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ABSTRACT

Multi-Objective Optimization Problems (MOPs) deal with optimizing several
objectives simultaneously and have diverse applications in engineering, economics,
logistics, etc. The methods for solving MOPs can generally be classified into stochas-
tic and deterministic approaches. Deterministic approaches are capable of finding
the global solution even though they are computationally burdensome. Stochastic
methods, on the other hand, can save on computations significantly, although they
do not guarantee to find the global solution.

In engineering applications, MOPs can become nonlinear, multi-modal, high
dimensional, and have complex structured solutions that makes them more chal-
lenging.

This theses follows two major goals. Firstly, it presents new methods and
algorithms for solving engineering MOPs by hybridizing the existing methods and
comparing their effectiveness by using benchmark problems. The hybrid method
combines an evolutionary algorithm with a cell mapping method in order to reduce
the computational time while maintaining the quality of the solution. Implemen-
tation details on parallel CPU/GPU programming of such methods are discussed
as well. The second goal of this thesis is to introduce new applications for MOPs
in different areas of engineering such as control design, path planning, fractional
systems and airfoil design.
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Chapter 1

INTRODUCTION

1.1 Motivation

Multi-objective optimization problems (MOPs) concern with simultaneously
minimizing a set of usually conflicting objective functions. These problems have
numerous applications in optimal control design, economics, finance etc. Instead
of a point, the solution of a MOP consists of a set of points called the Pareto set
and the corresponding set of objective function values are called the Pareto front.
To solve these problems, both deterministic and stochastic approaches have been
thoroughly investigated.

Evolutionary algorithms (EAs) are mainstream stochastic methods for MOPs
[1]. In the family of EAs, genetic algorithms (GAs) are popular choices for engineer-
ing applications [2]. In this thesis, NSGA-II, a variant of GAs is used for comparison
purposes. It should be noted that other EAs such as particle swarm optimization
(PSO) and strength Pareto evolutionary algorithm (SPEA) can all be considered.
Although GAs might be a convenient choice for solving MOPs, the accuracy in find-
ing the global solution and speed of convergence are two of their drawbacks [3]. For
instance, Shuai and Zhou [4] reported that in some cases, GAs may get stuck at a
local optimum. Furthermore, GAs have a variety of operators, the best choice of
which can be problem dependent. Elsayed et al. [5] showed that there is no single
GA operator that can work well with all problems. To improve its performance, the
notion of merging the GA with other methods has received much attention specially
in the area of single objective optimization [3,5,6]. The trend of combining GAs with
other techniques has also been found in the area of multi-objective optimization. For
example, Zeidi et al. [7] presented a hybrid multi-objective approach based on the
genetic algorithm and artificial neural network. In another study, Wang et al. [8]
integrated the worst-case-scenario technique of anti-optimization with a constrained
multi-objective genetic algorithm.

Hernández et al. [9] have found deterministic global search algorithms such as
the simple cell mapping (SCM) to be effective in solving MOPs. The cell mapping
methods describe the system dynamics with cell-to-cell mappings by discretizing the
phase space. The dynamics of a cell is represented by that of its center [10]. The
SCM method is effective to investigate the global solution of nonlinear dynamical
systems. The SCM method can be gradient based or gradient free [11]. Although
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the SCM method can find the global and fine structure of optimal solutions, its
computational time increases dramatically as the dimension of the design space
goes up [12]. The computational time can be reduced if we apply the SCM method
only in the vicinity of the solution instead of sweeping the entire design space. This
approach is particularly beneficial to MOPs of high dimensions, and is also the
key feature for the set oriented numerics (SON) [13–15]. Subdivisions can also be
applied to improve the accuracy and resolution of the solution.

The advantages and disadvantages of the methods mentioned, motivated us
to create a hybridized method that utilizes the power points of both methods and
can outperform them.

1.2 Objectives and Organization of the Thesis

The main objectives of this thesis is listed as follows,

• Implementing Simple Cell Mapping method for MOPs and evaluate its per-
formance.

• Hybridizing GA and SCM to create a more efficient algorithm specially for
engineering MOPs.

• Evaluating the performance of the hybrid algorithm by comparing it with
other methods using benchmark problems.

• Study applications of MOPs in various areas of engineering including

1. Control engineering

2. Robot path planning

3. Fractional systems

4. Airfoil design

The organization of the thesis is as follows. Chapter 2 defines the MOP
problem and briefly reviews the methods of solution. The hybrid EA+SCM method
is presented and evaluated in Chapter 3. The SCM method is discussed in Chapter
4 followed by some control MOPs solved with this method. The rest of the thesis
is followed by additional new applications of MOPs in engineering. Chapter 5 looks
into a system with fractional order damping. A multi-objective robot path planning
scheme using cellular automaton is presented in Chapter 6. Chapter 7 focuses on
multi-objective optimal airfoil design. Finally the conclusion is made in Chapter 8.
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Chapter 2

MULTI-OBJECTIVE OPTIMIZATION

2.1 MOP Definition

A multi-objective optimization problem can be stated as follows,

min
x∈Q
{F(x)}, (2.1)

where x ∈ Q is q-dimensional vector of design parameters. F is the map that
consists of the objective functions fi : Q→ R1.

F : Q→ Rk,F(x) = [f1(x), . . . , fk(x)]. (2.2)

The design parameter space Q ⊂ Rq can in general be expressed in terms of
inequality and equality constraints,

Q = {x ∈ Rq | hj(x) ≤ 0, j = 1, . . . , l, (2.3)

and hj(x) = 0, j = l + 1, . . . ,m}.

The solutions of the MOP are defined by the concept of dominance [16],
which is described by the following definitions.

(a) Let v, w ∈ Rk. The vector v is said to be less than w (in short: v <pw),
if vi < wi for all i ∈ {1, · · · , k}. The relation ≤p is defined analogously.

(b) A vector v ∈ Q is called dominated by a vector w ∈ Q (w ≺ v) with
respect to the MOP (2.1) if F(w) ≤p F(v) and F(w) 6= F(v), else v is called
non-dominated by w.

If a vector w dominates a vector v, then w can be considered to be a ‘better’
solution of the MOP. The definition of optimality or the ‘best’ solution of the MOP
is now straightforward.

(c) A point w ∈ Q is called Pareto optimal or a Pareto point of the MOP
(2.1) if there is no v ∈ Q which dominates w.

(d) The set of all Pareto optimal solutions is called the Pareto set denoted
as

P := {w ∈ Q: w is a Pareto point of MOP (2.1)} (2.4)

The image F(P) of P is called the Pareto front.
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2.2 Solution Methods

Since the behavious of the objectives in a MOP is naturally conflicting, the
solution would be a set instead of a point. The set of solution points is called
the Pareto set and the corresponding set of objective function values are called the
Pareto front. The solution methods provide us with a finite approximation of the
Pareto front and follow two major goals. The first is to converge to the real Pareto
front i.e. that the finite approximation is is distributed along the Pareto set/front.
The second one is to have a nicely spread solution i.e. that the distance between
the approximated points of the Pareto front is ideally the same.

The solution approximation methods can be categorized from different per-
spectives. In this thesis, we divide them into three categories, scalarization methods,
descent direction methods and stochastic methods which will be discussed below.

2.2.1 Scalarization methods

One of the classical ideas to solve a MOP is to transform the problem into an
auilary Single-objective Optimization Problem (SOP). Using this method, we will
reduce the number of objectives to one. Once the SOP is created, we are able to
use numerous available methods to solve the proposed SOP. We should note that
the solution of a SOP is consist of a single point while the solution of MOP is a set.
As a result, the Pareto set can be approximated (but not guaranteed to be entirely
found) by smartly solving a sequence of SOPs [17]. We will now briefly overview
the most popular schalarization techniques. For a more detailed discussion please
refer to [17].

Weighted sum method
It is probably the oldest scalarization method. The idea is to assign each

objective a certain weight αi ≥ 0, and to minimize the resulting weighted sum [17].
Thus the problem (2.1) can be restated as follows,

min
x∈Q

fα(x) :=
k∑
i=1

αifi(x)

s.t. x ∈Q
αi ≥ 0, i = 1, ..., k,∑k

i=1 αi = 1

(2.5)

The main advantage of the weighted sum method is that the solution of
Equation (2.5) for any set of αi ≥ 0 would result in a Pareto optimal solution. On
the other hand, the proper choice of α can be a delicate problem. If the Pareto front
happens to be concave, some parts of it may not be located with the global solution
to Equation (2.5). That means, not all the points of the Pareto front can be reached,
when using the weighted sum approach, which could be a major disadvantage.

ε− constrained method
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The idea of this method is to select one objective, say fi, i∈ {1, ..., k}, and to
treat all other objectives as constrains by imposing upper bounds on the function
values [18]. As a result, the optimization problem translates to,

min
x∈Q

fi(x)

s.t. fj(x) ≤ εj ∀j∈ {1, ..., k}\{i}.
(2.6)

Regardless of the shape of the Pareto front, the ε− constrained method can
find every Pareto optimal solution. However, the finding the right choice of ε could
be a chellenging problem itself.

Weighted Tchebycheff method
The goal of the weighted Tchebycheff method is to find a point whose image

is closest to a given reference point Z ∈ Rk [17]. For the distance assignment, the
weighted Tchebycheff metric is used: Let α ∈ Rk with αi ≥ 0, i = 1, ..., k, and∑k

i=1 αi = 1, and let Z = (z1, ..., zk), then the weighted Tchebycheff method reads
as follows,

min
x∈Q

max
i=1,...,k

αi |fi(x)− zi| . (2.7)

Please note that the solution to Equation (2.7) depends on Z as well as α.
The main advantage of this method is that by proper choice of these two vectors,
every point on the Pareto front can be found.

Normal boundary intersection
The Normal Boundary Intersection (NBI) method computes the finite size

approximation of the Pareto front in two steps [19]:

1. Computing the Convex Hull of Individual Minima (CHIM), which is a (k −
1)−simplex connecting the objective values of the minimum of each objective
fi, i = 1, ..., k (i.e. the utopian).

2. Selecting points yi from CHIM and computing the point x∗i ∈ Q such that the
image F (x∗i ) has the maximal distance from yi in the direction that is normal
to the CHIM and points toward the origin.

The second step is called the NBI-subproblem and can be stated in mathe-
matical terms as follows: Given and initial value x0 and a direction α ∈ Rk, solve

max
x,l

fi(x)

s.t. F (x0) + lα = F (x)
x ∈ Q.

(2.8)

This formulation could be helpful since there are some cases in which our
goal is to steer the search in a certain direction in the objective space. On the other
hand, the solutions of Equation (2.8) do not have to be Pareto optimal [19].
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2.2.2 Descent direction methods

Given a descent direction ν at a point x, s further candidate solution xnew
can easily be found by a line search, i.e. by setting

xnew = x + tν,

where t ∈ R+ is the step size. The solution to this problem would result in a curve
of dominant points, i.e. the new points will dominate the starting points.

In the following, we review some methods that use this idea to find the descent
direction ν.

Simplest bi-objective descent direction
This methods finds the descent direction by combining two gradients by a

vector sum. This method states that if f1, f2 : Rn → R define a two objective MOP
and if ∇fi 6= 0, for i = 1, 2, then

ν(x0) = −
(
∇f1(x)

‖∇f1(x)‖
+
∇f2(x)

‖∇f2(x)‖

)
(2.9)

is a descent direction at x0 for the MOP.
The drawback for this method is that it cannot be generalized for more than

two objectives.
Directed search
The directed search method enables us to steer the search direction from a

given point x ∈ Q into a desired direction d ∈ Rk. A direction vector v ∈ Rn can
be calculated such that

lim
t→0

fi(x0 + tv)− fi(x0)

t
= di, i = 1, ..., k. (2.10)

The next two methods presented, use this idea. The first one is a descent
method that steers toward a given direction d. The second method is a continuation
method with the particular advantage that unlike other methods, this method does
not need any second gradient information [20,21].

Descent method
Assume a point x0 ∈ Q is given as well as the vector d ∈ Rk which represents

the desired direction in objective space. It can be expresses as follows

J(x)v = d, (2.11)

where v ∈ Rn is a search direction in parameter space and J(x) is the Jacobian
matrix defined by
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J(x) =


∂f1
∂x1

(x) · · · ∂f1
∂xn

(x)
...

. . .
...

∂fk
∂x1

(x) · · · ∂fk
∂xn

(x)

 . (2.12)

As a result, v can be determined by solving a system of linear equations.
Since usually the number of parameters is higher than the number of objectives, the
system of equations will be undetermined, causing the solution to be not unique.
To handle this issue, the problem can be formulated as

v =J(x0)
+d (2.13)

where J(x0)
+ denoted the pseudo inverse of the Jacobian J(x0) ∈ Rk×n. Further,

we can solve the following initial value problem (IVP):

x(0) = x0 ∈ Rn

ẋ(m) = vα(x(m)), t > 0.
(2.14)

Continuation method
As soon as one optimal point is reached with the method above, this method

starts a movement along the Pareto set of a given MOP.
Assume a Pareto point x and a convex weight α is given such that

k∑
i=1

αi∇fi(x) = 0, (2.15)

and further we assume that

rank(J(x)) = k − 1. (2.16)

It is known that in this case α is orthogonal to the Pareto front [20]. As a
result, a search orthogonal to α in objective space could be promising to find new
predictor points. A QR-factorization of α can be computed to use this method, i.e.,

α = QR, (2.17)

where Q is an orthogonal matrix consist of the column vectore q1, ...,qk. Since by
Equation (2.17) α = r11q1 and Q is orthogonal, it follows that the column vectors
q2, ...,qk build and orthonormal basis of hyperplane which is orthogonal to α. Thus,
a promising set of search directions vi maybe the ones which satisfy

J(x)vi = qi, i = 2, ..., k. (2.18)

Since α is not in the image of J(x) (otherwise x would not be a Pareto point),
it follows that the vectors q2, ...,qk are in the image of J(x), i.e. Equation (2.18)
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can be solved for each i ∈ {2, ..., k}. Then, the set of predictor directions can be
chosen as:

pi = x0 + tvi. (2.19)

Please note that this method of selecting predictor direction does not require
the second derivative of the objectives.

At this point, a corrector step can be used. Given a predictor pi ∈ p, we can
use pi as initial value to Equation (2.14) and choosing α0 i.e., the weight from the
previous solution x0 leads to a new solution x1.

Method of Schäffler Schültz and Weinzierl
The following function is defined [22]:

q(x) =
k∑
i=1

â∇fi(x), (2.20)

where q : Rn → Rn and â is a solution of

min
α∈Rk


∥∥∥∥∥

k∑
i=1

αi∇fi(x)

∥∥∥∥∥
2

2

, αi ≥ 0, i = 1, ..., k,
k∑
i=1

αi = 1

 , (2.21)

where ∇fi is the gradient of ith objective function fi.
From Equation (2.20) if we have q(x) 6= 0 then −q(x) is a descent direction

for all the objective functions. As a result, each x with q(x) = 0 fulfills th efirst-
order necessary condition for Pareto optimality.

