UC Berkeley

UC Berkeley Electronic Theses and Dissertations

Title
On the Nearly Spherical Stratified Flame Propagation

Permalink
https://escholarship.org/uc/item/1wt5x8p\

Author
Scudiere, Charles

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/1wt5x8pv
https://escholarship.org
http://www.cdlib.org/

On the Nearly Spherical Stratified Flame Propagation

by

Charles Anthony Scudiere

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy
in
Engineering - Mechanical Engineering
in the
Graduate Division
of the

University of California, Berkeley

Committee in charge:

Professor Jyh-Yuan Chen, Chair
Professor Carlos Fernandez-Pello
Professor Per-Olof Persson

Fall 2019

On the Nearly Spherical Stratified Flame Propagation

Copyright 2019
by
Charles Anthony Scudiere

Abstract

On the Nearly Spherical Stratified Flame Propagation
by
Charles Anthony Scudiere
Doctor of Philosophy in Engineering - Mechanical Engineering
University of California, Berkeley
Professor Jyh-Yuan Chen, Chair

Stable and reliable power is critical for not only modern conveniences, but also for ba-
sic goods and services needed to ensure protection of both life and property. To ensure a
sustainable source of reliability in the global energy sector through current and future envi-
ronmental and political changes and in concert with alternative and renewable production
sources, current and future combustible fuels are needed to be accurately modeled. A key
proponent of both natural gas and biogas is methane which has both current natural sources
and future supply prospects. However there are still many fundamental questions regarding
accurate modeling of the combustion of methane, and in particular within inhomogeneous
mixtures. These stratification layers are less well understood in combustion environments
than flames propagating through homogeneous mixtures, despite many of the current uses
of this gaseous fuel in a variety of engineering systems.

A set of spherical methane-air experiments within a constant volume chamber using
Schlieren imaging and pressure traces as well as supporting one dimensional and three dimen-
sional numerical modeling was undertaken to explore stratified flames propagating through
methane-air mixtures. With comparisons to past work, an investigation of the effects of
the stratification layer’s impact on the observed flame speed, product gas emissions, and to
evaluate the possibility of extending the lean limit. To process the Schlieren images, a robust
in-house edge tracking code was developed to track the progress of the flame observed in
Schlieren images and closely evaluate the transient dynamics of the flame that occur within
a flame burning through a stratification layer gradient set up between two mixture concen-
trations using a soap bubble. A speed up on the order of 20% higher than homogeneous
equivalence ratio of 1.1 was observed in the rich to lean stratified cases. The experiments and
numerical work agreed reasonably well with past experimental and numerical work. Higher
CO was noted while burning in a stratified environment, while lower unburnt hydrocarbons
and moderately lower NO, was also noted from stratification layers compared with an equiv-
alent homogeneous mixture. The lean limit appeared to be extended, and a discussion is
given in light of the prior work and capabilities within this work.

While relative agreement was achieved experimentally with recent work, unexpected in-
stabilities were noted in the flame that are difficult to be accounted for with the setup alone.
This work adds to the possibility first mentioned and observed by Markstein, Behrens, and
Einbinder of an inherent instability within stratified methane-air flames.

To my friends and family, immediate and extended.

Thank you for you discussions, patience, advice, support and understanding.

Contents

Contents
List of Figures
List of Tables

1 Introduction
1.1 Structure of this Dissertation
1.2 Current and Future Energy and Power Demands
1.3 A Path to Transition
1.4 Stratification Impact on Current and Future Power Production

2 Background
2.1 Combustion Theory
2.2 Schlieren Imaging Theory
2.3 Fluid Dynamics
2.4 Past Work in the Literature

3 Experimental Methodology: Apparatus and Relevant Procedures
3.1 Constant Volume Chamber Setup and Data Acquisition
3.2 Homogenous Premixed Mixtures
3.3 Experimental Setup: Homogenous Premixed Flame Propagation
3.4 Experimental Setup: Stratified Flame Propagation.
3.5 Experimental Setup: Flame Propagation through Electric Field

4 Post-Processing: Determining Flame Speed
4.1 Image Post-Processing: Robust Interface Tracking of Dynamic Radial Surface
Fronts
4.2 Post Processing: Radial Flame Surface Speed
4.3 Validation of Code

5 Numerical Simulation and Modeling
5.1 CHEMKIN Collection

DT

5.2 One dimensional Compressible Flow Solver
5.3 Three Dimensional Compressible Flow Solver with Chemistry

6 Experimental and Numerical Results
6.1 Experimental Findings oo
6.2 Numerical Findings o

7 Discussion of Experimental and Numerical Findings
7.1 Stratification Layer Flame Speed Enhancement
7.2 Emissionso
7.3 Stratified Flame Surface L
7.4 Evaluation of Flammability Limit

8 Concluding Remarks
8.1 Summary of Findings L
8.2 Future Directions

A Appendix
A.1 LabView Block Diagram
A.2 Post Processing Code

Bibliography

il

46
46

49
49
62

68
68
70
72
7

80
80
81

82
82
87

157

List of Figures

1.1

1.2

1.3

2.1
2.2

2.3

3.1

3.2

3.3
3.4

4.1
4.2

5.1

6.1

6.2

OECD Total Primary Energy Supply normalized to Tonne of oil equivalent,
Source: IEA (2018) World Energy Outlook[45]
U.S.A. Energy Consumption by Sector and Fuel. Source: U.S.A. EIA AEO 2018
53
United States, Pacific Region, and California, Source: EIA’s Household Energy
Use in California[18]

Fuel Concentration of Liquid Hydrocarbon Pool Evaporating in Air.
Top down view of Schlieren experimental setup with Z-configuration using spher-
ical mirrors and vertical knife edge.o
Laminar flame speeds in the literature for methane-air premixed mixtures near
ambient conditions as a function of equivalence ratio.

