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Abstract

Hierarchical systems can adapt by adjusting the strengths
of their components in response to environmental
feedback. Regimens for propagating adjustments through a
hierarchy are either cascading or distributional, depending
on whether the sum of the adjustments is variable or fixed.
Both types of regimens can be dampened, amplified or
sustained, depending on whether nodes higher in the
hierarchy are adjusted less, more or with the same amount as
lower nodes. We show that a cascading regimen learns most

efficiently with amplified propagation, while a
distributional regimen learns most efficiently with
sustained propagation. Cognitive scientists ought to

explore a wider range of propagation regimens.

Hierarchy and Strength

Adaptive systems, whether artificial (e.g., A. I. systems),
mental (e.g., skills) or natural (e.g., ecologies) tend towards
hierarchical organization. In particular, cognitive skills are
hierarchical in part because goals are analyzed into subgoals
in the course of performing a task or solving a problem
(Catrambone, 1996). For example, planning a trip might
break down into deciding on mode of travel, booking
accommodation and purchasing equipment, each of which
breaks down into subgoals of yet smaller scope. Hierarchical
task representations can also arise because a skill, once
mastered, is integrated into more encompassing skills
(Bruner & Bruner, 1968), a process referred to as part-whole
transfer (Schmidt & Young, 1987) or vertical transfer
(Gagne, 1970). For example, addition and substraction are
subprocedures in the standard procedure for long division.

Adaptive hierarchical systems change in distinctive ways
over time (Salthe, 1985). In particular, cognitive skills
speed up during practice (Ericsson, Krampe & Tesch-Rémer,
1993; Lane, 1987; Proctor & Dutta, 1995). Models of
practice typically assume that components of task
representations have strengths that are adjusted in response
to feedback from the environment (Anderson, 1993; Logan,
1988: Ohlsson & Jewett, 1997ab). The strength values
affect overt behavior primarily by resolving conflicts
between competing actions.

Although the two concepts of hierarchy and feedback-
driven strengthening are often invoked separately to explain
learning, the cognitive literature lacks a rigorous analysis of
their relation. How should feedback be propagated through
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hierarchical representations? The central feature of such a
representation is the existence of non-terminal nodes (i.e.,
goals and subgoals). Goals are only indirectly linked to
terminal nodes (actions) and hence to environmental input. If
an action generates positive (or negative) feedback, how
should the strengths of the relevant goals and subgoals be
adjusted?

Cognitive models typically assume that a strength
adjustment decreases in magnitude as it propagates through a
network. We refer to this as dampened propagation. The
opposite hypothesis--that the strength adjustment increases
in magnitude as it propagates--is seldom studied, because
such amplified propagation regimens are not possible in
non-hierarchical networks. A signal that grows as it spreads
will eventually reach all nodes in the network and increase
without bounds. Amplified propagation can only work in a
hierarchical representation with a well-defined stopping point
(the top goal). Sandwiched between amplified and dampened
strengthening is a regimen in which the strength adjustment
neither decreases nor increases during propagation. We refer
to this as sustained propagation.

Strengthening regimens also differ along another, less
familiar, dimension. The propagation regimens typically
considered in cognitive models are cascading, i.e., the change
starts at some point of origin and moves to an adjacent node.
The amount of change in the adjacent node is determined
solely by the amount of change in the point of origin, by
the relation between the two nodes and/or by some
parameter. As the process moves from node to node, the
change in each node is determined locally, without
interaction with the changes occurring in other nodes.

Because cascading strengthening does not limit how much
change can occur in the context of any one learning event, it
raises questions about how the strength concept--so
ubiquitous in cognitive models--should be interpreted in
physiological terms. Brain researchers have not yet reached
consensus on how the brain changes during practice, so we
have to consider alternative hypotheses.

