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ABSTRACT OF THE DISSERTATION

Low Dissipation Spin Currents in Magnetic Materials

by

Daniel Mark Hill

Doctor of Philosophy in Physics

University of California, Los Angeles, 2019

Professor Yaroslav Tserkovnyak, Chair

This thesis advances the theory of spintronics by exploring ways in which collective spin

dynamics can be manipulated in magnetic materials, with an emphasis on sytems which can

exhibit low dissipation spin currents and nontrivial response to external driving.

In Chapter 1, we provide an introductory review of mesoscopic ferromagnetic dynamics.

The Landau-Lifshitz equation is motivated and derived, with a brief discussion on its appli-

cation in the presence of dissipative forces and external driving. Then we discuss the notion

of spin superfluidity in easy plane ferromagnets and compare this to traditional Ginzberg-

Landau superconductivity.

In Chapter 2, we further extend the analogy between ferromagnetism and superconduc-

tivity, and apply this anology to the study of the ferromagnet with strong coherent easy-plane

anisotropy and weak in-plane coherent anisotropy. The low bias non-equilibrium phase di-

agram is mapped, and the potential for producing applications with superconductor-based

circuit functionality at elevated temperatures is discussed.

In Chapter 3, the spin superfluid is studied in strong driving regimes in which the anaology

to superconductivity begins to break down. Multiple non-equilibrium phases are discovered

which are associated with the onset of non-linear effects, such as choatic oscillations and sta-

tionary soliton formation, near the spin torque injection region. Using numerical simulations
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and analytical modeling, we observe a robustness in spin superfluid transport and its high

bias phase diagram despite the presence of symmetry breaking dipole-dipole interactions,

finite size effects, and dissipation.

In Chapter 4, we turn to microscopic magnetic lattices, in particular weakly coupled

arrays of quantum spin chains with fermionizable, via a Jordan-Wigner transformation,

Hamiltonians. Using mean field theory, we find models which may exhibit dissipationless

spin currents closely analogous to that of superconductivity and the quantum Hall effect.

In Chapter 5, we study the manipulation of magnetic domain walls on a wire with me-

chanical waves. We show how ferromagnetic and anitferromagnetic domain walls can be

driven by circularly and linearly polarized waves, respectively. We note the potential for

applications using mechanical waves as a means for manipulating magnetic solitons in insu-

lators.

For Chapter 6, in collaboration with an experimental study on a cleaved edge overgrowth

sample, we analyze the chiral edge states of the quantum Hall effect and their tunneling

properties. Our modeling provides a theoretical fooundation from which the experimental

method of momentum resolved spectroscopy can provide insight into how the quantum Hall

effect evolves with changing magnetic field. Spin splitting of the chiral edge states is observed

in the presence of a strong in-plane magnetic field.

We close with Chapter 7 giving an outlook for future work which could build off of the

research presented in this thesis.
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Chapter 1

Introduction

Spin, or intrinsic quantum mechanical angular momentum, is a fundamental property in

physics. Quarks, electrons, photons, the ever-present particles that constitute much of the

known universe, all have spin associated with them. The study of spin and its applications

is called spintronics. The research detailed in this thesis advances the theory of spintronics

by exploring many ways in which collective spin dynamics can be manipulated in magnetic

materials.

This chapter covers some basic preliminaries with the hopes of providing the uninitiated

reader with a more solid foundation from which to better understand the following chapters.

This chapter is aimed roughly at the level of an advanced undergrad or beginning graduate

student.

1.1 The Landau-Lifshitz equation

The Landau-Lifshitz (LL) equation is essential for the mesoscopic or macroscopic modeling of

a ferromagnet. Despite describing one of the simplest magnetic phases known in nature1, the

LL equation admits a wide range of non-trivial solutions, some of which are highly non-linear

or chaotic [6]. An early phenomenological derivation of the equation was published by Lev
1Examples of magnetic phases that typically require somewhat more advanced treatment include antifer-

romagnets, ferrimagnets, spin glasses, and spin liquids.
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Landau and Evgeny Lifshitz in 1935 [7]. The contemporary version of the equation, derived

by Langrangian methods, was published by Gilbert in 1955 [8]. In order to understand how

the LL equation arises, we will first consider the context in which a ferromagnetic phase

typically develops.

1.1.1 Motivation for and derivation of the Landau-Lifshitz equation

Consider a d dimensional lattice of atoms with non-zero total spin at each lattice site. We

denote the quantum mechanical spin operators at lattice site i by Si = (Sxi , S
y
i , S

z
i ). These

operators satisfy the spin commutator relations

[Sαi , S
β
j ] = i~ δij

∑

γ

εαβγ S
γ
i (1.1.1)

where δij is the Kronecker delta and εαβγ is the Levi-Civita symbol. The time evolution and

ground state for these spins is determined by the Hamiltonian H({Sαi }). For example, in the

case of nearest neighbor exchange coupling, easy-plane or easy-axis anisotropy, and Zeeman

coupling in an applied magnetic field, the Hamilton takes the form

H = −J
∑

〈i,j〉

Si · Sj +K
∑

i

(Si · ζ)2 +
gµB
~
∑

i

Si ·B (1.1.2)

Here the sum over 〈i, j〉 denotes a sum over nearest neighbor lattice sites, J is exchange

coupling which is taken to be positive for the case of ferromagnetism, ζ is a unit vector

pointing along the anisotropy axis, g is the Landé g-factor, µB is the Bohr magneton,B is the

magnetic field, and K parameterizes anisotropy strength and, through its sign, determines

whether the anisotropy is easy-axis (K < 0) or easy-plane (K > 0). This is an important

hamiltonian which can be used to model many of the observed features of magnetic materials;

however, it neglicts various potentially important features such as coupling to other types

of excitations, e.g. magnon-phonon coupling, or relativistic corrections, e.g. Dzyaloshinskii-
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Moriya interactions [9].

The equations of motion for the spin operators in the Heisenberg picture are

dSαi
dt

=
i

~
[H,Sαi ] (1.1.3)

In principle, this equation tells us everything we need to know about how these spins behave;

however,depending on the Hamiltonian, the equation may be very difficult or even impossible

to solve, and even if it is solvable, the solution giving the detailed time evolution of every

single spin in a macroscopic system would likely be far more information than is observable.

We may instead restict our interest to a mesoscopic quantity which averages out some of the

microscopic details. One such quantity is the coarse grained spin texture, defined as

sα(r, t) =
1

Vr

∫

Vr
ddr′

∑

i

〈Sαi 〉δ(r′ − ri) (1.1.4)

where 〈A〉 denotes an (ensemble averaged) expectation value of the operator A. The spin

texture s(r, t) is the average spin density within a volume Vr centered at r. Now we may

ask what equation of motion, analogous to (1.1.3), may be found for sα(r, t)?

Starting with a simple case, we may consider just the Zeeman term in equation (1.1.2).

The Heisenberg equation of motion for the spins is

dSi
dt

=
i

~
[HZeeman,Si] =

gµB
~
B × Si (1.1.5)

This equation is convenient in that that the right hand side is linear in the spin operator, so

in order to find the equation of motion for the spin texture, we can simply apply the coarse

graining proceedure on both sides to get

ds

dt
=
gµB
~
B × s (1.1.6)
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The solution to this equation can be found simply by noting that |s|2 is constant in time,

because d
dt
|s|2 = 2 s · ds

dt
= 0, and that ds

dt
is perpendicular to s and B by nature of the cross

product. Thus s(x, t) rotates around the magnetic field, sweeping out a cone shape over

time, at an angle set by the initial conditions.

The above proceedure does not work for the first and second terms in equation (1.1.2)

because higher order terms of the form 〈Sαi Sβj 〉 get in the way. Instead, in order to guess

at the form of the equation, we can use the correspondence principle between commutators

and poisson brackets [10]

[f̂ , ĝ]←→ i~{f, g}P +O(~2) (1.1.7)

where {. . . , . . . }P denotes the Poisson bracket, and we have used hats to distiguish quantum

operators from corresponding classical dynamical variables. As a result, applying correspon-

dence to equation (1.1.3), we may expect an equation of motion for the classical dynamical

variable s(r, t) in the form
ds

dt
= {s,F}P (1.1.8)

where the free energy, F , is a functional of s which is in some sense a coarse grained semi-

classical version of the quantum mechanical Hamiltonian. This equation can be further

expanded using the classical correspondence of the spin operator commutation relations

{sα(r), sβ(r′)}P =
∑

γ

εαβγ s
γ(r) δ(r − r′) (1.1.9)

resulting in
ds

dt
=
δF
δs
× s (1.1.10)

Here, comparing to equation (1.1.6), we can see that the functional derivative of the free

energy with respect to spin texture acts as an effective magnetic field for the spin texture.
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Equation (1.1.10) is often writen as

dM

dt
= γHeff ×M (1.1.11)

where γ is the gyromagnetic ratio,M = −γs is the magnetization, and Heff = − δF
δM

is the

effective magnetic field.

Equation (1.1.10) is the functional derivative form of the non-dissapative version of the

Landau-Lifshitz equation. Now that we have this equation, we must inquire into what form

to expect for the free energy F .

1.1.2 The Landau free energy and symmetry

As stated above, the free energy F is a functional of the spin texture. The precise form of this

functional dependence is that which reproduces the semi-classical physics of the ferromagnet.

Note that F depends not only on s, but also on its derivatives, e.g. ∇s. This can be seen

from the exchange coupling term in the Hamiltonian (1.1.2). For simplicity, consider the

spins along one partucular axis of the lattice. The exchange coupling is a sum of terms of

the form

−JSi · Si+1 =
J

4

[
(Si − Si+1)2 − (Si + Si+1)2

]
(1.1.12)

∼ adJ

4

[
(a ∂xs)2 − (2s)2

]∣∣∣∣
x=xi+

a
2

(1.1.13)

where a is the lattice spacing. Summing up over terms of this form results in an approximate

integral over the s dependent expression in line (1.1.13) The approximate replacement of

quantum spin operators with their coarse grained classical analogue, going from (1.1.12) to

(1.1.13), is more accurate in the limit of large spin S per lattice site. This makes sense

intuitively because the smallest spin, S = 1
2
is simply a two state system, i.e. a highly

quantum mechanical system; whereas, the larger S gets the closer the system gets to being
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a macroscopic scale magnet, i.e. highly classical system.

More generally, in order to find a useful form for F , we may need to expand in terms

of s and its derivatives. The resulting truncated series can be simplified with symmetry

considerations and fitted to experimental data.

As an example of how this works, we will consider a particularly simple, highly symmetric

case. Suppose we have a magetic system which is translation invariant and rotation invariant,

meaning that there are no prefered directions or locations. We require that the free energy

satisfies these symmetry conditions. The free energy is an integral over a local free energy

density which can be expressed as a series in s, i.e.

F =

∫
ddrf (1.1.14)

where

f =
∑

nm`

anm`(r)(sx)n(sy)m(sz)` +
∑

nm`µα

bµαnm`(r)(sx)n(sy)m(sz)`(∂µs
α) + . . . (1.1.15)

The first term is a series in components of s, the second term is a series over first order

derivative terms, and the dots represent all terms involving higher order derivatives.

Translation invariance implies that the the coeficients in the series (1.1.15) must be

position independent, such that the only position dependence in the free energy density

comes from implicit dependence through s(r, t).

For rotation invariance, we will assume that spin space and position space are indepen-

dently invariant, meaning that the free energy does not change if one rotates all spins at

the same time, nor does it change if one rotates the entire magnet in position space while

keeping spin direction fixed. The former implies that the free energy can only depend on

rotation invariant combinations of the components of s, e.g. powers of s · s. The spa-

tial rotation invariance similarly requires invariant combinations of derivatives of the form
∑

µ ∂µ(. . . )∂µ(. . . ) or ∇2(. . . ).
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With these constraints we have narrowed down the free energy density to

f = a2|s|2 + a4|s|4 + · · ·+ c2

∑

µ

∂µs · ∂µs+ . . . (1.1.16)

Note that all of the terms of the form |s|n are irrelevant for the Landau-Lifshitz equation.

The functional derivative of these terms is proportional s, so they don’t contribute to the

cross product in equation (1.1.10). Instead these terms are important when minimizing the

free energy and, as such, are useful modeling phase trasitions and qualitatively predicting

how the magnetization strength behaves as a function of tempreature or magnetic field.

We can further simplify the free energy by focusing on the low energy, long wavelength

behavior, such that only the lowest order derivatives are important. In this case the Landau-

Lifshitz equation takes the form

ds

dt
= (−c2∇2s)× s (1.1.17)

If we relax the rotaional invariance condition, then the above equation will be modified by

the addition of anisotropy terms.

1.1.3 Dissipation and the Landau-Lifshitz-Gilbert equation

Dissipation in magnetic dynamic occurs naturally as a result of coupling to the atomic lattice

and the evironment around it. This coupling will transfer energy from the coarse grained spin

texture to various energetic excitations such lattice vibrations, eddy currents, or microscopic

spin waves [11] [12], which will result in an excited spin texture state decaying into the

ground state if not sustained by external driving.

Due to the many competing mechanisms, the microscopic details of dissipation can be

very complex, despite often having a fairly straightforeward consequence for macroscopic

dynamics. As such, a phenological approach to modeling dissipation is often a good starting
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point. To this end, one can add a damping term proportional to the derivative of the

macroscopic dynamical variables to the equation of motion. To ensure that the damping term

is incorporated properly, we can take the Lagrangian approach with a Rayleigh dissipation

function, e.g.

R =
α

2

∫
ddr

(
ds

dt

)2

(1.1.18)

where α is the Gilbert damping parameter. In terms of sperical coordinates of the spin

texture,

s(x) = s




cosφ(x) sin θ(x)

sinφ(x) sin θ(x)

cos θ(x)




(1.1.19)

the effective Lagrangian for the coarse grained spin texture is

L =

∫
ddr

[
s(1− cos θ)

dφ

dt

]
−F (1.1.20)

where s = |s| is the spin saturation density, which is typically taken to be constant. The

kinetic-energy-like term is proportional to the rate of solid angle swept out by the spin

dynamics, which can be seen by intgrating over time

∫
dt

[
(1− cos θ)

dφ

dt

]
=

∫
[1− cos θ(φ)]dφ =

∫ [∫ θ(φ)

0

dθ sin θ

]
dφ =

∫
dΩ (1.1.21)

The non-conservative form of the Euler-Lagrange field equations with a Rayleigh dissipation

function are
d

dt

(
δL
δψ̇i

)
− δL
δψi

+
δR
δψ̇i

= 0 (1.1.22)

Here we have denoted time derivatives of the dynamical field variables with a dot. After

some manipulation, these equations applied to the Lagrangian of equation (1.1.20) and

the Rayleigh dissipation function of equation (1.1.18) result in the Landau-Lifshitz-Gilbert
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equation
ds

dt
=

(
δF
δs
− αds

dt

)
× s (1.1.23)

An equivalent form of this equation can be found by substituting the expression on the

right hand side into the damping term derivative and applying the identity s × (ṡ × s) =

(s · s)ṡ− (s · ṡ)s = s2 ṡ, resulting in

(1 + α2s2)
ds

dt
=

(
δF
δs
− αδF

δs
× s
)
× s (1.1.24)

which (without the α2s2 term, which can often be neglected or simply absorbed into a

redefinition of F) is the original Landau-Lifshitz equation with dissipation.

1.1.4 Spin torques and boundary conditions

The ground state solution for the Landau-Lifshitz equation is often fairly simple, e.g. a

uniform, symmetry-breaking magnetization, and this state is often achieved fairly quickly

due to damping. One way to find more non-trivial behavior in the system is to to introduce

some external driving. For a ferromagnetics, a non-equilibrium state can be produced by

driving angular momentum into the system, resulting in additional spin torque terms in the

equations of motion [13] [14].

The spin torques under consideration in this thesis are mainly those localized at the

edges of effectively two dimensional systems. Such torques can be expressed as boundary

conditions on the ferromagnet by setting the conserved spin current at the edge equal to

the applied spin torque. For example, for the isotropic ferromagnet, the equation of motion

(1.1.17) can be expressed as a continuity equation

ds

dt
= −∇Js (1.1.25)

where the components of spin current tensor Js for the sα conserved current in the µ direction
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are

Jµαs = c2

∑

βγ

εαβγs
γ∂µs

β (1.1.26)

Thus the boundary conditions at an interface I with unit normal n̂ would be

Js · n̂
∣∣∣∣
I

= τext (1.1.27)

where τext is an externally driven torque acting on the magnetic intergface. The torque

could be produced by e.g. spin Hall currents in Pt contacts [15] or tunned spin polarized

edge currents on topological insulator surfaces [16].

In addition to these driving torques, one can also expect enhanced magnetic damping

at the interface due to the connected material adding additional channels for dissipation.

Thresulting localized damping can be accounted for with another Rayleigh dissipation for

the boundary, which leads to a modification of equation (1.1.27) to the following form [17]

Js · n̂
∣∣∣∣
I

= τext −
~
4π
Gω (1.1.28)

where ω is the angular frequency of rotation vector of the spin texture and G is the spin

mixing conductance, which is a matrix in general.

1.2 Spin superfluids

Low dissipation spin currents come in many forms: ballistic transport, superfluid transport,

equilibrium currents, and spin Hall effect currents. A more thorough overview of these

different low dissipation spin currents can be found in Ref. [18]. Here we will focus mainly

on spin superfluid transport.

Spin superfluids are predicted to occur in easy-plane ferromagnets. The easy plane ferro-

magnet has U(1) rotational symmetry similar to that of traditional superfluids and supercon-

ductors, thus the name spin superfluid. As we shall see below, however, these phenomenon
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are not identical; though they do exhibit some simularities in robustness of currents due

to these currents being associate with topologically conserved winding about the axis of

symmetry [19].