Constant Volume Chamber with optical access and side mount for pressure trans-
ducer and top hole for stratification and sparking systems.
Stratified mixture experimental setup of side profile of constant volume chamber
with soap bubble and enclosed mixture, ¢; in blue and second mixture, ¢o, filling
rest of chamber in white.
Schematic of mesh arrangement within chamber
Constant Volume Chamber with optical access and enclosed mesh plates.

Example of post processing of flame tracking, in red, and bubble tracking, blue.

Typical flame tracked rows as red dots with flame best fit circle center as red circle.

Quarter constant volume chamber geometry with example refined mesh through
AMR, as used in this work.

Laminar flame speed of homogenous mixtures compared to prior literature values,
where similar spherical flames measurements are plotted as circles.
Typical Schlieren image of both the location and flame surface structure of the
flame propagating from premixed rich mixture through the bubble and into same
premixed rich mixture after propagating 3.18 cm from the ignition point.

v

14

15

18

25

32
34
35

39

40

48

50

52

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

Typical Schlieren image of both the location and flame surface structure of the
flame propagating from premixed lean mixture through the bubble and into same
premixed lean mixture after propagating 3.18 cm from the ignition point.
Typical Schlieren image of both the location and flame surface structure of the
flame propagating from premixed stoichiometric mixture through the bubble and
into same premixed stoichiometric mixture after propagating 3.18 cm from the
ignition point. L. L e e
Typical Schlieren image of both the location and flame surface structure of the
flame propagating from premixed rich mixture (¢ = 1.4) through the bubble and
into premixed lean mixture (¢ = 0.63) after propagating 3.18 cm from the ignition
PoOINt. . . L e e e e
Typical flame surface speed of stratified rich (¢ = 1.4) to lean (¢ = 0.63) com-
pared with equivalence ratio 1.1 and an equivalent homogeneous mixture of the
two stratified components. The first two dips and first rise near 2 cm attributed
to the difficulty tracking flame as it approached the bubble.
Aggregated flame surface speed of stratified rich (¢ = 1.4) to lean (¢ = 0.63)
compared with equivalence ratio 1.1 and an equivalent homogeneous mixture
of the two stratified components. The first two dips and first rise near 2 cm
attributed to the difficulty tracking flame as it approached the bubble.
Typical Schlieren image of both the location and flame surface structure of the
flame propagating from premixed lean mixture (¢ = 0.63) through the bubble
and into premixed rich mixture (¢ = 1.4) after propagating 3.18 c¢cm from the
ignition point. Lo
Typical Schlieren image of both the location and flame surface structure of the
flame propagating from premixed rich mixture through bubble and into premixed
severely lean mixture after propagating 2.52 cm from the ignition point.
Typical Schlieren image of both the location and flame surface structure of the
flame propagating from premixed rich mixture through bubble and into air after
propagating 2.52 cm from the ignition point.
Typical flame surface speed of rich to too lean to ignite compared with equivalence
ratio 1.1 and a stratified mixture of rich to air. The first two dips and first rise

near 2 cm attributed to the difficulty tracking flame as it approached the bubble.

Aggregated flame surface speed of rich to too lean to ignite compared with equiv-
alence ratio 1.1 and a stratified mixture of rich toair.
Homogenous mixture in applied electric field at two separate times for a negative
applied voltage of -6kV (left), no applied voltage (center), and positive applied
voltage of 6 kV (right) with the chamber and ignition pins grounded following
ignition. L. e e
PREMIX planar laminar flame speed of methane-air at various equivalence ratios
under wet vs. dry ambient conditions.
Typical homogeneous experimental laminar flame surface speed vs. one dimen-
sional spherical flame propagation in good agreement.

23

54

54

55

26

o6

57

o8

99

60

61

63

6.16 Three dimensional flame iso-temperature surface profile near the equilibrium tem-

perature of homogeneous rich flame within the ARM refined region after 25.2 ms.

6.17 Aggregated experiment stratified flame burning from rich into lean mixture com-
pared with one dimensional spherical simulation.
6.18 Three dimensional flame iso-temperature surface profile near the equilibrium tem-
perature of stratified rich to lean flame within the ARM refined region after 25.2
ms, with middle surface indicative of the non-smooth flame surface front.

vi

65

66

vil

List of Tables

6.1 Comparison of stratified rich to lean flame emissions verses lean equivalent ho-
IMOZENEOUS EIMISSIONS. .« .« .« . v v v v v o e et e e e o1

6.2 Stratified rich to too lean flame emissions. 51

6.3 Mass percentage of soap solution selected and used in this work. 51

viii

Acknowledgments

I cannot express enough gratitude to a variety of individuals and groups who have helped me
through this journey both professionally and personally through out graduate school. Only
with their support was this all possible.

