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SURVEY AND SUMMARY
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ABSTRACT

The sequencing of the full transcriptome (RNA-seq)
has become the preferred choice for the measure-
ment of genome-wide gene expression. Despite its
widespread use, challenges remain in RNA-seq data
analysis. One often-overlooked aspect is normaliza-
tion. Despite the fact that a variety of factors or ‘batch
effects’ can contribute unwanted variation to the
data, commonly used RNA-seq normalization meth-
ods only correct for sequencing depth. The study of
gene expression is particularly problematic when it
is influenced simultaneously by a variety of biolog-
ical factors in addition to the one of interest. Using
examples from experimental neuroscience, we show
that batch effects can dominate the signal of inter-
est; and that the choice of normalization method af-
fects the power and reproducibility of the results.
While commonly used global normalization methods
are not able to adequately normalize the data, more
recently developed RNA-seq normalization can. We
focus on one particular method, RUVSeq and show
that it is able to increase power and biological in-
sight of the results. Finally, we provide a tutorial out-

lining the implementation of RUVSeq normalization
that is applicable to a broad range of studies as well
as meta-analysis of publicly available data.

INTRODUCTION

The sequencing of the full transcriptome (RNA-seq) has be-
come the preferred choice for the measurement of genome-
wide gene expression. Despite its widespread use, several
challenges remain in RNA-seq data analysis. One often
overlooked aspect is normalization, which is the transfor-
mation of values that allows comparisons between sam-
ples in a way that eliminates the effects of sources of vari-
ability that are not of interest. We refer to those effects as
‘unwanted variation’. A variety of technical and biologi-
cal factors, collectively known as ‘batch effects’, contribute
unwanted variation to genome-wide gene expression data.
These factors include differences in amount of RNA, li-
brary preparation, equipment, operators, and procedures
for sample extraction, preservation, or storage. Proper nor-
malization, or removal of these factors, has been shown to
critically impact the analysis of high-throughput data (1–3).
In spite of this, commonly used methods for RNA-seq nor-
malization, such as upper quartile scaling (UQ)(2), trimmed
mean of M values (TMM)(4) and FPKM (5), account only
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for global differences in sequencing depth between libraries
(6).

The use of RNA-seq to study gene expression is partic-
ularly problematic when it is influenced simultaneously by
a variety of biological factors in addition to the one of in-
terest, such as: genetic background, time of day, differences
in responsiveness between individuals and cell-type hetero-
geneity. Proper experimental design is highly beneficial but
may not be enough when factors contributing unwanted
variation are unknown. In this study we look at recently
published studies applying RNA-seq technology in the con-
text of experimental neuroscience. This type of study repre-
sents a good middle ground to study the effect of unwanted
variables in RNA-seq experiments. Unlike other experimen-
tal systems, many unwanted variables cannot be controlled
when studying gene expression in the brain in vivo, because
their influence is usually unknown. Nonetheless experimen-
tal neuroscience studies will be less influenced by unwanted
variables than non-experimental systems, such as studies in
human samples.

Our results show that batch effects are prevalent. We
demonstrate that commonly used global normalization
methods are inadequate. Normalization methods that can
account for batch effects have been recently developed. Fo-
cusing on one particular method, RUV (6), we show that
it can remove unwanted variation and lead to a more ac-
curate and reproducible picture of gene expression changes.
Finally, we provide tutorials on RUV normalization that al-
lows the reader to reproduce the figures of this article and
are applicable to a broad range of studies.

MATERIALS AND METHODS

Publicly available data were downloaded from GEO (see
Supplementary Table S1 for details). Data generated in this
article are available through GEO (GSE63412).

Subjects

C57BL/6J adult male mice (2 months of age) were obtained
from Jackson Laboratories and housed individually for a
week on a 12 h/12 h light/dark schedule with lights on at
7 a.m. (Zeitgeber time (ZT) 0). Food and water were avail-
able ad libitum throughout the experiment. Each animal was
handled daily for 3 days prior to contextual fear condition-
ing (FC). Handling consisted of manipulation of the ani-
mals for 1–2 min per mouse in the same room as the exper-
imental setting without exposure to the context. The con-
ditioning protocol entailed a single 2-s, 1.5-mA foot shock,
terminating at 2.5 min after placement of the mouse in the
chamber, starting at 10 a.m. (ZT3) daily. Hippocampal dis-
sections were performed immediately following the behav-
ioral treatment, and alternated between FC and control an-
imals. Tissue was collected at 30 min after FC (FC) as well
as 30 min after testing for retrieval of the memory (RT).
Testing was performed at 24 h after training over a 5-min
interval, which is sufficient to induce reconsolidation (7,8).
The average freezing was 55 ± 10%. Tissue was immersed in
RNAlater (Qiagen) and immediately frozen. Animals that
were handled but not trained were dissected at the same
time of day (CC). The protocol was repeated over the course