The Landau free energy of the easy-plane ferromagnet in a magnetic field parallel to the

anisotropy axis is

F =

∫
dr

[
A

2
(∇n)2 +

K

2
n2
z + hnz

]
(1.2.1)

where n = s/s is the normalized spin texture, A is the spin stiffness, K is the anisotropy

parameter, and h parameterizes the magnetic field strength. In the absense of a magnetic

field, the anisotropy term pins the ground state into the xy-plane. Compared to the fully

O(3) symmetric case of equation (1.1.16), the addition of the anisotropy term reduces the

spin space symmetry to just U(1) rotational symmetry about the z-axis. The Landau-

Lifshitz-Gilbert equations for the spin texture in terms of the standard spherical angle φ and

θ parameterization are [20]

s ∂tθ − sα sin θ ∂tφ = −A∇(sin2θ∇φ)

sin θ
(1.2.2)

s sin θ ∂tφ+ sα ∂tθ = A∇2θ − A

2
(∇φ)2sin 2θ +

K

2
sin 2θ + h sin θ (1.2.3)

This form is a common starting point for analytical study. These equations can be solved for

soliton and wave solutions via the method of inverse scattering transform [21]. In order to

illustrate the analogy to superfluidity, we rewrite these equations in terms of the conserved

(in absence of damping) out of plane component, nz, giving

− s ∂tnz − sα(1− n2
z)∂tφ = −A∇[(1− n2

z)∇φ] (1.2.4)

s
√

1− n2
z ∂tφ+ sα

∂tnz√
1− n2

z

= A∇
(
∇nz√
1− n2

z

)
+ [K − A(∇φ)2]nz

√
1− n2

z + h
√

1− n2
z

(1.2.5)

Spin superfluid transport is often considered in the limit nz � 1 so as to ignore the possibility
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of phase slips, which is the phenomenon of loss of winding number about the z-axis via the

spin texture "slipping" over the north pole (θ = 0) due to quantum or thermal fluctuations.

Driving a spin superfluid through the system can induce an out of plane component of the

spin texture which is approximately proportional to the driving strength in the low bias,

linear response regime. Thus, in assuming nz � 1, we are typically assuming a low driving

regime2. Under this approximation, we drop squared and higher order terms of nz and its

derivatives, resulting in a much simpler form for the Landau-Lifshitz-Gilbert equations

− s ∂tnz − sα∂tφ ≈ −A∇2φ (1.2.6)

s ∂tφ+ sα∂tnz ≈ A∇2nz + [K + h− A(∇φ)2]nz (1.2.7)

This is the form where the similarity to tranditional superfluidity is most apparent. The spin

superfluid response to boundary torques is studied under this approximation in Ref. [15].

The nz � 1 approximation is not used in Ref. [20], however, where the authors instead opt

for neglecting Gilbert damping, which mainly causes an algebraic decay of the spin superfluid

current without significantly impacting other qualitative features of the spin superfluid.

1.3 Comparison to traditional superconductivity

Now let us turn to the traditional superconductivity for a brief comparison. Superconduc-

tivity and superfluidity can arise in Fermi liquids at low temperatures. Due to effectively

attractive interactions, often mediated by phonons in the case of an electron fermi sea, the

Fermi liquid develops an instability to a zero-viscosity ground state which can in some ways

be thought of as a delocalized Bose-Einstein condensation of bosonic composite quasiparti-

cles called cooper pairs. The system develops a macroscopically large filling of the cooper

pair ground state, which allows the wavefunction of this state to be treated effectively as a
2An exeption can occur when roughly equal torques on opposite ends of the ferromagnet work against

eachother, inducing greater tension in the spin texture through winding, but not inducing significant out of
plane spin polarization.
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classical field. This classical field plays the role of the order parameter in the Landau free

energy

FSC =

∫
dr
[
a1(∇Ψ)2 + a2|Ψ|2 + a3|Ψ|4

]
(1.3.1)

Note that the U(1) symmetry in this case comes from the invariance under a constant phase

shift of the complex valued order parameter,

Ψ(r, t) −→ Ψ(r, t) eiδ (1.3.2)

Because the order parameter is simply a macroscopically filled wavefunction, we can model

it’s dynamics with a Schrödinger equation

i~ ∂tΨ = − ~2

2m

(
∇− iq

~c
A

)2

Ψ + qVΨ (1.3.3)

where m and q are effective mass and effective charge for the cooper pair quasiparticles, and

A and V are vector and scalar potentials. For the sake of comparison to the spin superfluid

equations (1.2.6) and (1.2.7), we expand the superfluid order parameter in terms of its phase

and modulus, Ψ = Ψ0 e
iϕ, and separate the real and imaginary parts of the resulting equation

to get

~ ∂tΨ0 = − ~2

2m
(Ψ0∇2ϕ+ 2∇Ψ0 · ∇ϕ) (1.3.4)

− ~Ψ0 ∂tϕ = − ~2

2m
[∇2Ψ0 −Ψ0(∇ϕ)2] + qVΨ0 (1.3.5)

where for simplicity we have dropped the vector potential. Now let us compare these equa-

tions with equations (1.2.6) and (1.2.7).

The most glaring difference between the spin superfluid and superconductor equations of

motion is the presence of dissipation in the former. However, this doesn’t kill the anology just

yet. For superfluids some degree of dissipation is not completely unheard of, as dissipation

has been observed in persistent supercurrents of atomic Bose-Einstein condensates [22], where
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the supercurrent decays in discrete jumps due to vortex phase slips. On the other hand,

some magnetic materials, such as Yittrium-Iron-Garnate (YIG) have extremely low Gilbert

damping [23].

If we neglect damping and spatial varations in nz and Ψ0, then the equation become

effectively identical. For this case, the superconductor phase rate of change is determined

by the local scalar potential. In a sense one can think of the magnetic field playing the role

of a (shifted) chemical potential for the spin superfluid.

Without damping equation (1.2.6) is a continuity equation for a conserved spin density

with an associated current of

J = −A∇φ (1.3.6)

For the superconductor, equation (1.3.4) bears some simularity to a continuity equation, but

of course Ψ0 is not conserved. Instead, the particle density, Ψ2
0, is conserved and satisfies

the continuity equation

∂t|Ψ|2 = −∇ · JSC (1.3.7)

where the current can be found by evaluating the time derivative on the left hand side with

the equation of motion to get

JSC =
~

2m
(Ψ∗∇Ψ−Ψ∇Ψ∗) =

~
m

Ψ2
0∇ϕ (1.3.8)

Thus for both systems, the superfluid dynamics is intricately tied to the U(1) winding

angle in both space and time, with currrents proportional to the winding gradient and a

local "potential" proportional to the local winding rate. As we shall see in later chapters,

the analogy between these two systems holds in some other contexts as well, and becomes

quite useful, as one may simply reduce the ferromagnet model to a recongizable form and

then translate results directly from the theory of superconductivity. However, we shall also

see that the analogy breaks down for the ferromagnet in the presence of strong external

driving, and this is the regime in which distinguishing physics can arise, such as stationary

14



solitons and persistent chaos.
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Chapter 2

Easy-Plane Magnetic Strip as a Long

Josephson Junction

Spin-torque-biased magnetic dynamics in an easy-plane ferromagnet (EPF) is theoretically

studied in the presence of a weak in-plane anisotropy. While this anisotropy spoils U(1)

symmetry thereby quenching the conventional spin superfluidity, we show that the system

instead realizes a close analog of a long Josephson junction (LJJ) model. The traditional

magnetic-field and electric-current controls of the latter map respectively onto the symmetric

and antisymmetric combinations of the out-of-plane spin torques applied at the ends of

the magnetic strip. This suggests an alternative route towards realizations of superfluid-

like transport phenomena in insulating magnetic systems. We study spin-torque-biased

phase diagram, providing analytical solution for static multidomain phases in the EPF. We

adapt an existing self-consistency method for the LJJ to develop an approximate solution

for the EPF dynamics. The LJJ-EPF mapping has potential for producing applications

with superconductor-based circuit functionality at elevated temperatures. The results apply

equally to antiferromagnets with suitable effective free energy in terms of the Néel order

instead of magnetization.
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2.1 Introduction

It has been suggested [18,24,25] that insulating thin-film easy-plane ferromagnets (EPF) can

exhibit features of superfluid spin transport, which is attractive for spintronics applications,

due to low dissipation and long-ranged signal propagation [15, 26]. However, complications

can arise in that spin supercurrents, i.e., spin transport with topologically-suppressed dis-

sipation [24], can be inhibited in an EPF by the presence of magnetic anisotropy within

the easy-plane. This spoils the requisite U(1) symmetry and pins the magnetization along

a particular direction. Such symmetry-breaking anisotropies always exist in real materials,

due to, e.g., underlying crystal symmetries or shape anisotropy, demoting the spin superfluid

analogy to an imperfect one. Potential signatures of spin superfluids were recently observed

in Refs. [27,28], so measuring effects of anisotropy may be viable in the near future.

In this Letter, departing from the previous view of the EPF with in-plane anisotropy as

a defective spin superfluid, we propose a description as a magnetic analog of a long Joseph-

son junction (LJJ), which consists of two superconductors sandwiching a thin insulating

layer [29]. This incorporates the in-plane anisotropy as a natural and potentially desirable

ingredient. Specifically, we consider the magnetic dynamics of the EPF driven by the out-of-

plane spin torques exerted at its ends. The mapping between EPF and LJJ represents a key

result of the paper: Domain walls in the former correspond to phase vortices in the latter, and

symmetric and antisymmetric combinations of the spin torques in the former correspond to

the magnetic-field and electric-current controls of the latter. We find a nonequilibrium phase

diagram of the EPF, including exact static solutions and approximate dynamic solutions.

To this end, we adapt the stability analysis of the static sine-Gordon equation presented in

Refs. [30, 31], along with dynamic solutions of Ref. [32].

In the following, we construct the spin-torque-biased phase diagram, in which the multi-

vortex stationary states of the LJJ get mapped onto multi-magnetic-domain-wall stationary

states in the EPF. The mapping from the equations of motion (EoM) for the LJJ to the
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Landau-Lifshitz-Gilbert equations for the EPF is exact for static cases, thus giving the full

analytical solution for static multidomain phases in the EPF. For dynamic cases, the EoM

for the EPF differ from those of the LJJ in that the dissipative leakage at the boundaries

due to spin pumping [33] must be accounted for; however, techniques for approximating the

dynamical solutions in LJJ’s can be carried over to the EPF with minor adjustments. As an

example, we develop an approximate analytical solution for the EPF dynamics by adapting

an existing self-consistent method for the LJJ [32].

2.2 Magnetic model

In this Letter, we show that a magnetic strip connected to spin-injection leads bears close

analogy to a LJJ. We illustrate this by considering a simple structure depicted in Fig. 2.1(a).

An insulating EPF of length 2L is subjected to spin torques τr,l applied at its left (right)

interface. The underlying spin currents are injected via the spin Hall effect [34] with spins

oriented out of the magnetic easy (xy) plane. The system is similar to the EPF thin-

film junction of Ref. [15] but with the addition of a small in-plane anisotropy K ′ � K.

Our magnetic free energy is given by F [φ, n] = 1
2

∫
d2r
[
A(∂rφ)2 +Kn2 +K ′ sin2 φ

]
, where

φ(r, t) is the azimuthal angle of the directional (unit-vector) order parameter n(r, t) ≡

(
√

1− n2 cosφ,
√

1− n2 sinφ, n) Its z projection, n(r, t), parametrizes the generator of spin

rotations in the plane, which thus dictates the Poisson bracket s{φ, n} = δ(r−r′) and estab-

lishes the canonical conjugacy of the pair (φ, sn) [35]. s is the saturation spin density and

A is the order-parameter stiffness. The hard-z-axis anisotropy K � K ′ keeps the magneti-

zation dynamics predominantly near the xy plane, which allows us to neglect the gradient

terms involving n. The ground-state orientation is collinear with the x axis, according to

the magnetic anisotropy ∝ K ′, dictating the presence of metastable domain-wall textures,

as depicted in Fig. 2.1(a).

The dissipation associated with the magnetization dynamics is introduced in the conven-

tional Gilbert-damping form [36], which for our easy-plane dynamics reduces to the Rayleigh
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dissipation function (per unit area) of R = αds(∂tφ)2/2, parametrized by a damping con-

stant αd. We assume the low-bias regime, such that |∂rφ| �
√
K/A (the Landau criterion

for the stability of planar textures [24].), so as to prevent significant departures of the mag-

netization away from the easy plane. Thermal nucleation of magnetic vortices responsible

for superfluid-like phase slips [37] is likewise neglected.

Putting these ingredients together, we obtain the EoM, s∂tφ = Kn and s∂tn = A∂2
rφ−

K′

2
sin 2φ− αds∂tφ. Boundary conditions are set by spin injection/pumping. The total out-

of-plane spin-current densities through the right (left) interface, in the positive x direction

are [15]

j
(s)
r,l = ∓ g

4π

[
µ

(s)
r,l − ~∂tφ

]
, (2.2.1)

where g is the (real part of) the spin-mixing conductance per unit length of the interface

and µ(s) is the out-of-plane spin accumulation near the interface, which is induced by the

spin Hall effect in the metal contacts. For the sake of simplicity, we assume the spin-mixing

conductances to be the same for both interfaces. Recognizing the stiffness ∝ A term in the

EoM as stemming from the bulk spin current j(s) = −A∂rφ, so that s∂tn = −∂r ·j(s)+. . . [24],

we invoke spin continuity to obtain the boundary conditions:

− A∂xφ(±L, t) = j
(s)
r,l = τr,l ± γ∂tφ(±L, t) . (2.2.2)

Here, τr,l ≡ ∓ g
4π
µ

(s)
r,l = ~ tan θSH

2e
jr,l is the spin Hall torque at the left (right) interface generated

by an electric current density jr,l flowing in the y direction through the metal leads. θSH is

the effective spin Hall angle of the interfaces [38]. γ ≡ ~g/4π parametrizes spin pumping

out of the ferromagnet by the magnetic dynamics [33].

Eliminating n from the EoM and applying the substitution

φ̃ = 2φ , (2.2.3)
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Figure 2.1: (a) EPF with spin injection from metal contacts on two side. The spin polar-
ization of the current is along the z axis, while the spin-current flow is oriented along the x
axis. The ferromagnet is sufficiently narrow in the transverse dimensions to treat it as quasi-
one-dimensional. (b) Diagram of the inline LJJ, with W much smaller than L as well as
the depth of the structure in the z direction. We assume two conventional superconductors
(SC) much larger than the London penetration depth in all dimensions. The magnetic-field
screening currents as well as the circulating vortices are schematically depicted with black
oriented lines. The vortices in the junction map onto the domain walls depicted in (a).
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we arrive at the damped sine-Gordon equation:

∂2
xφ̃ =

∂2
t φ̃

u2
+

sin φ̃

λ2
+ βd∂tφ̃ , (2.2.4)

with the wave speed u =
√
AK/s, characteristic domain-wall width λ =

√
A/K ′, and

damping constant βd = αds/A. This equation admits a solution of an isolated domain wall

as well as low-amplitude spin-wave solutions which obey the massive Klein-Gordon equation,

with the mass proportional to K ′. In the large spin-current limit, so that |∂rφ| � 1/λ, the

excitations become approximately massless. In this (linearly-dispersing) limit, the system

approaches the behavior of the EPF without in-plane anisotropy, thus allowing for states that

closely resemble the spin superfluid of Ref. [15]. In the small spin-current regime, on the

contrary, the steady state configuration is static, laking the aforementioned spin-superfluid

dynamics, but the analogy to LJJ nevertheless holds.

The damped sine-Gordon equation has found application in a number of disciplines [39].

The equation is commonly studied in relation to its physical realizations in coupled series

of pendulums and long Josephson Junctions. Below we exploit some relevant results of the

latter.

2.3 Relation to long Josephson junctions

It is instructive to recall the dynamics of the inline configuration of a LJJ [40,41], a diagram

of which is depicted in Figure 2.1(b). A Josephson junction permits coherent supercurrent

tunneling through the insulating region up to a critical current density jc, which depends on

the tunneling strength and the superfluid density in the superconductor. In the presence of

a magnetic field B = B(x)z inside of the junction, we can choose a gauge A = A(x, y)x, so

that B = −∂yA. The DC Josephson relation for the tunneling current flowing from SC1 to

SC2 is

j = jc sinϑ+ gV , (2.3.1)
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where ϑ(x) = θ1−θ2 is the superconducting phase difference across the junction, and we also

added the normal current component proportional to the conductance (per unit area) g and

the local voltage V (x) = V1 − V2 across the junction. B(x) satisfies the Ampère-Maxwell

equation

∂xB =
4π

c
j +

ε

c
∂tE , (2.3.2)

where E = −E · y = V/d is the electric field in and ε the permittivity of the insulating

region.

Next, we invoke the superconducting phase evolution equation (e > 0)

V =
~
2e
∂tϑ (2.3.3)

and the relation ∂xθ = −(2e/~c)A well inside of the superconducting regions (on the scale

of the London penetration depth λL), which leads to

B =
A2 − A1

d+ 2λL
=

~c
2e(d+ 2λL)

∂xϑ . (2.3.4)

Putting Eqs. (2.3.1)-(2.3.4) together, we reproduce the damped sine-Gordon equation

(2.2.4), thus identifying the Swihart velocity u = c
√

d
ε(d+2λL)

, the Josephson penetration

depth λJ = c
√

~
8πe(d+2λL)jc

, and the damping parameter βd = 4πg(d+2λL)
c2

.