First to my advisor, Professor J.Y. Chen, who has provided an array of support and
collaboration through my work, and a wonderful research advisor. I am deeply grateful
for this support and to have the freedom to pursue my interests, fail, improve, and follow
wherever the research took me. Your patience, knowledge, and skill are unmatched.

To the various undergraduate and high school professors and teachers who have instilled
a desire to continually learn, grow, and pursue physical understanding and knowledge for the
greater good. Most especially Professor Paul Erickson, Professor Linton Corruccini, Randy
Harris, Professor Mohamed Hafez, Professor Fidelis Eke, Professor Ian Kennedy, Professor
Donald Margolis, and James Schaaf.

To the advice, friendship, collaboration, mentorship, and support I have received from
lab mates within the Combustion Modeling Lab through out the years, including visiting
scholars and students who I have shared both space and time with. Labmates Ben Wolk,
Terry McCullum, Colin Hurlbut, Yumin Huang, Tiernan Casey, Yulin Chen, Daniel Pineda,
Sirui Fu, Jorge Moreno, Xian Shi, Je Ir Ryu, Alex Frank, and Bhaskar Chaturvedi. Visiting
students and scholars Jonathan Timo Lipkowicz, Fredrik Grgvdal, Farouk Chourou, Sheng-
hao Yu, Niek van Rooij, Jakob Fochler, Catharina van Gool, Yasutaka Tomomatsu, Shuguo
Shi, and Bowen Zheng. Visiting scholars Dr. Tao Chen, Dr. Bo Xu, and Dr. Xiao Gan.

I would also like to express a heartfelt appreciation for Professor Carlos Fernédndez-
Pello and the members and visitors of the Combustion Fire Processes laboratory who have
mentored, supported, and/or guided me in various ways through my progress. Lab members
Casey Zak, Daniel Murphy, Sarah Scott, Shmuel Link, James Urban, Mari Thomsen, Lauren
Gagnon, and Andy Rodriguez among other past lab members. Including visiting students
and scholars Xinyan Huang, Yudong Liu, Yong Lu, Simon Santamaria, and Jeanette Cobian.

I would also like to thank a number of volunteering undergraduate students who have
provided their assistance through out different portions of this work, designing, modeling,
experimenting, or building. Including Nathan Lebherz, Quoc Ho, Jonathan Anglingdarma,
and Jordan Tate. Your time, eagerness to learn, and energy have been an invaluable gift.

The technical staff of which the machining for and of the experimental setup would be
significantly more challenging and time consuming, and so I must acknowledge the assistance
from Michael Neufer, Scott McCormick, Alex Jordan, Jacob Gallego, Jeff Higginbotham,
Dennis Lee, Pete Graham, Mick Franssen, Jesse Lopez, Tom Clark, and Daniel Paragas. |
would also like to thank the ME administrative and student services staff including Yawo
Dagbevi Akpawu, Shareena Samson, Irma Paz-Viray, Rene Viray, Isabel Blanco, and Victoria
Garcia.

I would also like to thank a number of funding bodies who, with their support, made it
possible for me to continue financially. Both through the CEC and the NSF, along with all
of the efforts and extended support by my advisor Professor J.Y. Chen and Professor Robert

X

Dibble, Tim Sennot, Miguel Aznar, and MaryAnne Peters. Additionally, support through
the graduate division with block grants as well as through the ME department and Statistics
department with GSI funding opportunities.

There are also numerous other members of the greater UC Berkeley community who
have provided friendship and collaboration through my PhD including Ravi Singh, Jim
Oreluk, Bradley Cage, Amin Ghafari, Sarah Frank, Shanna Hays, Saghi Sadoughi, Claire
Wemp, Jessica Avva, Brian Mick, Jan Mehnen, Patrick Hylton, Tholfagar Al Emara, Saahil
Agrawal, Jessica Lee, and Kay Dawson among numerous wonderful people. Your enduring
guidance, advocacy, friendship, discussions, support and advise through this journey has
made all the difference.

Outside Berkeley, there have been a number of individuals who have helped in various
ways through my graduate school career. First, I would like to acknowledge my family who
have in their own way entered on this journey with me, most especially my parents Amelia
and Charles. Your enduring support and opportunities you have provided laid the foundation
I have relied on through out graduate school. And to my sister who has always been there
to share and work through various challenges along the way.

There are also a number of significant friendships that have helped, encouraged, and sup-
ported me through various parts of graduate school including the decision, application, and
through out various significant graduate school milestones. Including Charlene Lumanlan,
Becca Sagastegui, Julia Taussig, Claudia Lopez, Katherine Aronson-Ensign, Scott Choy,
Carter Stevens, Emily Wiener, Naomi, and especially my sister Angela. You have been
an inspiration, helped me develop personally and professionally, given me opportunities for
growth, helped frame my graduate career, and I am forever grateful.