Method of Fliege and Svaiter
According to the authors [23], the following function is defined:

fx(v) = max(Av)i, i = 1, ..., k (2.22)

where fx : Rn → R. We can see that fx is convex and homogeneous. Using this
function the following problem is proposed:

min fx(v)+1
2
‖v‖2

subject to v ∈ Rn (2.23)

From this we have that, if x is Pareto optimal, then v(x) = 0. It that is not
the case, then v(x) is a descent direction.

Simpel Cell Mapping
Simple cell mapping (SCM) method was originally created by Hsu [24, 25]

for global analysis of dynamical system. Later, it was found out that they can be
beneficial in solving MOPs. A more detailed description of this method is presented
in Section 4.4.
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2.2.3 Stochastic methods

An alternative to the classical methods that became popular recently are
stochastic methods which are also known as Multi-Objective Evolutionary Algo-
rithms (MOEAs). There main idea of MOEAs are to mimic the evolution process
by evolving a set of individuals (population) over a number of generations. A wide
variety of methods are developed in this area. One advantage of MOEAs is that
they do not require gradient information of the problem to be available, instead
they rely on stochastic seatch procedures. Another advantage is that they give an
approximation of the solution in one execution. Examples of these methods can be
found in [1,26]. The major drawback of these methods is that they do not guarantee
convergence toward the Pareto front. Some of the most popular methods in this cat-
egory include nondominated sorting genetic algorithm (NSGA-II), multi-objective
particle swarm optimization (MOPSO), strength Pareto evolutionary algorithm 2
(SPEA-2) and simulated annealing.
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Chapter 3

A HYBRID METHOD OF EA AND SCM FOR MOPS

3.1 Introduction

Evolutionary algorithms (EAs) are mainstream stochastic methods for MOPs
[1]. In the family of EAs, genetic algorithms (GAs) are popular choices for engi-
neering applications [2] . In this study, we apply the NSGA-II, a variant of GAs.
It should be noted that other EAs such as MOEA/D [27] and SMS-EMOA [28] can
all be considered. Reasons for the high interest in EAs include that algorithms of
this kind are very robust, do not require hard assumptions on the model, and allow
to compute a finite size representation of the solution set, the Pareto set, in one
single run [26–28]. Further, it is known that under certain (mild) assumptions on
the generation process the algorithms converge in the limit and in the probabilistic
sense toward finite size approximations of the solution sets with given approxima-
tion qualities [29, 30]. On the other hand, it is widely accepted that MOEAs need
quite a few function evaluations in order to evolve to a suitable approximation of
the set of interest. As one way out, researchers have proposed hybrid or memetic
algorithms that hybridize local search techniques with EAs in order to obtain fast
and reliable global search procedures. See, for example, [31–34].

In [9], the authors have found deterministic global search algorithms such as
the simple cell mapping (SCM) to be effective in solving MOPs. The SCM method
can be gradient based or gradient free [11]. Although the SCM method can find
the global and fine structure of optimal solutions, its computational time increases
dramatically as the dimension of the design space goes up [12]. The computational
time can be reduced if we apply the SCM method only in the vicinity of the solution
instead of sweeping the entire design space. This approach is particularly beneficial
to MOPs of high dimensions, and is also the key feature for the set oriented numer-
ics (SON) [13–15]. Subdivisions can also be applied to improve the accuracy and
resolution of the solution.

Since the Pareto set forms under some mild regularity conditions locally a
(k − 1)-manifold, specialized continuation methods which perform a search along
the Pareto set are very efficient if one (or more) solution is at hand. One of the
first methods of that kind is proposed in [20] which has been coupled with set
oriented methods leading to the recovering algorithm in [35,36]. This method is by
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construction of local nature and needs multiple starting points in case the Pareto
set/front is disconnected.

Although many of the named methods can be successful in the mathematical
sence, engineering problems might be more challenging. Certain requirements and
delicacy of these problems has led scientists to utilize specific approaches for tackling
them [37–39]. In fact many hybrid alforithms have been developed to solve these
problems efficiently. Examples exist in a wide range of applications such as wind
farm design [40], control design [41], product design [42] and aircraft analysis [43].

The main idea of the hybrid method is to use EAs to find a random collection
of points close to the true Pareto set. The SCM method is then applied to the
covering region of these random points. The benefit of using EAs is that it reduces
the computational burden of searching the whole design space, because the Pareto
set occupies only a small fraction of the design space. Furthermore, we use a small
population size in EAs. Hence, the results of EAs do not cover the whole Pareto
set. The SCM method is modified such that it checks the neighbor cells for possible
optimal solutions. As a result, the SCM method can find not only a more accurate
Pareto set, but also recover the part missed by EAs. Finally, subdivisions of the cells
representing the approximate solution of MOPs are applied to enhance the accuracy
of the Pareto set with fine structures. The EA+SCM hybrid method is compared
to the EA and SCM methods when they are applied separately on a selection of
test problems. In order to be fair in the comparison, the total number of function
evaluations is kept to be nearly the same for all the methods.

This chapter is structured as follows. Section 3.2 explains the EA+SCM
hybrid algorithm. Case studies are reported in Section 7.3.

3.2 The EA+SCM Hybrid Method

Simple Cell Mapping
The cell mapping methods describe the system dynamics with cell-to-cell

mappings by discretizing the phase space. The dynamics of a cell is represented
by that of its center [10]. The SCM method is effective to investigate the global
solution of nonlinear dynamical systems. In this paper, the SCM method is applied
to only a subset of the discretized domain of the design space, and will expand the
set if needed. The simple cell mappings for MOPs are constructed with the help of
a local search algorithm for optimal solutions [9, 11].
Genetic Algorithm

The GA is a heuristic search method belonging to the family of EAs. The
process starts with a randomly selected population of candidate solutions in the
design space. In each iteration or generation, the fitness or objective function of
the population is evaluated. The superior ones are selected to be stochastically
mutated or modified to create a new population for the next generation. With this
repetitive procedure, the population eventually converges to the solution. According
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to [44], the convergence rate of the evolutionary algorithms are high in the first few
generations.
The Hybrid Method

As mentioned earlier, the hybrid method takes advantages of the GA and
SCM. The hybrid method starts with the GA which returns a rough Pareto solution.
The set of cells that contain all the solutions obtained with the GA is identified.
The SCM method starts with this covering set of cells.

Algorithm 1 shows the steps of the hybrid method. The problem inputs
include the numberN of initial cell partitions, cell subdivision number sub, iterations
of subdivisions iter, and objective functions F . The output is the set Bl of cells, an
approximation of the Pareto set P .

Algorithm 1: The programming logic of the EA+SCM hybrid method

Require: EA configuration; Coarse cell space partition N ; Cell subdivision sub;
Number of iteration iter; MOP definition F

Ensure: Final solution set Bl
1: B0 ← Run EA to find rough solution
2: for l = 1 to iter do
3: B̃l ← Explore(N,Bl−1, F )
4: N ← sub×N
5: Bl ← Mapping B̃l to refined grid

NSGA-II, a multi-purpose variant of the genetic algorithm, has been used
in this study. Because there are extensive studies and analyses available on this
method [26,45], it is not discussed further in this paper. The cell mapping method
is implemented in the program named Explore. It takes a set of cells, and explores
these cells and their neighbors to look for the possible solution. In the process, the
parts of the Pareto set missed by the GA are recovered.

The details of the explore algorithm are presented in Algorithm 2. The set
B is a dynamically increasing array which contains all the cells we are interested.
The objective function values for each cell cs in B are compared to all its orthogonal
neighbors N (cs) (to be more precise, the center points center(si) of cells si and sj
are compared). If one or more dominant cells is found, the one with the steepest
decent is chosen to be the destination cell and is added to B. If no dominant neighbor
is found, the current cell cs is a part of the solution and is added to the solution set
Bl. All its non-dominant neighbors are added to B for further investigation later.
The set B grows initially, and stops growing when most cells in the Pareto set are
discovered. When the solution set is found, the dominance of all the cells in the
set is checked. The recovery procedure of the exploration is similar to the recovery
process used in the continuation method for multi-objective optimization in [46],
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which requires the knowledge of at least one exact solution point on the Pareto
set. Furthermore, we should emphasize that the dominance relationship among the
neighboring cells is applied to construct the simple cell mappings instead of using
the Jacobian gradient matrix.

Algorithm 2: Explore algorithm for searching the Pareto optimal solu-
tion with recovery technique

Require: Intermediate solution set of cells Bl; MOP definition F ; Cell space
partition N ;
Orthogonal neighbors function N ; cell center function center

Ensure: Non-dominant solutions at current partition level Bl
1: S ← Bl, Bl ← ∅, i← 0
2: while i < |S| do
3: cs← Si, dest cell← cs, dist← 0
4: for all s ∈ N (cs) do
5: if center(s) ≺ center(cs) and ‖F (center(s))− F (center(cs))‖2 > dist

then
6: dest cell← s
7: dist← ‖F (center(s))− F (center(cs))‖2
8: if dest cell /∈ S then
9: S ← S ∪ dest cell
10: if dest cell = cs then
11: if dest cell /∈ Bl then
12: Bl ← Bl ∪ dest cell
13: for all s ∈ N (cs) do
14: if center(cs) ⊀ center(s) and @b ∈ Bl : b ≺ s then
15: S ← S ∪ s
16: i← i+ 1
17: Bl ← dominance check(Bl)

Here we make a first attempt to investigate the algorithm EA+SCM theo-
retically. As the algorithm is defined on the discretized search space, error bounds
(e.g., via Lipschitz estimations) for the analysis are hard to obtain in practice and
may lead to unrealistic results as they may be too pessimistic. Instead, we follow
the suggestion made in [13, 35] and investigate the underlying abstract algorithm
where we consider all points in all cells of the collections. Note that GA+SCM
performs a recovering and a subdivision step applied in a loop. For the abstract
algorithm, however, only one iteration has to be performed as the following conver-
gence analysis shows as both recovering and subdivision of the abstract algorithm
are without error. That is, the initial recover step is performed starting from an
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initial cell collection B until no more non-dominated neighboring cells can be added
to the current collection. In a second step, subdivision is started on the resulting
cell collection B0. Algorithm 3 shows the pseudo code of the abstract algorithm.

Algorithm 3: Abstract Algorithm of GA-SCM

Require: Cell collection B ⊂ P (Q̂, d0)
Ensure: Sequence Bl of cell collections
1: create a queue Q using B
2: set V := B {(Start Recover)}
3: while Q is not empty do
4: T ← Q.dequeue(), where T is the current cell
5: for all C ∈ ∆(T ) s.t. @b ∈ V : b � C do
6: if C /∈ V then
7: add C to V
8: enqueue C onto Q
9: B0 := {v ∈ V : @ṽ ∈ V, ṽ � v} ⊂ P (Q̂, d0) {(Start Subdivision)}
10: for l = 1, 2, . . . do
11: Subdivision: construct B̂l ⊂ P (Q̂, d0 + l) from Bl−1 such that⋃

B∈B̂l

B =
⋃

B∈Bl−1

B

12: Selection: define the new collection Bl ⊂ P (Q̂, d0 + l) by

Bl = {b ∈ B̂l : @b̃ ∈ B̂l : b̃ � b}

Hereby, we assume that the domain is contained inside

Q ⊂ Q̂ = [a1, b1]× . . . [an, bn] ⊂ Rn, (3.1)

where the bounds ai ≤ bi, i = 1, . . . , n, are chosen accordingly. To realize the
subdivision in lines 13-15 we consider multi-level partitions of Q̂ as described in [13]:

A n-dimensional cell B (or box) can be expressed as

B = B(c, r) = {x ∈ R : ci − ri ≤ xi ≤ ci + ri,

i = 1, . . . , n},
(3.2)

where c ∈ Rn denotes the center and r ∈ Rn the box size, respectively. Every cell
B can be subdivided with respect to the jth coordinate. This division leads to two
cells B−(c−, r̂) and

r̂i =

{
ri for i 6= j
ri/2 for i = j

, (3.3)
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ĉi =

{
ci for i 6= j
ci/2 for i = j

. (3.4)

Let P (Q̂, 0) := Q̂, that is, P (Q̂, 0) = B(c0, r0), where

c0i =
ai + bi

2
, r0i =

bi − ai
2

, i = 1, . . . , n. (3.5)

Denote by P (Q̂, d), d ∈ N, the set of cells obtained after d ∈ N subdivision
steps (d is also called the insertion depth) starting with B(c0, r0), where in each step
i = 1, . . . , d the cells are subdivided with respect to the jthi coordinate, where ji is
varied cyclically. That is, ji = ((i− 1)modn) + 1. Note that for every point y ∈ Q
and every subdivision step d there exists exactly one cell B = b(y, d) ∈ P (Q, d) with
center c and radius r such that ci− ri ≤ yi < ci+ ri, ∀i = 1, . . . n. Thus, every set of
solutions SB leads to a (unique) set of cell collections Bd(SB) := {b(y, d) ∈ P (Q̂, d) :
y ∈ SB}.

Further, ∆(T ) ⊂ P (Q̂, d) denotes the set of all neighboring cells of a given
cell T ∈ P (Q̂, d). The dominance relation is considered cell-wise as follows: a cell
bj ∈ Bl is dominated by a vector bi ∈ Bl (in short bi ≺ bj) if ∀y ∈ bj there exists
a x ∈ bi such that x ≺ y. Else bj is non-dominated by bi (bi ⊀ bj). Finally, points

x ∈ Q̂ ⊂ Q are discarded from the algorithm as they are not feasible.
Convergence toward the Pareto set can be guaranteed under certain assump-

tions on the given MOP as the following result shows.

Theorem 1 Let an MOP of the form (2.1) be given and assume that there exists
no weak Pareto point in Q\P. Further, assume that P is connected and compact
and that the initial cell collection B contains a part of the Pareto set, i.e.,

B ∩ P 6= ∅. (3.6)

Then, an application of Algorithm 3 leads to a sequence of cell collections Bl such
that

dH(Bl,P)→ 0 for l→∞. (3.7)

Proof. Let d be the insertion depth of B. First, we show that P ⊂ B0.
For this, let ρ ∈ P . By assumption (3.6) there exist a point x ∈ B ∩ P and by
connectivity of P there exists a path from x to ρ, i.e., a curve c : [0, 1] → P with
c(0) = x and c(1) = ρ. By construction of the recover algorithm (lines 3 to 11) every
cell B(c(t), d), t ∈ [0, 1], will be added to the collection B0. Thus, in particular ρ
will be added to B0 by which the claim follows. Further, the recover algorithm
stops with finitely many cells as P is connected. The convergence toward P is then
guaranteed by the following subdivision algorithm: by construction of the algorithm
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it follows directly that every cell b(x, l) for every point x ∈ P and every step l ∈ N
will be kept in the cell collection Bl. Finally, we have to show that for every x /∈ P
there exists a depth l0 ∈ N such that the cell b(x, l0) is not contained in Bl0 . Let
x ∈ Q̂ ⊂ P . Since x is not weakly Pareto optimal there exists a point ρ ∈ P such
that F (ρ) <p F (x). Further, by continuity of F there exists a neighborhood ∆(ρ)
of ρ with

F (y) <p F (x) ∀y ∈ ∆(ρ). (3.8)

Finally there exists a l0 ∈ N with b(ρ, l0) ⊂ ∆(ρ). Thus, b(x, l0) will be discarded
from the cell collection (if contained before), and the claim follows. �

We stress that the above proof is done for connected Pareto sets, but that
these sets do not have to be connected in general. The result, however, can easily be
extended to all connected components of P that have a non-zero intersection with
B. Thus, the entire Pareto set can be retrieved in case B contains elements from all
connected components of P . As the EAs tend to quickly identify promising regions
and as we start with relatively large initial cells (respectively low insertion depths d)
the chance is quite high that the EA has detected all connected components of the
given MOP, and that the set oriented methods in EA+SCM can reliably compute
suitable finite size approximations of the entire set of interest.