For example, suppose that the strength of a link between
two nodes corresponds to the amount of transmittor
substance available at the synapses between the relevant
neural circuits. If so, then it can hardly be the case that
strength increments have no upper limit. The brain is a
finite physical system and it can only produce a certain
amount of transmittor substance per unit of time. Hence, the
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amount by which a particular synapse can change in the
course of a single learning event must be limited. Similar
arguments apply to other physiological interpretations of the
cognitive strength concept, e. g., number of synaptic
connections, number of neurons, spike frequency, and so on.

Hence, it is reasonable to consider strengthening regimens
in which the total amount of change in any one learning
event is fixed. We call them distributional because they
distribute the adjustments over the relevant components.
Distributional regimens can be amplified (if components
higher in the hierarchy receive larger adjustments), dampened
(if higher components receive smaller adjustments) or
sustained (if the size of the adjustment is a constant).

What are the behavioral consequences of these types of
propagation regimens? How does type of propagation
regimen affect learning? This is the question addressed in
this paper. We present a series of computer simulations,
using the abstract modeling methodology developed in past
work (Ohlsson & Jewett, 1995, 1997ab). We first determine
the effects of amplified, dampened and sustained propagation
on the form and efficiency of learning in both cascading and
distributional regimens. We then investigate the interaction
between these two dimensions.

The main result is that a cascading system learns most
effectively when the propagation regimen is amplified, while
a distributional system learns most efficiently when the
regimen is sustained, in contrast to the dampened cascade
typically assumed in cognitive models.

A Hierarchical Learning System

The purpose of the computer model described in this section
is 1o capture the essential characteristics of acquiring a
hierarchical task representation via feedback during practice.
The model is implemented in Macintosh Common Lisp.

Performance Module

A goal can typically be achieved by several methods; a
method typically requires the satisfaction of several
subgoals. Hence, a hierarchical task representation can be
modeled by an AND/OR tree in which goals are modeled by
OR nodes with links leading to the alternative methods and
methods are modeled by AND nodes with links to the
subgoals required to execute them. A task performance is a
top-down, left-to-right traversal of such a tree. The terminal
nodes in the tree correspond to (executable and observable)
actions. The traversal of the tree generates a task solution in
the form of a sequence of terminal nodes (actions).
Performances can differ with respect to which method is
selected at each OR node and in which order the subgoals
attached to an AND node are executed and hence with respect
to which sequence of actions is generated.

At each OR node, the performance module retrieves all
links leading to alternative methods and selects one for
execution The probability that link L is selected is a
probabilistic function of its strength. Specifically, the
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strength of each link is multiplied with a random number
between zero and unity and selects the link with the highest
product. The AND-node accessed by that link is instated as
the current node.

At each AND node, the performance module retrieves all
links leading to conjunctive subgoals and orders these in
accordance with their strengths. The probability that link L,
is ordered before link L, is a probabilistic function of their
strengths. Specifically, each strength is multiplied with a
random number between zero and unity and the subgoals are
ordered in accordance with the resulting products.

Notice that decisions are made by comparing link
strengths in both OR and AND nodes. Hence, both types of
decisions are affected by the propagation of strength
increments.

Learning Mechanisms

We designate an arbitrarily chosen sequence of terminal
nodes (actions) as the target performance. Initially, all links
have strengths equal to unity. The performance module then
chooses methods randomly in OR nodes and poses subgoals
in random order in AND nodes, thus generating a haphazard
sequence of actions. Learning how to perform the target task
is to adjust the strengths such that the correct method is
chosen in each OR node and the subgoals are posed in the
correct order in each AND node.

During execution, each terminal node generated by
traversing the AND/OR tree is compared to the
corresponding action in the target performance. If they
match, the model receives positive feedback. If not, the
model can receive negative feedback but this feature was not
used in the work reported in this paper (see Ohlsson, 1996,
Ohlsson & Jewett, 1997ab, for models of negative
feedback). Upon receiving feedback the model propagates
strength increments upwards through the AND/OR tree.