And to all of my friends and colleagues, both past and current. Although I cannot list
every influential person that has made a positive impact on my progress through graduate
school, there have been a number of key individuals who have been been important to my
overall graduate career success at various steps along the way. Including Chris Sheesley,
Chris Stivers, Stacey Cha, Nathan Fisher, Katy Davis, Tommy Fisher, Amanda Blauvelt,
Alex Trembath, Alex Davis, Padraig o) Laoghaire, Ryan Scura, Benny Johnson, Bryan
Ting, Ivan Sack, Mitch Westwood, Naiomi Lundman, Mark Noviski, Henry Romeo, Patrick
Canfield, Henna Merchant, Andrew Garcia, Melanie Colburn, Tim Strickland, Justin Lam,
Marianne Braun, Luis Grimaldo, Alli Shapiro, Dallas Van Wyk, Kanchan Swaroop, Cody
Zeger, Lauren Parker, Alexandra Higgins, Erin Huie, Richard Dweck, Patrick Doring, Louise
Wo, Troy Nineeteen, Diane Ho, John Savage, among others in my November Project family,
my dance community, and other supportive communities I’ve been fortunate to be a part of in
the bay area and beyond. You have provided a welcoming global perspective, encouragement,
and support on a variety of pursuits and topics that have enriched my graduate studies.
Early morning exercise, hiking, biking, camping, backpacking, traveling, running races, and
encouraging me to go beyond my comfort zones and to continue to pursue ambitious goals.

Thank you.

Chapter 1

Introduction

1.1 Structure of this Dissertation

This dissertation is focused on work related to the second half of the author’s Ph.D. studies,
and focuses on the fundamental combustion characteristics of flames propagating through
stratification layers and some aspects of flames propagating through applied electric fields.
This first chapter outlines the motivations and possible implications of this work. In Chapter
2, a background of combustion and relevant theory is provided to aid in understanding the
implications of this work. Chapter 3 outlines the experimental methodology, experimental
setup, and a brief overview of relevant procedures used to perform this work. Then, armed
with the necessary background, Chapter 4 goes through the extensive post-processing tech-
niques used to determine the relevant combustion characteristics. Chapter 5 discusses a
variety of numerical frameworks used to better understand and interpret the experimental
findings. Then, Chapter 6 outlines the main experimental and numerical findings of this
work which is then discussed in more depth in Chapter 7. Final conclusions and projections
for future work are outlined in Chapter 8.

1.2 Current and Future Energy and Power Demands

Energy and more specifically power demands have been increasing since the industrial rev-
olution. The dependence and need for continued accessible and reliable power has only
increased with advancements in technology. This reliable power has been afforded to most
developed countries due to the supply of consistent power production. Historically, the secu-
rity of a nation’s energy has dependent on combustion to provide means to meet the demand
with investments made to ensure a constant steady power source. This may be why energy
supplying the power for developing countries comes from fossil based sources hovers around
80%-85%, while less developed countries rely on 80% of their energy for power from renew-
able sources [57]. However, those countries that rely on renewable sources do not generally
have the infrastructure to balance the intermittent production that generally comes with

CHAPTER 1. INTRODUCTION 2

using renewable energy sources such as solar and wind. Other sources of renewables, such
as hydroelectric, geothermal and tidal sources are very specific to regions and are therefore
not widely accessible.

In contrast to developing societies with intermittent or non-existent supply of power, a
stable supply of power has allowed for comfort and advanced technology to flourish. In doing
so, stable energy sources and continued power supply can be correlated with socio-political
stability of a nation, as may be inferred in the UN report among others.

The developed world energy makeup is quite similar to the global energy supply, as the
Organisation for Economic Cooperation and Development (OECD) has a slightly modified
energy distribution makeup as seen in Figure 1.1,

5000

4000

3000

2000

1000

0
1971 1975 1980 1985 1990 1995 2000 2005 2010 2018

m Coal? Qil m Natural gas Nuclear

m Hydro mBiofuels and waste Other®

Figure 1.1: OECD Total Primary Energy Supply normalized to Tonne of oil equivalent,
Source: IEA (2018) World Energy Outlook[45]

However, since the majority of the power supply to the energy grid comes from fossil
based fuels, it has lead to an increasing thirst for fossil fuels that have left severe damage
to the environment, including on the surface of the earth and in the atmosphere, leading
to pollution and the warming of the earth globally. The choice of fossil based fuel supply,
while cheap and accessible, is in fact a slow and steady drain of limited natural resources.
As the UN report highlights, increasing the renewable energy sources in the global mix is a
priority for the planet. At the same time, the UN recognizes two socio-political needs across
the globe, namely the need for stable, reliable and affordable energy and for maintaining and
increasing the accessibility to clean water and sanitation [45]. These two goals are coupled
as electricity in the developed nations provides a significant portion of the water treatment
and sanitation.

The overall attainment of all three of these goals often is in competition, leading na-
tions to choose. In the developed world, life saving devices in homes and hospitals, water
treatment and distribution, clothing manufacture and distribution, to food production and
transportation, the availability of energy for power has become intertwined with basic so-

CHAPTER 1. INTRODUCTION 3

cietal needs. As power production is a critical infrastructure need, most developed nations
prioritize both the reliability and the cost. A leader among the developed nations, the US
makeup of energy sources is currently and projected far into the future to be fossil based as
can be seen in an excerpt from the US Energy Outlook report in Figure 1.2.