3.3 Case Studies

Four problems are presented here in order to gain a better understanding of
how the EA+SCM hybrid method performs in comparison to the GA and SCM.
The first three are mathematical benchmark problems from the book [26]. The
complexity level of the problems increases in the presented order. The first three
problems are low dimensional problems, for which some EAs have trouble finding all
the branches of the solution. The last problem deals with multi-objective optimal
design of controls for nonlinear dynamical systems, and intends to demonstrate the
effectiveness of the proposed method in engineering applications. The Pareto set
and Pareto front of engineering problems can have far more complex structures than
the artificially designed benchmark problems [12].

For the evaluation of the performance of the different methods, we keep the
total number of function evaluations approximately the same for all the methods.
This provides a fair basis for comparison. For the GA, the total number of function
calls is equal to the product of the number of generations and population size. It
should be pointed out that finding the best combination of the number of generations
versus population size is an optimization problem itself and is not the purpose of the
current study because of the random nature of the GA, we repeat the GA computing
30 times to obtain the statistical average of the performance metric. Further, we
used the Wilcoxon ranking sum to test the null hypothesis with a 95% significance
level. Whenever there was a failure to reject the null hypothesis, it will be stated
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explicitly. In addition, we present the averaged convergence curves for studying the
performance of each method during the solution process by calculating the Hausdorff
distance between the current solution and the reference solution. These curves can
qualitatively express the effectiveness and reliability of each method.

3.3.1 Kursawe’s Problem

The problem statement is as follows:

min(f1(x), f2(x)), (3.9)

where

f1(x) =
n−1∑
i=1

(−10e−0.2
√
x2i+x

2
i+1),

f2(x) =
n∑
i=1

(|xi|a + 5 sin(xi)
b),

(3.10)

−5 ≤ xi ≤ 5, i = 1, 2, 3

a = 0.8; b = 3.

This test problem was built upon Ackley’s single objective optimization prob-
lem [47] and a modification provided by [48]. The problem is scalable as the num-
ber n of variables can be changed. The solution of this problem has disconnected
branches and is asymmetric in the design and objective spaces.

Figures 3.1 and 3.2 show the Pareto set and Pareto front of Kursawe’s prob-
lem. The EA+SCM hybrid method shows a better performance in both parameter
and objective space in terms on the Hausdorff distance. Altough in objective space
there was a failure to reject the null hypothesis at the 5% significance level according
to the Wilcoxon ranking sum test. A summary of the solution is presented in Table
3.1. The table shows that because two branches of the Pareto set in Figure 3.2 (the
one at x3 ' 0 plane and x1 ' 0 plane) are mapped to the left section of the Pareto
front in 3.1, the performance metric in terms of the Pareto front is not impacted
significantly by missing a branch of the Pareto set.

The convergence of the methods are compared in Figures 3.3 and 3.4. The
shaded area shows the range for which the solution is varying when the method is
being repeated and the lines show the average. It should be noticed that the increase
in Hausdorff distance for the hybrid method at around 1000 function evaluations is
because at that point the initial evolutionary algorithm switches to the cell mapping
method and the solution points are replaced with the center of the closest cell in
discretized space.

17



f1
-20 -19 -18 -17 -16 -15

f
2

-12

-10

-8

-6

-4

-2

0
Reference
NSGA2
SCM
Hybrid

-17 -16.8 -16.6 -16.4

-6

-5

-4
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Figure 3.2: The Pareto set of Kursawe’s problem. The legend is the same as Figure
3.1.
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Figure 3.3: Convergence of Pareto front in Kursawe’s problem.

3.3.2 Deb’s Problem

The problem statement is as follows:

min(f1(x), f2(x)), (3.11)

where

f1(x) = x1,

f2(x) = (1 + 10x2)
[
1−

(
x1

1+10x2

)α
− x1

1+10x2
sin(2πqx1)

]
,

(3.12)

x = [x1, x2]
T , 0 ≤ x1, x2 ≤ 1, q = 6, α = 2.

This problem is constructed to test Deb’s methodology. The true Pareto set and
Pareto front consist of disconnected branches. The number of branches can be
controlled by the parameter q. The Pareto set and Pareto front for this problem
are presented in Figures 3.5 and 3.6. Table 3.2 shows the solution report for this
problem. The zoom-in view in Figure 3.6 shows the distribution of the solution
points obtained by different methods. The segments of the true solution lie on the
line x2 = 0 (the gray line). The values of dHps and dHpf from Table 3.2 correlates well
with the observation from Figure 3.6. The convergence of the methods are compared
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Figure 3.4: Convergence of Pareto set in Kursawe’s problem. The legend is the
same as Figure 3.3.
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Figure 3.5: The Pareto front of Deb’s problem. The legend is the same as Figure
3.1.

in Figures 3.7 and 3.8. Notice that the solution quality of the SCM method does
not change significantly with number of function evaluations. The reason is that a
big portion of the solution is missed from the course initial cell size and they cannot
be recovered.

As a programming note, regardless of the method being used for solving the
MOP, we need to be able to capture the solution on the boundaries. Unlike most
of the engineering applications, the artificially designed MOPs often have solutions
located on the boundaries of the design space, which presents challenges to the
numerical solutions.

3.3.3 Viennet’s Second Problem

The problem statement is as follows:

min(f1(x), f2(x), f3(x)), (3.13)
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where

f1(x) =
(x1 − 2)2

2
+

(x2 + 1)2

13
+ 3,

f2(x) =
(x1 + x2 − 3)2

36
+

(−x1 + x2 + 2)2

8
− 17, (3.14)

f3(x) =
(x1 + 2x2 − 1)2

175
+

(2x2 − x1)2

17
− 13,

x = [x1, x2]
T , − 400 ≤ x1, x2 ≤ 400.

The solution of this problem consists of a connected asymmetric two dimen-
sional surface in the design space and a three dimensional thin manifold in the
objective space, as shown in Figures 3.9 and 3.10. The grey area in Figure 3.10
shows the reference solution. The region in the design space that is searched by the
SCM recovery algorithm is considerably bigger than the area where the true solution
lies. As a result, the SCM method is less efficient than the GA. The EA+SCM can
gain computational efficiency when the recovery search does not go far behind the
vicinity of the solution. For this problem, the SCM method alone found only a piece
of the solution after refinement, while GA returned points that are more condensed
on one edge of the solution. However, the EA+SCM hybrid method successfully
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Figure 3.7: Convergence of Pareto front in Deb’s problem. Legend is the same as
Figure 3.3.
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Figure 3.8: Convergence of Pareto set in Deb’s problem. The legend is the same
as Figure 3.3.
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Figure 3.9: The Pareto front of Viennet’s second problem. The legend is the same
as Figure 3.1.

found an evenly distributed solution matching well with the reference. The values
of dHps and dHpf listed in Table 3.3 also confirm this observation.

Figures 3.11 and 3.12 represent the convergence of the methods in Viennet’s
problem. It should be pointed out that NSGA2 almost stops improving after a
certain point (around 2000 function calls in this case) while the hybrid method can
be continuously improving if the initial points happen to be close to each branch of
the solution.

3.3.4 PID Control for Duffing-Van der Pol Nonlinear Oscillator with
Time Delay

Next, we consider an engineering problem of optimal proportional-integral-
derivative (PID) control design with time delay. Time delay is a common phe-
nomenon in control systems due to signal transmission delay. The time delay may
deteriorate the control performance and stability. For linear time-delayed systems,
the transfer function in the frequency domain leads to a transcendental equation
that helps to determine the stability region for control gains. Unfortunately, the
frequency domain analysis cannot be applied to nonlinear systems. In this example,
we present an approach to design multi-objective optimal PID controls for nonlinear
systems with time delay.
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Consider a second order nonlinear dynamical system with a delayed feedback
control. The primary control objective is to direct the system output to track a
given signal while optimizing several conflicting performance indices.

ẋ1 = x2,
ẋ2 = f(x1, x2) + u(t− τc),

(3.15)

where f is a nonlinear function of its arguments, u is the control and τc is the control
delay. In this study, f is chosen to be a Duffing-Van der Pol oscillator such that

f(x1, x2) = −ax1 − bx31 + x2(ζ − γx21), (3.16)

where a = −1, b = 0.25, γ = 4, ζ = 4 and the control delay is chosen to be τc = 0.05
seconds. The equilibria of the uncontrolled system are at x1 = 0,±2 and x2 = 0.
The Van der Pol term x2(ζ − γx21) contributes to a limit cycle, which indicates the
oscillatory nature of the uncontrolled system response.

Assume that u is a PID feedback control,

u(t) = kp [r(t)− x1(t)] + ki

∫ t

0

[
r(t̂)− x1(t̂)

]
dt̂− kdx2(t), (3.17)

where r(t) is a reference input, kp, ki and kd are the PID control gains to be op-
timized. We introduce a third state variable x3 such that ẋ3(t) = r(t) − x1(t).
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Figure 3.11: Convergence of Pareto front of Viennet’s problem. Legend is the
same as Figure 3.3.
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Figure 3.12: Convergence of Pareto set of Viennet’s problem. Legend is the same
as Figure 3.3.
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Equation (3.17) is extended into a three dimensional state space. The extended
system now reads,

ẋ1 = x2,

ẋ2 = f (x1, x2) + u (t− τc) , (3.18)

ẋ3 = r(t)− x1(t),

where
u(t) = kp [r(t)− x1(t)] + kix3 − kdx2(t). (3.19)

For tracking control design, we usually set r(t) as a step function. To perform
closed-loop stability analysis, we first find the equilibrium. The closed-loop system
has only one equilibrium or the steady state response,

x∗1 = 1, x∗2 = 0, x∗3 = − 1

ki
f(1, 0). (3.20)

Recall that the uncontrolled nonlinear system has multiple equilibrium solutions.
The stability analysis of the closed-loop system can be performed near the steady
state. Let z = [z1, z2, z3]

T be the perturbation of the system away from the steady
state x∗ = [x∗1, x

∗
2, x
∗
3]
T . We then have,

ż(t) = Az(t) + Acz (t− τc) , (3.21)

where A and Ac are matrices of the linearized system and are the functions of the
control gains. The stability of the linearized system can be studied by using the
continuous time approximation (CTA) method [49, 50]. The CTA method is an
extension of the method of semi-discretization for stability analysis of time-delayed
linear systems by [51]. The CTA method makes use of the finite difference schemes
to approximate the effect of time delay and convert the time delayed system to a
high dimensional delay-free system. In this study, we apply the CTA method to
examine the stability of various multi-objective optimal control designs.

The design space of the control gains x is chosen as follows,

Q = {x ∈ [60, 100]× [10, 40]× [10, 30] ⊂ R3}. (3.22)

The objectives of multi-objective optimal control design include the response peak
time tp, overshoot Mp, integral of the absolute error eIAE, and λss defined as,

λss = max [Re (λi)] , (3.23)

where λi are the eigenvalues of Equation (3.21). We further impose the constraints
on the objective functions as,

[tp,Mp, eIAE, λss] ≤ [2.5, 6%, 0.75,−0.25]. (3.24)
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Note that the constraint λss ≤ −0.25 provides a necessary stability robustness of
the closed-loop system.

We apply the EA+SCM hybrid method and initially partition the design
space with 21 × 21 × 21 cells. A subdivision of 3 × 3 × 3 cells is applied to the
set of cells representing the Pareto set. A total of 1095 cells are found to represent
the Pareto set. An average of 11745 function calls are made in the computation.
Table 3.4 shows the detail comparison of GA and the EA+SCM hybrid. In this
case, the reference solution was created by running the two methods independently
with 8×104 function calls and then combining the two sets and performing a Pareto
dominance check on it.

Figure 3.13 shows two projections of the Pareto front where the color code is
based on the values of eIAE and Mp in the upper plot and lower plot, respectively.
It can be observed that the Pareto front consists of three disjoint branches. The
corresponding Pareto set is presented in Figure 3.14. In the 2D projections, the
color code is based on the absent gain value. In the 3D plot, the color code is based
on the value of tp. The upper left figure shows that there is a correlation between
the proportional and derivative gains of the control in the optimal solution. The
step response and control of the system in time domain for minimum values of each
objective are plotted in Figure 3.15. Note that the plot presents only 4 examples out
of 1095 Pareto optimal designs. The designer has freedom to choose the combination
of design parameters which best suit the application.

The convergence of the methods are compared in Figures 3.16 and 3.17.
Although both methods were performing similarly in the beginning of the solution
process, the hybrid method clearly outperforms NSGA2 ultimately.

3.4 Notes on Parallel Computing

Nowadays, parallel computing and High Performance Computing (HPC) has
became a requirement for the areas of reaseach that require extensive amount of
computation. On the other hand, the availability of parallel computing resources
encourages us to take advantage of them. Since optimization techniques aim to
find the most suitable and optimal answers for the such problems, we are natu-
rally motivated to use efficent and fast algorithms to find the solutions. This need
is more noticable in engineering MOPs since they usually involve a simulation for
each function evaluation. Parallel computing enables us to run multiple processes
simultaneously. The amount of time that could be saved by parallel computing de-
pents on the structure of the algorithm as well as its method of implementation and
memory management. The function evaluation is usually the most time consuming
part of an engineering MOP and thus the parallelism of that part could result in a
significant reduction of runtime.

One of the advantages of using evolutionary algorithms is their potential to
be parallel. Each evolution cycle is consist of evaluating the objectives for each
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Figure 3.13: The Pareto front of the time delayed Duffing-Van der Pol system.

individual in the population. Condidering that function evaluation for each indi-
vidual is independent of the rest of the population, each evaluation can run on a
separate processor. For the SCM method, however, the situation is different. For
the classical SCM that requires us to sweep the design space and evaluate all cells,
parallelism is as simple as EAs. Nonetheless, the modified SCM method used in
the hybrid algorithm is more challenging since the list of the cells to be evaluated
is dynamically updated in each subdivision. The method that was implemented in
hybrid SCM was to keep a list of cells to be evaluated and using parallel evaluation
multiple times in each subdivision until there was no new cell added to the list which
means the end of subdivision is reached.