The boundary conditions are obtained from Eq. (2.3.4) by noting that

B(±L) = Bext ±
2π

c
J , (2.3.5)

where Bext is the externally applied field in the z direction and J is the applied current

through the system, per unit of length in the z direction. Comparing this with Eq. (2.2.2),

we see that the symmetric (antisymmetric) combination of the torques, τr ± τl, realizes the

22



effect of the external field Bext (applied current J), in the mapping from the LJJ to the EPF:

τr,l
A

 − e

~c
(d+ 2λL)

(
Bext ±

2π

c
J

)
. (2.3.6)

The EoM of the LJJ and anisotropic EPF systems differ only in the addition of the

boundary spin pumping term, γ∂tφ, in Eq. (2.2.2). If spin pumping is negligible, e.g. time-

independent solutions, the two problems are equivalent. Having an exact mapping between

the models of the LJJ and EPF for time-independent solutions allows the equilibrium stabil-

ity analysis of Ref. [30] to carry over. The close analogy of the EPF system to the thoroughly

studied LJJ model allows us to immediately draw several conclusions about the static solu-

tions. The substitution (2.2.3) indicates that a 2π phase vortex in the LJJ model corresponds

to a domain wall (π rotation) in the EPF. In particular, the symmetric torque τr = τl injects

static domain-wall textures into the EPF, which in the LJJ corresponds to the external field

Bext producing a static multivortex configuration. The number of stable domain walls is

dependent on the boundary conditions and the solution for a given boundary condition can

be multivalued, resulting in hysteretic effects. The multivalued solutions are dependent on

the length of the system, in units of λ. Figure 2.2 shows the regions of stability for p-vortex

equilibrium solutions for the case of L = λ. The stability regions have greater overlap in

the limit of large L/λ, and in this limit the edge of the p > 0 stability region asymptotically

approaches the zero bias point as ∼ e−L/pλ. See Ref. [30] for the analytic equations for

computing the phase boundaries.

2.4 Analytic equilibrium solutions

Using the stable solutions of the LJJ problem studied in Ref. [30], we map back to the EPF

to find the static domain-wall configurations. We give the form of the φ(x) solutions after

mapping to the EPF, as well as some general remarks, and refer to Refs. [30,31] for further

details. Similar solutions were recently found for the one terminal case in Ref. [42]. From
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Figure 2.2: The regions of stability for equalibium p-vortex solutions of the LJJ boundary-
value problem, for L/λ = 1. The spin torques τr,l are in units of A/λ. Overlapping regions
can have either solution. Outside of these regions, i.e., in the high |τr − τl| limit, there are
no stable time-independent solutions. Inset: The dependence of the critical torque τc, for
which τr + τl = 0, on the length L in units of λ.

the p-vortex LJJ solutions, we find p-domain-wall solutions in the EPF have the form

φ(x) = η





π
2
(p− 1) + am (ξ +K(k), k) , for p even

π
2
p+ am (ξ, k) , for p odd

, (2.4.1)

where ξ = x
kλ

+ α, and η = ±1 for τr + τl ≶ 0. Here, α and k are parameters determined

by the boundary conditions, and am(u) and K(u) are the Jacobi amplitude function and

complete elliptic integral of the first kind, respectively.

The zero-domain-wall region includes a portion, separated by the gray line and labeled

by s in Fig. 2.2, in which Eq. (2.4.1) no longer holds. The solution in the s region has the

form

φ(x) = ζ cos−1

[
k
cn (x/λ+ β)

dn (x/λ+ β)

]
, (2.4.2)

where k and β are again determined by the boundary conditions, ζ = ±1 for τr − τl ≶ 0,
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and cn(u) and dm(u) are the Jacobi elliptic cosine and delta amplitude, respectively. In the

case of L = ∞, the s crossover line becomes a phase-transition line from a no-domain-wall

phase to a many-domain-wall phase, but away from this limit the crossover from s to p = 0

is smoothed out by finite-size effects and no phase transition takes place.

In the special case of perfectly asymmetric boundary conditions, i.e., τr = −τl, the

equilibrium solution is given by Eq. (2.4.2) with β = 0, up to the critical value of |τr−τl| → τc.

This critical asymmetric torque τc is analogous to the critical current Jc in the LJJ model,

with, as shown in the Fig. 2.2 inset, its value depending on the normalized length of the

system. τc approaches A/λ asymptotically as L → ∞ and diminishes as τc = LK ′ for

L→ 0. For yttrium iron garnet, A ∼ 10−11 J/m2, so the saturated critical torque (per unit

area), corresponding to λ ∼ 100 nm would be A/λ ∼ 10−4 J/m2. Using the spin Hall angle

θSH ∼ 0.1, the corresponding electrical current density needed at the metallic contacts in

order to approach τc is of order 1012 A/m2, which is high but feasible.

2.5 Dynamic solutions

Here, inspired by the LJJ analogy, we apply a method similar to that of Ref. [32] in

finding an approximate dynamic, spin-propagating solution for the EPF EoM, Eq. (2.2.4)

with boundary conditions (2.2.2). To simplify the discussion, we adopt dimensionless no-

tation, such that A = u = λ = 1. It is natural to start with a trial solution of the

form φ̃(x, t) = Ωt + f(x) + ε(x, t). where ε(x, t) is a small periodic function with the

to-be-determined period T = 2π/Ω and with zero time average, and f(x) is a to-be-

determined time-independent function. We consider the weak in-plane anisotropy limit for

which ε(x, t)� 1. The boundary conditions are

− ∂xf(±L) = 2τr,l ± γΩ (2.5.1)
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and

∂xε(±L, t) = 0 , (2.5.2)

where we discard the boundary term γ∂tε by considering the γ � 1 limit1. Plugging the

trial solution into Eq. (2.2.4) and averaging over the period T , denoted by 〈. . . 〉T , we get the

time-independent equation ∂2
xf = βdΩ +

〈
sin φ̃

〉
T
. Integrating and applying the boundary

conditions, we find the self-consistency equation

f(x) =

∫ x

−L
dx1

∫ x1

−L
dx2

[
βdΩ +

〈
sin φ̃

〉
T

(x2)
]

− (2τl − γΩ)x ,

(2.5.3)

with the constraint ∫ L

−L
dx
〈
sin φ̃

〉
T

= 2(τl − τr − γΩ− LβdΩ) . (2.5.4)

Note that the integral on the right-hand side of Eq. (2.5.3) depends on both f(x) and ε(x, t)

through φ̃.

For the time-dependent part of the solution, the dominant contribution is harmonic in Ωt

and obeys ∂2
xε− ∂2

t ε− βd∂tε = sin(Ωt+ f). The solution satisfying the boundary conditions

(2.5.2) is then readily found to be

ε(x, t) = Im
(eiΩt

2iω

[
eiωxF−(x)− e−iωxF+(x)

+A cos(ωx+ ωL)
])
,

(2.5.5)

where A = i
[
eiωLF−(L) + e−iωLF+(L)

]
/sin(2ωL), ω2 = Ω2 − iβdΩ, and the functions

F±(x) =
∫ x
−L dx1 e

if(x1)±iωx1 . Equations (2.5.3), (2.5.4), and (2.5.5) form a system of coupled

integral equations for f(x), Ω, and ε(x, t). Approximate solutions can be found iteratively

by starting with, for example,
〈
sin φ̃

〉(0)

T
= 0, which implies f (0)(x) = βdΩ

(0)(x + L)2/2 −

(2τl−γΩ(0))(x+L), with Ω(0) = (τl−τr)/(Lβd+γ). This agrees with the XY-model solution
1This approximation is made to simplify the discussion. Without this constraint, ε satisfies ∂xε±γ∂tε = 0

at the right (left) boundary, and the resulting solution is similar but lengthier than the one presented here.
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Figure 2.3: Plot of the approximate modulation of the superfluid phase solution, ε(0)(x, t),
resulting from a weak in-plane anisotropy, with L = 1, βd = 0.1, γ = 0.01, τl = 1.5, and
τr = −2.

2 of Ref. [26]. This intermediate solution can be plugged into Eq. (2.5.5) to get ε(0)(x, t), an

example of which is plotted in Fig. 2.3. These in turn can be used to evaluate
〈
sin φ̃

〉(1)

T
for

generating a new set f (1)(x), Ω(1), and ε(1)(x, t), and so on.

Note that the frequency of oscillation of the superfluid phase, Ω, is modulated as a

function of EPF length, L, as a result of the in-plane anisotropy. This is seen through

the dependence of Ω on the integral on the right-hand side of Eq. (2.5.4). The predicted

dependence of Ω on L can in practice provide a useful experimental probe of the underlying

physics.

Because the transmitted superfluid current is dependent on Ω, this modulation effect

could in principle be measured by injecting sufficient spin current (τ & A/λ) into insulating

thin film ferromagnets of variable length and measuring the inverse spin Hall effect on the

opposite end, using similar methods to those discussed in Refs. [43,44].
2Note that our definitions of Ω and L, chosen to more closely adhere to the LJJ references, differ from

Ref. [26] by a factor of 2.
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2.6 Discussion

Given that Josephson junction systems have many potential uses as computing circuit ele-

ments, e.g. as a transistor [45] or memristor [46], the close analogy between the EPF and

LJJ suggests a potential for similar spintronic applications which could operate in much the

same manner as the proposed LJJ devices, due to the vortex/domain-wall corespondence

between the systems, thus taking advantage of the history-dependence and information stor-

age potential of the domain walls. Such EPF-based devices would use currents through the

spin Hall contacts as inputs and would produce an output either by measuring the inverse

spin Hall voltages resulting from a change of state, e.g. injection of a domain wall, or by

directly reading the number of domain walls, which is possible with e.g. the magneto-optical

Kerr effect [47] or magnetic force microscopy [48]. Using EPF-based spintronics devices in-

stead of LJJ-based superconducting devices as building blocks of circuit elements could have

practical advantages, e.g. the relevant physics such as the spin Hall torque [49] being able

to operate at room temperature and the use of eletrical current inputs instead of precisely

controlled magnetic fields to control the state of the system.

We wish to thank the anonymous referees, whose comments and questions led to the

significant improvement of the Letter. This work was supported by the Army Research

Office under Contract No. W911NF-14-1-0016.
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Chapter 3

Self-stabilizing spin superfluids

Spin superfluidity is sought after as a potential route to long-range spin transport. In mag-

netic systems, it refers to exchange-mediated spin transport by a spin texture with robust

topological winding. Its signatures have recently been observed in antiferromagnets which

are nearly free of dipolar interaction. However in ferromagnets, realization of spin super-

fluid remains a challenge. Using micromagnetic simulations, we observe spin superfluidity

in extended thin ferromagnetic films. We uncover a surprising two-fluid state, in which spin

superfluidity co-exists with and is stabilized by spin waves, as well as a soliton-screened su-

perfluid at high biases. Both states are associated with distinct spin texture reconstructions

near the spin injection region and maintain superfluidity above the expected Landau insta-

bility. The results of this study advance our understanding of spin superfluidity and provide

guidance for future experiments.

3.1 Introduction

The field of magnon-spintronics opens new possibilities for energy-efficient information stor-

age, transport, and processing. Achieving low-dissipation long-range spin transport is one

of the main goals of spintronics research. In magnetic insulators, spin currents are carried

by spin waves, free of undesired electric currents [50]. Despite low damping, however, spin
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waves exhibit exponential decay over distances that can be short at high frequencies.

The bosonic nature of spin excitations in ordered magnetic materials can benefit from

magnon-magnon interactions and the ensuing coherence. Bose-Einstein condensation of

magnons, that was experimentally observed in various systems [51–55], is a notable exam-

ple. Another phenomenon characteristic of bosonic systems is superfluidity; resistance-free

charge transport in superconductors and viscosity-free mass transport in superfluid helium

are some prominent examples [56–58]. Early works by Halperin and Hohenberg proposed

a hydrodynamic theory of magnons [59], which is closely related to superfluidity. Spin su-

perfluids can be induced in easy-plane ordered spin systems; upon non-equilibrium spin

injection with perpendicular-to-plane polarization, a global texture of magnetic order pa-

rameter develops in the form of a topologically robust winding spiral (Fig. 1a). The order

parameter precesses coherently in time at low frequencies and transports spin current over

macroscopic distances [60] with a small [61–64] but finite dissipation rate. The spin current

shows power-low spatial decay, thus enabling long-range spin transport beyond the mean

free path of ordinary spin waves. While spin superfluidity bears similarities to mass super-

fluidity (equation of spin motion resembles Josephson relations for superfluidity, superflow

is characterized by the gradient of the phase), it must be stressed that this phenomenon is

not truly dissipationless.

Recently, signatures of spin superfluidity have been experimentally observed in antiferro-

magnetic spin systems [65, 66]. A realization of spin superfluid in ferromagnets remains an

unsolved challenge. Previous theoretical works have revealed the potential of superfluid spin

transport [15, 44, 60, 67–74] for spintronics applications but have not systematically studied

the role of dipolar interactions. Numerical calculations in Ref. [75] for micrometer-scale

thin-film ferromagnets have demonstrated that dipolar interaction can destroy the spin su-

perfluid; recent numerical simulations in thin ferromagnetic stripes [69,70] have shown that

spin superfluidity can be achieved despite the dipolar interaction, sparking a discussion on

experimental feasibility of such states.
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Figure 3.1: Spin superfluid in the absence of dipolar interaction. (a) Schematic view of
the thin film. The spin injector provides spin current with out-of-plane polarization (blue
arrows). The spin sinks are shown. The red arrows represent a magnetization snapshot.
(b) Initial superfluid velocity as a function of the current density (black circles) and base
frequency (red circles). Three regimes of the spin superfluid are marked. Black line shows
transmitted spin current τ (in the same units as superfluid velocity) calculated based on the
analytical model. (c) Spatial dependence of the superfluid velocity in regime I, (d) in regime
II at j = 3.1 · 1011 Am−2, (e) in regime III at j = 4.6 · 1011 Am−2.
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Here we present a micromagnetic study of superfluid spin transport in extended fer-

romagnetic thin films and investigate the role of dipolar interaction. We find that stable

spin superfluid state can in fact be achieved. Most surprisingly, we observe that the spin

superfluid is stable beyond the anticipated Landau instability, allowing for long-range spin

transport in a wide range of spin biases.

The Landau superfluid breakdown describes a superflow-carrying state becoming ener-

getically unstable at the critical injection bias. In ferromagnetic films, this corresponds

to alignment of magnetic order parameter out-of-plane, which disrupts the superfluid spin

transport [60]. Unlike the conventional breakdown of the superfluidity or superconductivity,

however, the superflow in our system is recovered. We find that the spin bias applied to

the injector does not determine the spin current flowing through the magnet. The latter is

rather determined self-consistently, taking into account the feedback of the magnetic dynam-

ics near the injector. We find that this feedback regulates the spin injection through spin

wave emission and coherent soliton formation. The superflow thus stays effectively below

the Landau instability threshold even at large spin biases.

3.2 Results

We simulate extended ferromagnetic films in the thickness range of t = 2—30 nm by ap-

plying periodic boundary conditions in the film plane to a 50µm × 5µm patch. Magnetic

parameters of the film are chosen (Methods) to mimic Y3Fe5O12 (YIG) – a magnetic insula-

tor with low damping that may be considered as a candidate for experimental realization of

spin superfluidity. Magnetization dynamics is excited by locally injecting a continuous pure

spin current with out-of-plane spin polarization. It is simulated through spin-transfer toque

in the middle of the film underneath a narrow spin injector. The spin injector carries electric

current that translates into spin current with conversion efficiency of θs = 0.07 (see Meth-

ods). At the short edges of the film patch, spin sinks are simulated by local increase of the

Gilbert damping as explained in Methods. The spin sinks are representative of a spintronics
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devices that shall be fed and operated with spin current supplied through the superfluid. All

calculations in this study are carried out at 0K, i.e. without thermal excitations. Figure 3.1a

shows sample geometry, spin injector, and spin sinks.

3.2.1 Behavior without dipolar interaction

At first, we investigate the case of omitted dipolar interaction by enforcing zero dipole

fields in our simulations and introducing an artificial easy-plane anisotropy Ku = −10 kJm-3

approximating the shape anisotropy of a thin film [15, 76]. For each current value, the

simulations are carried out until steady state or dynamic equilibrium is reached. In Fig. 3.1a,

a snapshot of magnetization is shown for the steady state at a current density j = 1011 Am-2

in the spin injector. The magnetization presents continuous 2π-rotations in the film plane,

characteristic of the spin superfluid state [60]. The superfluid velocity is defined as u(x) =

−∇φ(x), where φ is the azimuthal angle of magnetization [15, 60] and the order parameter.

Figure 3.1b shows the initial velocities u0 (calculated in the vicinity of the injector region)

as a function of the current density. Three distinct regimes can be identified as indicated in

the figure:

Regime I. At low current densities, the superfluid velocity linearly increases with in-

creasing current density, in good agreement with analytical predictions of Ref. [77]. The

superfluid velocity decreases smoothly and slowly with increasing distance from the spin

injector (Fig. 3.1c). At the spin sink, it decreases more rapidly and reaches zero value. The

longitudinal spin density n = mz (equal to the polar component of the normalized magneti-

zation) [69] is well below 0.5 (Supplementary Figure 1).

Regime II. At the first critical current density j(1)
crit, the superfluid starts to exhibit oscil-

lations in real space, as shown in Fig. 3.1d. The initial superfluid velocity is calculated by

averaging out these oscillations. It shows a notable drop at the first critical current (Fig. 1b).