of 2 weeks to obtain 5 animals (2 hippocampi) per group
(FC, RT, CC) each representing an independent FC experi-
ment, so that all animals for each group were dissected at the
same time of day on different days. Each sequencing library
was prepared from RNA extracted from two pooled hip-
pocampi from one mouse. All experiments were approved
by the Institution of Animal Care and Use Committee of
the University of Pennsylvania and were carried out in ac-
cordance with all National Institutes of Health guidelines.

RNA sequencing, mapping and filtering

RNA extraction was performed using Qiagen RNAeasy
Microarray Tissue kit. All RNA extractions were per-
formed the same day within a week of tissue collection. In-
duction of positive controls after FC Arc, Fos and Dusp1
was confirmed by qPCR. Two microgram of RNA was
used for library preparation using the TruSeq RNA Sam-
ple Prep Kit (Illumina, San Diego, CA, USA) with Poly
A selection according to the manufacturer’s instructions.
Completed libraries were size-selected (200–400 bp) on an
agarose gel to remove any high basepair fragments, quan-
tified by qPCR (KAPA Biosystems, Boston, MA, USA),
and submitted to the Penn Genome Frontiers Institute
(PGFI) sequencing core at UPENN for sequencing. Three
libraries were multiplexed per lane (one biological replicate
of each three conditions) and sequenced on an Illumina
HiSeq 2000 using Type 3 chemistry, resulting in an aver-
age of 64 million 100 bp pair-end reads per sample. Data
are publicly available through GEO (GSE63412). Sequenc-
ing data from RNA obtained from hippocampus of six an-
imals sacrificed 30 minutes following object-location mem-
ory (OLM) and their corresponding controls (HC) were
generated in the Wood lab at the University of California
Irvine and are publicly available through GEO (GSE44229)
(9). Reads were mapped to the mouse genome (mm9)
using GMAP/GSNAP(10). Only unique and concordant
mapped reads were subsequently used for feature quantifi-
cation. Ensembl (release 65) gene counts were obtained us-
ing HTSeq 0.6.1 (11). Only genes with at least 10 reads in
at least 5 samples were considered for further analysis (Sup-
plementary Table S2).

Statistical analysis

All analyses were performed using open source software
freely available through the R/Bioconductor project (12).
RLE and PCA Plots for exploratory analysis as well as
upper-quantile normalization (UQ) were performed using
EDASeq (v. 2.0.0) (13). RUV normalization was performed
using RUVSeq (v. 1.0.0) (6) after the data was normalized
by UQ using EDASeq. Differential expression analysis was
performed using EdgeR (v. 3.8.2) (14). 625 negative con-
trols for normalization were obtained as genes with an un-
corrected P-value >0.8 in all pairwise comparisons between
RT, FC and CC in microarray data available through GEO
(GSE50423) (15). The R code to reproduce all the main fig-
ures and tables of the article is available as tutorials in the
supplementary material and downloadable form GitHub
(github.com/drisso/peixoto2015 tutorial).

http://github.com/drisso/peixoto2015_tutorial
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Functional annotation analysis

Enrichment of functional annotation on differentially ex-
pressed gene sets was assessed using the Database for Vi-
sualization and Integrative Discovery (DAVID) (16). Func-
tional annotation was limited to KEGG pathways. Enrich-
ment for each term was defined relative to all mouse genes
with at least 10 reads in at least five samples, and was de-
fined as an EASE score <0.1 with at least three genes per
term per dataset.