Parallel processing can be implemented using CPU, GPU or a combination
of both (there exist other methods such as FPGAs and massively parallel processor
which are out of the scope of this thesis). There are many details to be considered
for choosing the suitable hardware and there exist many studies trying to compare
them from various aspects [52–54]. Some of the CPU/GPU differences that was
found influential in our programming is listed below

• GPUs provide more cores

• CPU cores provide higher clock speeds

31



70 80 90

k
d

15

16

17

18

ki

20 25 30

15

16

17

18

kp

70 80 90

k
i

18

22

26

kd

18

16

9080

kp

70

18

22

26

k
i

Figure 3.14: The Pareto set of the PID control gains for the Duffing-Van der Pol
system.

32



0 0.5 1 1.5 2
R
es
p
o
n
se

x
(t
)

0

0.5

1

Min(tp)
Min(Mp)
Min(eIAE)
Min(λ)

Time (second)
0 0.5 1 1.5 2

C
o
n
tr
o
l
u
(t
)

-100

-50

0

50

100

Figure 3.15: The closed-loop step responses (top) and control (bottom) of the
Duffing-Van der Pol system.

• memory is expensive and limited in GPUs

• loading/unloading data from CPU to GPU could be time consuming

The underlying memory architecture of parallel computing can be classified
into shared memory, distributed memory or shared distributed memory. In shared
memory, the processors communicate through manipulating shared memory vari-
ables. In distributed memory architecture, however, the units communicate through
message passing. In CPUs, OpenMP is probably the most used shared memory Ap-
plication Program Interface (API) while the Message Passing Interface (MPI) is
the most popular message passing API. In this thesis OpenMP is the only CPU
parallelism method used.

For GPUs, the most popular programming languages and frameworks are
OpenCL, NVIDIA Cuda, OpenACC, OpenHMPP. Cuda extends the C/C++ pro-
gramming language to run parallel on Geforce 8 series GPUs. It is also the only
GPU parallel processing framework utilized in this thesis where applicable.

Whatever methods of parallelism one might choose, it is important to have
the performance of the program tuned to make sure the harware resources are being
used effectively. Performance tuning needs experience and tools. Profiling the pro-
gram execution is a great way to monitor the performance and find out the possible
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Figure 3.16: Convergence of Pareto front in PID control problem. Legend is the
same as Figure 3.3.
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Figure 3.17: Convergence of Pareto set in PID control problem. Legend is the
same as Figure 3.3.
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bottle necks. Some of the tools used for monitoring the performance of the programs
and their main features are,

• MUST - MPI usage correctness checking

• PAPI - Interfacing to hardware performance counters

• Periscope - Automatic analysis via an on-line distributed search

• Scalasca -Large-scale parallel performance analysis

• TAU - Integrated parallel performance system

• Vampir - Interactive graphical trace visualization & analysis

• Score-P - Community instrumentation & measurement infrastructure

• DDT/MAP/PR: Parallel debugging & profiling

• Kcachegrind - Callgraph-based cache analysis [x86 only]

As a final note, regardless of the hardware and framework used for the purpose
of parallel computing, it is important to make sure that the hardware resources are
utilized effectively. Improper implementation of parallel codes could even result in
a performance poorer than the serial run of the program.

3.5 Summary

The EA+SCM hybrid method for MOPs has been presented. The results of
several benchmark problems and a nonlinear control design obtained by the GA,
SCM and EA+SCM hybrid method have been discussed in detail. Whenever ap-
plicable, three methods of GA, SCM and EA+SCM are compared quantitatively.
The studies show that the EA+SCM hybrid method is not only more accurate, but
also more reliable in terms of its ability to solve for complex MOPs with either
continuous or disjointed Pareto sets than the GA or SCM applied separately. Al-
though the EA+SCM hybrid method does not guarantee the discovery of the global
solution, the recovery technique together with relatively large population size of the
EA solution makes it far more likely to find the global solution when compared to
other stochastic approaches. Because the EA+SCM hybrid method is so promising,
further studies of its convergence and stability are warranted in the future.

As the EAs tend to quickly identify promising regions and as we start with
relatively large initial cells (respectively low insertion depths d) the chance is quite
high that the EA has detected all connected components of the given MOP, and
that the set oriented methods in EA+SCM can reliably compute suitable finite size
approximations of the entire set of interest.
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Table 3.1: Comparison of the EA-SCM hybrid method with GA and SCM when
applied to Kursawe’s problem.

GA Hybrid SCM
Iterations 30 30 1
Initial division N/A 21× 21× 21 21× 21× 21
Final resolution N/A 181× 181× 181 1701× 1701× 567
GA generation 250 20 N/A
GA population 100 50 N/A

min 227 42.61
CPU time (second) max 241 61.91 18.98

ave 229 45.29
std 3.88 4.75
min 18663

Function evaluation max 25000 19063 19656
ave 18826
std 0 104.8
min 0.2277 0.0821

dHps max 1.0336 0.2500 0.7666
ave 0.8147 0.1388
std 0.2055 0.0757
min 0.1466 0.2181

dHpf max 0.4501 0.2181 1.4640
ave 0.2504 0.2181
std 0.0738 1.8e− 13
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Table 3.2: Comparison of the EA-SCM hybrid method with GA and SCM when
applied to Deb’s problem.

GA Hybrid SCM
Iterations 30 30 1
Initial division N/A 21× 21 21× 21
Final resolution N/A 181× 181 137781× 45927
GA generation 250 20 N/A
GA population 100 50 N/A

min 225 18.94
CPU time (second) max 363 48.30 28.1

ave 300 22.42
std 49.3 6.06
min 1509

Function evaluation max 25000 12638 20499
ave 4417
std 0 1904
min 5.188e− 3 3.086e− 4

dHps max 0.133 0.013 0.0391
ave 0.0161 7.128e− 3
std 0.0242 5.244e− 3
min 0.0171 7.927e− 3

dHpf max 1.3303 0.1740 0.2184
ave 0.1256 0.1145
std 0.2553 0.0542
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Table 3.3: Comparison of the EA-SCM hybrid method with GA and SCM when
applied to Viennet’s second problem.

GA Hybrid SCM
Iterations 30 30 1
Initial division N/A 21× 21 21× 21
Final resolution N/A 131221× 43741 413343× 137781
GA generation 250 20 N/A
GA population 100 50 N/A

min 228 63.3
CPU time (second) max 306 70.6 453

ave 250 66.6
std 20.3 2.25
min 10875

Function evaluation max 25000 16865 19552
ave 13660
std 0 1303
min 0.3131 0.0573

dHps max 0.6092 0.0589 1.0359
ave 0.3965 0.0574
std 0.0680 2.913e− 4
min 0.0868 0.0274

dHpf max 0.6666 0.0758 0.9751
ave 0.2818 0.0290
std 0.1618 8.829e− 3
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Table 3.4: Comparison of the EA-SCM hybrid method with GA when applied to
time delayed Duffing-Van der Pol system.

GA Hybrid
Iterations 30 30
Initial division N/A 21× 21× 21
Final resolution N/A 61× 61× 21
GA generation 250 20
GA population 100 50

min 1429 1471
CPU time (second) max 1647 1874

ave 1461 1587
std 41.9 107
min 11075

Function evaluation max 25000 12495
ave 11745
std 0 557.7
min 3.866 3.399

dHps max 11.08 4.740
ave 7.981 3.997
std 1.526 0.621
min 0.235 0.223

dHpf max 0.367 0.251
ave 0.301 0.241
std 0.026 0.012
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Chapter 4

SCM METHOD AND FEEDBACK CONTROL DESIGN

4.1 Introduction

Feedback controls are most popular in industry [55]. A great deal of effort has
been made in designing optimal feedback control gains for various applications [56].
In the time domain, for example, the overshoot, rise time or peak time, settling
time and the tracking error are often used to characterize the performance of the
closed loop system. It is well-known that the overshoot and peak time are conflicting
objectives, meaning that when the overshoot goes down, the peak time goes up, and
vice versa. It is thus quite natural to consider the multi-objective feedback control
design to minimize the overshoot, peak time, and tracking error at the same time.
The multi-objective optimization algorithm can find a set of optimal solutions that
represent the best compromises among these conflicting goals.

There have been many multi-objective optimal control studies in the litera-
ture [57]. Rani et al. [58] developed the global ranking genetic algorithm to design
a proportional-integral-derivative (PID) controller for a rotary inverted pendulum.
Three conflicting functions are considered in the design including the settling time,
overshoot and mean square steady-state error. Another multi-objective genetic al-
gorithm called the genetic artificial immune system algorithm was investigated by
Khoei et al. [59]. The four fitness functions are considered: the rise time, over-
shoot, settling time, and integral square error. A non-dominated sorting genetic
algorithm was used by Kumar and Nair [60] to tune the control gains to minimize
the rise time, overshoot and settling time. Similar multi-objective optimal control
designs are studied with different algorithms for multi-objective optimization prob-
lems (MOPs) including the ant colony algorithm by Ibtissem et al. [61], an immune
algorithm by Kim [56] and the imperialist competitive algorithm by Esmaeil and
Caro [62]. Other designs are in the frequency domain where the gain and phase mar-
gins are used to characterize the system stability and robustness, and the crossover
frequency is used to assess the system response speed [63]. Liu and Daley [64] have
proposed an optimal PID control for a rotary hydraulic system. The control param-
eters are tuned such that the crossover frequency, gain margin, phase margin, and
steady state error are within the targeted range.

The solution of MOPs does not consist of a single point in the design space,
but rather forms a set, called Pareto set named after an Italian economist Vilfredo
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Pareto (1848-1923) [65]. The corresponding objective function values are called
Pareto front. Many numerical methods for MOPs have been studied. There exist,
for instance, scalarization methods that transform the MOP into a scalar optimiza-
tion problem (SOP). By choosing a clever sequence of SOPs, a finite size approxi-
mation of the entire Pareto set can be obtained in certain cases [19, 23, 66, 67]. See
the book by Eichfelder [68] for an overview. These methods are advantageous in
particular for uni-modal (e.g., convex) objectives due to their fast convergence when
classical mathematical programming techniques are used to solve the SOPs. How-
ever, they may run into trouble for multi-modal objectives due to the locality of
the approach. It is possible that these methods get stuck in local optimal solutions
that are not globally optimal. Since the Pareto set forms under some mild regular-
ity conditions locally a manifold, the continuation methods which perform searches
along the Pareto set are very efficient if one solution is at hand and if the Pareto
set is connected [20,21,36,69].

Evolutionary algorithms are most widely used for MOPs [1]. The underlying
idea in evolutionary computation is to steer (or evolve) an entire set of solutions
(population) toward the set of interest during the search. Evolutionary algorithms
specialized for multi-objective problems have been shown their strength in many
applications. Due to the global and stochastic nature of evolutionary algorithms,
the Pareto set can be approximated quite well in most cases, although there is always
an uncertainty left regarding whether the global Pareto set has indeed been found.
There also exist attempts to compute nearly optimal solutions with evolutionary
algorithms [70]. However, this approach suffers the drawback that only a subset of
the nearly optimal solutions can be stored. In particular, a significant fraction of
the set of interest may be ignored by the archiving strategy in certain cases [70].

Another approach to approximate the Pareto set is to use the set oriented
methods with subdivision techniques [35, 71, 72]. The advantage of the set oriented
methods is that they generate an approximation of the global Pareto set in one single
run of the algorithm. Further, they are applicable to a wide range of optimization
problems and are characterized by a great robustness. Hence, these methods are
interesting alternatives against ‘classical’ mathematical programming techniques in
particular for the thorough investigation of low or moderate dimensional MOPs. The
cell mapping method in this study is the predecessor of the set oriented methods,
and was proposed by [25] for global analysis of nonlinear dynamical systems. In
the cell mapping method for MOPs, the dynamical systems are derived from multi-
objective optimization search algorithms. The cell mapping method can obtain a
finite size approximation A of the Pareto set P such that the distance between P
and A is less or equal to a given threshold value in the Hausdorff sense. That is, the
approximation quality of A can in principle be determined. A first implementation
of the multi-objective cell mapping technique is used that already yields promising
results.
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Two cell mapping methods have been extensively studied, namely, the simple
cell mapping (SCM) and the generalized cell mapping (GCM) to study the global
dynamics of nonlinear systems [24,25]. The cell mapping methods have been applied
to optimal control problems of deterministic and stochastic dynamic systems [10,
73,74]. Other interesting applications of the cell mapping methods include optimal
space craft momentum unloading by [75], single and multiple manipulators of robots
by [76], optimum trajectory planning in robotic systems by Wang [77], and tracking
control of the read-write head of computer hard disks by Yen [78]. Sun and his
group studied the fixed final state optimal control problems with the simple cell
mapping method [79, 80], and applied the cell mapping methods to the optimal
control of deterministic systems described by Bellman’s principle of optimality [81].
Crespo and Sun further applied the generalized cell mapping based on the short-
time Gaussian approximation to stochastic optimal control problems [74,82]. They
also studied semi-active optimal control of populations of competing species in a
closed environment with the cell mapping method [83].

In this chapter, we consider two time domain design problems of feedback
controls for linear systems with or without time delay to demonstrate the SCM
method for MOPs. In Section 4.2, we present the linear control systems. In Section
4.4, we describe the SCM method applied to the MOP. Then, the MOP of the
feedback control design is presented in Section 4.5 with the goal to simultaneously
minimize the peak time, overshoot and integrated absolute tracking error. In Section
4.6, we present numerical examples of the two linear control systems, one of which
has a control time delay, and consider the design in the feedback gain space and
with the help of Q and R matrices in the LQR optimal control formulation.

4.2 Linear Control System

Consider a general linear control system

ẋ(t) = Ax(t) + Bu(t), (4.1)

y(t) = Cx(t)

where x ∈ Rn, u ∈ Rm and y ∈ Rp. Consider a full state feedback control
u = −Kx(t). The control gain K can be designed in a number of ways. When (A,B)
is a controllable pair, we can design the control by the method of pole placement.
For single-input-single-output (SISO) systems, the control can also be designed in
the time domain by considering the time domain specifications or in the frequency
domain by considering the stability margins [84]. One of the popular optimal control
design methods is the linear quadratic regulator (LQR) for both SISO and multi-
input-multi-output (MIMO) systems. The control is found to minimize a quadratic
cost function,

J =

∫ ∞
0

(xTQx + uTRu)dt (4.2)
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subject to the constraint of the state equation as well as initial and terminal condi-
tions. The matrices Q and R determine the relative weights of the response and the
control effort, and ultimately determine the control gain. The sub-optimal control
gain is given by K = R−1BTP where P satisfies the algebraic Riccati equation [85].
Note that for tracking problems, the LQR control can be formulated in terms of the
tracking error.