(inefrgy consum;)tion by sector (E;efrgy consum;))ﬁon by fuel
eference case eference case
quadrillion British thermal units quadrillion British thermal units
2017
45 45 . o
history | projections history | projections
40 40 petroleumand other
electric power /\\/%/
35 35
industrial
30 30 natural gas
25 transportation 25
20 20

coal

15 15
10 residential 10 Other renewable energy
—AN~— e Commerd
5 5
0 0

1990 2000 2010 2020 2030 2040 2050 1990 2000 2010 2020 2030 2040 2050

Figure 1.2: U.S.A. Energy Consumption by Sector and Fuel. Source: U.S.A. EIA AEO 2018
[58]

As can be seen from the report, electric power will rise as will industrial and transporta-
tion uses, with petroleum and natural gas projected to continue to make up most demand.
The lagging renewable sources is indicative of the technical, financial, and political forces
still driving this developed nation to choose stability over climate effects.

There are significant resources devoted to maintaining a high standard of living among
those able to secure the resources. From air conditioning & heating, water heating, and inde-
pendence in mobility from automobile transportation to a high selection of energy intensive
meat consumption, the exceedingly high standard of living necessitates a high demand on
the power grid and on raw materials derived from fossil based sources.

For instance, the end use residential power use among residences in the United States,
Pacific Region, and California are compared in Figure 1.3, However, this does not include
power necessary for basic infrastructure such as water supply, sanitation, emergency services,
among others.

Like the basic infrastructure, numerous goods and services in developed countries are
often taken for granted by the end users and this is confounded by the difficulty in deter-
mining their impact both on energy consumption and on the pollution. For instance, in a
surprising recent report from Quantis that extensively investigated and analyzed the global
impact of the apparel industry found that this industry alone produces about 8% of the
global C'Oy when the entire value chain is taken into account[42]. Even though this report
did not highlight the specific energy used through the industry, the C'O, emissions alone can

CHAPTER 1. INTRODUCTION 4

us PAC CA

6% 4%

18%
41%

35% 43% 44%
I Air conditioning [Water heating [l Appliances, electronics, lighting [Space heating

Figure 1.3: United States, Pacific Region, and California, Source: EIA’s Household Energy
Use in California[18]

be used as a proxy for the energy costs. As highlighted in the report, some of the intricacies
of the industry including the variety of partners and supply chains obfuscate the impact of
both the energy use and the impact on the environment.

This increase in power demand increased with the computer and technology revolution.
High energy use technology services such as computational clusters and data centers, energy
intensive software codes such as cryptocurrency, as well as the increase in and high energy
consuming electronics at home and at work, all have contributed and will continue to con-
tribute to high power demands. With the advent of exceedingly high power technology such
as plug-in vehicles and higher energy loads to combat extreme weather exacerbated by the
continued climate change, the acceleration of energy use for reliable power is expected to
continue to rise, despite advanced in efficiency.

Current and Near Future Power Production

In terms of suppling power for use, a critical consideration to create a stable energy grid
is often overlooked. Electricity must be used within seconds of production or storage is
required. The supply of power interplays with the demand of its use, and if too much power
is supplied at the wrong time or too much power is demanded then the delicate balance of
the energy grid is at risk. Historically, this balance on the grid has been maintained by tight
control of the generation of power as it has been quite a formidable challenge to coordinate
across the variety of end users. Whether a low technological solution such as turning units on
and off, to more sophisticated technology that allows for high turn down ratios to better able
to follow the power demand. Industrial scale engineered storage methods have not proved
to be economically or technologically viable, yet research is ongoing. Although, one could
argue that nature has already developed the perfect storage method, within chemical bonds
of hydrocarbons and harnessed in combustion applications.

However most renewable sources have power production rates that cannot be finely con-
trolled to meet the instantaneous demand, let alone guarantee a steady supply. Their in-

CHAPTER 1. INTRODUCTION d

troduction into the electrical grid and the necessary compensating control by other units
provides new challenges that is a topic of ongoing research. Many renewables by themselves
do not support a reliable grid. Whether there is cloud cover, disruptions in wind patterns,
or other fluctuating or uncontrollable key component to the production, the power must be
wasted or somehow stored until it is used. For renewables this storage may have a much
longer time horizon than current infrastructure allows. There are huge limitations to current
energy storage techniques, and active research is underway as the costly storage system will
undergo frequent and heavy cycles.

With the current push for renewable energy sources and alternative supplies for power
production capabilities to meet society’s energy demands while reduce global warming and
the effects of global climate change, renewed interest in more flexible uses of renewable fuels
and technology is necessary. However, there is no silver bullet even if we wanted to go all in,
so there is needed time to research and transition to a fully renewable energy supply. Our
current renewable technology today has drawbacks to high implementation. Severely high
financial costs and risks with the uncertainty of the technology and market, lasting poisoning
of the environment with heavy metals and other harmful chemicals in the production of many
renewable technologies, and the lack of energy production control necessitates research into
additional methods and control schemes to more smoothly and intelligently transition into
them and develop and deploy at scale in a sustainable way.

1.3 A Path to Transition

While needed technology is being developed, current infrastructure can be modified to use a
different fuel to assist with the transition and provide a control mechanism to match power
production with the demand. Ideally this fuel will not require additional infrastructure costs,
increased hazards, or significant additional training that would impede or compete with the
development of renewable technologies. Even better if this fuel is part of the long term
solution.