RESULTS

Global scaling normalization methods do not correct for un-
wanted variation in the data

To assess whether unwanted variation is a problem within
RNA-seq studies in experimental neuroscience, we re-
analyzed studies of the mouse hippocampus in vivo, avail-
able in GEO (http://www.ncbi.nlm.nih.gov/geo/). We re-
quired that the studies met minimal quality criteria: have
an associated PMID, were sequenced with Illumina HiSeq
technology at a depth of at least 10 million reads per sam-
ple, include at least six samples with a minimum of 2 bio-
logical replicates per condition and include gene-level read
summaries. A summary of the studies can be found in Sup-
plementary Table S1. We also included our own previously
published study following object location memory (OLM,
GSE44229). All studies used established methodology for
RNA-seq data analysis and normalization methods that
only correct for sequencing depth, which is standard prac-
tice. The studies cover a variety of experimental manip-
ulations used in neuroscience research, such as compari-
son between knock-out versus wild-type animals, injection
of shRNAs to inhibit the expression of a gene, age, in-
duction of neurodegeneration, and learning and memory
paradigms.

The general assumption of most studies is that the ex-
perimental manipulation of interest is the main source of
variation in the data. The main problem when studying the
brain is that a lot of variables cannot be controlled, so this
assumption may not hold true. One way to visualize the
sources of variation in the data is to use principal compo-
nent analysis (PCA). The use of PCA for data exploration
and quality control is an established practice in genome-
wide expression studies. PCA is a statistical procedure that
looks for a small set of linear combinations of the original
variables to summarize the data losing as little information
as possible (17). These linear combinations are called prin-
cipal components (PCs): the first PC is the weighted average
of the gene expression measures that gives the highest vari-
ance across all samples. Each succeeding component in turn
has the highest variance possible under the constraint that
it is uncorrelated with the preceding components. The clus-
tering of samples by treatment in the space of the first two
principal components is a good indicator of the quality of
the data. Since the samples differ only in the treatment of
interest, provided that appropriate normalization has been
carried out, we expect this to be the main driver of the clus-
tering. If the samples fail to cluster by treatment, the main
source of variation is not the treatment of interest and this
could lead to false positives or false negatives among the

differentially expressed genes. The majority of the publicly
available studies that we obtained from GEO do not show
proper grouping according to treatment in a PCA plot fol-
lowing standard normalization procedures (Figure 1). With
the exception of a big difference in age (Figure 1D) or a po-
tent induction of neurodegeneration (Figure 1F), the effect
size of the experimental manipulations was not enough to
overcome the unwanted variability.

To further investigate how normalization of RNA-seq af-
fects the detection of differential expression in the brain,
we focused on long-term memory formation, since learn-
ing and memory paradigms are particularly problematic
(Figure 1). One of the fundamental questions in neuro-
science is how memories are stored and retrieved in the
brain. It has long been known that long-term memory for-
mation requires transcription (18,19). There are published
findings of genome-wide studies of gene expression follow-
ing memory acquisition using microarrays (20–22), how-
ever only a small number of genes are observed to be con-
sistently regulated across studies. We examined genome-
wide changes of gene expression for two commonly used
paradigms for hippocampus-dependent long-term memory
formation: object location memory (OLM) (9) and con-
textual fear conditioning (FC)(23). Sequencing data from
RNA obtained from hippocampus 30 minutes following
object-location memory (OLM) and their corresponding
controls (HC) were generated in the Wood lab (24) and
are publicly available (GSE44229) (Figure 1H). Sequenc-
ing data from RNA obtained from hippocampus 30 min-
utes following contextual fear conditioning (FC), 30 min-
utes following retrieval of memory (RT) and their corre-
sponding controls (CC) were obtained in the Abel lab and
are available through this article (GSE63412) (see ‘Materi-
als and Methods’ for details on data analysis).

Figure 2A shows box plots of relative log expression
(RLE) (25) among FC, RT and CC replicates. RLE plots
should be centered on 0 and as similar as possible to each
other when samples are properly normalized. A commonly
used global normalization method such as Upper-Quartile
(UQ) centers the means on 0, but is not able to normal-
ize the higher levels of variation present in replicates FC3
and RT3 (Figure 2A). Similar results were obtained using
TMM, while FPKM is the worst performing normaliza-
tion method as previously shown (2,3) (Supplementary Fig-
ure S1A). The presence of unwanted variation that is not
removed using global normalization methods is also evi-
dent by the samples failure to cluster by treatment following
principal component analysis (PCA). The PCA plots ob-
tained using UQ, TMM and FPKM normalization do not
constitute an improvement over raw counts (Figure 2C and
Supplementary Figure S1B). Lack of clustering of biologi-
cal replicates in the PCA plots indicates that unwanted vari-
ation dominates the signal. This in turn will lead to false
negatives (lack of power) or false positives (inaccurate re-
sults) and limit the reproducibility of the differential ex-
pression analysis. These results parallel what we observed in
publicly available datasets (Figure 1). RNA-seq normaliza-
tion methods that are able to correct for factors other than
sequencing depth are available and include: RUV, a normal-
ization method we have recently published that uses factor
analysis to remove systematic artifacts (6,26), PEER (27,28)