Underneath the injector, the magnetization is partially tilted out of the film plane by the

33



spin current. Outside of the injector region, the longitudinal spin density remains n < 0.5.

Analysis of the temporal evolution of magnetization reveals large oscillations in the in-

jector region. It emits incoherent spin waves into the rest of the film which superimpose

with the superfluid state (Fig. 1d). We observe spin wave emission and the drop of the su-

perfluid velocity for various injection widths w = 30—300nm. The injector width does not

affect the critical current, but modifies [70] the critical current density through geometrical

renormalization j(1)
crit ∝ Icrit/w (Supplementary Figure 2).

The temporal base frequency Ω of the superfluid spiral is extracted for each current den-

sity by calculating the fast-Fourier transformation of the time evolution of the magnetization

dynamics. As shown in Fig. 3.1b, both u0 and Ω exhibit the distinct breakdown in the regime

II.

Regime III. Above the second critical current density j(2)
crit, the superfluid velocity is again

a smooth function of distance (Fig. 1e). No spin waves are observed. The magnetization

underneath the injector is almost fully aligned out-of-plane and does not vary with time.

Both initial velocity and base frequency show a reduced growth rate with increasing spin

current and saturate around j = 8 · 1011 Am-2 (Fig. 1b).

3.2.2 Analytical model

We strive to develop a minimal analytical model to explain the observed phase diagram; we

thus neglect dipolar interaction and magnetic damping. With exchange constant Aex, we

employ the free energy:

F =

∫
dx3

[
Aex (∇mmm)2 −Kum

2
z

]
. (3.2.1)
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Taking into account that magnetization mmm does not vary along the y and z directions,

Landau-Lifshitz equation assumes the form

dmmm

dt
= −mmm×

(
∂2mmm

∂x2
−mzẑ̂ẑz

)
, (3.2.2)

where x and t are re-scaled in units of
√
Aex/Ku and µ0Ms/2γKu, respectively (with the per-

meability of free space µ0 and gyromagnetic ratio γ). By parameterizing the magnetization

with spherical coordinates, mmm = (sin θ cosφ, sin θ sinφ, cos θ), equation (3.2.2) becomes

θ̇ sin θ = −∂x(sin2θ ∂xφ), (3.2.3)

φ̇ sin θ = ∂2
xθ +

1− (∂xφ)2

2
sin 2θ. (3.2.4)

Equation (3) corresponds to a continuity equation for the longitudinal spin density. We are

interested in solutions which satisfy boundary conditions of the form

− ∂xφ(0) = τi − γ∂tφ(0), −∂xφ(L) = γ∂tφ(L) (3.2.5)

where τi is the spin torque from the injection site and γ parameterizes the edge damping

effects of spin pumping [72, 78]. General soliton solutions of equation (3.2.2) were studied

in Ref. [21]. Here we develop soliton solutions with boundary conditions (3.2.5). Assuming

soliton solutions have the form θ = θ(x− ct) results (Methods) in

φ− φ0 = ωt−
∫ x

0

dx′
c cos θ + a1

sin2θ
, (3.2.6)

x− ct = x0 ±
1√
2

∫ θ(x,t)

θ1

dθ′√
f(θ′)

, (3.2.7)

where f(θ) = a2 − ω cos θ − 1
2
sin2θ − 1

2
(c2 − a2

1) csc2(θ)− ca1 cot(θ) csc(θ). Here ω, c, φ0, a1,

and a2 are integration constants. We consider the case in which f(θ) > 0 for some open
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interval (θ1, θ2) ⊂ (0, π/2), where θ1 and θ2 are zeros of f(θ). The resulting soliton solution,

θ(x−ct), is symmetric about its minimum θ1 (corresponding to a spike in mz) centered at x0

at t = 0. Because the soliton expression (7) only describes θ over a finite interval of x− ct,

to describe a full solution, the soliton and its first derivatives must be patched to suitable

surrounding solutions, such as another soliton or a superfluid, or to the boundary conditions.

This patching process fixes the integration constants. One such solution is an isolated soliton

traveling at speed c through a surrounding spin superfluid which has constant polar angle

θ2. The length of the soliton is determined by the characteristic length scale
√
Aex/Ku.

We find the relevant solutions by fixing the boundary conditions with a spin injection site

and spin sink on either side. The analytically calculated transmitted spin current per spin

density (τ = −∇φ sin2 θ) is shown in Fig. 1b as the black solid line. The analytical spin cur-

rent plot shows three distinct phases, similar to the three phases identified in micromagnetic

simulations. The low-current regime (I) corresponds to the conventional spin superfluidity,

i.e. a coherently precessing constant-θ superflow as derived in Ref. [71].

In a previous analytical study [71], the drop of the transmitted spin current to zero at

intermediate bias has been associated with spin superfluid becoming fully polarized out of

plane (θ = 0). However, such state is in fact unstable, even in the undamped model. It has a

mode of instability which forms near the boundaries and propagates into the rest of the film.

This mode of instability has superfluid-like precession and grows exponentially with time.

There are no stable time-independent θ solutions in the intermediate (II) regime between

the two analytical solutions (I) and (III) plotted in Fig. 1b. The solution in the intermediate

(II) regime must thus be a non-trivial dynamic state. The first critical current observed

in micromagnetic simulations may, in fact, be different from the critical current derived

in Ref. [71]. The damped model micromagnetic simulations indicate that the dynamic

instability sets in before the precipitous drop in the calculated transmitted spin current (and

below the Landau criterion). The mechanisms and system parameters [69], that may shift

the first critical current and determine the current range of the intermediate regime, are yet
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to be fully understood.

Above the second critical current, we find a stationary soliton solution c = 0 of particular

interest. The soliton is placed with the peak at the injection region boundary. In regime

III, the injector region is nearly fully polarized out-of-plane, and the local time-dependent

oscillations in θ cease. As micromagnetic simulations show, this configuration lacks the spin

wave noise present in regime II. The spin current is reduced by the injector edge soliton due to

the (1−m2
z) factor in the spin current. For high out-of-plane polarizations, it diminishes the

transmitted spin current at the same superfluid velocity u. The polarization in the injector

region partially blocks the spin injection, and the transmitted spin current asymptotically

behaves as ∝ 1/j for j → ∞. By virtue of this self-regulation in the injector region, the

superfluid persists above biases expected for the Landau instability. We therefore suggest to

name this regime screened spin superfluid.

The exact mechanism of the superfluid stabilization in regime II remains elusive, however,

the data allows us to propose two hypotheses. (i) The superfluid solution may be a hybrid

periodically transitioning between the conventional superfluid and screened superfluid. The

steady-state solution that matches the boundary conditions (θ = 0) is unstable to variations

in θ, resulting in the spin texture dropping down to a θ-superfluid which is unable to ac-

commodate the large spin current at the boundaries. Therefore, the stationary soliton of a

screened superfluid begins to form as spin accumulates near the edge of the injector region.

However, the spin current is not strong enough to maintain a stable soliton, and the soliton

decays into spin waves before reaching steady-state screening. The soliton formation and

decay processes are then repeated, resulting in injector region oscillations and spin waves

propagating into the film. (ii) The solution may be a large amplitude spin wave over the

superfluid which would be composed of the above derived propagating solitons, fitted back to

back and satisfying the boundary conditions on average. These large amplitude spin waves

would have to quickly decay, possibly due to Suhl scattering [79], resulting in the observed

noise of incoherent spin waves. The reduction of superfluid velocity observed in the micro-
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Figure 3.2: Spin superfluid in the presence of dipolar interaction. (a) Threshold current as a
function of film thickness. (b) Initial superfluid velocity as a function of the current density
for 5 nm thick film (sub-threshold regime omitted for clarity). (c) Spatial dependence of the
superfluid velocity.
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magnetic simulations could be explained by the emergence of such dissipation channel for

the injected spin current.

3.2.3 Impact of dipolar interaction

A previous study [75] on micron-sized ferromagnetic thin films has pointed out a detrimen-

tal effect of the dipolar interaction on the spin superfluidity, leading to a collapse of the

operable bias range. Here, we investigate extended systems by employing periodic boundary

conditions. In the following micromagnetic simulations, the dipolar interaction is enabled

and the previously used uniaxial anisotropy Ku is set to zero.

First, we find that the presence of the dipolar interaction suppresses spin superfluidity at

low currents and imposes a threshold j0 for its formation [75]. The dipolar interaction acts

as an effective magnetic anisotropy [60, 69, 70] that must be overcome. The effective dipole

energy increases with the thickness of the film d which is varied in the range of 2—30nm

in our simulations. For comparison across different film thicknesses, the current needs to

be scaled by d. Indeed, Fig. 2a shows that such normalized threshold current j0/d increases

nearly linearly with increasing film thickness.

Upon the formation of spin superfluid, its initial velocity u0 presents non-monotonous

dependence on the current density. Figure 2b shows a qualitatively very similar behavior

as in the case of omitted dipolar interaction. Employing spatio-temporal analysis of the

magnetization dynamics, we find again: (I) the low-current regime free of incoherent spin

waves, (II) the intermediate regime with co-existing superfluid and incoherent spin waves,

and (III) the high-current regime of screened superfluid, free of incoherent spin waves. An

additional notable drop of the initial velocity and base frequency is observed in the middle

of the intermediate regime (II). A detailed evaluation of the data reveals that u and Ω show

multiple non-monotonicities for both dipole case and dipole-free case. While the currents

at which they occur differ, their presence seems to be universal and is likely related to the
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non-linear generation of spin waves in the regime II.

We further find differences of the spatial profile of superfluid velocity compared to the

dipole-free case. As shown in Fig. 2c, the gradient of the azimuthal angle presents two types

of modulations. Due to the continuous 2π-rotations of magnetization, dipolar interaction

introduces a perturbation of the energy landscape with uniaxial symmetry – the magnetic

charges alternate at every π-rotation. Upon these perturbations, the angle gradient shows

a small magnitude modulation with periodicity being a multiple of the periodicity of the

π-rotations.

Another modulation with larger amplitude has a smaller periodicity (larger wavelength)

that corresponds to the π-rotations of magnetization. The in-plane components of mag-

netization present a distorted sinusoidal profile as a function of distance (Supplementary

Figure 3). The out-of-plane component of magnetization reveals spikes at the locations of

magnetic charges (at extrema of mx), which reduces the exchange energy. This modulation

can be considered a soliton lattice, resulting in a superfluid state with a broken symmetry.

The symmetry is broken by the shape of the spin injector and is mediated to the spin super-

fluid by virtue of the dipolar interaction. The size of the soliton scales as 1/〈∂xφ〉ave – the

current-dependent averaged winding length of the spin superfluid.

3.3 Discussion

In this study, spin superfluidity is found to persist over a large range of bias currents. The

magnetization pinning by dipole fields [75] does not fully suppress the superfluidity at high

biases for the case of extended films [69]. The threshold suppression of spin superfluidity at

low biases has been previously discussed [60,80] for symmetry-breaking magnetic anisotropy.

In contrast to the effect of such local anisotropy, the symmetry breaking, investigated in this

study, is mediated by the non-local dipolar interaction [70]. We find the threshold current

to increase linearly with increasing dipole energy.

A coupling between the superfluid order parameter (azimuthal angle φ) and the longitu-
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dinal spin density n is observed. The longitudinal spin density shows oscillations at twice

the base frequency [70], in agreement with the symmetry order of the effective (uniaxial)

magnetic anisotropy due to dipole fields. The oscillations correspond to excitations of the

soliton lattice. No such behavior is observed in the absence of the dipolar interaction.

We identify three regimes of spin superfluidity, universally present with and without dipo-

lar interaction. In the low-current regime, conventional spin superfluidity is found. Above

the first critical current, the superfluid co-exists with incoherent non-thermally populated

magnons. Above the second critical current, the incoherent magnons are suppressed and a

soliton screened spin superfluid is found.

We discover the ability of the spin superfluid to self-stabilize beyond the anticipated

critical injection bias. The spin superflow is not determined by the injection current alone

but self-consistently, taking into account the spin reconstruction in the injector region. At

very high biases the superfluid is partially screened from injected spin current by soliton

formation. For the intermediate-current regime, we identify non-linear magnon scattering to

play a role in superfluid self-stabilization.

Recently, spin injection with perpendicular polarization due to spin-orbit effect with spin

rotational-symmetry [81] and due to planar Hall effect [82] has been experimentally realized

using metallic ferromagnets. Moreover, efficient thermal spin injection [83] with polarization

not bound to injector geometry has been achieved [84]. These developments may benefit

designing novel ferromagnetic spin injectors and instigate research on thin film-based spin

superfluids. In such studies, questions on spin texture formation in the injector region due

to interaction with the injector, thermal stability of the superflow, and accessible spin bias

range are likely to arise. Our work points out the impact of injector spin texture formation

and incoherent spin waves on stabilization of spin superfluidity and extending the range of

achievable spin biases.
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3.4 Methods

3.4.1 Micromagnetic simulations.

The dipolar interaction was implemented using MuMax code [85] and the magnetostatic

field was calculated by the approach presented in Ref. [86]. The material parameters were

chosen to simulate YIG films [87–89]: the saturation magnetization Ms = 130 kA m−1 and

the exchange constant Aex = 3.5 pJ m−1. The magnetocrystalline anisotropy was omitted.

The spin sinks were intended to emulate a spintronic devices to be operated by the spin

current transmitted through the superfluid. They were modeled by non-uniform increase of

the Gilbert damping over the width (4µm) of the spin sink regions. From the sink edge closer

to the injector to the edge at the end of the film patch, the damping constant α was increased

exponentially from 0.002 to 0.11. Such modification of damping emulate extraction of angular

momentum from the superflow and prevents potential reflections of spin excitations at the

edges of the patch, which is necessary to simulate an extended spin system. To ensure that

the system reached a dynamic steady-state, a simulation time of 500ns was chosen. The

electric current density given throughout the manuscript corresponds to the spin current via

js = θs
~
e
j with the spin conversion efficiency θs, the Planck constant ~ and the elementary

charge e. All micromagnetic simulations were carried out at zero temperature. The cell

size is 24.41 nm×19.53 nm×d; the results were validated by carrying out selected simulations

with a reduced cell size.

3.4.2 Analytical model

Numerical calculations of the analytical model resort to the same material parameters as

micromagnetic simulations, but do not include magnetic damping. Here we derive equations

(5) and (6). The assumption θ = θ(x−ct) implies that the left-hand-side of Equation (3) can

be written as a derivative in x, thus allowing Equation (3) to be integrated. The result can
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be solved for ∂xφ and integrated again to express φ in terms of θ. In general, the constants

of integration can depend on t, i.e.

φ = C2(t)−
∫ x

dx′
c cos θ + C1(t)

sin2θ
. (3.4.1)

However, the time dependence is restricted by substituting the expression for φ in terms

of θ into Equation (4). Once θ has been isolated, the resulting equation should not have

explicit t dependence because, by assumption, θ only depends on x − ct. This implies that

C1 is independent of time and restricts C2 to at most linear dependence on t, thus resulting

in equation (6). Once φ dependence has been eliminated in Eq. (4), equation (7) follows by

direct integration with the integrating factor ∂xθ.
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Chapter 4

Spin analogs of superconductivity and

integer quantum Hall effect in an array

of spin chains

Motivated by the successful idea of using weakly coupled quantum electronic wires to re-

alize the quantum Hall effects and the quantum spin Hall effects, we theoretically study

two systems composed of weakly coupled quantum spin chains within the mean-field ap-

proximations, which can exhibit spin analogs of superconductivity and the integer quantum

Hall effect. First, a certain bilayer of two arrays of interacting spin chains is mapped, via

the Jordan-Wigner transformation, to an attractive Hubbard model that exhibits fermionic

superconductivity, which corresponds to spin superconductivity in the original spin Hamil-

tonian. Secondly, an array of spin-orbit-coupled spin chains in the presence of a suitable

external magnetic field is transformed to an array of quantum wires that exhibits the integer

quantum Hall effect, which translates into its spin analog in the spin Hamiltonian. The

resultant spin superconductivity and spin integer quantum Hall effect can be characterized

by their ability to transport spin without any resistance.
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4.1 Introduction

In a metal under normal conditions, an electric current flows in the presence of a finite

resistance engendered by, e.g., scattering with impurities. The lost electrical energy due

to the resistance is dissipated into heat, which is referred to as Joule heating that opposes

the efficient use of the energy. There are, however, two physical phenomena under special

conditions that allow an electric current to flow without any resistance. The one is supercon-

ductivity occurring at low temperatures [90]. Its first microscopic theory was given in 1957

by Bardeen, Cooper, and Schrieffer [91], who showed that superconductivity can be under-

stood as a property of macroscopic quantum wavefunction of condensed pairs of electrons

subsequently termed Cooper pairs. The other is the set of quantum Hall effects exhibited in

two-dimensional systems at low temperatures and strong magnetic fields [92]. The integer

quantum Hall effect is the first of such that was discovered in 1980 by ref. [93]. It occurs

when the number of electrons per unit magnetic flux takes an integer value ν, leading to

the situation in which the bulk is gapped, but the edge supports ν gapless modes with no

resistance.