4.3 Time-Delayed Linear Control System

Consider now the system with a control time delay τ .

ẋ(t) = Ax(t) + Bu(t− τ), (4.3)

y(t) = Cx(t).

We define an extended state vector as

z(t) = [x(t),u(t− τN),u(t− τN−1), · · · ,u(t− τ1)]T , (4.4)

where z ∈ Rn+mN , 0 = τ0 < τ1 < · · · < τN−1 < τN = τ , and N is the number of
mesh grids to discretize the interval [0, τ ]. After introducing an interpolation scheme
of u(t − τi) over the mesh grid τi (i ∈ [0, N ]), we can obtain an equation for z(t)
without an explicit time delay of the control to replace Equation (4.3) as

ż(t) = Āz(t) + B̄u(t), (4.5)

y(t) = C̄z(t).

We should point out that Equation (4.5) is now in the same form as Equation (4.1).
The control design can now be done in the extended state space Rn+mN using the
same methods as discussed above.

Note that when the system contains a retarded element as a function of the
delayed response x(t − τs), the extended state vector can be defined in the same
way by including the delayed response x(t− τj) where τj is the mesh grid on [0, τs],
j ∈ [0, Ns], and Ns is the number of mesh grids to discretize the interval [0, τs].
This method is known as continuous time approximation. It can handle multiple
independent time delays of the system and the control, and accurately predict a
wide range of infinite poles of the time-delayed system. More details of the method
can be found in [49,86].

4.4 Simple Cell Mapping Method

The cell mapping methods describe system dynamics with cell-to-cell map-
pings by discretizing both the state space and time. It starts with a point-to-point
mapping as a finite difference approximation of the governing differential equation
of the system as

x(k) = G(x(k − 1)), (4.6)
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where x (k) ∈ Rn is the state vector at the kth mapping step. Then, the SCM
proposes to discretize the state space into a set of small cells, and represents the
dynamics of an entire cell denoted as Z by the dynamics of its center. The center
of Z is mapped according to the point-to-point mapping. The cell that contains the
image point is called the image cell of Z. The cell-to-cell mapping is denoted by C,

Z(k) = C(Z(k − 1)). (4.7)

We should note that the exact image of the center of Z is approximated by the
center of its image cell according to the simple cell mapping. This approximation can
cause significant errors in the long term solution of dynamical systems [10, 73, 77].
Nevertheless, the SCM offers an effective approach to investigate global response
properties of the system.

The cell mapping with a finite number of cells in the computational domain
will eventually lead to closed groups of cells of the period same as the number of
cells in the group. The periodic cells represent invariant sets, which can be periodic
motion and stable attractors of the system. The rest of the cells form the domains of
attraction of the invariant sets. For more discussions on the cell mapping methods,
their properties and computational algorithms, the reader is referred to the book
by [25].

To apply cell mapping techniques to compute MOP solutions, we need to
define dynamical systems derived from the search algorithms. As will be shown
below, the invariant set of the dynamical system represents the Pareto set of the
MOP.

Assume that the design parameter k is updated by a map Φ that generates
descent directions of all the objective functions fi at a given point k ∈ Q [22,23,87].
Let ν ∈ Rq be a descent direction, along which a dominating solution can be found.
That is, for k and ν there exists a t0 ∈ R+ such that k + t0ν ≺ k. Assume that the
map is defined by the following equation,

k(n) = k(n− 1) + Φ(k(n− 1)), (4.8)

k(0) = k0 ∈ Q.

The descent map Φ with a suitable step size can be used to search for the
invariant set in Q. In the following, we present an example of the descent map
by [23]. Define an auxiliary function,

g : Rq → Rk

g(ν) = max
i=1,...,k

[J(k)ν]i , (4.9)

45



where J(k) denotes the Jacobian of F at k. g is convex and positive homogeneous.
With the help of g, the following convex optimization problem defines a descent
map,

ΦF (k) = min
ν∈Rk

[
g(ν) +

1

2
‖ν‖22

]
. (4.10)

Note that the Jacobian is calculated over the cell partition in the framework
of cell mapping. Therefore, it is a finite difference approximation of the Jacobian.
We should also point out that other search algorithms will lead to different maps.
For a comprehensive survey of various search algorithms, see this book [88].

4.5 Multi-objective Optimal Design of Feedback Controls

Now, consider the multi-objective optimization approach to design feedback
control gains of linear dynamical systems with or without time delay. In general,
different objective (fitness) functions can be considered for optimization in time
domain or frequency domain. For instance, peak time and overshoot are consid-
ered in time domain, while phase and gain margins are considered in frequency
domain [55, 64, 89]. Here, we consider the multi-objective optimization design in
time domain.

In particular, we consider the following multi-objective optimization problem
to design the control gain k or the weighting matrices Q and R in the performance
index of the LQR control (4.2),

min
k∈Q
{tp,Mp, eIAE}, (4.11)

where Q represents the set of admissible control gains k or the set of the weighting
matrices Q and R, Mp stands for the overshoot of the response to a step reference
input, tp is the corresponding peak time and eIAE is the integrated absolute tracking
error

eIAE =

∫ Tss

0

∣∣r(t̂)− x(t̂)
∣∣ dt̂. (4.12)

where r(t) is a reference input and Tss is the time when the response is close to
be in the steady state. When the control magnitude is finite, the two factors, i.e.
peak time and overshoot, are conflicting, while the integrated tracking error plays
a compromising role.

4.6 Numerical Examples

4.6.1 First Order System plus Time Delay

Consider a first order plus time delay (FOPTD) system,

X(s) =
K

Ts+ 1
e−τsU(s), (4.13)

46



where K and T are constants and τ is the time delay. Define a tracking error as
e = x − r where r is a reference input. We augment the plant with an additional

state x2 such that
.
x2 = x− r, i.e. x2 =

∫ t

0

e(t)dt. We set x1 = x and x = [x1, x2]
T .

The augmented state equations read{ .
x1
.
x2

}
=

[
− 1
T

0
1 0

]{
x1
x2

}
+

[
K
T

0

]
u(t− τ) +

[
0
−1

]
r(t). (4.14)

Note that a comparison study between the classical PI controller and the
fractional order PI for this system is done by [90]. Here, we first convert the system
(4.14) to the extended state Equation (4.5) without time delay, and then digitize
Equation (4.5). We then apply the discrete time LQR formation of the system (4.5)
to design the full extended state feedback control as

u(k) = −Kz(k) = −kxx(k)−k1u(k−N)−k2u(k−N + 1), · · · , kNu(k−1), (4.15)

where

z(k) = [x(k), u(k −N), u(k −N + 1), · · · , u(k − 1)]T ,

x(k) = x(k∆t), (4.16)

u(k − i) = u(k∆t− τi), i ∈ [0, N ] ,

K = [kx, k1, · · · , kN ],

kx is 1× 2 and represents the PI control gain for the original time-delayed system.
∆t denotes the sample time. The performance index of the LQR optimal control
reads

J =
1

2

∞∑
k=0

zT (k)Qz(k) + u(k)Ru(k). (4.17)

We have chosen the matrix Q = diag(Q1, Q2, 0, · · · , 0) in this example. In general,
the weighting on the delayed control can be non-zero.

In the numerical example reported next, we have chosen τ = 0.5s, K = 1
and T = 1. The sample time of the digital control is ∆t = 0.05s. The discretization
number of the time delay is N = 10. We take k = [Q1, Q2, R] as the design
parameters of the MOP. The design space for the parameters is chosen as follows,

Q = {[Q1, Q2, R] ∈ [1, 3]× [200, 500]× [0.011, 0.0134] ⊂ R3}. (4.18)

In the SCM method, we select the number of partitions of the design space Q
as N = [20, 30, 10] without further subdivisions. The total CPU time for computing
all the solutions is 27 minutes on a laptop PC.
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Figure 4.1 shows the Pareto set of the MOP solution consisting of 1198 cells
and Figure 4.2 shows the corresponding Pareto front. In the LQR control formu-
lation, different parameters [Q1, Q2, R] with the same proportionality will lead to
the same optimal feedback gain K and therefore the same Pareto front points. This
explains why the Pareto front in Figure 4.2 contains so much overlap as compared
to the Pareto front of the next example. The peak time of the Pareto front in Figure
4.2 is uniformly spaced at the interval equal to the sample time of the digital control.
To yield a more dense distribution of the peak time, one can adopt continuous time
control design instead of digital control. It is interesting to examine the closed-loop
poles of the system on the Pareto set. Since the LQR design is done in the extended
state space, N gains [k1, · · · , kN ] form a filter to regulate the history of the control.
The gain vector kx describes the original system dynamics. We plot the closed-loop
poles of the original system (4.14) on the Pareto set in Figure 4.3. The dot on the
right represents the integrator pole and the line segment on the left contains the
poles of the first order system. Figure 4.4 shows the closed-loop step response and
the corresponding control with the gains that lead to the smallest eIAE in the Pareto
set. The control performance is quite satisfactory.

4.6.2 Second Order Linear Oscillator

Consider a second order oscillator subject to a PID control.

ẍ+ 2ζωnẋ+ ω2
nx = ω2

nu(t), (4.19)

where ωn = 5, ζ = 0.01,

u(t) = kp [r(t)− x(t)] + ki

∫ t

0

[
r(t̂)− x(t̂)

]
dt̂− kdẋ(t), (4.20)

r(t) is a step input, kp, ki and kd are the PID control gains. We consider the MOP in

Section ?? with the control gains k = [kp, ki, kd]
T as design parameters. The design

space for the parameters is chosen as follows,

Q = {k ∈ [10, 50]× [1, 30]× [1, 2] ⊂ R3}. (4.21)

Initially, we select the number of divisions in the three control gain intervals as
N = [30, 18, 8]. The integrated absolute tracking error eIAE is calculated over time
with Tss = 20 seconds. After the first run of the SCM program, we refine the Pareto
set with 7× 7× 7 subdivisions. The total CPU time for this example is 20 minutes.
The closed-loop response of the system for each design trial is computed with the
help of closed form solutions.

Figure 4.5 shows the Pareto set of the MOP solution and Figure 4.6 shows
the corresponding Pareto front. 5961 cells are in the Pareto set. In this case, the
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Figure 4.1: The Pareto set of [Q1, Q2, R] for the multi-objective LQR optimal
control of the first order system with time delay. The color code
indicates the level of the other design variable. Red denotes the highest
value, and dark blue denotes the smallest value.
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Figure 4.2: The Pareto front of [tp,Mp, eIAE] for the multi-objective LQR optimal
control of the first order system with time delay corresponding to the
Pareto set in Figure 4.1. The color code indicates the level of the
other objective function. Red denotes the highest value, and dark
blue denotes the smallest value.
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Figure 4.3: The first two dominant closed-loop poles for the multi-objective LQR
optimal control of the first order system with time delay corresponding
to the Pareto set in Figure 4.1. The color code indicates the level of
the first objective function tp. Red denotes the highest value, and dark
blue denotes the smallest value.

Pareto front exhibits a fine structure, which has not been seen before, and cannot
be readily obtained with random search algorithms such as the genetic algorithm.
Figure 4.7 shows the closed-loop poles of the system on the Pareto set. The general
location of the cluster of the poles is along the ±45◦ lines to the left of the imaginary
axis, which is consistent with the well-known feedback control intuitions [84]. Figure
4.8 shows the closed-loop step response and the control with a gain that leads to
the smallest eIAE in the Pareto set. The performance functions are indicated in the
figure caption.

4.7 Summary

We have reviewed the MOP formulation and the simple cell mapping (SCM)
method applied to the MOP. We have then studied the multi-objective optimal time
domain design of feedback controls for linear systems with or without time delay
with the help of the SCM method. It should be pointed out that we have only
considered simple feedback control examples for the purpose of demonstrating the
proposed SCM-MOP design method. There are different structures of controls that
render perfect tracking. We have considered two different sets of design parameters
for the feedback control: a LQR based approach with the weighting matrices as
design parameters, and a direct optimization with feedback gains as design param-
eters. Both approaches prove to be quite effective. The Pareto set and Pareto front
consisting of the peak time, overshoot and integrated absolute tracking error are
obtained for examples of two linear control systems, one of which has a control time
delay. It is interesting to note that for the second order linear system, we have found
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Figure 4.4: An example of the closed-loop step response and control of the first
order system with time delay. The PID gains are designed with the
multi-objective LQR optimal control formulation. The optimal design
parameters are [Q1, Q2, R] = [3.10, 495.0, 0.012]. The optimal gains for
the original state x are kx = [53.62, 110.93]. The performance indices
are [tp,Mp, eIAE] = [1.05, 0.1839, 0.4407].
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Figure 4.5: The Pareto set of [kp, ki, kd] for the multi-objective optimal control
of the second order system. The color code indicates the level of the
other design variable. Red denotes the highest value, and dark blue
denotes the smallest value.
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Figure 4.6: The Pareto front of [tp,Mp, eIAE] for the multi-objective optimal con-
trol of the second order system corresponding to the Pareto set in
Figure 4.5. The color code indicates the level of the other objective
function. Red denotes the highest value, and dark blue denotes the
smallest value.
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Figure 4.7: The closed-loop poles for the multi-objective optimal control of the
second order system corresponding to the Pareto set in Figure 4.5.
The color code indicates the level of the second objective function Mp.
Red denotes the highest value, and dark blue denotes the smallest
value.
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Figure 4.8: An example of the closed-loop step response and control of the second
order system with [kp, ki, kd] = [40.0, 2.8796, 1.9792]. The PID gains
are designed with the multi-objective optimal control. [tp,Mp, eIAE] =
[0.1555, 0.0, 0.2774].
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a fine structure of the Pareto front, which has been very difficult to obtain using
stochastic search algorithms such as the genetic algorithm. This study suggests that
the SCM method is a powerful method that can provide global and fine-structured
solutions of MOPs for complex dynamical systems.
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Chapter 5

MOP OF DISTRIBUTED-ORDER FRACTIONAL
DAMPING

5.1 Introduction

The available tools and foundations of fractional calculus triggered numer-
ous studies in science and engineering [91]. Fractional models have applications in
various mechanical, physical, biological, electronic and chemical systems [91–93].
Viscous damper is one of the examples in mechanical systems. The damper reduces
oscillations and stabilizes systems. Conventional viscous damper force is propor-
tional to the velocity, an integer order derivative of the displacement. It has been
found that the fractional order derivative can model the viscous damping material
much better [94,95]. Recent advances in fractional order calculus even suggest more
advantages of distributed order derivative in modeling viscous damping. However,
such a model almost immediately precludes the efficient design of optimal damping
for various applications in dynamical and control systems.