http://www.ncbi.nlm.nih.gov/geo/
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Figure 1. Unwanted variation dominates the signal in RNA-seq studies in experimental neuroscience. PCA plots of gene counts normalized using either
upper-quantile (UQ) or FPKM from publicly available datasets from the mouse hippocampus. (A) GSE0261, mRNA-Seq of wild-type (in red) versus
knock-out mice (in blue). A severe batch effect is observed in the WT samples (40). (B) GSE0262, small RNA-Seq of wild-type (in red) versus knock-out
mice (in blue). A severe batch effect is observed in the WT and KO samples (40). (C) GSE58797, mRNA-seq of mice injected with shRNA to knock down
expression of a gene (green), scrambled shRNA (red, controls) and injected with shRNA to knock down expression of a gene and submitted to contextual
fear conditioning (FC, blue). A batch effect can be observed in the controls, and there’s no separation between FC and naı̈ve injected animals (41). (D)
GSE61915, mRNA-seq of young (3 weeks, blue) versus old (24 weeks, red) animals. Proper grouping of treatment samples is observed (42). (E) GSE53380,
mRNA-seq of wild-type (control, in red), KO animals (in blue), WT animals following novel-object recognition (NOR, purple) and KO animals following
NOR (green). One control sample is an outlier, no separation is observed among all other samples (43). (F) GSE65159, mRNA-seq of animals 2 weeks
(2wk,red) and 6 weeks (6wk, blue) following the induction of p25 expression (mouse model of Alzheimer’s disease, AD) an their respective controls (green
and purple). As expected no difference is observed in time without induction of neurodegeneration, proper separation of samples by treatment is observed
in the AD mouse model (44). (G) GSE58343, mRNA-seq of home cage (HC, blue) and fear-conditioned animals (FC, red). Includes pair-end (PE) and
single-end (SE) technical replicates, RNA obtained from neuronal dendrites (dend) vs. soma, and RNA following ribosome imuno-precipitation (IP) versus
supernatant of the same sample (SN). There is no separation between HC and FC samples, or IP and SN samples (45). (H) GSE44229. mRNA-seq of
home-cage (HC, red) versus animals obtained following object location memory (OLM, blue). There’s no separation between HC and OLM samples (24).

and SVA (29,30). Figure 2B and D show the results of ap-
plying RUV to our FC dataset. RUV is based on the use of
negative control genes or samples, that is, genes or samples
that are not expected to be influenced by the biological co-
variates of interest. We obtained 625 negative control genes
using microarray data that contained CC, FC and RT sam-
ples (GSE50423) (15). We defined a negative control gene as
one whose P-value of differential expression between CC,
FC and RT was >0.8. A full list of negative control genes
can be found in Supplementary Table S3. Negative control
samples were constructed by computing differences of bi-
ological replicates within the same treatment condition as
detailed in (6). RUV normalization using negative control
genes and samples (RUVs), modeling k = 5 factors of un-
wanted variation, restores the expected distribution to the
RLE and PCA plots (Figure 2B and D).

The ability of RUVs to restore the expected distribution
to RLE and PCA plots is also seen in the OLM data (Sup-
plementary Figures S2 and S3). We also evaluated the abil-
ity of SVA and PEER to remove unwanted variation from
the FC data (Supplementary Figure S4). Both methods con-
stitute an improvement over global normalization methods,

but only SVA is effective. PEER needs the specification of
the number of factors of unwanted variation; both k = 5 and
k = 1 lead to unsatisfactory results. When SVA is run on de-
fault mode, it infers only one factor of unwanted variation
(k = 1) and is not sufficient to normalize the samples (both
in supervised and unsupervised mode). When manually in-
cluding 5 surrogate variables in the SVA model, the results
are similar to those observed for RUV. Thus, the choice of k
is a key factor in achieving proper normalization, whether
RUV or SVA are used.