Spintronics aims at harnessing the spin degrees of freedom to advance from conventional

charge-based electronics [94, 95]. In particular, magnetic insulators that are free from Joule

heating have been gaining attention in the field owing to their potential advantage of low-

energy consumption. An efficient spin transport in such magnetic insulators is one of the

important topics in spintronics, and researchers have been investigating possible ways to

achieve it by borrowing some ideas from the aforementioned phenomena of dissipationless

charge transport. For example, a spin-analogue of an electric supercurrent supported in easy-

plane magnets has been theoretically investigated [15, 24, 44, 59, 60, 96–98], which is shown

to decay algebraically as a function of the distance from the spin-injection point contrary to

an exponential decay of a diffusive spin current. Spin analogues of the integer and fractional

quantum Hall phases have also been put forward in the studies of spin liquids [99–103] and
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Figure 4.1: Schematic of a bilayer of two arrays of weakly-coupled spin chains (shown as the
solid lines indexed by m), each of which can be represented by a one-dimensional system of
(spinless) Jordan-Wigner fermions. The top and bottom layer indices serve as the pseudospin
up and down for the fermions, respectively. The green box represents a pseudospin-singlet
Cooper pair of two fermions established by an Ising interlayer interaction.

topological magnon insulators [104–110].

In this Letter, we theoretically construct two spin systems, which can exhibit spin ana-

logues of superconductivity and the integer quantum Hall effect, by using weakly-coupled

quantum spin chains. Our work is motivated by the successful theoretical realizations of the

quantum Hall phases and the quantum spin Hall phases in an array of quantum electronic

wires [111–114]. Specifically, first, we show that an Ising-coupled bilayer of two arrays of

weakly-coupled quantum XX spin chains can be mapped to a negative-U Hubbard model for

electrons by the Jordan-Wigner (JW) transformation [115, 116] within a mean-field treat-

ment of the interchain coupling. The established charge superconductivity of the negative-U

Hubbard model [117] then naturally translates into spin superconductivity of our original

spin system. See Fig. 4.1 for an illustration of the system. Secondly, we show that an array of

weakly-coupled quantum XX spin chains with Dzyaloshinskii-Moriya (DM) intrachain inter-

action can be transformed to an array of quantum electronic wires subjected to an external

magnetic field by the same approach taken for spin superconductivity. The integer quantum

Hall effect of the latter electronic system [113] then translates into its spin analogue of the

former spin system. See Fig. 4.2(a) for an illustration of the system.
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Figure 4.2: (a) Schematic of an array of spin-orbit-coupled spin-1/2 spin chains, which
can support chiral edge modes of the Jordan-Wigner fermions. The coupling of four spins
(colored by yellow) illustrates the interchain interaction O [Eq. (4.2.2)]. (b) A schematic plot
showing how the interchain interaction gives rise to chiral edge modes with the gapped bulk.
At the external magnetic field h corresponding to the filling factor ν = 1, the JW fermion
can flow in the left direction on the top chain (colored by blue) and in the right direction on
the bottom chain (colored by red) in (a), which are represented by the left blue and right
red dots in (b), respectively. The particle current in the JW representation corresponds to
the spin current polarized along the z axis.

4.2 Main results

Our main results can be summarized as follows. First, for spin superconductivity, we consider

the following spin Hamiltonian for two layers of weakly-coupled M spin-1/2 chains of length

N :

Hsc =J
∑

n,m,α

σ‖n,m,α · σ‖n+1,m,α

−H
∑

n,m,α

σzn,m,α − U
∑

n,m

σzn,m,↑σ
z
n,m,↓

−K
∑

n,m,α

[On,m,α + H.c.] ,

(4.2.1)

with

On,m,α = σ+
n,m,ασ

+
n+1,m,ασ

−
n,m+1,ασ

−
n+1,m+1,α , (4.2.2)
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where the integers m and n are the indices for a spin chain within a layer and a spin within

a chain, respectively, and α =↑, ↓ indexes the layer which will serve as the pseudospin of the

JW fermions. A spin is represented by the three-dimensional Pauli matrices σ; the symbol

‖ denotes the projection of the vector onto the xy plane; σ± ≡ (σx ± iσy)/2. Here, the first

term describes the quantum antiferromagnetic XX spin-1/2 chains with J > 0 1; the second

term is the Zeeman energy; the third term is the ferromagnetic Ising interaction between the

two layers; the last term represents a weak four-spin interaction with 0 < K � J , which, in

the JW representation, can engender the interchain tunneling and thereby make each layer

an effective two-dimensional fermionic gas. Interchain interactions involving only two spins

such as the Heisenberg XX exchange ∝ σ‖n,m ·σ‖n,m+1 would also appear as tunneling between

two chains. They, however, introduce nonlocal terms after the JW transformation, making

it difficult to treat the interchain interaction 2. Our goal, instead, is to construct simple

spin systems that can be viewed as weakly-interacting simple fermionic wires. Therefore, by

coupling neighboring spin chains by the four-spin interaction, we retain its locality after the

JW transformation.

The spin Hamiltonian Hsc can be transformed into the Hamiltonian for the spinless

fermions by the multi-dimensional JW transformation [116]:

fn,m,α = σ−n,m,α

(∏

l<n

σzl,m,α

)
 ∏

(k,β)<(m,α)

τ yk,β


 τxm,α , (4.2.3)

and the analogous expression for f †n,m,α with σ− substituted by σ+, where the auxiliary

Pauli-matrix vector, τm,α, is introduced for each spin chain to make the fermion operators

on different chains anticommute 3 The interchain interaction yields a quartic term in the
1We do not lose any generality by choosing the sign of the exchange interaction, J > 0 here, for the sign

can be flipped by rotating every other spin by π around the z axis.
2The long-range interchain interactions may be treated within the framework of the coupled Luttinger

liquids [118], but it is beyond the scope of our work.
3The comparison of two tuples, (k, β) and (m,α), representing two spin chains is determined by their

orders in a serialization of spin chains, which can be arbitrarily chosen for our models. An alternative JW
transformation would have β = α in the product and an additional Pauli matrix factor for maintaining
anticommutation between the two layers for the RHS.
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fermion operators, and thus we take the mean-field approach to study its effect. We will show

that the resultant mean-field Hamiltonian is given by the attractive Hubbard model [117]:

H̄sc =− tx
∑

n,m,α

[
f †n,m,αfn+1,m,α + H.c.

]

− ty
∑

n,m,α

[
f †n,m,αfn,m+1,α + H.c.

]

− µ
∑

n,m,α

nn,m,α − u
∑

n,m

nn,m,↑nn,m,↓ ,

(4.2.4)

where nn,m,α = f †n,m,αfn,m,α is the fermion-number operator, tx = 2J, ty = 2Kχ, µ = 2H−2U ,

and u = 4U . Here, χ ≡ 〈∑n,m,α f
†
n,m,αfn,m+1,α〉/2NM is the mean field for the interchain

tunneling 4. By H̄, we will denote the Hamiltonians in the JW representation throughout.

When the Fermi energy lies close to the bottom of the band for a single chain, µ = −2tx+δµ

with |δµ| � K, the interchain tunneling amplitude is given by χ ≈ K/25tx. From the results

known for the attractive Hubbard model [117], we can conclude that the ground state of the

Hamiltonian H̄sc away from the half-filling is in the superconducting phase composed of

pseudospin-singlet Cooper pairs of the JW fermions, which should exhibit a spin-analogue

of charge superconductivity 5.

Second, for a spin analogue of the integer quantum Hall effect, we take the following spin

Hamiltonian:

Hqh =J
∑

n,m

cos(mφ)σ‖n,m · σ‖n+1,m

+ J
∑

n,m

sin(mφ) ẑ · σn,m × σn+1,m

−H
∑

n,m

σzn,m −K
∑

n,m

[On,m + H.c.] ,

(4.2.5)

4The Hartree-Fock decoupling is taken only for the interchain interaction, not for the Ising interlayer
interaction.

5In the weak-attraction limit, u� tx , ty, the superconducting gap is given by ∆ ∼ t
√
ρ(2− ρ)/ sinh(t/u),

where t ≡ tx + ty is the bandwidth and ρ is the number of electrons per site [117].
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where the four-spin interaction On,m is given by Eq. (4.2.2) with α removed. Here, the first

two terms describe the antiferromagnetic Heisenberg XY spin chains with the DM interaction;

the third term is the Zeeman coupling; the last term is the weak interchain interaction,

0 < K � J . See Fig. 4.2(a) for an illustration of the system. The DM interaction can exist

if the reflection symmetry with respect to the xz plane is broken; the Hamiltonian respects

the reflection symmetries through the xy and yz planes. The chain-dependent exchange

coefficients can be realized by controlling the extent of the reflection-symmetry breaking

associated with the DM interaction. We focus on the weak DM interactions, 0 < φJ � K,

comparing to the interchain coupling 6.

By employing the JW transformation [116] and taking the mean-field approach for the

interchain interaction, as shown below, we obtain the following tight-binding Hamiltonian:

H̄qh =− tx
∑

n,m

[
eimφf †n,mfn+1,m + H.c.

]

− ty
∑

n,m

[
f †n,mfn,m+1 + H.c.

]

− µ
∑

n,m

nn,m ,

(4.2.6)

which describes an array of quantum electronic wires in the presence of an external magnetic

field ∝ φ. The parameters are given by tx = 2J, ty = 2Kχ, and µ = 2H with the mean-field

interchain tunneling χ. The integer quantum Hall effect at the filling factor ν = 1 arises

when the Fermi energy is close to the crossing point of the two bands of adjacent chains,

µ = −tx(2+φ2)+δµ with |δµ| � tx. The self-consistent solution is then given by χ ' K/25tx.

The integer quantum Hall effects at higher filling factors ν can be analogously obtained in

the νth order of the perturbative treatment of the interchain interaction [113,114].

The Hamiltonian H̄qh has been shown to exhibit the integer quantum Hall effect [111,113].

Let us briefly explain how the integer quantum Hall effects arise in the model for an example
6For the strong DM interactions comparing to the interchain coupling, 0 < K � φJ , the mean field for

the interchain tunneling is exponentially small, χ ∼ exp(−4πφJ/K).

50



of filling factor ν = 1. See Fig. 4.2(b) for the JW fermion bands of spin chains and the gap

openings by the interchain tunneling. When the Fermi energy µ lies in the bulk gap, there

are one gapless mode in the top chain (m = 1 in the figure) and the other in the bottom chain

(m = 3 in the figure). The two modes propagate in the opposite directions, and thus engender

one chiral edge mode together. The integer quantum Hall effect at higher filling factors ν

supports ν chiral edge modes by an analogous mechanism [113,114]. The state we obtained

is different from the conventional quantum Hall phase in that the transported quantity is

spin, not charge; it is also distinct from the traditional quantum spin Hall phase [119] in

that the resultant spin transport does not accompany any charge transport.

Although, to the best of our knowledge, there is no physical system that can realize our

proposal, let us make some comments about experimental realizations. First, spin-1/2 chain

systems Cs2CoCl4 [120] and PrCl3 [121] are known to be well described by the isotropic

Heisenberg XX model. Secondly, the DM interaction in a single chain can be induced by

breaking the reflection symmetry through the xz plane, which can be, in principle, realized

by attaching a one-dimensional nonmagnetic material next to the spin chain. The gradient in

the DM interaction can be engendered by modulating the distance between the nonmagnetic

material and the spin chain. Lastly, the four-spin exchange interaction can arise as the

fourth-order term in the strong-coupling expansion of the half-filled Hubbard model or due

to the spin-lattice coupling, and its magnitude can be comparable to two-spin Heisenberg

exchange in certain materials [122–124].

4.3 Spin superconductivity

We explain how we obtained the mean-field values for the interchain tunneling amplitude

for the case of spin superconductivity. To analyze the effects of the quartic fermion operator

f †n,m,αf
†
n+1,m,αfn,m+1,αfn+1,m+1,α mapped from On,m,α [Eq. (4.2.2)], we employ the Hartree-
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Fock decoupling [125]. There are two potentially relevant mean-field order parameters 7.

One is an interchain-tunneling amplitude,

χ =
1

2NM

∑

n,m,α

〈f †n,m,αfn,m+1,α〉 . (4.3.1)

The other is an intrachain Cooper-pairing amplitude,

∆ =
1

2NM

∑

n,m,α

〈fn,m,αfn+1,m,α〉 . (4.3.2)

The mean-field Hamiltonian for a single layer is given by

H̄α =− tx
∑

n,m

[
f †n,m,αfn+1,m,α + H.c.

]

− 2K
∑

n,m

[
χf †n,m,αfn,m+1,α + H.c.

]

− 2K
∑

n,m

[
∆f †n,m,αf

†
n+1,m,α + H.c.

]

− µ
∑

n,m

nn,m,α ,

(4.3.3)

up to an additive constant, in the limit of zero interlayer coupling U → 0. Assuming the

periodic boundary conditions, the self-consistency equations for the two mean-field order

parameters χ and ∆ in the momentum space are given by

∆ =
1

NM

∑

k

2K∆ sin2 kx√
ε(k)2 + |∆(k)|2

, (4.3.4)

χ =
1

NM

∑

k

cos ky
2

(
1− ε(k)√

ε(k)2 + |∆(k)|2

)
, (4.3.5)

where ε(k) = −2tx cos kx − 4Kχ cos ky − µ and ∆(k) = 4iK∆ sin kx. Here, the spatial

coordinates x and y are the continuum analogues of n and m. Since the coefficient for
7There is the third mean field,

∑
n,m,α〈f†n,m,αfn+1,m+1,α〉, but it is omitted from the analysis because its

effects are similar to those of χ and thus do not change the qualitative property of the system.
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the interchain interaction is assumed to be positive, K > 0, the Cooper-pairing amplitude

vanishes, ∆ = 0. To compute the self-consistent solution for χ analytically, we assume

that the effective chemical potential is closed to the bottom of the band for a single chain,

µ = −2tx + δµ with |δµ| � K, and use a parabolic band approximation for the dispersion

ε(k) around the origin. We then obtain

χ =

(∫ π/2

0

dky cos3/2 ky

)2
4K

π4tx
+ O

(
δµ

K

)
, (4.3.6)

which can be approximated to χ ≈ K/25tx. With the finite χα = χ and vanishing ∆α = 0,

the mean-field Hamiltonian H̄α (4.3.3) for a single layer describes a two-dimensional spinless

fermion gas.

4.4 Spin integer quantum Hall effect

Next, we explain the derivation of the mean-field results for the case of spin integer quan-

tum Hall effect. Since the gradient of spin-orbit coupling breaks the translational symme-

try of the system along the y axis, it is difficult to obtain an analytical mean-field solu-

tion χ for arbitrary M . Instead, let us consider a special case of two weakly-coupled spin

chains, which is described by Hqh [Eq. (4.2.5)] with m = ±1. Two possible order param-

eters pertain to the interchain tunneling, χ =
∑

n〈f †n,1fn,−1〉/N , and the Cooper pairing,

∆ =
∑

n,m=±1〈fn,mfn+1,m〉/2N . The mean-field Hamiltonian for the JW fermions in the

momentum space is given by

H̄ =
∑

k,m=±1

[
(−2tx cos(k +mφ)− µ)f †k,mfk,m

]

− 2K
∑

k

[
χf †k,1fk,−1 + H.c.

]

− 2K
∑

k,m=±1

[
∆eikf †k,mf

†
−k,m + H.c.

]
.

(4.4.1)
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We will assume that two phases with finite χ and ∆ are mutually exclusive, and will

treat them separately. For K > 0, which is assumed throughout the Letter, the self-

consistency equation yields a vanishing Cooper-pairing amplitude, ∆ = 0, as in the case

of spin superconductivity. With ∆ = 0, the band structure of the Hamiltonian is ε±(k) =

txk
2 − δµ ± 2

√
(txφk)2 + (Kχ)2 for |k|, |φ| � 1, where µ = −tx(2 + φ2) + δµ. When the

effective Fermi energy is at the band-crossing point, δµ = 0, the analytical solution to the

self-consistency equation for χ is given by χ ' K/4π2tx, which agrees well with χ ≈ K/50tx

[Eq. (4.3.6)] obtained for the M →∞ case. The finite interchain tunneling χ > 0 opens up

the gap at the crossing point of the two bands of chains. See Fig. 4.2(b) for illustrations of

the gap openings.

4.5 Discussion

We have theoretically constructed the two models of an array of weakly-coupled spin chains,

which can exhibit spin analogues of charge superconductivity and the integer quantum Hall

effect. To drive spin current through those systems, we can apply an external-magnetic-

field gradient, which acts as an electric field on the JW fermions [103]. We can also attach

the spin system to heavy metals such as platinum, which can directly inject a spin current

to proximate magnets via spin Hall effects [126]. Reciprocally, a spin current out of the

system can be measured via inverse spin Hall effects by putting it next to heavy metals.

Spin superconductivity and spin integer quantum Hall effects can be characterized by the

zero resistance in spin flow through the bulk and along the boundary, respectively, when

neglecting spin dissipation due to, e.g., thermal fluctuations or spin-lattice coupling.

From the results obtained for quantum spin chains, we expect that an array of weakly-

coupled classical Heisenberg spin chains with the DM interaction in the presence of a strong

external magnetic field would support the magnonic chiral edge modes by forming a topo-

logical magnon insulator [104] under suitable conditions. More broadly, we envision that

weakly-coupled spin chains would serve as a versatile platform to engineer various spin-
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related topological phases.
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Chapter 5

Mechanical Actuation of Magnetic

Domain-Wall Motion

We theoretically study the motion of a magnetic domain wall induced by transverse elastic

waves in a one-dimensional magnetic wire, which respects both rotational and translational

symmetries. By invoking the conservation of the associated total angular and linear mo-

menta, we are able to derive the torque and the force on the domain wall exerted by the

waves. We then show how ferromagnetic and antiferromagnetic domain walls can be driven

by circularly- and linear-polarized waves, respectively. We envision that elastic waves may

provide effective means to drive the dynamics of magnetic solitons in insulators.