One such fuel that is currently available for modeling and development as well as has
future renewable production potential is methane. Naturally occurring and easily commer-
cially producible, methane is a stable and relatively safe fuel. Methane has numerous sources
that include current fossil derived sources as well as numerous renewable sources. The multi-
sources are significant in that technology in both the production and use of methane can be
performed simultaneously, allowing for faster deployment of this needed renewable technol-
ogy.

Safety and storage of fuels is a critical factor in deciding which direction to move into. On
this front, Methane is a clear competitor. Methane is chemically stable, has a higher energy
density and easier storage and safety considerations than hydrogen gas, a lagging competitor.
Methane is the main component of natural gas, and it can be produced with high efficiency
as biogas, as well as synthesized from hydrogen and carbon dioxide. The methanization
process has been well studied and can be achieved in anaerobic digestion from a variety of

CHAPTER 1. INTRODUCTION 6

feedstocks, and it is already a key component to renewable sources. Synthesizing methane
has the advantage of allowing for longer term storage than possible with hydrogen, and
without the long term health and environmental hazards and waste of batteries.

Fortunately the combustion of methane has been under study for decades with numerous
models and tools to predict the behavior in homogeneous premixed combustion environments.
Methane heavy fuels have in fact been a key component to contemporary grid stabilization,
with the use of natural gas powered plans providing the main backbone to power plants
meeting the varying power demand loads. Further integration of methane will assist in
stabilizing grids, and accurate modeling of methane’s combustion characteristics is essential
to advanced designs.

These combustion models assist in the simulation and control of combustion processes
and are integral to the engineering design of safe, efficient, robust, and reliable engineering
systems. As design modeling will be inaccurate without precise predicts of the burning
characteristics of methane leading to suboptimal or flawed designs, efficient models must
be evaluated and their accuracy confirmed. While much research has gone into methane
containing fuels, much work is still needed. Recent studies have indicated that some of the
models may need reevaluation to more optimally predict combustion behavior in stratified
mixture configurations.

1.4 Stratification Impact on Current and Future
Power Production

Where are stratification layers found?

Stratification layers are ubiquitous and exist both naturally and within a variety of engi-
neering applications. Any time there is a mixing of two miscible fluids, a stratification layer
will exist until they form a homogeneous mixture. In designing combustion applications as
well as for catastrophic event detective work and safety considerations, the mixing fluids
considered are composed of fuel and oxidizer.

In many engineering applications, stratified charges are unavoidable due to limited mix-
ing time and yet it is also often desirable due to efficiency gains, equipment limitations
or harmful emission reductions. Common engineering applications where stratification is
present include gaseous port and gaseous direct injection into internal combustion engines
for various common and lean burn applications, vaporizing liquid from direct liquid injec-
tion, as well as the stratification necessary for appropriate temperature control in various
gas turbines.

There are also plenty of other applications where a stratified charge may initialize un-
intentionally either in single layer or multi-layered arrangements. Numerous catastrophic
events have occurred in such unintentional stratified environments setup by a variety of phe-
nomenon. Accidental spillage and subsequent vaporizing of liquid fuels such as gasoline or
diesel, coal mines gas pockets, overheated nuclear reactors, and wind blowing over a gaseous

CHAPTER 1. INTRODUCTION 7

fuel leak from a pipe or tank are just a few examples. To develop appropriate safeguards
to prevent combustion related accidents and others like it from occurring ever again, a deep
understanding of the fundamental processes that govern combustion, and more specifically
stratified combustion, must be fully understood.

Stratification Research on Current and Future Power Production

This work is focused on the fundamental processes of combustion based power, in particular
it strives to improve and further fundamental process knowledge to open and expand addi-
tional markets for transition and renewable power production and energy. Additionally, this
research strives to better understand the relevant fundamental physical processes that un-
derly current and future research and development of power production methods and safety
systems. This fundamental knowledge enables downstream component and system models
and simulation to better predict the behavior of combustion processes, including the use of
current and alternative fuels for the future.

This advancement in the fundamental knowledge of combustion is primarily realized by a
better understanding of flame speed behavior of a methane-air flames transitioning through
a concentration gradient under various quiescent conditions. The flame speed behavior
is important as it dictates the rate of fuel consumption, and thereby the heat release in
combustion applications.

Stratified charge combustion in internal combustion engines, has received some attention
over the years for the potential increase in efficiency and reduced emissions. Additional
knowledge of stratified flame propagation may aid in the advancement of these technologies
for now and the future.

Chapter 2

Background

2.1 Combustion Theory

Mixture Concentration

The method commonly used to identify the concentration mixture of fuel-oxidizer mixtures
is to use a non-dimensional number that accounts for varying fuels’ chemical makeup. The
fuel-to-air ratio is one such non-dimensional number that gives the ratio of the proportions
of fuel and air is given by equation 2.1.

Mfuel FA o Nfuel
Mair ’ molar = Nair

The ideal stoichiometric concentration for a mixture is one that has the proper com-
position to follow the ideal irreversible complete chemical reaction equation, converting all
of the reactants into products and ignoring the intermediate and reverse reactions. For
a methane-air mixture, as in this work, the stoichiometric complete irreversible chemical
reaction equation is given by equation 2.2.

FAmass =

(2.1)

Therefore the ideal molar concentration expressed as the fuel-to-air ratio is given by
equation 2.3.