Strength adjustment in OR nodes is straightforward: The
strength of the successful link is increased with an amount
determined by the particular strengthening regimen used. In
AND nodes, a successful subgoal is strengthened in
proportion to its position in the sequence of subgoals. A
successful subgoal is strengthened more if it succeeds as the
first link selected in the relevant AND node than if it
succeeds as, for example, the third link selected. Successive
strength increments thus orders the links (subgoals) in the
AND node. In short, the model learns both to choose the
appropriate method (in OR nodes) and to execute the chosen
method correctly (in AND nodes).

One traversal of the AND/OR tree corresponds to one
training trial. Over repeated trials, the link strengths
gradually change and the model begins to make correct
decisions. Eventually, the sequence of terminal elements
generated matches the sequence of elements in the target
performance, i.e., the model performs the target task
correctly. When the model reliably generates the target
performance, the task has been mastered.



Simulation Methodology

Our simulation experiments replicated the methodology of
experimental studies of human skill practice: A set of
learners are given a sequence of practice trials unul they
reach a criterion of mastery. (Due to the probabilistic nature
of the decision algorithm, the behavior of the model varies
from run to run.) Quantitative measures are averaged across
learners.

The simulation experiments reported here used between 10
and 100 simulated learners, depending on how many learners
were needed to obtain regular results. The criterion of
mastery was three consecutive error-free performances of the
target task. The branching factor of the hierarchical
representation varied between three and six, and the height
between two and eight.

The simulation results are reported in terms of two
numerical measures. First, efforr per trial measures task
performance in terms of the number of decisions that the
model had to make to perform the task. Each visit to a node
counts as one decision. Both OR nodes and AND nodes are
counted. Repeated visits t0 a node due to error-induced
backup are counted as separate decisions. If we assume that
each decision takes time, then effort per trial should be
monotonically related to solution time, the measure most
often used in empirical studies of practice effects.

Second, effort to mastery is computed by summing effort
per trial across all trials needed to reach the criterion of
mastery for the target task. This variable measures how
efficiently the system learns.

Cascading Strengthening Regimens

Intuition suggests two opposite ways to propagate strength
increments in response to positive feedback. First, because
non-terminal nodes are only indirectly related to the terminal
nodes (actions) that generate the feedback, it is reasonable to
adjust their strengths with a smaller amount than that used
to adjust the strength of the terminal node. That is, as the
strength increment is propagated upwards, it becomes
smaller and smaller. This is dampened propagation.

On the other hand, a wrong choice at a node high in the
tree has more devastating effects on performance than a
wrong choice at a low node, because all nodes dominated by
the node at which the incorrect decision is made will
themselves be incorrect and a higher node dominates more
nodes than a lower one. This suggests that strength
increments ought to increase as they are propagated upwards.
This is amplified propagation.

There seems to be no a priori rationale for sustained
propagation.

We implement all three types of regimens by multiplying
the current strength (initially set to 1.0) by unity plus a
strength increment (in these simulations arbitrarily set to
0.1), multiplied by a propagation parameter (pp), which
itself is raised to the number of steps in the propagation
process. If s, is the strength of link X at time t and X is n
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levels above a terminal node that generates positive
feedback, then the strength of X at time t+1 is
S.a=8* (1 + 0.1 * pp"). (1)
If the parameter pp is smaller than unity, then the increment
is smaller and smaller for each step in the propagation
process, and we have dampened propagation. If pp is larger
than unity, we have amplified propagation. Finally, if pp is
equal to unity, we have sustained propagation
How does type of strengthening regimen affect the
behavior of the model? Figure | shows learning curves for
five values of the propagation parameter, two smaller than
unity (0.3 and 0.6), unity and two larger than unity (1.2 and
1.8). All five curves are roughly linear when plotted with
logarithmic coordinates, i.e., they approximate power laws,
as do human learning curves (Delaney, Reder, Staszewski &
Ritter, 1998; Lane, 1987; Logan, 1988; Newell &
Rosenbloom, 1981). For the sustained regimen (pp = 1.0),
shown by the straight line in Figure 1, the r* fit to a power
law is better than 0.99. The power law fits for the dampened
propagation regimens are .93 (pp = 0.3) and .98 (pp = 0.6),
suggesting increasing departure from power law fit the more
severe the dampening. The power law fits for amplified
propagation regimens are .96 (pp = 1.2) and .95 (pp = 1.8).
In short, a sustained propagation regimen generates a better
fit to a power law than either an amplified or dampened
strengthening regimen.