Many studies have focused on modelling the damping elements with frac-
tional order differential operators [94–97]. For instance, De Esṕındola et al. [98]
designed an optimum viscoelastic vibration absorber for a given material using the
fractional calculus model. Padovan et al. [99] found the response of viscoelastic
systems for different excitations. Shokooh et al. [100] compared numerical methods
applied to fractional models of damping materials. Koeller [101] showed that a frac-
tional viscoelastic damping model is superior to the integer order model. Lorenzo
and Hartley [102] have successfully utilized distributed order operators to model a
viscoelastic material with spatially varying properties. Jiao et al. [103] introduced
many applications of distributed order operators in dynamical systems including
distributed order filtering and optimal damping.

Optimal design of distributed order fractional damping systems may lead to
significant improvement in performance of such systems. Sheng and Chen [104] stud-
ied the application and design of an optimal distributed order fractional damping
with the integrated squared error JISE as the objective to be minimized. In general,
the goal of damping design is to effectively remove oscillatory responses of the sys-
tem. The damping can also be designed for better step response characteristics. In
this case, the damping is optimized to reduce the overshoot as well as the oscillatory
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response in the settling phase of the step response. In the regard, the optimal design
of the distributed order fractional damping based on the step response is consistent
with the conventional damping design [105]. Since the step response is characterized
by the conflicting criteria including the rise time, overshoot, settling time and inte-
grated tracking error, the design of a distributed order fractional damper naturally
leads to a multi-objective optimization problem (MOP).

The solution of MOPs is not a point in the design space, but rather forms
a set, called the Pareto set. The corresponding objective functions are called the
Pareto front. There have been various studies on multi-objective optimal design
of dynamical and control systems with the help of stochastic methods [58–61] as
well as deterministic methods [106]. Evolutionary algorithms are widely used for
MOPs [1]. Although evolutionary algorithms have shown strength in many MOP
applications, there is always an uncertainty left regarding whether the global Pareto
set has indeed be found. Another approach for solving MOPs is the cell mapping
method proposed by Hsu [25]. Two forms of the method are the simple cell mapping
(SCM) and the generalized cell mapping (GCM) [24, 25]. The advantage of these
methods is that they generate global solutions of the Pareto set. In addition, they
are applicable to a wide range of problems with significant robustness.

This chapter applies the hybrid algorithm presented in Chapter 3 to multi-
objective optimal design of distributed order fractional damping. The hybrid method
starts by looking for rough solutions of the MOP with an evolutionary algorithm
such as NSGA II [26]. The rough solutions are the starting point of a gradient
free simple cell mapping method, which is to discover the solution of the Pareto
set without sweeping the entire design space. A subdivision algorithm can be ap-
plied to further refine the Pareto set represented by a collection of cells [106]. We
should note that this work is a theoretical research. It is difficult to validate the
optimal designs of the distributed and fractional order damping experimentally us-
ing mechanical hardware. However, there have been studies to realize such optimal
damping in digital controls [107,108].

In Section 5.2, the distributed-order fractional damper is introduced. The
choice of the objective functions is presented in Section 5.3. Section 5.4 explains
the choices of the distribution function. The numerical results and discussions are
presented in Section 5.5 and the conclusions are summarized in Section 5.6.

5.2 Distributed-Order Fractional Damper

A fractional order damper force is defined as

fd(t) = −c 0D
α
t x(t), (5.1)
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where 0D
α
t x(t) is the Reimann-Liouville fractional order derivative of the displace-

ment x(t). The Reimann-Liouville derivative of a function of time f(t) is defined
as [93]

0D
α
t f(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

a

(t− τ)n−α−1 f(τ)dτ, (5.2)

where n = [α]+1, [α] denotes the integer part of α, and Γ(·) is the gamma function.
Compared to the integer order damping, the fractional order damper model has
more flexibility and captures the history dependent property of many viscoelastic
damping materials. Further flexibility and freedom can be obtained by considering
the damper force as a function of a weighted sum of discrete fractional order terms

fd(t) = −
m∑
i=1

ci 0D
αi
t x(t), (5.3)

or a function of continuously distributed order derivative,

fd(t) = −
∫ b

a

c(α) 0D
α
t x(t)dα, (5.4)

where c(α) is an order dependent damping coefficient.
In this study, we consider a mass-spring-damper system and compare the step

response when it has an integer order damper and a distributed order damping. The
transfer functions for the system in these cases are given by

G(s) =
1

ms2 + cs+ k
, (5.5)

and

G(s) =
1

ms2 +
∫ b
a
c(α).sαdα + k

, (5.6)

where m is the mass, c is the integer order damping coefficient, k is the spring
coefficient, and c(α) is defined above.

5.3 Objective Functions

The time domain specifications of the step response include the rise time tr,
overshoot Mp, peak time tp, settling time ts, integrals of tracking errors such as
the integrated squared error JISE, integrated time-weighted absolute error JITAE,
integrated time-weighted squared error JITSE, and integrated absolute error JIAE
[106]. It is important to note that any two objectives of MOPs need to be conflicting
in a domain of the design space, meaning that increasing one of them results in
decreasing the other, and vise versa. If two objectives have the same trend over the
domain, only one of them will be sufficient in the optimization problem.
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In the current study, three objectives are considered including the peak time
tp, over-shoot Mp and integrated squared error JISE defined as

JISE =

∫ ∞
0

e2(t)dt, (5.7)

where e(t) is the tracking error defined by the difference between the reference input
and system output. Hence, the MOP for the damping design reads,

min
k∈Q
{F(k)} = min

k∈Q
{tp,Mp, JISE}, (5.8)

where the design space Q and the design parameters k are to be determined for each
example reported in the next section.

The solution technique used for solving the MOP is the hybrid method which
takes advantages of both GA and SCM methods. The hybrid method starts with the
GA. An initial population is evolved over a small number of iterations or generations
leading to a collection of random points near or on the Pareto set. This rough
solution is then fed to the SCM. The set of cells is identified that contains the random
points from the GA. A neighborhood search procedure and a recovery strategy are
implemented over the cellular space to discover the Pareto set. The cells can be
further subdivided to obtain much refined results [109].

5.4 Distribution Function c(α)

Three different functions of c(α) are considered next. These cases have been
considered in a single-objective optimization study [104]. The output of the system
Y (s) to a reference input R(s) is given by Y (s) = G(s)R(s). We shall consider
the step input R(s) = 1/s. The step response of the system is computed with the
numerical inverse Laplace transform (NILT) algorithm [110].

Case I: c(α) = γ where γ is a constant.

The step response reads

Y (s) =
1

s

1

ms2 + γ (sb − sa) (lns)−1 + k
. (5.9)

The design parameters are a, b and γ.

Case II: c(α) = γeβα, a = 0 and b = 1.

The step response is

Y (s) =
1

s

1

ms2 + γ (eβs− 1) (β + lns)−1 + k
. (5.10)

The design variables are γ and β.
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Case III: c(α) = βα + γ.

The step response is

Y (s) =
1

s

1

ms2 + [(βblns− β + γlns)sb − (βalns− β + γlns)sa](lns)−2 + k
. (5.11)

The design variables are a, b, γ and β.

5.5 Results and Discussions

Case I: c(α) = γ.

The design space Q of the parameters k = {a, b, γ} is defined as,

Q = {k ∈ R3 | 0.5 ≤ a, b ≤ 1.2, 5 ≤ γ ≤ 15}. (5.12)

The number of divisions N for each design parameter is 10. The number of sub-
divisions Div for refinement of the solution is 11 [106]. The Pareto front and Pareto
set are shown in Figures 5.1 and 5.2. As can be seen from the figures, Mp and tp
are in conflict relationship all over the design space. There is a cluster of points
in the vicinity of tp = 3.1s. This cluster is related to the change of JISE as tp
increases. When tp < 3.1s, all the three objectives are conflicting to each other.
When tp > 3.1s, JISE and tp are no longer conflicting. It appears that this transition
causes the occurrence of the cluster.

The step responses of five different designs are depicted in Figure 5.3. The
results in the figure indicate that the design to optimize only one of the three
objectives is not the best choice. For example, the design for the smallest peak time
is associated with a larger overshoot and oscillations. Similarly, the system designed
for the smallest JISE suffers from a relatively high overshoot and vibrations. In
contrast, a design to achieve the lowest Mp leads to very slow response with no
oscillations. The best design should compromise all three objectives, as shown in
the figure with the dotted red line. The objective function values are listed in Table
5.1.

Figure 5.3 also compares the step response of the system with an integer
order damper with that of the fractional order MOP design. The integral of the
squared difference between the step response of the integer order system and the
fractional order MOP design, denoted as ∆, is computed as a function of the integer
order damping coefficient. The result is plotted in Figure 5.4. The integer order
damping coefficient c that best matches the fractional order MOP design such that
∆ reaches minimum is found from the figure as 1.208. This is the coefficient used to
compute the step response of the system with the integer order damping. It appears
that the fractional order MOP design is superior to the integer order damping as
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Figure 5.1: The Pareto front of the system in Case I. The color code is based on
the objective which is not present in the plot. In all figures, the red
color represents higher value and the blue color represents lower value.

Table 5.1: Different objective function values of the designs shown in Figure 5.3
for Case I.

Design tp Mp JISE
min(tp) 2.851 31.20 1.145
min(Mp) 18.168 0.0101 1.517
min(JISE) 3.128 12.35 0.9459

MOP 3.411 5.519 0.9685
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Figure 5.2: The Pareto set of the system in Case I. The color code is based on the
value of the variable which is not present in the plot.
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Figure 5.3: The step responses of the system in Case I with different design prior-
ities for the objectives tp, Mp and JISE. The last case shows the best
integer order damper.
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function of the integer order damping coefficient. The best integer
order damping coefficient to match the MOP design is c = 1.208 and
∆ = 0.0231.
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Figure 5.5: The Pareto front of the system in Case II. The color code is based on
the value of the objective which is not present in the plot.

is shown in Figure 5.3. In the following cases, this observation still holds true. No
further comparison of integer and fractional order damping is presented.

Case II: c(α) = γeβα.

The design space Q of the parameters k = {β, γ} is defined as,

Q = {k ∈ R2 | 1 ≤ β ≤ 20, 0 ≤ γ ≤ 3}. (5.13)

The number of divisions N for each design parameter is 205. The number of sub-
divisions Div for refinement of the solution is 11.

Figures 5.5 and 5.6 show the Pareto front and Pareto set, respectively. In this
case, the peak time tp is clearly in conflict with the overshoot Mp and the tracking
error JISE. As is in Case I, one peak time in a certain range may be associated with
several overshoot values. This is different from the integer second order systems
where Mp and tp have a one-to-one relationship.

The Pareto set in the design space of γ and β is shown in Figure 5.6. The
step responses with four different designs are shown in Figure 5.7. As in Case I, a
MOP design with a compromise among the objectives delivers the best response.
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Figure 5.6: The Pareto set of the system in Case II.
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Figure 5.7: The step responses of the system in Case II with different design
priorities for the objectives tp, Mp and JISE.
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Table 5.2: Different objective function values of the designs shown in Figure 5.7
for Case II.

Design tp Mp JISE
min(tp) 2.903 35.67 1.281
min(Mp) 3.347 6.925 0.9693
min(JISE) 3.251 12.95 0.9585

MOP 3.172 10.21 0.9657

The objective function values of the four designs shown in Figure 5.7 are listed in
Table 5.2.

Case III: c(α) = βα + γ.

The design space Q of the parameters k = {a, b, β, γ} is defined as,

Q = {k ∈ R4 | 0.5 ≤ a, b ≤ 1.2, 5 ≤ β ≤ 20, 10 ≤ γ ≤ 30}. (5.14)

The number of divisions N for each design parameter is 40. No sub-division is
applied. The Pareto front is shown in Figure 5.8, which is very similar to that in
Figure 5.1. The Pareto set is shown in Figure 5.9. The large gaps in the Pareto front
and Pareto set are due to the relatively large cells without refinement. Figure 5.10
presents the step responses of the system with four different choices of damping
design. It should be noted that the current damping coefficient c(α) leads to a
smaller tracking error JISE than the one reported in [96], and hence is a good choice
when minimizing JISE has a high priority. By comparing the objective function
values in Tables 5.1 to 5.3, it appears that the more degrees of freedom in the multi-
objective optimal design of the damper offer an overall improvement in the step
response of the system.

5.6 Summary

A hybrid multi-objective optimization method has been successfully applied
to design a distributed order fractional damper for a simple mechanical oscillator.
Three different cases of distributed damping coefficient c(α) have been studied. The
objective functions include the overshoot Mp, the peak time tp and the integrated
tracking error JISE. It has been found that the multi-objective optimal designs of the
damper can deliver much improved step responses in terms of the three objective
functions, compared with the single-objective optimal design by minimizing JISE
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Figure 5.8: The Pareto front for Case III. The color code is based on the value of
the objective which is not present in the plot.

Table 5.3: Different objective function values of the designs shown in Figure 5.10
for Case III.

Design tp Mp JISE
min(tp) 2.850 32.54 1.171
min(Mp) 5.636 0.2846 1.126
min(JISE) 3.119 12.27 0.9457

MOP 3.688 3.4883 0.9948
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alone. Furthermore, while the three cases of c(α) lead to similar optimal designs in
terms of the Pareto front, better performance can be achieved with larger number
of design parameters.
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Chapter 6

MULTI-OBJECTIVE OPTIMAL PATH PLANNING

6.1 Introduction

Many real-world applications of robot path planning involves not only finding
the shortest path, but also achieving some other objectives such as minimizing fuel
consumption or avoiding danger areas. This chapter introduces a 2D path planning
scheme that solves a multi-objective path planning problem on a 3D terrain. This
allows the controller to pick the most suitable path among a set of optimal paths.
The algorithm generates a cellular automaton for the terrain based on the objec-
tives by applying various weighting factors via an evolutionary algorithm and finds
the optimal path between the start point and the goal for each set of parameters
considering static obstacles and maximum slope constraints. All the final trajecto-
ries share the same characteristic that they are non-dominated with respect to the
rest of the set in the Multi-Objective Optimization Problems (MOP) context. The
objectives considered in this study includes the path length, the elevation changes
and avoiding the radars. Testing the algorithm on several problems showed that the
method is very promising for mobile robot path planning applications.

Path planning is an important part of the robotic system design, and has
been extensively studied in the past [111, 112]. Among the vast literature on path
planning problems, there are only a few that consider several objectives simultane-
ously. Mittal did a multi-objective UAV path planning with B-spline control points
as variables [113], and was able to find effective paths. Ahmed used a modified non-
dominated sorting genetic algorithm NSGAII to optimize multiple objectives on a
plane [114]. Davoodi used a modified genetic algorithm to optimize the path length
and clearance for 2D planning problems [115]. Zhang applied the multi-objective
particle swarm optimization algorithm to do robot path planning in uncertain en-
vironments [116].

Cellular automata (CA) was invented as a discrete mathematical modeling
tool in 1940s. Behring was one of the first who successfully did path planning with
CA [117]. An optimized CA path planning algorithm was developed by Tavakoli et
al. for a multi-agent system that was superior to the so-called A* algorithm [118].
Cellular automata has become more popular for path planning algorithms recently
[119–122]. One of the advantages of the CA method is that it offers flexibilities to
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incorporate different rules for various applications. This paper presents a version of
cellular automata that contains rules for multi-objective optimal path planning.