RUVs normalization is robust to the choice of negative con-
trols

An important issue regarding the applicability of RUV nor-
malization to a wide variety of datasets is how well the
method performs when negative controls are not available.
Results of RUV normalization of FC data are similar when
using only negative control genes (RUVg, Supplementary
Figure S5) or when using negative control samples and con-
sidering all genes as negative controls (RUVall, Supplemen-
tary Figure S6). We have previously demonstrated that in
fact RUV (and RUVs in particular) is quite robust to the
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Figure 2. RUV normalization corrects for unwanted variation in FC data. In red control samples matched for time of day (CC), in blue samples obtained
30 min after memory acquisition (FC), in green samples obtained 30 min after memory retrieval (RT). (A) Relative log expression (RLE) plot of all
samples following traditional upper-quartile normalization (UQ). (B) RLE plots following normalization with RUV using negative controls and samples
(RUVs). (C) Scatterplot of first two principal components (log-scaled, centered counts) following UQ normalization. The first two PCs explained 66%
and 6% of the variance, respectively. (D) Scatterplot of first two principal components following RUVs normalization. The first two PCs explained 19.9%
and 13.1% of the variance, respectively. Samples do not cluster according to treatment following UQ normalization but do so after applying RUVs. UQ
normalization and RLE and PCA plots were performed using the R/Bioconductor package EDASeq (v. 2.0.0). RUVs normalization was performed using
the R/Bioconductor package RUVSeq (v. 1.0.0).

choice of negative control genes (6). Without knowing what
genes will be appropriate negative controls for the publicly
available datasets in Figure 1, we can implement RUVs as-
suming all genes as negative controls (Figure 3). The de-
gree to which this strategy is effective depends on the effect
size of the treatment, or in other words in the proportion
of the total genes that is in fact differentially expressed, as
well as the number of biological replicates. Figure 3 shows
that normalization is greatly improved using this strategy.
If using all genes as negative controls, proper randomiza-
tion of samples is essential for RUVs to be effective. RUVs
will only be able to remove the unwanted variation observed
within replicate samples, and it will not be effective when
there is perfect confounding between the biological effect of
interest and batch effects (e.g. if all the knock-out samples
are prepared in a different day or by a different technician

than the wild-type samples). The use of negative control
genes that have been obtained empirically from an indepen-
dent dataset in conjunction with the biological replicates is
preferable and gives better results than using only the repli-
cate samples. Negative control genes can be obtained from
publicly available datasets of similar experimental condi-
tions, by using either P-values (as we did in this article) or
entropy (31).

Removal of unwanted variation leads to quantitative and qual-
itative improvements on differential expression analysis

To evaluate the impact of normalization methods on dif-
ferential expression (DE), we analyzed UQ and RUVs nor-
malized data using edgeR (14,32). Figure 4A and B shows
the unadjusted P-value histograms of DE between CC and
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Figure 3. RUV normalization corrects for unwanted variation in GEO datasets. PCA plots of RUVs normalized gene counts (using all genes as negative
controls) from publicly available datasets from the mouse hippocampus. (A) GSE0261, mRNA-Seq of wild-type (in red) versus knock-out mice (in blue).
Batch effect no longer evident (40). (B) GSE0262, small RNA-Seq of wild-type (in red) versus knock-out mice (in blue). Batch effect no longer evident (40).
(C) GSE58797, mRNA-seq of mice injected with shRNA to knock down expression of a gene (green), scrambled shRNA (red, controls) and injected with
shRNA to knock down expression of a gene and submitted to contextual fear conditioning (FC, blue). Batch effect no longer evident (41). (D) GSE61915,
mRNA-seq of young (3 weeks, blue) versus old (24 weeks, red) animals. Proper grouping of treatment samples is mantained (42). (E) GSE53380, mRNA-seq
of wild-type (control, in red), KO animals (in blue), WT animals following novel-object recognition (NOR, purple) and KO animals following NOR (green).
Proper grouping of experimental conditions is improved (43). (F) GSE65159, mRNA-seq of animals 2 weeks (2wk,red) and 6 weeks (6wk, blue) following
the induction of p25 expression (mouse model of Alzheimer’s disease, AD) an their respective controls (green and purple). As expected no difference is
observed in time without induction of neurodegeneration, proper separation of samples by treatment is improved (44). (G) GSE58343, mRNA-seq of home
cage (HC, blue) and fear-conditioned animals (FC, red). Includes pair-end (PE) and single-end (SE) technical replicates, RNA obtained from neuronal
dendrites (dend) versus soma, and RNA following ribosome imuno-precipitation (IP) versus supernatant of the same sample (SN). Separation separation
between HC and FC samples, as well as IP and SN samples is improved (45). (H) GSE44229. mRNA-seq of home-cage (HC, red) versus animals obtained
following object location memory (OLM, blue). Batch effect no longer present (24).