1
FAStozchmmetrzc - m (23)
However, to account for differing mixtures, it is customary in many applications to use
equivalence ratio. Equivalence ratio is itself a non-dimensional number and a ratio of ratios,
the ratio of fuel-to-air of the mixture compared to fuel-to-air of a chemically stoichiometric
mixture, in a chemical sense. The equivalence ratio is conventionally a normalized version
of the fuel-to-air ratio, namely the mixture value normalized based on the value under

stoichiometric conditions, balanced chemical equilibrium, namely equation 2.4.

CHAPTER 2. BACKGROUND 9

FAMixture

FAStoichiometric

¢ =

(2.4)

Either F'A, 455 or F'A,,010r can be used to determine the equivalence ratio, as long as the
same choice is used for both the numerator and denominator. However, for the numerical
work, and in particular when determining the local equivalence ratio of a reacting flame
zone, it is sometimes necessary and convenient to define the equivalence ratio based on
atomic masses given by equation 2.5.

¢ o NHydTogenAtoms + 4NCarbonAtoms

2.5
2NOJ:ygenAtoms ()

For premixed unburned mixtures of methane and air, the values are identical.

Flame Surface Speed and Laminar Flame Speed

When observing a spherical flame optically, the most obvious and readily available speed of
a flame is the burned gas displacement speed, V (r,t)%, of the flame’s surface as the radius
of the flame grows with time. As the surface of the flame grows from a small kernel to a
larger and larger sphere, the flame surface speed changes. This raw change in the surface of
the flame can be used to compare the different burning rates of various mixtures when using
the same experimental setup. The speed of the flame surface will change depending on the
initial thermodynamic properties, such as temperature and pressure. For premixed methane-
air flames near ambient conditions, the flame will propagate faster for higher temperatures
and lower pressures and slower for lower temperatures and higher pressures.

However, the flame surface speed is not a unique result of intrinsic properties. The
value of the flame surface speed directly observed from a flame speed experiment will vary
depending on geometric and flow conditions. In addition, the shape and geometry of the
flame’s surface, the specific geometry of the chamber apparatus, will play a significant role
in the flame speed observed. Therefore it is desirable to process the raw flame surface
speed and remove the dependence on the flow, shape, and other aspects of the specific flame
speed test apparatus for a more readily comparative speed with other testing apparatuses.
It is desirable to transform the observed flame surface speed into a quantity that will be
more widely applicable, closer to a fundamental property of a mixture that varies only with
the mixture, independent of the experimental apparatus used to measure the speed. For
premixed flames propagating through stagnant or laminar flow, we call this fundamental
flame speed that depends mostly on pressure, temperature and concentration, the mixture’s
unburned laminar flame speed, S7.

It is important to first consider what a flame is. A flame is a moving reaction zone,
and as such is fundamentally tied to the rate of exothermic chemical reactions. A common
first approximation to the chemical reaction rate, 7, of a fuel and oxidizer at a particular
temperature, T, is one that follows an Arrhenius rate as given in equation 2.6.

CHAPTER 2. BACKGROUND 10

= Ax [Fuel]® x [Oy]" * exp(—%) (2.6)

where A is a pre-exponential factor with first order approximation as a constant, [Fuel] and
[Os] represent the concentration of the fuel and oxygen, and a, b, and T, are fuel specific
exponential factors related to the overall reactivity of the reacting species. It is important to
note that the actual chemical reactions that take place in a flame are much more complex with
a large number of intermediate species and a tremendous number of intermediate reactions.
Typical detailed chemical modeling will use a large subset of reactions and species that
accurately represent the overall dynamics in a flame that may not be captured in a simplified
equation such as equation 2.6. However, moving forward with the reduced order model, this
reaction rate equation can be used to provide a foundation to a first order approximation to
an estimate of the laminar flame speed, S, namely equation 2.7.

s - (i) 27)

Where « is the thermal diffusivity, T}, and T, are the burned and unburned gas temperatures,
and Tj, is the temperature at the onset of ignition. While the determination of the laminar
flame speed is a bit more complex, equation 2.7 gives a first order approximation of the
relevant physical processes on the flame speed.

Premixed Mixture Concentration Influence on Flame Speed

It is well known that the laminar flame speed has a strong dependence on the mixture
concentration as can be seen from equation 2.7. The flame speed experiments have shown
that the flame speed is highest near the stoichiometric concentration, but slower as premixed
mixtures are either fuel rich or fuel lean as can be seen in Figure 2.3. As can also be
inferred from both equation 2.6 and 2.7, the flame speed follows the reaction rate and is most
sensitive to the temperature. Homogenous premixed flame speeds have been studied and
their dependence on both temperature, pressure and concentration are fairly well understood
in the context of chemistry and fluid dynamics.

Chemical Considerations

Combustion is characterized by a large number of chemical kinetics and propagating flames
are characterized by a self-sustaining reaction carried forward by a number of radial species.
As such, concentration of species takes on an even greater importance as molecules compete
in a series of collisions of which the collision rate typically modeled statistically depending
on the local concentration.

CHAPTER 2. BACKGROUND 11

Recipe for a Flame to Propagate

The start of self sustaining combustion requires a set of important endothermic chain ini-
tiation chemical reactions to generate a set of important radicals such as those given in
equations 2.8 & 2.9 with the molecular collision with a third body species M.