5.1 Introduction

Phonons, quanta of elastic vibrations, are ubiquitous in condensed matter systems including

magnets. Owing to their gapless nature, they can easily absorb energy from excited spins,

thereby engendering the damping term in the description of spin dynamics [12]. Apart

from this passive role, the idea of actively using phonons to induce magnetic dynamics has

been recently gaining attention in spintronics. It has been experimentally demonstrated

that acoustic pulses can induce coherent magnetization precession [127,128] via spin-lattice
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coupling [129]. Also excitation of elastic waves can generate spin currents [130, 131] and

thereby drive magnetic bubbles [132].

A domain wall in an easy-axis magnet is one of the simplest and well-studied topological

solitons [133], which has practical importance exemplified by the racetrack memory [48].

They can be driven by various means: a magnetic field [134], an electric field [135], a spin-

polarized electric current [136–139], a temperature gradient [140, 141], or a spin wave [142,

143]. Moving domain walls have been known to generate and drag phonons, which in turn

gives rise to the damping force on the walls [144]. This force increases as the domain wall

approaches the speed of sound, which was pointed out as the origin of the plateau in the

dependence of the domain-wall speed on an external field [145].

In this Letter, we study the reciprocal problem: actuation of the magnetic domain-

wall motion via the phonon current, which can be injected by mechanical means. The

stress-induced motion of a domain wall has been previously studied in Ref. [146], in which

the domain wall is energetically driven by the axial stress gradient generated by the static

voltage profile in piezoelectric materials. Differing from that, we focus on the effects of

the dynamic phonon current on the domain wall via scattering. Specifically, we consider a

one-dimensional magnetic wire with a coaxial easy-axis anisotropy, which can be realized

by a single-crystalline iron nanowire embedded in a carbon nanotube [147]. It respects

the rotational and translational symmetries and thus conserves the total angular and linear

momenta. A magnetic domain wall breaks both symmetries, which opens channels for the

exchange of both momenta with phonons. See Fig. 5.1 for an illustration of a domain-wall

configuration for a ferromagnetic system. We show that the domain wall is birefringent for

transverse waves and can thus act as a waveplate that alters the circular polarization—and

thus the angular momentum—of phonons traveling through it. This change of phonons’

angular momentum applies the torque on the domain wall. Reflection of phonons by the

domain wall gives rise to the force acting on it. We study the domain-wall motion induced

by the phononic torque and the force in ferromagnets and antiferromagnets.
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⦿

x

z
y

Figure 5.1: A schematic illustration of a ferromagnetic wire with a magnetic domain wall
(shown by blue thick arrows) and a transverse elastic deformation (which is exaggerated
for illustrative purposes). The yellow circles represent incoming phonons, quanta of elastic
waves; the yellow diamonds represents transmitted and reflected phonons. The red (blue)
arrows on circles represent phonons’ angular momentum in the positive (negative) z direction.
Phonons are injected from the left; some of them are reflected by the domain wall and thereby
exert the force on it; some of the transmitted and reflected phonons change their angular
momentum and thereby exert the torque on the wall.
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5.2 Main Results

Our model system is a one-dimensional magnetic wire stretched along the global z axis by

an external tension, in which the magnetic order parameter tends to align with the local

orientation of the wire. The order parameter is the local spin angular-momentum density

for ferromagnets and the local Néel order for antiferromagnets. For temperatures well below

the ordering temperature, the local order parameter has the saturated magnitude and thus

can be represented by the unit vector n(ζ, t) pointing along its direction. Here, ζ is the

internal coordinate of the lattice atoms along the wire. In this Letter, we are interested in

the interaction between the magnetic soliton—domain wall—and the transverse vibrations

of the wire, which are represented by u(ζ, t) and v(ζ, t) for the displacements of the atom at

ζ in the lab-frame x and y direction, respectively 1. We shall focus on small displacements

by working to the quadratic order in u and v. In studying the dynamics of elastic waves, we

shall assume that the dynamics of the magnetization is slow enough to be treated as static

in the equations of motion for elastic waves, which would be valid if the speed of sound is

much larger than that of magnons.

The potential energy that involves the magnetic order parameter is given by

Um =

∫
dζ
[
An′2 +K{1− (n · t)2}

]
/2 , (5.2.1)

where the positive constants A and K are the exchange and anisotropy coefficients, re-

spectively 2. Here, ′ is the derivative with respect to the intrinsic coordinate ζ; t(ζ, t) ≡

(u′, v′,
√

1− u′2 − v′2) is the unit tangent vector of the wire. The magnetic anisotropy can

be rooted in either the magneto-crystalline anisotropy or the shape anisotropy induced by
1By assuming that the Young’s modulus is much larger than the applied tension, E � T , we shall neglect

longitudinal displacements by focusing on low-energy transverse modes [148–150].
2Transverse elastic deformations may affect the magnetic potential energy by modifying the geometry

of the wire, which can be captured by an additional potential-energy term δUm =
∫
dζ (u′2 + v′2)[ξAn′2 +

νK{1− (n · t)2}]/2, where ξ and ν are the dimensionless parameters. This term modifies the strength of the
potential for elastic waves in Eq. (5.3.1), 2κ̃ 7→ [2− (ξ + ν)]κ̃ for u and κ̃ 7→ [1− (ξ + ν)]κ̃ for v, which does
not change the elastic-wave-induced motion of the domain wall qualitatively.
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dipolar interactions. When the wire is straight along the z axis, u ≡ v ≡ 0, there are two

ground states: n ≡ ẑ and n ≡ −ẑ. A domain wall is a stationary solution of δnUm = 0 that

interpolates two ground states n(ζ = ±∞) = ∓ẑ. It is given by [134]

nx(ζ) = sech[(ζ − Z)/λ] cos Φ , (5.2.2a)

ny(ζ) = sech[(ζ − Z)/λ] sin Φ , (5.2.2b)

nz(ζ) = − tanh [(ζ − Z)/λ] . (5.2.2c)

Here, Z and Φ are the position and the azimuthal angle of the domain wall, respectively;

λ ≡
√
A/K is the characteristic length scale of the problem, corresponding to the domain-

wall width. Z and Φ parametrize two zero modes of the domain wall, which are associated

with the breaking of the translational and spin-rotational symmetries. The dynamics of the

position Z induced by the wire’s transverse vibrations is of our main interest.

The linearized dynamics of the transverse displacements of the stretched wire can be

described by the Lagrangian [148]

Le =

∫
dζ
[
µ(u̇2 + v̇2)− T (u′2 + v′2)

]
/2 , (5.2.3)

where the positive constants µ and T are the mass density of the wire and the applied

tension, respectively 3. The equations of motion for u and v, that are derived from the

Lagrangian Le in conjunction with the potential energy Um [Eq. (5.2.1)], are given by

µü−
[{
T +K(n2

z − n2
x)
}
u′
]′

= −K(nznx)
′ , (5.2.4a)

µv̈ −
[{
T +K(n2

z − n2
y)
}
v′
]′

= −K(nzny)
′ . (5.2.4b)

For the uniform ground states, n ≡ ±ẑ, the right-hand sides vanish and the tension is
3We neglect the bending energy ∝ (u′′)2 [151] by assuming that the tension is strong so that the potential

energy ∝ T in Le dominates over the bending energy.
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Figure 5.2: The torque τ on the domain wall by the circularly-polarized waves as a function
of the wavenumber kλ for the parameters κ = 0.2 and a = λ/10. The solid line is obtained
with the analytical expression for τ in Eq. (5.2.5); the dots are obtained with τ in Eq. (5.4.2)
calculated from numerical solutions of the differential equations (5.3.1). The inset shows a
zoom-in at small wave vectors kλ < 1.

effectively increased from T to Tκ ≡ (1 + κ)T with κ ≡ K/T . The dispersion relation is

given by ω = ±v0k with the speed v0 ≡
√
Tκ/µ. Using the propagating-wave solutions to the

above equations in the presence of the domain wall, details of which will be shown later, we

can derive the phononic torque and the force on the wall by invoking the conservation of the

angular and linear momenta. The induced domain-wall speed is quadratic in the amplitude

of waves, which allows us to assume that the domain wall is static in Eqs. (5.2.4) to the

linear order in the amplitude 4.

The magnetic domain wall breaks the rotational and translational symmetries by selecting

an azimuthal angle Φ and a position Z, respectively. Incoming elastic waves thereby scatters

off the domain wall. By invoking the conservation of both momenta, we are able to derive
4In the quantum regime, the domain wall can be considered static only when its effective inertia is much

larger than that of incoming phonons.
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the torque τ and the force F on the domain wall. Let us present main features in the case

of small-amplitude elastic waves, which allows us to neglect the backaction of the induced

domain-wall motion on the elastic waves in Eqs. (5.2.4).

Let us present main features in the case of a small anisotropy κ� 1, which allows us to

neglect the backaction of the induced domain-wall motion on the elastic waves in Eqs. (5.2.4).

First, circularly-polarized waves incoming from the left, u(ζ, t) = a cos(kζ − ωt) and

v(ζ, t) = −a sin(kζ − ωt), exert the torque (i.e., the transfer of angular momentum) on the

domain wall,

τ ' Tκa2k[1− cos{kλ ln(1− κ)}] , (5.2.5)

for high-energy waves kλ� 1, which is obtained by the subtraction of the angular momentum

current of the transmitted wave, Tκa2k cos{kλ ln(1 − κ)}, from that of the incoming wave,

Tκa2k. The physical origin of the torque can be understood as follows. From Eqs. (5.2.4), the

domain wall locally modifies the tension for the u and v displacements by K[1−2 sech2(ζ/λ)]

and K[1 − sech2(ζ/λ)], respectively. The v component thus propagates faster than the u

component within the domain wall, which acts as a birefringent medium that can alter the

polarization of the wave. The argument of the cosine function in Eq. (5.2.5) is the relative

phase shift of u and v components of the transmitted wave, φu,t − φv,t ' kλ ln(1 − κ).

Figure 5.2 shows the torque τ as a function of the wavenumber kλ. Note that it oscillates as

a function of kλ with the period of 2π/ ln(1− κ). This torque by the elastic waves can drive

ferromagnetic domain walls, analogous to the torque of spin waves [142]. The steady-state

speed of the ferromagnetic domain wall is V = τ/2s [Eq. (5.5.2)] in the absence of damping,

where s ≡ ~S/V is the saturated spin density (V is the volume per spin).

Secondly, linearly-polarized waves incoming from the left, v(ζ, t) = a cos(kζ − ωt) and

u(ζ, t) ≡ 0, exert no torque, but a finite force (i.e., the transfer of linear momentum) on the

domain wall due to the reflection,

F ' Tκκ2λ2a2k4 , (5.2.6)
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Figure 5.3: The force F on the domain wall exerted by the linearly-polarized waves per-
pendicular to the wall plane for the parameters κ = 0.2 and a = λ/10. The solid line is
obtained with the analytical expression for F in Eq. (5.2.6); the dots are obtained with F in
Eq. (5.4.3) calculated from numerical solutions of the differential equations (5.3.1).
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for low-energy waves kλ � 1. It is the product of the pressure (i.e., the linear momentum

current) of the incoming wave, Tκa2k2/2, and twice the reflection probability, 2κ2λ2k2. The

reflection probability is exponentially small for high-energy waves kλ � 1, and so is the

force. Figure 5.3 shows the force F as a function of the wavenumber kλ. This force of

the elastic waves can drive antiferromagnetic domain walls, analogous to the force of spin

waves [143,152]. The steady-state speed of the antiferromagnetic domain wall is V = λF/2αs

[Eq. (5.6.1)], where α is the Gilbert damping constant.

5.3 Transverse waves

Let us solve the differential equations (5.2.4) for u and v in the presence of the static domain

wall given by Eqs. (5.2.2). A general solution is composed of static and dynamic compo-

nents. A static one is determined by the right-hand sides of the equations [144,153], whereas

dynamic components, which are of interest to us, are the propagating waves, for which we

can neglect the right-hand sides. For the monochromatic solutions, i.e., ∝ exp(−iωt), the

equations are given by

[{
1− 2κ̃ sech2(ζ/λ))

}
u′
]′

= −k2u , (5.3.1a)
[{

1− κ̃ sech2(ζ/λ)
}
v′
]′

= −k2v , (5.3.1b)

with k2 ≡ ω2/v2
0 and κ̃ ≡ κ/(1+κ). We shall focus on solutions for v henceforth, from which

we can obtain solutions for u by replacing κ̃ by 2κ̃. For the given incoming-wave component,

the solution far away from the wall can be characterized by four real numbers: the amplitude

t > 0 and the phase-shift φt of the transmitted component and the amplitude r > 0 and the

phase-shift φr of the reflected component:

v(ζ) ∝





eikζ + re−ikζ+iφr , for ζ � −λ

teikζ+iφt , for ζ � λ .

(5.3.2)
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The equation can be transformed into a quantum-mechanic scattering problem by introduc-

ing a new coordinate η satisfying dζ/dη = 1− κ̃ sech2(ζ/λ):

[
− d2

dη2
+ k2κ̃ sech2 ζ(η)

λ

]
v = k2v . (5.3.3)

We obtain approximate solutions in the two extreme energy regimes. First, in the high-

energy limit, kλ � 1, we use the Wentzel-Kramers-Brillouin approximation [154], within

which the solution is v(ζ) ∝ exp
[
ik
∫
dζ{1− κ̃ sech2(ζ/λ)}−1/2

]
in the original coordinate ζ

with the transmission amplitude t = 1. The phase shift of the transmitted wave is given by

φt = k

∫ ∞

−∞

dζ√
1− κ̃ sech2(ζ/λ)

= −kλ ln(1− κ̃) . (5.3.4)

In the low-energy limit, we approximate the potential by the delta-function barrier with the

height hk ≡ 2k2
√
κ̃/(1− κ̃) arcsin

√
κ̃ that is the spatial integral of the potential. After

solving the scattering problem and going back to the original coordinate ζ, we obtain

r = κ̃kλ , φr = −π/2, t = 1 , φt = κ̃kλ , (5.3.5)

to the first order in kλ. Note that for a small anisotropy, κ̃ � 1, the phase shifts of the

transmitted wave in the two regimes coincide: −kλ ln(1− κ̃) ' κ̃kλ.

5.4 Torque and force.

In the uniform state, n(ζ) ≡ ẑ, the effective Lagrangian density for the waves which includes

the effect of the anisotropy is given by L = µ(u̇2 + v̇2)−Tκ(u′2 + v′2) . Axial symmetry of the

Lagrangian implies conservation of the corresponding angular momentum. The temporal and

spatial components of the associated Nöther current [149,152] are given by ρs = µ(uv̇− vu̇)

and Is = −Tκ(uv′− vu′), which are, respectively, the density and the current of the (orbital)
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angular momentum 5. We obtain the linear momentum density T 10 = −µu̇u′ + (u → v)

and the current T 11 = (µu̇2 + Tκu′2)/2 + (u → v) from the stress-energy tensor, Tαβ ≡

∂αu[∂L/∂(∂βu)]+(u→ v)− δαβL [149]. For monochromatic waves, u(ζ, t) = u0 cos(kζ−ωt)

and v(ζ, t) = v0 cos(kζ − ωt+ ∆φ), the angular and linear momentum currents are given by

Is = Tκu0v0 sin(∆φ)k , T 11 = Tκ(u2
0 + v2

0)k2/2 . (5.4.1)

An intuitive way to understand these momentum currents is to picture the elastic wave as

a flux of phonons, particles carrying the angular momentum±~ and the linear momentum ~k.

For example, a circularly-polarized wave with u0 = v0 = a and ∆φ = π/2 have Is = Tκa2k

and T 11 = Tκa2k2; Their ratio is T 11/Is = k, which is consistent with the particle picture.

Let us take an example of a circularly-polarized wave with u0 = v0 = a and ∆φ = π/2.

It has the angular and the linear momentum current, Is = Tκa2k and T 11 = Tκa2k2. We

can obtain the number current from the linear momentum current by T 11/~k = Tκa2k/~.

Comparison between the number current and the angular momentum current leads us to

conclude that phonons in the wave has the angular momentum +~ (polarized along the ẑ

axis).

Let us now derive the torque and the force on the domain wall exerted by elastic waves.

The torque is the difference of the angular momentum current Is between the far left and

far right of the domain wall; the force is the difference of the linear momentum current T 11

between them. First, for the circularly-polarized incoming wave, u(ζ, t) = a cos(kζ−ωt) and

v(ζ, t) = −a sin(kζ − ωt), the time-averaged torque and force are given by

τ = Tκa2(1− tutv cos ∆φt − rurv cos ∆φr)k , (5.4.2)

F = Tκa2(r2
u + r2

v)k
2 , (5.4.3)

5Ref. [155] showed that phonons in magnetic crystals can have nonzero orbital angular momentum in
equilibrium.
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where tu and tv are respectively the transmission amplitudes of the u and v components (and

similarly ru and rv for the reflection amplitudes) and ∆φt is the relative phase shift of the

transmitted u and v components (and similarly ∆φr for the reflected wave). Equation (5.2.5)

for τ is the reflectionless limit of Eq. (5.4.2), corresponding to kλ � 1. Secondly, for the

linearly-polarized incoming wave, v(ζ, t) = a cos(kζ − ωt), the torque vanishes and the force

is given by

F = Tκa2r2
vk

2 . (5.4.4)

5.5 Ferromagnetic domain wall

The dynamics of the ferromagnet is described by the Lagrangian [156], L = s
∫
dζ a(n) ·n−

U [n], where a(n) is a vector potential of a magnetic monopole, ∇n×a = n. The angular and

linear momenta of the domain wall [Eqs. (5.2.2)] are given by, respectively, J = J0 +2sZ and

P = P0 − 2sΦ, where J0 and P0 are arbitrary [157, 158]. Viscous losses can be represented

by the Rayleigh dissipation function [149] R = αs
∫
dζ ṅ2/2, where α is Gilbert’s damping

constant [12]. By plugging the domain-wall solution, we obtain R = αs(λΦ̇2 + Ẋ2/λ). The

conservations of the total angular and linear momenta yield

τ = J̇ + 2αsλΦ̇ , F = Ṗ + 2αsŻ/λ . (5.5.1)

The steady-state velocity V = Ż is given by

V =
τ + αλF

2(1 + α2)s
. (5.5.2)

5.6 Antiferromagnetic domain wall

The dynamics of the antiferromagnet is described by the Lagrangian, L = χ
∫
dζ ṅ2/2−U [n],

where χ quantifies inertia of the order parameter [159,160]. The Rayleigh dissipation function
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is R = αs
∫
dζ ṅ2/2 [161]. For slow dynamics, the angular and linear momenta of the domain

wall are respectively given by J = IΦ̇ and P = MŻ, where I ≡ 2χλ and M ≡ 2χ/λ are the

moment of inertia and the mass of a static domain wall [152]. Their equations of motion are

same as Eqs. (5.5.1). The steady-state velocity Ż(t)→ V is given by

V =
λF

2αs
. (5.6.1)

5.7 Discussion

For experiments, linearly polarized elastic waves can be coherently excited by attaching

a piezoelectric transducer to the magnetic wire, as done in Refs. [162, 163] to probe the

magnetoacoustic Faraday effect [129]. Coherent excitation of circularly-polarized waves can

be generated, for example, by exciting two linearly polarized modes with the fixed relative

phase of π/2.