1000

y = 349.503x°0597 2 = 0,992

Effort per trial

10 :
I 10 100
Trials
—O0— 03 - 1.2
—0— 06 ---@--- 1.8
swexl@rass 1.0

Figure 1: Learning curves for five different strengthening
regimens in a cascading system, plotted with logarithmic
coordinates. The straight line and the equation shows the
power law fit for the sustained regimen (pp = 1.0).



A second observation is that the five curves in Figure 1
form an orderly progression, with gradual downward
displacement for increasing values of the pp parameter. That
is, learning appears to be become more efficient as pp
increases.

This impression is confirmed if we plot learning
efficiency in terms of total effort to mastery as a function of
the propagation parameter; see Figure 2. The effort to
mastery turns out to be a monotonically decreasing function
of the pp parameter. When strengthening cascades, amplified
propagation leads to more efficient learning than dampened
or sustained propagation, although the advantage over
sustained propagation quickly approaches an asymptote once
pp> L.

The reason for this pattern is that amplified propagation
quickly settles high-level choices. The model therefore
spends less time exploring the wrong part of the hierarchy.
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Figure 2: Learning efficiency for cascading propagation. Tree
size was 3 (branching factor) by 6 (height).

Distributional Strengthening Regimens

The models described in the previous section implicitly
assume that strength adjustments are variable, i.e., that each
learning event can add a larger or smaller amount of strength
to the system. In particular, the amplified regimens add more
strength to the representation than the dampened regimens.
The more amplified the propagation, the larger the amount
of strength that is added to the representation in each
learning event. This may or may not be a plausible
assumption for a physically realized system like the human
brain or an A. [. system.

To model learning with fixed strength adjustments, we set
the amount of strength to be distributed in any given
learning event to a fixed number. To make simulations
comparable, we made the amount equal to the amount of

strengthening distributed by the first run of the cascading
system. We distributed that amount across the relevant links
in such away that the relations between the strength
increments conform to Equation 1 and the increments sum
to the set limit.

Figure 2 shows learning curves for the distributional
model. (These curves overlap too much to be displayed in a
single panel.) First, panel (a) displays the curve for pp =
1.0. The curve has a slight S-shape across the first 5-8
trials, but the power law fit is better than .96.
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Figure 3: Learning curves for distributional regimens. Panel
(a) displays the curve for a sustained regimen (pp = 1.0),
while panel (b) displays curves for dampened (pp = 0.5) and
amplified (pp = 2.0) regimens.
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Panel (b) in Figure 3 shows the learning curves for a
distributional regimen when propagation is dampened (pp =
0.5) as well as amplified (pp = 2.0). The amplified regimen
produces a very linear curve, although the power law fit
(.95) is somewhat lower than that for pp = 1.0 (0.99) due to
the higher variability of points around the end of the curve.
Thus, an amplified regiment robustly generates power law
curves. The curve for pp = 0.5 has a slight positive
curvature and its fit to a power law is the lowest of all the
curves considered (0.74).

As the alert reader might have noticed, the curves in
Figure 3 does not exhibit the same successive downward
displacement as the curves in Figure 1, indicating that
learning efficiency is not a monotonic function of the
propagation parameter for distributional regimens.

This impression is confirmed by Figure 4, which displays
effort to mastery as a function of the pp parameter. The
distributional model exhibits a U-shaped pattern. Dampened
propagation generate less efficient learning, but so does
amplified propagation. When strengthening is distributional,
sustained propagation leads to more efficient learning than
either amplified or dampened propagation. That is,
hierarchical learning is most efficient when the size of the
strength increment does not change as the increment is
propagated upwards through the hierarchy.
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Figure 4: Learning efficiency for distributional regimens.
Tree size was 3 (branching factor) by 6 (height).