In this work, we focus on multi-objective path planning for a mobile robot
which travels between two points on a non-flat surface subjected to static constraints
and ascend/descend slope constraints. We apply CA to find the most feasible path
based on several objectives including the travel distance, the elevation changes and
the distance from radars on the terrain. The algorithm presented in this study
discretizes the domain into a collection of finite dimensional cells and scores each
cell with CA rule consisting of the weighted objectives. The weighting factors are
then taken as the design parameters for the multi-objective optimization problem.
An evolutionary algorithm is applied to find the Pareto optimal set of parameters.

This chapter is structured as follows. Section 6.2 presents the preliminaries
for this study. Section 6.2.1 states the problem, the method and the assumptions.
The cellular automata rule and solution method are discussed in section 6.2.2. The
case studies and results are presented in 6.3. The chapter concludes in Section. 6.4

6.2 Method

6.2.1 Framework

We simplify the continuum environment to an m × n grid of cells. A cell
may either be free, obstacle, the starting point or the goal. A value of zero, one
or three is initially assigned to the cells representing the free space, obstacle, or
goal, respectively. We assume that for each cell the topography of the terrain is
known and the radar exposure penalty (REP) is specified. The REP describes the
probability that the robot could be identified by radar and is defined below.

Consider k radars located at (Xj, Yj), j = 1...k each having an effective range
Rj. The REP for cell i -denoted by Γi- is calculated as

Γi =
k∑
j=1

(
1− δ(i, j)

Rj

)2

H

(
1− δ(i, j)

Rj

)
, (6.1)

where Rj is the effective range of radar j, δ(i, j) is the planar distance between cell
i and radar j, δ(i, j) =

√
(Xi −Xj)2 + (Yi − Yj)2, and H(x) is the Heaviside step

function. In Equation (6.1). The radar signal strength is inversely proportional to
the squared distance between the radar and the cell.

We consider the Moore neighbors (Figure 6.1) as the possible movement from
a cell. η(i) denotes the set of admissible Moore neighbors of cell i excluding obstacle
and out of range cells. Let ∆(i, x) denote the Cartesian distance between cell i and
its neighbor x.

∆(i, x) =
√

(Xi −Xx)2 + (Yi − Yx)2 + (Zi − Zx)2, (6.2)
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where (Xi, Yi, Zi) are the coordinates of cell i. Let ∆h(i, x) = |Zi − Zx| be the
elevation difference between cell i and its neighbor x.

6.2.2 Cellular Automata

The cellular automaton rule proposed in this study is as follows:

St+1
i =


1 if Sti = 1
Sti if @x ∈ η(i)|Stx > 2
Scomp if ∃x ∈ η(i)|Stx > 2 AND Zi−Zx

δ(i,x)
< mall

, (6.3)

Scomp = min
{
Stx + ∆(i, x) + α∆h(i, x) + βΓi

}
,

where Sti is the state of cell i at time t that is determined by the CA rule. α and
β are the weighting factors for the height difference penalty and radar exposure
penalty, respectively. mall is the maximum allowable slope for the robot to climb
on the terrain. Equation (6.3) governs the evolution of CA starting from the initial
conditions in Section 6.2.1. The state value of all the cells within the domain of
interest is updated in each iteration. The evolution stops when no further change is
made in the state of the cells.

Once the automaton stops, the path finding algorithm will start from the
starting cell and follow the minimum state value in the feasible neighbors to reach
the goal. The algorithm will also record the length Lp, total elevation change Hp

and total REP Γp along a path. The details of the algorithm is presented in Table
6.1.

In this study, the design parameters are the weighting factors α and β in the
CA rule. The objectives are path length Lp, total elevation change Hp and total
REP Γp along the path.

6.3 Case Studies

Three cases are studied to test the algorithm. Each case is done on a 100x100
grid of cells. We first started with a flat surface only containing radars and static
obstacles. Then the complexity is increased by choosing a terrain with elevations
that dissatisfy the slope constraint. Finally we consider a randomly generated map
with mountains and valleys to simulate the real-world applications.

6.3.1 Obstacle/Radar Avoidance

The first terrain is a flat surface to verify obstacle and radar avoidance of the
planner. Hence, β is the only design parameter for optimization. The results are
shown in Figure 6.2. The contours show the radar range and its intensity on the
terrain. The squares represent the obstacle cells. The blue circle and green triangle
represent the start point and the goal, respectively. The found paths are shown in
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red. The design parameter and the corresponding objective values of four examples
of the optimal paths are presented in Table 6.2. It should be noted that the path
marked by (a) in the figure has the least path length (L) and highest REP (Γ). This
correlates with the minimum REP weighting factor β. On the other hand, path (d)
has the longest path length and lowest REP because the REP weighting factor β is
maximum in this case.

6.3.2 Climb Slope Constraint

The second case is designed specifically to test the climbing slope constraint.
The terrain is made of steep areas as well as a set of ramps that can be followed
to reach the goal. Figure 6.3 shows the terrain with colors representing the height.
The maximum allowable slope mall is chosen to be 0.2. Figure 6.3 shows the terrain
and the optimal paths. The details for the two paths are presented in Table 6.3.
It should be noted that the path marked by (a) has the shorter length and higher
height change when the height difference penalty factor is less.

6.3.3 Randomized Terrain

The terrain in this case tries to mimic a mountainous environment. This map
is created with a random algorithm named hill algorithm [?]. Several optimal paths
are found and are shown in Figure 6.4. Table 6.4 shows the details of the optimal
paths. The algorithm successfully returned six non-dominated possible paths.

6.4 Summary

A new multi-objective path planning method for 2D terrain considering the
elevation was presented. As a result, the controller can choose the most suitable path
among a set of paths for the application. A cellular automata rule was defined for
the cells on the grid to find the most feasible path between the start point and goal.
The method considers static obstacles and maximum climb slope constraints. Design
parameters include the elevation change and radar avoidance weighting factors. The
objectives of the optimization include the path length, total elevation change and
the total radar exposure penalty. The algorithm was tested on terrains with different
conditions and it was found that the method can successfully find the set of optimal
paths without violating the constraints.
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Table 6.1: The path finding algorithm. This post processing step finds the optimal
path between the start point and the goal while it also calculates the
path length Lp, total height change Hp and total REP Γp along the path
knowing the starting cell initCell, the CA state values S, the height
map Z and the maximum allowable slope mall.

Program: Path Finder
Input: S; initCell; Z; Γ; mall

Output: P ; Lp ; Hp; Γp
1: P ← initCell; Lp ← 0; Hp ← 0; Γp ← ΓInit
2: nextCell← P (1); flag ← True; i← 1
3:while flag
4: nextCell← feasible neighbor of P (i) with

steepest descent (S,mall)
5: if nextCell = P (i)
6: flag ← False
7: else
8: P (i+ 1)← nextCell
9: Lp ← Lp + ∆(P (i), nextCell)
10: Γp ← Γp + ΓnextCell
11: Hp ← Hp + ∆h(P (i), nextCell)
12: i← i+ 1
13: end
14: end
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Table 6.2: Details of the optimal paths marked in Figure 6.2.

L Γ β
a 12.37 11.33 0.035
b 13.09 8.158 0.304
c 15.58 3.172 0.449
d 16.10 0.181 4.975

Table 6.3: Details of the optimal paths marked in Figure 6.3.

L H α
a 16.88 0.020 1.516
b 23.11 0.002 6.188
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Figure 6.1: Moore neighbors of the blue cell are shown in red. They are the only
cells considered in the CA rule for the center cell.

Figure 6.2: Case study 1 results. The blue circle is the start point and the green
triangle shows the goal. The contours show the radars active range and
its color corresponds to the radar penalty factor value. The black boxes
represent the obstacles. Red lines show the feasable paths suggested
by the algorithm.
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Table 6.4: Details of the optimal paths marked in Figure 6.4.

L H Γ α β
a 10.49 0.145 1.746 0.165 6.734
b 10.11 0.130 5.534 1.665 0.063
c 9.957 0.157 6.871 0.665 0.063
d 9.984 0.264 6.554 0 0
e 10.77 0.066 10.15 4.607 0.045
f 16.55 0.135 0.124 1.575 6.738
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Figure 6.3: Case study 2 results. The terrain color is based on the elevation.
Because choosing the shortest possible path would violate the slope
constraint, the algorithm found a path through the series of ramps
that is the shortest feasible path. The other found paths are longer
but provide less elevation changes. Blue circle and green triangle are
the start point and end point respectively.
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Figure 6.4: Case study 3 results. The terrain color is based on the elevation. The
contours show the range of the radar.
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Chapter 7

AIRFOIL OPTIMIZATION

7.1 Introduction

The airfoil/wing design is probably the most important part of an aircraft
design. A practical aerodynamic design of airfoil requires optimal performance on
a wide range of operating conditions. These requirements are often found to be
conflicting and demand designer expertise for satisfactory results, not to mention
the computational burden of the simulations. Although there exists many studies
on direct and inverse design of airfoils, less attention has been paid to simultaneous
consideration of multiple objectives.

Recent advances in computational power, optimization algorithms and reli-
able models has increased the simulation based design and optimization significantly,
specially in the aerospace industry [123]. Despite the fact that these exists numer-
ous studies on airfoil optimization, less attention has been paid for multi-objective
airfoil design. It should be noted that the origination of evolutionary algorithms
(EAs) played a key role in advancement of airfoil optimization and specially multi-
objective airfoil design. The advantages of using EA includes robustness, handling
nonlinearities and uncertainties, and most importantly being gradient free. In ad-
dition, EAs can successfully handle problems with high dimensional design space.
On the other hand, they do not guarantee to find the global optima. All these fea-
tures resulted in improvement of EAs and a significant increase in their applications
specially in engineering [124].

Even though the improvement of the algorithms assisted with MOPs, com-
putation burden of fluid simulation is still a big concern. MOPs usually require a
significant number of objective evaluations. There exist numerous examples in the
literature where many simplifications and assumptions has been made in order to
effectively speedup the solution process [125–127]. In one of the early works [128],
authors have demonstrated an inverse and direct airfoil design using multi-objective
genetic algorithm. In [129], weighted sum method is used for a multi-objective de-
sign of single and multi-element airfoils. They both used b-Splines to express the
geometry. Another work by Ray [130] utilizes a swarm algorithm for MOP while
using PARSEC geometry representation and Euler code for flow simulation. The
airfoil design can also be expanded into multi-objective design of 3D wings [131,132].
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The goal of this chapter is to present a new direct approach in airfoil design
considering multiple objectives and constraints simultaneously. The selection of
objectives and constraints depend on the application considered such as a small
single engine aircraft. The rest of this chapter is organized as follows. Section 7.2
discusses the analysis techniques used which include the parametrization method,
MOP solver, problem setup and the post processing algorithm. The results are
presented in Section 7.3 and the conclusion is stated in Section 4.7.

7.2 Analysis Method

This section will discuss the different steps taken in the optimization process.

7.2.1 PARSEC parametrization

In order to reduce the degrees of freedom for a 2D cross section of airfoil, a
parametrization scheme has to be deployed. The parametrization methods express
the airfoil shape using some base functions [133,134]. In this work, PARSEC method
with 12 parameters has been used [133, 135]. The upper and lower surface of the
airfoil can be obtained by

yU =
6∑
i=1

aiUx
i− 1

2

yL =
6∑
i=1

aiLx
i− 1

2

(7.1)

where the coefficients a1U , · · · , a6U , a1L, · · · , a6L are achieved by solving a linear
system using the 12 physical parameters shown in Figure 7.1. Those physical pa-
rameters are considered as the variables for the optimizer. The description and
bounds of the parameters are presented in Table 7.1.

Figure 7.1: Design parameters for PARSEC shape functions
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7.2.2 Solver

After the parametrized airfoil has been regenerated, its aerodynamic perfor-
mance needs to be evaluated. The objective values are then derived from the results.
In this study, the aerodynamic performance of the airfoils has been calculated us-
ing Mark Drela’s XFOIL code [136] which uses a linear-vorticity panel method for
inviscid analysis coupled with an integral boundary-layer method for viscous anal-
ysis of subsonic airfoils [137]. XFOIL is accurate and efficient for specific ranges of
applications and has been evaluated for over two decades [137]. For this study, the
output of XFOIL includes the values of CM , CL and CD for a range of attack angles
(from zero with increments of 0.25 deg). The α for which CL/CD is maximum will
be chosen as the operating angel of attack for that geometry and will be denoted as
αopt. The objectives will be reported at α = αopt.

7.2.3 MOPSO

The solution methods for the MOPs can be classified into stochastic and
deterministic approaches. Particle swarm optimization (PSO) is an EA which is
inspired by a flock of birds flying and searching for food. There exist many successful
attempts to have PSO solve MOPs [138,139]. In this work we use a MOPSO based
on [139] which is implemented in Fortran 90 [140].

For the current simulation the population is consist of 500 individuals and
they have been evolved for 400 generations. The hypercube divisions on each ob-
jective is 50 and the archive can fit a maximum of 2000 individuals. To study the
convergence progress and hyperspace analysis, the archive content has been recorded
every 5 generations. The mutation rate is set to be 0.1.

7.2.4 Problem Setup

The airfoil MOP is designed as follows

min{f1(x), f2(x), f3(x)}, (7.2)

where x is the array of design variables which are the 12 PARSEC parameters
expressed in Table 7.1. The objectives are

f1(x) = −CL
f2(x) = CD

f3(x) = −dCL
dα

(7.3)

subject to
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tmax < 25%
C2
M < 0.025
CL > 0.5
CD < 0.1
dCL
dα

> 0.0

(7.4)

where a negative sign is used to transform the maximization objectives to a min-
imization. The objective f1 correlates with maximizing the lift coefficient. The
second objective is to minimize the drag coefficient. f3 corresponds to maximiza-
tion of the rate of change of CL with respect to the attack angle. This objective
delivers high lift at landing/take off because aircraft operates at higher angle of
attack in those situations.

For evaluating the objectives for each airfoil, the attack angle α has been

swept from zero with increments of 0.25 degrees to generate the highest
CL
CD

. The

corresponding α can be considered as the optimal or operational condition of the
airfoil. This angel will be denoted as αopt in this paper.

This simulation tries to mimic the flight condition for small single engine
aircrafts (Aircraft Approach Category ’A’ [141]). For the simulations, Reynolds
number is assumed to be Re = 0.5 × 106, Mach = 0.2 and the turbulence level
Ncrit = 9.

