Detection Using a Two-stage

Model. J. Comput. Biol., 22, 563–576.

Waszak,S.M. et al. (2015) Population variation and genetic control of modu-

lar chromatin architecture in humans. Cell, 162, 1039–1050.

Wood,A.R. et al. (2014) Another explanation for apparent epistasis. Nature,

514, E3–E5.

Zaitlen,N. et al. (2010) Leveraging genetic variability across populations for

the identification of causal variants. Am. J. Hum. Genet., 86, 23–33.

Enhanced methods to detect haplotypic effects 2313

Deleted Text: ,

	btx142-TF1
	btx142-TF2