FC samples following UQ and RUVs normalization. A sat-
isfactory P-value histogram should contain a sharp peak
at zero representing genes with strong DE and a ‘floor’ of
values that is approximately uniform in the interval [0, 1],
corresponding to genes that are not DE. Lack of unifor-
mity in the p-value distribution, such as the one observed af-
ter UQ, suggests the presence of confounding variables not
accounted for in the model. RUVs restores uniformity to
the p-value distribution and increases the number of genes
identified as DE (the height of the peak at zero). Figure 4C
and D depicts volcano plots of p-value versus expression
fold-change between CC and FC samples following UQ and
RUV normalization. UQ leads to the discovery of 34 DE
genes (32 up, 2 down), while RUV increases the detection
power, detecting 403 DE genes (237 up, 166 down).

To evaluate the impact of normalization on the quality
of DE genes, we collected a set of positive control genes
whose expression changes have been previously validated
(Supplementary Table S3). Figure 4D shows that RUV in-
creases detection of positive controls on the FC dataset.
While only 60% of the positive controls are detected as dif-
ferentially expressed after UQ normalization, 94% are de-
tected as differentially expressed following RUVs. This is

despite the fact that the controls are biased towards high
fold-changes, which may explain why the estimated fold-
change of the positive controls is not greatly affected by
the choice of normalization method. Similar results were
obtained for RT versus CC samples (Supplementary Fig-
ure S7) and OLM versus HC samples (Supplementary Fig-
ure S8). A list of genes DE at FDR <0.01 for each pair-
wise comparison is available in Supplementary Table S4.
To further assess the quality of the DE results we evalu-
ated which KEGG pathways were significantly enriched in
the DE genes relative to all genes detected by RNA-seq
in our samples (Supplementary Figure S9). Enrichment of
KEGG pathways was assessed using DAVID (16) and de-
fined as an EASE score <0.1 with at least three genes per
term per dataset. Only the MAPK pathway was enriched in
the DE gene set detected following FC after UQ normal-
ization. The RUVs normalized dataset showed enrichment
of MAPK, T-cell and Toll-like receptor (NF-�B/cytokines,
Jak/STAT), GnRH (cAMP/PKA,CREB, PKC) and In-
sulin signaling pathways in the upregulated genes following
FC. This is consistent with the previously established role
of these pathways in learning and memory (33–37). We also
hypothesized that the increase of detection of true biologi-
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Figure 4. Normalization impacts differential expression after contextual fear conditioning. (A) Distribution of unadjusted edgeR p-values for tests of
differential expression between FC and CC samples following UQ normalization. (B) Distribution of unadjusted edgeR P-values for tests of differential
expression between FC and CC samples following UQ normalization. The distribution of P-values following UQ normalization is far from the expected
uniform. RUV returns uniformity to the p-value distribution and increases discovery of differentially expressed genes (genes that have a low P-value). (C)
Volcano plot of differential expression (−log10P-value versus log fold change) of UQ normalized samples. (D) Volcano plot of differential expression of
RUVs normalized samples. Genes with and FDR <0.01 are highlighted in blue. Positive controls are circled in red, negative controls are circled in green
(Table S2). RUV increases the detection of known differentially expressed genes from 60% to 94%. Differential expression analysis was performed using
R/Bioconductor package edgeR (v. 3.8.5).

cal signal would lead to a higher agreement in DE across
technologies. Figure 5 shows the concordance of the DE
ranks following FC obtained using edgeR for UQ or RUVs
normalized RNA-seq data relative to differential expres-
sion detected using limma (38) on microarray data with-
out removal of unwanted variation (GSE50423). Remov-
ing unwanted variation in the RNA-seq dataset by RUVs
improves consistency between platforms, doubling the con-
cordance of the top 500 DE genes despite the fact that no
unwanted variation was removed from the microarray data.
These findings provide further evidence that RUVs is in-
creasing detection of true biological signal.