The results in Figures 2 and 4 were denved for a
hierarchical structure with a branching factor of three and a
height of six. To bring out the contrast between cascading
and distributional propagation, and to bolster our main
finding, Figure 5 shows a replication for a structure with a
branching factor of two and a height of eight. The pattern is
replicated.
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Figure 5: Efficiency of hierarchical learning for cascading
and distributional strengthening as a function of propagation
regimen. Tree size was 2 (branching factor) by 8 (height).

Discussion

Adaptive systems are hierarchically organized. The notion
that adaptation occurs via gradual strengthening of some
system components over others in response to information
from the environment is ubiquitous throughout the
cognitive sciences. However, it is not obvious how to
combine the two ideas of hierarchy and strengthening. A
hierarchical structure poses the problem of how a strength
adjustment is to be propagated through the hierarchy. If a
terminal node receives feedback, which of the non-terminal
nodes in the hierarchy should also have their strengths
adjusted and how?

In the particular class of systems we explored, cascading
systems--i.e., systems that can add more or less strength to
the system in each learning event depending on the
propagation regimen used--produces power law learning for
amplified, dampened and invariant strengthening regimens,
although the power law fit lessens for severely dampened
regimens. Distributional systems--i.e., systems that
distribute a fixed amount of strength over the relevant links--
also produces power law learning for all three types of
propagation regimens. Power law fit disappears for severely
dampened regimens. (In a maximally dampened regimen,
i.e., a regimen in which the strength increment is not
propagated at all, there is no learning and hence no learning
curve.) In short, the shape of the learning curve is largely
unaffected by the strengthening mechanism.

In contrast, the efficiency of learning, i.e., the effort
required to reach mastery, is strongly affected. In a cascading
system, learning efficiency is greater for amplified than for
sustained and dampened propagation. In a distributional
system, on the other hand, learning is maximally efficient
for sustained propagation.



The results confirm one conclusion reached in prior work
on non-hierarchical learning: That, contrary to claims
sometimes made on its behalf (Logan 1988), the power law
of learning has little power to discriminate between learning
theories (Ohlsson & Jewett, 1997ab). (A similar conclusion
has been reached by Shrager, Hobb & Huberman, 1988, on
different grounds.)

The efficiency results were unexpected and more
interesting. They become more interesting still if we assume
that humans have evolved to be optimal learners. Natural
selection does not necessarily generate optimal designs, but
it does so sometimes and our capacity for learning is the key
stone of our species’ survival strategy. Hence, it is at least
possible that we are optimal learners.

In conjunction with this assumption, our first set of
results (Figure 2) imply that if the human brain operates
with a cascading regimen, we should find that strength
adjustments are amplified as they are propagated. On the
other hand, if the brain operates with a distributional
regimen, we ought to find that strength adjustments are
propagated without increasing or decreasing in magnitude
(Figure 4). These implications are interesting because
cognitive models are typically using dampened propagation.

To discover and investigate quantitative regularities like
the ones we report on this paper, we need models that allow
us to make comparative evaluations (e.g., between cascading
and distributional models) and sensitivity experiments
(Schneider, 1988) in which we systematically vary
parameters (e.g., the propagation parameter). We have found
abstract computer models to be a better tool for this kind of
exploration than symbolic models (Ohlsson & Jewett, 1995,
1997ab), as have others (Cooper, Farrington & Shallice,
1996).

It would be premature to make strong claims for our
conclusions. The present results need to be replicated and
generalized by varying the decision algorithm, the density of
feedback, the tree representation and other variables. The
only claim that we can make at this point is that amplified
and sustained  propagation  within  distributional
strengthening regimens deserve to be considered in models of
hierarchical adaptive systems. Whether this message will
itself be amplified or dampened as it propagates through the
cognitive science community remains to be seen.
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