Let us make a quantitative estimate for the speed of the domain-wall in ferromagnets,

V = τ/2s [Eq. (5.5.2)] in the zero-damping limit α = 0 at the maximum efficiency of the

phononic torque, i.e., τ = 2Tκa2k [Eq. (5.2.5)]. We take the parameters of iron for the

magnet, the saturation magnetization Ms = 2× 106 A/m and the mass density ρ = 7× 103

kg/m3 [164], and the parameter of lead zirconate titanate for the piezoelectric strain constant

d = 10−10 m/V [146]. For the iron wire of the cross-sectional areaA = 20 nm2 [147] subjected

to the tension T = 10−3 N, the application of the electric field E = 1 V/mm rotating at the

frequency 10 MHz across the piezoelectric transducer of length L = 100 nm yields the speed

V ≈ 40 m/s (assuming the perfect coupling of stress between the transducer and the wire),

which is comparable to the domain-wall speed by the spin-polarized electric current [48] and

by the magnon current [142].

We have neglected the magnetoacoustic Faraday effect [162] as well as its inverse effect

[165], which are absent in the static treatment of the magnetization according to the energy

Um (5.2.1) that is even under magnetization reversal. The effects might be present when the
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magnetization is made dynamic, but it is suppressed when the magnetic and the acoustic

resonances are significantly mismatched [129]. These effects, in principle, can influence the

domain-wall motion. In particular, via the inverse effect, the circularly polarized elastic waves

can induce the effective magnetic field along the axial direction and drive the ferromagnetic

domain wall by contributing to the force F in Eq. (5.5.2) [134]. In the zero-damping limit

α = 0, however, this contribution can be neglected.
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Chapter 6

Evolution of the quantum Hall bulk

spectrum into chiral edge states

One of the most intriguing and fundamental properties of topological systems is the cor-

respondence between the conducting edge states and the gapped bulk spectrum. Here, we

use a GaAs cleaved edge quantum wire to perform momentum-resolved spectroscopy of the

quantum Hall edge states in a tunnel-coupled 2D electron gas. This reveals the momentum

and position of the edge states with unprecedented precision and shows the evolution from

very low magnetic fields all the way to high fields where depopulation occurs. We present

consistent analytical and numerical models, inferring the edge states from the well known

bulk spectrum, finding excellent agreement with the experiment – thus providing direct evi-

dence for the bulk to edge correspondence. In addition, we observe various features beyond

the single-particle picture, such as Fermi level pinning, exchange-enhanced spin splitting and

signatures of edge-state reconstruction.
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6.1 Introduction

Systems with topologically protected surface states, such as the quantum spin Hall insula-

tor [166, 167] and many other topological insulators, are currently attracting great interest.

Among the topological states, the integer quantum Hall effect [168] stands out since it was

first discovered. It is the most simple case out of which others have emerged, and thus serves

as a paradigmatic system. Accessing the surface states in a topological system separately

and independently, however, has proven to be challenging for a number of reasons, includ-

ing disorder, insufficient resolution or remnant bulk conductivity contaminating transport

experiments. Local probes, such as scanning single electron transistors, could in principle

overcome the bulk conductivity problem and have been intensely investigated in the context

of quantum Hall systems [169–178]. However, moderate spatial resolution and the require-

ment of large magnetic fields for discriminating among individual edge states have limited

existing experiments to low filling factors and prevented tracking the evolution of quantum

hall edges all the way down to low fields.

Previously, tunneling spectroscopy of cleaved edge overgrowth wires has established the

system as one of the best realizations of a 1D ballistic conductor, exhibiting distinct sig-

natures such as quantized conductance [179], spin-charge separation [180], charge fraction-

alization [181] and indication of helical nuclear order induced by the strongly interacting

electrons [182, 183]. Here, we use a vector magnet to independently control two orthogonal

magnetic fields: one to form quantum Hall edge states and another to perform tunneling

spectroscopy.

In this work, we use momentum resolved tunneling spectroscopy to track the guiding

center (GC) positions of the quantum Hall edge states with nanometer precision. Over

the magnetic field evolution, we observe first magnetic compression towards the sample

edge, and then, at higher fields, motion into the bulk and magnetic depopulation of Landau

levels (LLs). Note that in this work we are studying integer quantum Hall edge states

71



and not the spin Hall effect or any other topological state. However, this technique is also

applicable to the latter states. Using both an analytical model and numerical solutions for

the evolution of edge states in the limit of hard wall confinement [184–186], we are able to

match very well the tunneling spectroscopy fingerprint of the conducting edge states from

the topologically gapped bulk phase and hence reveal their direct correspondence. Individual

edge modes [187–189] are discernible down to unprecedented low magnetic fields Bz ≈ 10mT,

where the bulk filling factor ν is about 500. Furthermore, we observe the chiral nature of edge

states, as well as Fermi level pinning effects. In addition, interactions lead to signatures of

edge reconstruction and exchange-enhanced spin-splitting at large in-plane magnetic fields.

We emphasize that this spectroscopy is done at zero bias, thus eliminating heating or lifetime

effects.

6.2 Results

6.2.1 Integer quantum Hall edge states for the hard wall confine-

ment

A magnetic field Bz, applied perpendicular to a 2D electron gas (2DEG), quenches the

kinetic energy of free electrons and condenses them into discrete LLs that are energetically

separated by the cyclotron energy ~ωc. Here, ωc = eBz/m
∗ denotes the cyclotron frequency,

e the elementary charge, ~ the reduced Planck constant, and m∗ the effective electron mass.

Upon approaching the sample edge the electrostatic confinement potential lifts LLs in energy

and causes them to intersect with the Fermi energy, thereby forming a corresponding edge

state for each bulk LL, see Fig. 6.1a and Supplementary Fig. 4. Here, we use the Landau

gauge (vector potential A = 0 at the edge), where the momentum kx along the quantum

wires is a good quantum number that fully characterizes each state. Given kx, all other

quantities may be calculated, such as the wave function center of mass (CM) as well as the

GC position Y = kxl
2
B, where lB =

√
~/(eBz) denotes the magnetic length. Throughout the
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Figure 6.1: Bulk to edge correspondence. a, Energy evolution of the center of mass
(CM) position (thin blue/red curves) and the guiding center (GC) position (bold blue/red
curves) for the first two Landau levels LL0 and LL1. Here, LL2 is above the Fermi energy
and is depopulated. The confinement (hard wall) lifts the bulk LLs in energy, resulting
in corresponding edge states (solid circles) when the CM is crossing the Fermi energy EF.
Note that the Fermi energy shown here is lower than in the experiment. b, Same as a for
larger magnetic field Bz, where the width 2σn = 2lB

√
2n+ 1 of LLn is squeezed and LL1 was

depopulated, with magnetic length lB. c, Coordinate system (black) and sample schematic,
showing the 2DEG in light blue, upper and lower quantum wire (UW/LW) in dark blue,
top gate in green, and CM for integer quantum Hall edge states in purple. Ω indicates the
conductance measurement. d, Simplified UW and LL dispersions calculated for independent
triangular and hard wall confinement. e, Calculated dispersion for the combined confinement
potential, resulting in hybridized states Hn with avoided crossings (see inset). Here, the bulk
LL0 transforms into the UW mode at the sample edge. Gray segments indicate empty states,
colored ones are filled.
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paper, the filling factor is defined as ν = 2n + g, where n = 0, 1, 2, ... is the orbital Landau

level index, and 0 ≤ g < 2 is the spin occupancy.

At elevated Bz, shown in Fig. 6.1b, the cyclotron splitting is enhanced. As a consequence

the highest LLs are energetically lifted above the Fermi energy and thus magnetically de-

populated of electrons, compare Fig. 6.1a and b. In addition, increasing Bz reduces the

magnetic length, thereby squeezing the remaining LL wave functions by magnetic compres-

sion and moving the corresponding edge states closer to the sample edge. This holds up to

a certain point, when the edge state starts suddenly moving back into the bulk just before

being magnetically depopulated, see Fig. 6.1b.

A sample schematic is depicted in Fig. 6.1c and consists of two parallel GaAs quantum

wells, separated by a thin AlGaAs tunnel barrier. The upper quantum well hosts a high

mobility 2DEG, while the bulk of the lower quantum well remains unpopulated. Cleavage

of the sample and subsequent overgrowth results in strongly confined 1D-channels in both

quantum wells (see methods section and refs. [179–181, 190–196] for more details), termed

upper wire (UW) and lower wire (LW) in the following. The LW is used as a tunnel probe

to spectroscopically image the integer quantum Hall edge states of the upper quantum well

at effectively zero bias voltage.

A simplified picture for the complete dispersion for the upper system is shown in Fig. 6.1d.

It consists of a single localized wire mode UW (dark blue), resulting from the triangular

confinement at the sample edge, and the LL spectrum in presence of hard wall confinement

and perpendicular magnetic field Bz. Solving the combined electrostatic problem (hard

wall confinement with triangular potential near the edge) hybridizes the LL spectrum and

quantum wire modes at commensurate conditions where energy and momentum are matched,

see Fig. 6.1e. As a consequence the bulk LL0 transforms into the lowest quantum wire mode

at the sample edge. While each LL like edge state in Fig. 6.1e acquires an additional node in

the wave function in comparison to the hard wall spectrum of Fig. 6.1d, the intersection with

the Fermi energy EF is hardly changed [197,198], giving almost the same effective momentum
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kx. Therefore, the simplified dispersion of Fig. 6.1d is used in the following to describe the

magnetic field evolution of edge states.

The tunneling regime is obtained by setting the top gate in Fig. 6.1c to deplete the 2DEG

and all UW modes beneath it while preserving a single conducting mode in the LW. This

divides the upper system electrically into two halves but preserves tunnel coupling on each

side to the LW. Due to translational invariance of UW and LW (away from the top gate,

where tunneling occurs), momentum is conserved during the tunneling event, and can be

controlled by means of the Lorentz force. In particular, in presence of an in-plane magnetic

field By applied perpendicular to the plane spanned by the two wires (see coordinate system

in Fig. 6.1c), tunneling electrons experience a momentum kick ∆kx = −edBy/~ along the

x-direction of free propagation, thus effectively shifting the wire dispersions with respect to

each other [180, 181, 193, 194]. Here, d denotes the tunneling distance along the z-direction.

The resulting zero-bias tunneling conductance is large whenever Fermi-points of upper and

lower system coincide, see also Supplementary Fig.1a. In a similar fashion, each LW mode

can also be brought into resonance with any given LL. However, in contrast to the quantum

wires, the effective momentum of edge modes kx,LLn of the LLs depends on Bz.

6.2.2 Formation and evolution of the edge states

Fig. 6.2 shows the measured differential tunneling conductance as a function of magnetic

fields Bz and By. Two horizontal features are visible that correspond to resonant tunneling

(energy and momentum conservation) between co-propagating electrons of the first upper and

lower wire mode, UW1 and LW1, respectively. Since the electron density in UW1 and LW1

is very similar, only little momentum transfer and correspondingly small |By| is required

to bring the modes into resonance. These resonances are independent of Bz because the

Y coordinates of both UW1 and LW1 modes are very similar. In addition to wire-wire

tunneling, extensively studied in the past [180,181,193–196], sharp tunneling resonances of a

different origin [187–189] are observed that split into fans of discrete curves in presence of a
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Figure 6.2: Formation and B-field evolution of the chiral integer quantum Hall
edge states. a, Differential tunneling conductance as a function of in-plane magnetic field
By and perpendicular magnetic field Bz at ≈ 10mK. The 2D-wire transitions break up into
multiple curves and fan out with increasing Bz, see also Supplementary Fig. 2. Horizontal
resonances at small |By|, associated with wire-wire tunneling, are not affected by Bz. b,
Larger By range than a, showing 6 fans corresponding to tunneling to modes LW2, LW3, and
LW4. Due to the chiral nature of the states, the fans are not seen in the data when only Bz is
reversed. The sketches depict the resonance condition (black dots) at Bz = 0. c, Schematic
representation of quantum wire (gray) to LL (red) tunneling at Bz = 0.7T. By shifts the
lower wire dispersion in relation to the LLs, as indicated by gray arrows of corresponding
length. The blue filled parabola indicates the 2DEG dispersion for Bz = 0, projected onto
the kx axis. Black dots and black circle indicate resonant tunneling to bulk states and edge
state, respectively.
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perpendicular field and separate with increasing field strength. For each fan, about 10 curves

can be resolved down to Bz & 10mT, see Fig. 6.2. As we will show, these fans correspond to

resonant tunneling between quantum Hall edge states and the LW modes which are acting as

a momentum selective spectrometer. The fan structures observed here track the momentum

evolution of edge states with Bz and thereby produce a fingerprint of the conducting edge

states. This is in contrast to the conventional Landau fan that simply is an expression of

the bulk filling factor as a function of 2DEG density and Bz.

The wire modes are supporting states propagating in both negative and positive x-

direction, irrespective of the perpendicular field, and give transitions extending over both

positive and negative Bz, see also Supplementary Fig. 6.1. The quantum Hall edge states, on

the other hand, are chiral and are thus propagating only in one direction for a chosen sign of

Bz along a given edge. The corresponding LL dispersions are therefore not symmetric under

reversal of kx, and the fan structures become directional. Indeed, the fans are seen only for

one sign of Bz around a given By, e.g. in the lower right in Fig. 6.2a but not the lower left.

The opposite sign of Bz also supports a fan but only when By is inverted at the same time,

i.e. when the total B-field is switching sign (Onsager’s reciprocity [199]), see upper left in

Fig. 6.2a. This directly indicates the chiral nature of these edge states.

Besides fan structures in Fig. 6.2a, there are additional fans originating at different By

values, see Fig. 6.2b where a larger field range is displayed. These other fans result from

tunneling to other modes of the LW. Since each of the different modes in the LW has a

different density and thus a different Fermi momentum, an overall momentum shift results

which displaces the fans along By, as illustrated in the sketches of Fig. 6.2b, where the

resonance condition at Bz = 0 is shown (origin of the fans).

In order to quantitatively understand the field evolution of the fan structures, the LL

dispersions have to be considered, which depend on the electrostatics at the edge [200–207].

For the present samples, the cleavage exposes an atomically sharp edge, that is immediately

overgrown by means of lattice matched molecular beam epitaxy [190, 191]. The resulting
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hard wall confinement potential gives rise to the LL dispersions of Fig. 6.2c (red) [184,186],

shown along with the quantum wire modes in the lower well (gray) and the 2DEG at Bz = 0

(blue). Lowering Bz reduces the bulk LL energy splitting ~ωc and hence introduces a more

dense LL structure while leaving the LW modes unaffected (due to their strong transverse

confinement). The in-plane magnetic field By, on the other hand, is assumed to not directly

affect the LLs, but only shift their dispersion in relation to the LW.

The fan structures at positive BZ in Fig. 6.2b can then be understood in terms of momen-

tum conserving edge state tunneling using one of the LW left Fermi points as a spectrometer,

see Fig. 6.2c, where the case of LW3 is marked with an open circle. Thus, each fan represents

a map of the momenta of the LL edge states at the Fermi energy, and thus, via the GC-

momentum relation Y = kxl
2
B, a precise map of the GC positions of the edge states. Upon

approaching Bz = 0, the effective momentum of edge states, i.e. the intersection of LLs

with the chemical potential, approaches the Bz = 0 Fermi wave vector −kF,2D of the 2DEG.

During this process edge states associated with LLs of increasing orbital index subsequently

come into co-propagating resonance with LW2 at By = 0.

In the following section, the range in perpendicular magnetic field is extended (Fig. 6.3)

in order to study the field evolution of edge states and their magnetic depopulation at

large Bz. For better visibility, we plot the second derivative with respect to By of the

differential tunnel conductance in Fig. 6.3a. A large number of interpenetrating resonances

are visible, extracted in Fig. 6.3b for clarity, and grouped into bundles according to their

different origin, i.e. red, black, and light blue data indicate co-propagating tunneling to the

first three LW modes, LW1, LW2, and LW3, respectively. The LL edge states can also be

mapped in a counter-propagating fashion (Fig. 6.3c), e.g. where the wire state and edge

states are propagating in opposite directions. To achieve momentum conservation in this

case, a relatively large momentum kick needs to be provided by the magnetic field, and these

transitions thus appear at larger By.