Removal of unwanted variation is necessary for cross-site data
integration

The ability to integrate datasets, either within multi-site se-
quencing projects or to perform meta-analysis of publicly
available data holds great promise as a way to increase bi-
ological insight while maximizing investment of resources.
The challenge of cross-site data integration is that differ-
ences in protocols, reagents and operators will produce site-
specific batch effects that can obscure the biological signal.
To evaluate the ability of RNA-seq normalization methods
to deal with multi-sites batch effects, we combined the FC
and CC samples obtained in the Abel laboratory with the
HC and OLM samples obtained in the Wood laboratory.
Figure 6A and C shows the RLE and PCA plots follow-
ing UQ, in which a site-specific batch effect is evident. We
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Figure 5. RUV increases concordance of RNA-seq and microarray differ-
ential expression following fear conditioning. Y-axis: number of genes in
agreement between microarray and RNA-seq data at any given rank. X-
axis: differential expression rank (low to high P-value). In red: differen-
tially expressed genes obtained using edgeR for UQ normalized RNA-seq
data relative to those detected by microarrays using limma. In blue: dif-
ferentially expressed genes obtained using edgeR for RUVs normalized
RNA-seq data relative to those detected by microarrays using limma. The
agreement between technologies on the top 100 differentially expressed
genes doubles with RUVs normalization.

applied RUVs using the set of negative controls in Supple-
mentary Table S3 and combining HC and CC samples as
controls, since they both represent the same biological con-
dition. The distribution of the samples in the RLE and PCA
plots is noticeably improved following RUVs (Figure 6B
and D). Next, we used edgeR to evaluate differences in gene
expression of OLM or FC samples versus the combined
CC+HC controls for UQ and RUVs normalized datasets.
Figure 7 shows the number of genes regulated by OLM and
FC (FDR < 0.01) and the corresponding enriched KEGG
pathways. The lists of DE genes for the combined analysis
(FDR < 0.01) are available in Supplementary Table S5. UQ
causes a disproportionate increase in downregulated genes
for both comparisons (Figure 7A). This is particularly evi-
dent for the OLM versus HC + CC comparison for which
we observed an enrichment in ‘Ribosome’ and ‘Glycolysis’
KEGG pathways, often thought of as ‘housekeeping’ func-
tions and likely false positives. RUVs removes this effect
(Figure 7B). The resulting number of DE genes at FDR
<0.01 following FC is slightly less than when the datasets
are analyzed separately. Combining the datasets consider-
ably increases the number of genes and pathways detected
following OLM (Figure 7B). More importantly, it allows us
to ask what are the genes and pathways that are regulated by
both FC and OLM (FC + OLM versus HC + CC) as well as
exclusively by FC or OLM (FC versus OLM). The number
of genes DE following both tasks is 308 at FDR <0.01 while
no genes are detected as DE between them (Supplementary
Table S5). Combining the datasets identifies as upregulated
the MAPK, Jak/STAT and Insulin signaling pathways, all

of which are known to be involved in memory and synap-
tic plasticity (35,37,39). When we normalize FC or OLM
datasets independently using RUVs only 46 genes overlap
between the two lists (Supplementary Table S4), suggesting
that independent analyses are not as powerful and illustrat-
ing the benefit of integrating data across sites. Analyzing
the combined datasets using UQ results in 7000 genes iden-
tified as DE between FC and OLM, including the majority
of ‘housekeeping’ genes (Supplementary Table S5).

A primer to increase power and reproducibility of RNA-seq
studies in neuroscience