7.2.5 Post-Processing

As we know, the solution of MOP is a set of individuals. All the points
on the Pareto front are equally important. Even though the decision-maker has
the authority to pick up any solution from this set, the selection process is not
easy. To facilitate this operation, we introduce an algorithm that operates on the
Pareto front. The algorithm starts by finding the ideal point made of the minimum
values of all the objectives (in a minimization problem) of the Pareto front. Then,
the L2-norm distance d between the ideal point and points on the Pareto front is
calculated. The maximum distance dmax and the minimum distance dmin are found.
The difference dmax − dmin is divided by a pre-specified number nDiv such that
h = (dmax−dmin)/nDiv. Circles centered at the ideal point with radii ri = dmin+i∗h
for i = 0, 2, .., nDiv are used to section the Pareto front and rank the control design
by the radius ri. This tool helps to extract a single point or a subset of the solution
set. The point closest to the ideal point is called the ”Knee point” of the solution.

7.3 Results

Two simulations where performed in this study. In the first run, the initial
population is generated by the random sampling from the design space. The second
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Figure 7.2: Hyper-volume convergence analysis of the solution. The case with
selected initial points outperform random initial points as expected.

run however, used 36 exported airfoils from an already existing airfoil database. The
first simulation took 6 hours and returned 140 points while the second simulation
took 3.5 hours and returned 227 points. All programs ran on a single core of Intel
Xeon E5-2680v3 CPU with clock speed of 2.5 GHz. The hyper-volume analysis for
the convergence of the methods is presented in Figure 7.2. The same reference point
is used for calculating the hyper-volume for both cases. As expected, the case with
selected initial points outperform the case with random initial points. It is observed
that no significant improvement is obtained after 200 generations. Using a database
for airfoil optimization can be beneficial as behalf of the quality of the of initial
population can be enhanced while keeping the diversity among them. From this
point on, the results for the second run would be in the interest of this study since
it expresses superior quality with the same effort.

Figure 7.3 shows the Pareto front of the solution set. The grey points show
the 2D projection of the solution. Each point represent a specific geometry of an
airfoil. Unlike the classical MOPs that usually have a k − 1 dimensional manifold
solution, this problem returned 4 distinct lightly curved branches. The branches are

named B1-B4 from the highest
dCL
dα

to the lowest respectively for further analysis.
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Figure 7.3: Pareto front of the airfoil MOP. the grey shadows show the 2D pro-
jection of the solution.

Although the individuals in the solution set are all non-dominated, the de-
signer needs choose the most appropriate design. Eight cases have been chosen for
further analysis from the 227 available points in the solution set. Three of them
are the extreme cases for the objectives, corresponding to max(CL), min(CD) and

max(
dCL
dα

). These cases are theoretically equivalent to results from single objective

optimization. The rest are chosen by the post processing algorithm using the whole
solution set (one case) and each branch separately (4 cases). The objectives and
corresponding PARSEC parameters for these four solution points are presented in
Table 7.2.

For studying the characteristics of the branches B1-B4, their parameter vari-
ations are plotted along with their error bars in Figure 7.4. The error bars show
the confidence interval for each of the branches. In order to quantitatively evaluate
the differences between the branches, an independent sample t-test was performed
among the branches. The results are presented in Table 7.3. The boxed entries
show a significant difference between the two branches. It is observed that there
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are distinct variations in rule, rlle, xup and yte. Having higher rule, rlle and yte, and
a lower xup would result in having a relatively larger dCL

dα
. As seen in Figure 7.3,

choosing an airfoil with higher dCL

dα
would result in slightly poorer quality CL and

CD objectives. However, the decision maker might be interested to choose an airfoil
from branch B1 since the gain in dCL

dα
is significant compared to the deterioration of

the other two objectives.
Geometry of the selected cases are presented in Figures 7.5 and 7.6. The

airfoil shapes in 7.5 shows more diversity since they tend to extremize each objective
independently. It is observed that the thinnest airfoil correspond to min(CD) case
as expected. The polar plots of these airfoils can be found in Figure 7.7 and 7.8.
The optimal operational point αopt is shown with a marker on each curve. In Figure
7.7, the αopt ranges between 2 and 4 degrees while in Figure 7.8, they vary in a wider
range of angles.

Although the polar plots provide valuable information about the properties
of the airfoils, the designer might be interested in the pressure distribution on the
candidate airfoils at their operational angle of attack. Figures 7.9 and 7.10 show
the CP curves for the selected geometries. As expected, the area under the curve
in Figure 7.9 is maximum and minimum for the max(CL) and min(CD) cases re-
spectively. The separation of the boundary layer is observed to happen in relative
length 0.4 to 0.6 of the chord for all cases.

7.4 Summary

Design for application has always been a challenge for engineers since it deals
with multiple design parameter and objectives to be met. A multi-objective airfoil
design procedure was presented in this chapter. PARSEC parametrization method
was used to express the geometry in terms of 12 variables. The aerodynamic prop-
erties of the airfoil was extracted by panel method using XFOIL code. The three
objectives considered were maximization of lift coefficient (max(Cl)), minimization
of drag coefficient (min(Cd)), and maximization of rate of change of lift to attack
angle (dCl/dα). Multi-objective particle swarm optimization algorithm was utilized
for solving the MOP. Using a database of already existing airfoils helped to enhance
the quality of the solution.

The method successfully converged and found 227 feasible airfoil configura-
tions in a reasonable time (3.5 hrs). A post processing algorithm was utilized to
extract and rank the solutions in order to help designer with the decision mak-
ing process. The tools used in this chapter can be easily adopted to solve other
multi-disciplinary airfoil design problems by simply updating the objectives and
constraints.
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These results are quantitatively studies in Table 7.3
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Figure 7.5: Four airfoils from the solution set. The first three correspond to the
extreme objectives and the last case is the knee point selected by the
post-processing algorithm. The objective and design parameter values
can be found at Table 7.2.
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The objective and design parameter values can be found at Table 7.2.
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Figure 7.7: The aerodynamic properties (polars) of the the first four selected air-
foils from Table 7.2. The marked points on each curve shows the
optimal operational point. This point corresponds to the attack angle
where max(CL/CD) is observed.
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Figure 7.8: The aerodynamic properties (polars) of the the second four selected
airfoils from Table 7.2. The marked points on each curve shows the
optimal operational point. This point corresponds to the attack angle
where max(CL/CD) is observed.
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Figure 7.9: The pressur distribution of the the first four selected airfoils from Table
7.2. The curves are calculated at the operational angel of attack for
each airfoil as shown in Figure 7.7.
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Figure 7.10: The pressur distribution of the the second four selected airfoils from
Table 7.2. The curves are calculated at the operational angel of
attack for each airfoil as shown in Figure 7.8.
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Table 7.1: Physical parameters used in the PARSEC parametrization and their
bounds.
Parameter Description min max
rule upper leading edge radius 0.0001 0.2
rlle lower leading edge radius 0.0001 0.2
xup upper crest x coord. 0.1 0.6
yup upper crest y coord. 0.01 0.2
κup upper crest curvature −2.0 −0.001
xlo lower crest x coord. 0.1 0.6
ylo lower crest y coord. −2.0 −0.01
κlo lower crest curvature 0.001 2.0
αte trailing edge direction 0.0◦ 10.0◦

βte trailing edge wedge angle 0.0◦ 20.0◦

yte trailing edge y coord. 0.0 0.1
∆yte trailing edge thickness 0.0 0.1

Table 7.2: Selected airfoils from the solution set with corresponding objective and param-
eter values. The first three entries are extreme cases and the last one is selected by the
postprocessing algorithm.

Case max(CL) min(CD) max(dCL

dα
) Knee point B1 B2 B3 B4

CL 1.1385E+00 8.0598E-01 1.1156E+00 9.8040E-01 1.0385E+00 1.0271E+00 1.0400E+00 1.0400E+00

CD 1.4640E-02 8.1323E-03 1.4800E-02 1.1039E-02 1.2434E-02 1.1461E-02 1.1311E-02 1.1272E-02
dCL

dα
1.5198E+00 1.0746E+00 4.4625E+00 3.9216E+00 4.1539E+00 2.0542E+00 1.3867E+00 1.0400E+00

rule 1.7099E-01 4.5428E-02 2.0000E-01 1.3442E-01 1.6353E-01 1.3234E-01 1.2339E-01 1.1041E-01

rlle 5.5677E-03 5.7194E-03 2.5511E-03 7.0143E-03 5.8642E-03 7.7143E-03 5.0299E-03 5.3635E-03

xup 3.3394E-01 3.8661E-01 3.3866E-01 3.5544E-01 3.3379E-01 3.4418E-01 3.6044E-01 3.4709E-01

yup 1.9957E-01 1.2656E-01 2.0000E-01 1.7557E-01 1.8362E-01 1.8231E-01 1.7275E-01 1.7272E-01

κup -3.8567E-01 -1.1579E+00 -2.4640E-01 -1.2130E+00 -8.8642E-01 -1.1283E+00 -7.4765E-01 -8.0087E-01

xlo 5.6996E-01 5.3417E-01 5.1880E-01 4.6341E-01 5.2154E-01 5.0872E-01 4.9008E-01 5.1205E-01

ylo -1.1548E-02 -1.0000E-02 -1.1173E-02 -2.0691E-02 -1.0000E-02 -1.5799E-02 -1.4098E-02 -1.1003E-02

κlo 5.4729E-01 2.9032E-01 5.0013E-01 4.7175E-01 5.0638E-01 4.8766E-01 5.0034E-01 5.4477E-01

∆yte 2.2129E-02 1.4961E-02 2.1290E-02 1.4809E-02 1.5903E-02 1.7843E-02 1.3520E-02 1.0249E-02

yte 2.5880E-04 3.7191E-04 6.3805E-04 1.6348E-04 5.2449E-04 2.1251E-04 3.6694E-04 2.2839E-04

αte 9.5283E+00 9.7724E+00 9.2389E+00 9.9435E+00 9.5185E+00 9.6986E+00 9.7650E+00 9.8014E+00

βte 0.0000E+00 1.7740E+01 0.0000E+00 5.0011E+00 4.4756E+00 4.5612E+00 3.1408E-01 2.6895E-01
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Table 7.3: The results for the statistical comparison between the branches B1-B4.
Each of the 12 parameters has been compared between the branches
using the independent sample ttest. P values under 0.05 show a signif-
icant difference between the groups.

Parameter B1,B2 B1,B3 B1,B4 B2,B3 B2,B4 B3,B4
rule 4.35e− 3 5.97e− 4 4.60e− 5 4.31e− 1 8.00e− 3 4.65e− 2
rlle 3.60e− 1 6.73e− 4 5.62e− 7 9.33− 3 6.17e− 5 1.73e− 1
xup 1.58e− 3 1.45e− 5 8.69e− 7 9.71e− 2 3.68e− 3 1.33e− 1
yup 1.78e− 1 2.59e− 1 1.33e− 1 8.67e− 1 5.81e− 1 5.22e− 1
κup 5.86e− 1 7.22e− 2 7.29e− 1 1.98e− 3 2.88e− 1 2.27e− 1
xlo 1.29e− 1 4.71e− 1 5.64e− 1 2.39e− 2 8.73e− 2 9.64e− 1
ylo 3.71e− 1 5.02e− 2 6.10e− 2 3.12e− 1 2.07e− 1 4.67e− 1
κlo 3.96e− 1 5.50e− 1 3.92e− 1 8.24e− 1 8.19e− 1 7.04e− 1
αte 8.14e− 3 5.50e− 2 1.52e− 2 2.98e− 1 4.91e− 1 1.01e− 1
βte 3.39e− 1 9.96e− 1 7.21e− 1 3.60e− 1 7.58e− 1 7.37e− 1
yte 4.75e− 2 2.64e− 5 5.37e− 6 3.76e− 3 4.68e− 4 3.40e− 1
∆yte 3.26e− 1 7.16e− 1 3.40e− 1 1.97e− 1 8.82e− 2 5.48e− 1
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Chapter 8

CONCLUSION AND FUTURE WORK

The main purpose of this thesis has been to propose a new method for solving
MOPs. The focus of this work is to develop methods that are most suitable for
engineering applications. The hybrid algorithm combines evolutionary algorithm
with a modified simple cell mapping technique with subdivision to solve MOPs.
The hybrid method was investigated and compared for a set of benchmark problems.
This thesis also aims to study and introduce new applications of MOPs in different
areas of engineering.

The simple cell mapping method was used as a tool to solve MOPs. The
method has been applied to control design MOPs for a first order system with time
delay and a second order linear oscillator. Subdivision is used to enhance the quality
of the solution and to see the fine structures in the Pareto set/front. This method
could be fast and efficient for low dimensional problems and most importantly, it
finds the global solution in the domain of interest. However, this method slows down
exponentially for higher dimensional problems.

Further, by studying the properties of EAs and SCM method for solving
MOPs, their strength and weakness were characterized. The EA starts converging
fast and slows down as it gets to the vicinity of the solution. For that reason, the
hybrid methods starts with EA to reach the neighborhood of the solution. From
that point, the modified SCM method will take over the process. The drawback of
the classical SCM method is that is requires to sweep the parameter space which
could be a computationally expensive process. In the modified SCM, the explore
algorithm starts with the covering set of the cells and evaluate them by comparing
their objectives with neighbors and recover the missed cells. Applying subdivision
at the end of the process and exploring again result in a higher quality solution with
minimal computations. This method is compared with the classical SCM method
and NSGA-II over a few mathematical benchmarking problems and a nonlinear con-
trol system with time delay. The results prove that the hybrid method outperforms
the other two methods in most of the cases.

In addition to MOP control design for linear and nonlinear systems with
or without time delay, this thesis looks into other engineering applications. The
concept of multi-objective optimization is expanded into fractional order systems
by designing a distributed order fractional damping for a second order system.
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We further looked into robot path planning application. A cellular automaton
platform was used to design robot paths while avoiding radars, saving energy, and
looking for the shortest path considering certain constraints for the robot.

The last application provided is the airfoil design. Three main performance
indices are defined as objectives and optimized while the geometry is expressed with
12 parameters. Panel method was used to evaluate airfoil properties.

MOPs have important applications in engineering and design. Lack of suit-
able tools cause scientists and engineers to avoid dealing with such problems. By
having a proper understanding of MOPs and availability of efficient and accurate
algorithms, we can conveniently solve the MOP of interest. As a result, we gain the
ability to choose from a range of optimal designs instead of a single one.

There are many ways for this research to be continued. A parallel version for
the hybrid algorithm is developed which is suitable for handling high dimensional
MOPs. The next step would be validating and comparing the results for the new
code.

Another important step would be preparing a MOP toolbox or library for
engineering applications. Several solution methods can be implemented in the pro-
gram. Having parallel computing options will help the users to accelerate the solu-
tion of time consuming or high dimensional MOPs.

There are also potentials for more engineering applications. For instance,
in the airfoil design problem, we can consider the 3D wing by looking at multiple
2D sections through the wing. This will result in a higher dimension in parameter
space. In the robot path planning case, one can include the robot dynamics in the
simulations and add the travel time in the objectives. For the control problems, one
can consider adding nonlinearity/noise/uncertainties (to mimic real systems) to the
models and try the MOP design of some state of the art controllers such as sliding
mode control or adaptive control.
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