In addition to edge state−wire tunneling, intra−wire transitions are seen and color coded
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Figure 6.3: Magnetic depopulation and spin splitting of integer quantum Hall
edge states. a, Second derivative with respect to By of the differential tunnel conductance
(d2gT/dBy

2) as a function of magnetic fields By and Bz. b, Extracted resonance positions
from a. Red, black, and light blue data correspond to tunneling between edge modes and
the first (LW1), second (LW2) and third (LW3) lower wire mode. c,d,e,f, Zoom in of a for
regions of interest: c, Landau fans for Bz < 0 (counter-clockwise edge states⇔ right moving
edge state at cleaved edge), imaged with co-propagating (white solid ellipse) and counter-
propagating wire modes (white dashed ellipse).d, Jumps in the resonance position whenever
the bulk filling changes. The three vertical bars of growing height indicate a distance of 2 nm
in real space. The height ∆By of the bar is given by ∆By = ∆Y Bz/d, where ∆Y is the
distance in real space. Thus, the real space resolution is improving with increasing magnetic
field Bz. e, LL spin splitting clearly visible even in undifferentiated raw data (tunneling
conductance gT). f, branching out of resonances at the transition to magnetic depopulation.
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in gray in Fig. 6.3b. As the wave functions for LW1 and UW1 are very similar, their CM

positions nearly sit on top of each other and hence there is no resulting momentum kick

∆kx = e∆yBz/~ due to the perpendicular field. Here, ∆y denotes their lateral displacement.

As a consequence, the corresponding resonances (light gray) appear as horizontal lines. In

contrast to this, transitions involving different wire modes, e.g. UW2 and LW1 (dark gray

data in Fig. 6.3b), appear with a slope that reflects the different center of mass positions of

the participating wave functions.

Returning to LL tunneling, we note a few important points. First, all LL resonances

terminate on the right end at a specific bulk filling factor when magnetic depopulation

removes the corresponding edge state from the sample, clearly seen for the black data in

Fig. 6.3b. In particular, tunneling involving LL2 with n = 2 is observed up to Bz ≈ 1.1T,

terminating at the corresponding bulk filling factor ν = 6, labeled on the top axes in Fig. 6.3b.

Here, spin occupancy g = 2 because of a spin-unresolved case. The resonances for LL3 with

n = 3 are already lost above Bz ≈ 0.8 at ν = 8, independent of which LW mode is used as

a spectrometer (compare red, black and light blue data in Fig. 6.3b).

6.2.3 Spin splitting and Landau level depopulation

A set of bright vertical features appears in the upper half of Fig. 6.3a (corresponding to the

dashed vertical lines of integer filing factors in Fig. 6.3b), whose position is coincident with

the disappearance of LL resonances. These features are even more visible in Supplementary

Fig. 5. These result from probing the flat part of the LL dispersion i.e. they reflect the bulk

filling factor, and account for the majority of the measured tunneling signal in Fig. 6.3 prior

to differentiation of the data. For example at Bz = 0.7T, shown in the level schematics

of Fig. 6.2c, LL4 is aligned with the chemical potential causing a resonance with the right

Fermi-points of LW1, LW2, and LW3 as indicated with black dots. While applying a positive

in-plane magnetic field shifts the LW dispersions to the right and hence preserves resonant

tunneling, this condition is lost for sufficiently negative By. Consequently, the vertical lines,
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corresponding to magnetic depopulation of a LL in the bulk, appear predominantly at posi-

tive By.

Beyond the vertical lines, the smooth evolution of LL tunneling resonances from Fig. 6.2

develops shoulder-like structures at larger Bz, clearly seen in Fig. 6.3d. The shoulders ap-

pear exactly at the transition between bulk filling factors (vertical lines in Fig. 6.3b) and

are attributed to Fermi level pinning to LLs and impurity states, respectively, previously

only accessible through investigation of the bulk 2DEG properties [208, 209]. Here, we also

note that the momentum resolution and the corresponding real space resolution of this spec-

troscopy technique improves with perpendicular magnetic field (white bars in Fig. 6.3d) and

reaches the nanometer range for fields above 1 T. The resonance width depends on the degree

to which momentum conservation is broken during tunneling, i.e. breaking of translational

symmetry due to disorder and the finite size of the tunneling region. Finally, also, any vari-

ation of the tunneling distance between the upper and lower system, such as single-atomic

steps in the growth plane or other crystal defects, will add to the observed broadening.

While each LL carries two spin resolved sub-bands, energetically split by the total Zeeman

energy given by magnetic fields Bz and By, the corresponding difference in Fermi wave vectors

is too small to be resolved by means of this spectroscopic method. However, at large in-plane

magnetic fields, the interplay between Hartree term and exchange interactions [210] may lead

to the formation of spin polarized strips where spin split sub-bands are also separated in real

space [211]. As a consequence, tunneling resonances split up for the red data in Fig. 6.3e

and the spectroscopy becomes spin selective.

6.2.4 Analytical model of resonant tunneling

In the last part of this article, we develop an analytical model [184, 185, 189, 197], and in

addition provide numerical predictions (see supplement) for the evolution of LLs in the limit

of hard wall confinement using a 1D single-particle Schrödinger solver. The perpendicular

magnetic field introduces an additional local parabolic confinement, centered at each GC
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position Y , hence condensing bulk electrons into discrete LLs with well known Hermite-

Gaussian wave functions. We assume that upon approaching the hard wall, LLs remain at

their bulk energy Ebulk
n = ~ωc

(
n+ 1

2

)
until the tail of the wave function intersects with the

hard wall (Y ≈ σn for LLn, with σn the half width of the LL wave function). When moving

Y even closer to the edge or beyond, the hard wall retains the wave functions within the

sample, thus separating in space the GC position Y = kxl
2
B and the wave function center of

mass (CM) position, see Fig. 6.1a,b and Fig. 6.4a. As as consequence, LLs acquire kinetic

energy and are simply lifted up the parabolic magnetic confinement until they cross the

Fermi energy, thereby forming the conducting edge states (Figs. 6.1a,b and Supplementary

Figs. 3 and 4). Using these approximations, the LL dispersion En[kx] reads:

En[kx] = Ebulk
n +

~2

2m∗
Θ[σn − Y ]

(
σn
l2B
− kx

)2

, (6.2.1)

where Θ[x] is the Heaviside function. The condition for resonant tunneling is obtained by

equating the LL spectrum at the Fermi energy with the lower wire dispersion ε
(l)
kx
, shifted

in kx-direction to account for the momentum kick eByd (tunneling to the lower system in

presence of By) and eBz∆yi (displacement ∆yi of the LWi wave function CM with respect

to the cleaved edge):

ε
(l)
kx

=
(~kx − eByd− eBz∆yi)

2

2m∗
+ ε

(l)
0 . (6.2.2)

Here, ε(l)0 is an energy offset that accounts for the difference in band edges of 2DEG and re-

spective lower wire mode with respect to the common Fermi energy. Combining Eqns (6.2.1),

(6.2.2) we obtain the evolution of the tunneling resonances as a function of By and Bz,

eByd

~
=

√
2n+ 1

l2B
−
√
k2

F,2D −
2n+ 1

l2B
+ γi −

∆yi
l2B

(6.2.3)

where γi =
√
k2

F,2D − 2m∗ε
(l)
0 /~2 is a quantum wire mode dependent overall momentum shift.
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Figure 6.4: Comparison of experiment and theory. a, Landau Level wave functions for
particular values of Bz chosen to visualize the important stages of magnetic field evolution.
Note that the resulting vertical scale is highly nonlinear. The wave functions are obtained
from a numerical Schrödinger solver, showing magnetic compression of the wave function and
subsequent depopulation. The hard wall confinement completely separates wave function CM
and GC position, the latter residing outside the physical sample for most of the B-field range.
Hybridization of LLs and UW1 would result in an additional node for LL wave functions at
the Fermi energy. In b,c experimental data are compared to theoretical predictions from
an analytical model and to numerical solutions from a single-particle Schrödinger solver,
respectively.
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6.3 Discussion

Both the numerical and the analytical models capture the experimental tunneling resonances

very well and result in very similar fitting parameters, shown in Fig. 6.4b,c for LL tunneling

to LW2 (black data from Fig.6.3). We note that equally good fits are obtained for tunneling

to other lower wire modes as well, using the same 2DEG density n2DEG = k2
F,2D/2π and

increasing quantum wire displacement ∆yi for higher modes (see Supplementary Fig. 5), as

expected – thus lending further support to the models. We emphasize that both models

consistently deliver the CM positions, with similar nanometer precision as the GC positions

extracted directly from the spectroscopy. This makes it possible to plot a full map of the

magnetic field evolution of the edge states, see Fig.6.4a. Throughout the process of increasing

magnetic field Bz, the electron wave function is progressively compressed (from green to red

curves). There are two stages of the edge state motion as magnetic field Bz increases: first,

motion of the center of mass towards the hard wall (empty circles for Bz < 2.78T) and

motion away from the hard wall at larger fields, see also Supplementary Fig.3. During the

latter stage, the center of mass merges with the guiding center position (black and blue

curves approach and then coincide for larger Bz in Fig.6.4a), followed by depopulation of

the corresponding LL.

Despite the good match between experiment and non-interacting single-particle theory,

there remain minor discrepancies. In particular the shoulder structures at the transitions

between integer bulk filling factors (Fig. 6.3d), and the spin splitting observed at large in-

plane magnetic field (Fig. 6.3e) are not captured by the model. Furthermore, at the transition

to magnetic depopulation, individual resonances are observed to branch out, clearly visible

for e.g. the LL1-LW2 transition in Fig. 6.3f. Splitting of single resonances could arise e.g.

from edge reconstruction or may also result from the formation of stripe or bubble phases.

In summary, we employed momentum-resolved tunneling spectroscopy to image the evo-

lution for the lowest ≈ 10 integer quantum Hall edge states of a GaAs 2DEG with nanometer
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resolution, and down to magnetic fields of Bz & 10mT (νbulk ≈ 500). We directly observe

the chiral nature of integer quantum Hall edge states, as well as magnetic depopulation at

the respective bulk filling factor. In addition, spin splitting is observed at the transition to

depopulation. Theoretical predictions assuming the topologically gapped bulk spectrum and

hard wall confinement reproduce very well the experimental data over the entire range of

magnetic field, thus confirming the bulk to edge correspondence.

In the future, also fractional quantum Hall edge state can be investigated with the spec-

troscopy technique presented here. The present sample exhibits clearly visible ν = 4/3 and

ν = 5/3 fractional states in conventional transport measurements. Imaging the fractional

states by means of this highly sensitive momentum-resolved tunnel spectroscopy would be

of great interest and can be addressed in future experiments. Fractional states are stabi-

lized by electron-electron interactions and are thus believed to exist only in the vicinity of

the respective filling factor, in contrast to integer edge states that persist at all fields up

to their magnetic depopulation. Because of power law exponents determining the tunneling

conductance from the fractional quantum Hall edge states [212–216], a pronounced DC bias

voltage dependence is expected for these states. This also makes it very interesting to ex-

plore another experimental knob, bias voltage, which controls the energy transfer during the

tunneling event.

Beyond fractional states, the technique described here can also be applied to other topo-

logical insulator materials. In those systems where a wire exhibiting tunneling can be in-

tegrated or placed in parallel, edge states, both 1D or 2D in nature, can also be studied

with this method with unprecedented resolution in a weakly invasive way. We note that

ultra clean wires, such as used here to probe the edge states, are not necessary, in fact, thus

opening the door to studying a variety of topological materials and their exotic edge states

with this new tunneling spectroscopy.
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6.4 Methods

Device layout

The device used for this study is produced by means of the cleaved edge overgrowth

method. It consists of a lower, 30 nm wide GaAs quantum well, separated by a 6 nm thick

AlGaAs tunnel barrier from the upper, 20 nm thick GaAs quantum well [193]. A silicon

doping layer above the upper quantum well provides free charge carriers, resulting in the

formation of a 2DEG in the upper quantum well while the lower well remains unpopulated.

The sample with prefabricated tungsten top gate is then cleaved inside the growth chamber

and immediately overgrown on the sample edge (including a Si doping layer). Due to the

additional side dopants, charge carriers are attracted to the sample edge, thereby forming

strongly confined 1D channels (in upper and lower quantum well) along the entire cleaved

edge. The 1D channels support a few (5 or less) transverse modes with sub-band spacing up
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to 20meV and mean free path exceeding 10 µm [179]. Ohmic indium solder contacts to the

2DEG allow for transport studies. While the upper 1D system is well coupled to the 2DEG,

the lower 1D channels are only weakly tunnel coupled, thus allowing for tunnel spectroscopy

measurements.

Measurements setup

Tunneling spectroscopy measurements are recorded with standard low frequency (5-

10Hz) lock-in technique with typically 6µV AC excitation. All measurements are done

at effectively zero DC bias using a specially designed low noise current preamplifier with

active drift compensation (Basel Electronics Lab) ensuring VDC . 5µV.

Significant efforts were taken in order to obtain low electronic temperatures [217–223].

The present device is mounted on a home-built silver epoxy sample holder inside a heavily

filtered dilution refrigerator with 5mK base temperature. Roughly 1.5m of thermocoax wire

is used in combination with two stages of home-built silver epoxy microwave filters [219] to

efficiently filter and thermalize each measurement lead, resulting in electronic sample tem-

peratures around 10mK.

Numerical solution

Numerical solutions are obtained by solving the 1D Schrödinger equation using Numerov’s

method. The hard wall confinement forces the electronic wave functions to be zero at that

boundary. The perpendicular magnetic field gives an additional parabolic confinement. Its

minimum is shifted away from the hard wall by the GC position Y . The energy of a given so-

lution is then changed iteratively until a vanishing wave function at the hard wall is obtained.

Data acquisition

A vector magnet (8T solenoid and 4T split-pair) is used to provide the external mag-

netic field for spectroscopy measurements. Exceptional device stability is required in order
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to perform those extremely time consuming B-field vs B-field maps in the main article. In

particular, Fig 6.3a is composed of 3 individual data sets with a total measurement time

of roughly 6 weeks. In order to reduce the measurement time, here the magnetic field Bz

was scanned in a zig-zag fashion, i.e. taking data during ramping up and ramping down

of Bz. However, due to the finite inductance of the magnet, a hysteretic behavior of the

applied B-field results, which was accounted for by performing a non-linear correction to the

measured data. The empty white spaces in Fig 6.3a (round corners) are due to the accessible

combined field range of the vector magnet. A slight sample misalignment with respect to

the y− and z−direction is accounted for by tilting the experimental data in Figs. 6.2-6.4

The data of all the Figures of the main manuscript and the relevant code are available

on a Zenodo repository (https://doi.org/10.5281/zenodo.1251622).
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Chapter 7

Outlook

We have seen in Chapters 1 through 3 how the Landau-Liifshitz-Gilbert equation can be

used to study the non-equilibrium phases of a ferromagnet. In Chapter 2 we explored the

static phase diagram in the presence of weak in-plane anisotropy, as well as the analogy to

the long Josephson junction, and in Chapter 3 we studied the easy-plane ferromagnet in the

presence of strong edge torques and illustrated the robustness of the spin superfluid. The

results for the edge torque on one side are summarized in the schematic phase diagram of

Figure 7.1.

In Chapters 4 and 6 we considered microscopic descriptions of some examples magnetic

systems, including fermionizable weakly coupled series of spin chains and a cleved edge over-

growth 2DEG in the presence of an external magnetic field. In the former we illustrated the

possibility of forming superconducting and quantum Hall-like phases with spin degrees of

freedom, and in the latter we modeled tunneling and discovered a spin splitting of dissipa-

tionless edge currents in the presence of a strong in-plane magnetic field. Lastly, in Chapter

5 we studied the sound wave scattering with magnetic domain walls on a wire and proposed

potential spintronic applications.

There are many possible future directions for building off of the above mentioned work.

The anisotropic ferromagnet of Chapter 2 has potential for use as a spintronic logic gate
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Figure 7.1: Schematic non-equilibrium phase diagram of the easy-plane ferromaget with a
driving torque on one edge in the presence of weak in-plane anisotropy.

and neuromorphic computing component (see Figure 7.2). For example, in the static steady

state phases, the anisotropic ferromagnet can act as a multibit register, which would exploit

domain wall non-equilibrium phase hysterisis as a memory storage mechanism. In addition,

at the threshold for dynamic phases, the anisotropic ferromagnet may be able to act as a sort

of neuron, with traveling domain walls acting analogously to the discrete bursts of electrical

signals in a synapse.

For the high bias regime of the ferromagnet discussed in chapter 3, future work could focus

on the internal phase structure and spectral decomposition of the noisy spin superfluid in the

intermediate bias regime of Figure 7.1. In addition, similar methods for studying magnetic

non-equilibrium phases could be extended to other types of systems, such as antiferromagnets

and correlated spin glassess.

For the fermionizable spin chains of Chapter 4, numerical modeling and renormalization

group approaches would be useful in more exaustively characterizing the phases of these

systems. And lastly, for the Quantum Hall system of Chapter 6, future work could focus

on looking for edge state signatures of fractional quantum Hall effects. Such effects may

be detectible in the form of nontrivial voltage or temperature dependence of the tunneling
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Figure 7.2: A simplified schematic diagram of a potential spintronics-based neuromorphic
computer, which would transform imputs with a anisotropic ferromagnet base neural network
and then extract usable data using a traditional machine learning algorithm.

amplitudes.
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