Figure 8 presents a step-by-step guide to implement nor-
malization of RNA-seq using RUVSeq (6), to be used
by both authors and reviewers to guarantee high-quality
RNA-seq data-analysis. We recommend that authors follow
established guidelines for both alignment and feature count-
ing (see (32)) as well as proper replication and randomiza-
tion of experiments. Step 1 is to explore the distribution of
variation in the data both before normalization and follow-
ing normalization for sequencing depth only (UQ, TMM),
which can be done by constructing the RLE and PCA plots
previously shown, using a publicly available package such
as EDASeq (13). If the RLE plots are not evenly distributed
and centered on 0 and the PCA plots do not display proper
replicate sample clustering (Figure 2A and C), additional
normalization is needed. Step 2 is the collection of proper
controls. Negative control genes can be extracted from pub-
licly available data, as illustrated in our example. In practice,
when only a small proportion of the genes in the genome is
expected to be differentially expressed using all the genes
as negative controls or using ‘housekeeping’ genes as nega-
tive controls are viable alternatives. Identifying a small sub-
set of positive control genes or pathways is recommended
as it provides a way to judge the results of the DE anal-
ysis. Step 3 is the removal of unwanted variation through
factor analysis. Iteratively account for k = 1, . . . , n factors
of unwanted variation using RUV (6) or similar methods
(such as SVA), checking RLE and PCA plots each time un-
til proper distributions are restored (Figure 2B and D). Step
4. Perform DE analysis using a method that allows the ad-
dition of one or more terms that model the unwanted vari-
ation, such as edgeR or DESeq2 (32). Check P-value his-
tograms and distribution of negative and positive controls
in the sample (Figure 4) to evaluate performance. Return to
Step 3 if performance is not satisfactory. PCA plots and P-
value histograms should be made available so that readers
are able to judge the quality of the data analysis. Supple-
mentary file 1 contains the tutorial that allows anyone to
implement the suggested outline on the FC and OLM data.
Supplementary file 2 contains a tutorial that allows readers
to implement RUV on the publicly available datasets ana-
lyzed in this article. Collectively they allow for reproduction
of all figures in this article. The source code and data neces-
sary to run the tutorial can be downloaded through GitHub
(github.com/drisso/peixoto2015 tutorial)

DISCUSSION

We have illustrated the prevalence of batch effects in RNA-
seq studies using examples from experimental neuroscience

http://github.com/drisso/peixoto2015_tutorial
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Figure 6. RUV allows removal of laboratory specific effects for combined analysis of gene expression changes following FC and OLM. In red control
samples matched for time of day (CC), in blue samples obtained 30 min after memory acquisition (FC), in green samples obtained after object location
memory (OLM). (A) Relative log expression (RLE) plot of all samples following upper-quartile normalization (UQ). (B) RLE plots following normalization
with RUV using negative controls and samples (RUVs). (C) Scatterplot of first two principal components (log-scaled, centered counts) following UQ
normalization. The first two PCs explained 73.4% and 9.6% of the variance, respectively. (D) Scatterplot of first two principal components following
RUVs normalization. The first two PCs explained 15.5% and 9.4% of the variance, respectively. Samples cluster according to laboratory following UQ
normalization but cluster according to treatment after applying RUVs.

and shown that traditionally used methods for RNA-seq
data normalization are not able to remove them. This prob-
lem likely extends to a variety of datasets for which sources
of variation are hard to control. These limitations can lead
to the identification of a small number of confident changes
(a large proportion of false negatives) and/or to uncovering
statistically significant changes that are not due to the treat-
ment, which will not be reproducible (false positives). Here,
we present a novel application of a recent method for RNA-
seq normalization, RUV and show that it is better able to
correct for unwanted sources of variation when proper con-
trols are provided. We show that within laboratories, RUV
considerably increases the number of genes discovered as
differentially expressed. We demonstrate that this increase
is indeed an improvement in the detection of true biological
signal by showing that it increases the discovery of positive
controls, known pathways involved in learning and mem-

ory and cross-platform concordance. When integrating data
across different laboratories, commonly used normalization
methods lead to artifacts that cause housekeeping genes to
be inferred as differentially expressed. In contrast, RUV
normalization is able to properly correct the biases intro-
duced by integrating data from different sites, allowing for
direct comparisons regarding differential gene expression
following two different behavioral paradigms. These anal-
yses suggest that both contextual fear conditioning and ob-
ject location memory induce the same changes in gene ex-
pression. Finally, we outline a step-by-step guide on how to
detect sources of unwanted variation in the data and apply
RUV to remove this variation prior to differentially expres-
sion analysis. We hope these guidelines together with all the
datasets generated in this article will serve as resource, for
both authors and reviewers, to ensure that results obtained
using high-throughput sequencing technologies are repro-
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Figure 7. Quantitative and qualitative effects of the choice of normaliza-
tion method in combined analysis of gene expression changes following
FC and OLM. (A) Number of genes and enriched KEGG pathways for
OLM and FC relative to combined controls following UQ normalization.
UQ normalization leads to inferring housekeeping genes as differentially
expressed. (B) Number of genes and enriched KEGG pathways for OLM
and FC relative to combined controls following RUVs normalization. The
apparent regulation of housekeeping genes has been removed.

Figure 8. Step-by-step outline of the application of RUV to normalization
of RNA-seq data.

ducible and thus truly contribute to the advance of knowl-
edge in science.
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