CH+M — CHy+ H+ M (2.8)

02+ M — 20 + M (2.9)

Once the initial pool of radicals have formed the initial kernel, to be self sustaining the
flame must produce more radicals than are absorbed by competing termination reactions. A
typical critical branching reaction that will sustain and grow the flame while providing the
radicals necessary for a set of exothermic reactions, propagating the reaction front forward
is of the form given in equation 2.10.

02+ H — O+ O0H (2.10)

However, the formation of additional radicals O and OH are short lived and collide with
fuel, oxidizer or other reacting species. There are a number of terminating reactions that will
effectively reduce the number of radicals and if the rate of initiating and branching reactions
are not sufficient to maintain the radical pool, extinguish the flame.

Pollutant Emissions

Pollutant emissions are formed either with incomplete combustion, as in the case of formation
of unburnt hydrocarbons and carbon monoxide

Carbon monoxide is an intermediate species that forms when there is not enough oxygen
or the flame is quenched below a temperature of.

The wet route can be modeled with a reaction of the form given in Equation 2.11, with
a weak temperature dependence and limited by the OH radicals present.

CO+OH — CO,+ H (2.11)

The dry route can be modeled as a reaction of the form given in Equations 2.12 and
2.13, but require high temperatures on the order of 1,100 K to significantly contribute to the
oxidation.

CO+0+M—COy+ M (2.13)

Other pollutants such as nitrous oxides form mainly from thermal pathways that are
tied to the temperature of burned gas and of the flame. The strong triple bond in nitrogen
molecules is difficult to break and requires significant energetic environments to form oxides

CHAPTER 2. BACKGROUND 12

in measurable concentrations. Two overall routes of NO, formation in this work are from
local regions of high temperature and along the surface of the flame.

The thermal sources of NO, has a number of pathways that were first described by
Zeldovich, and either have relatively high activation energies to initiate or require combustion
radicals to form. Representative reactions are of the form given in Equations 2.14, 2.14, and
2.14.

Ny+0— NO+N (2.14)
N+ 0, — NO+0 (2.15)
N+OH — NO+ H (2.16)

The other significant source of NO, formation occur at the surface of the flame as first
described by Fenimore and commonly referred to as prompt NO pathways. These reactions
are due to first interaction with C'H radicals that form intermediate species HC'N and N
which can react with other species to form NO. The overall global unbalanced interaction
may be represented by the form given in equation 2.17.

CH+ Ny - HCN+ N — ... =+ NO (2.17)

Flammability Limits

An extension of these ideas leads into the flammability limits of a fuel in air. Intuitively the
flame will burn in some mixtures while not in others, and will depend on a variety of factors
related to chemistry and heat transfer effects.

One pathway for a flame to extinguish is from an overwhelming number of chain termina-
tion reactions that reduces the pool of radicals to unsustainable levels. If the concentration
of fuel is too high and radicals find it difficult to react with oxygen, the reactions will even-
tually consume the effectively available oxygen and terminate the flame. Conversely, if the
concentration of fuel is too low, the radicals will find it difficult to react and reactions will
eventually be consumed into less reactive species, terminating the reaction.

The other avenue of flame extinguishment is due to the Arrhenius nature of the reactions.
The temperature dependence of the reactions results in a reduction in the radical pool and
thereby a possible extinguishment of the flame. Although chemistry plays a large role in this
pathway, temperature dropping from heat transfer is the leading cause of a second avenue
of flame extinguishment.

Flame Stretch

One of the geometric and flow effects that influences the flame is flame stretch. If a flame is
propagating through a moving or expanding fluid mixture, flame stretch may exist. Flame

CHAPTER 2. BACKGROUND 13

stretch can significantly increase or decrease the flame surface speed, and has such a strong
influence on the flame that with a high enough flame stretch, the flame can be extinguished
entirely. This expansion may be from characteristics inherent in the flow or even from the
thermal expansion of the gas from the exothermic chemical processes due to the flame itself.

Flame stretch, a, is more technically given as the normalized change in the rate of area
of a differentially small flame surface with respect to time as given in equation 2.18.

1 dA(rt)
A(r,t) dt

a(r,t) = (2.18)
For spherical flames in particular, flame stretch plays an influential role as the flame is
expanding. The flame stretch for such a case is proportional to the inverse of the radius, and
so decreases as the flame propagates outward. Flame stretch for premixed laminar spherical
flames can be determined based on the radius of the perfectly spherical flame surface, and
therefore corrected for to eliminate the effect on the flame speed. For a spherically expanding
flame, flame stretch is related to the burned stretched flame speed, V2, by equation 2.19.

2V (r, t)’c’l

a(r,t) = .

(2.19)

The relation allows for a correction for stretch effects on a spherically expanding flame,
giving us the unstretched burned laminar flame speed. Both linear and non-linear extrapo-
lation methods have been used to relate the stretched and unstretched displacement speeds,
V(r,t)% and V,(r,)} respectively. Equation 2.20 gives the linear equation used for a simple
extrapolation and Equation 2.21, as used and outlined by Bechtold[3], Kelly[32], Chen[9] et.
al, gives the non-linear equation used for extrapolation.

V(r, t)g = V,(r, t)g — Lya(r,t) (2.20)

_ 2Lb‘/;(’l“, t)g

ln(V(T; t)Z) = ln(%(?“, t)lz;) TV(T t)fl

(2.21)
where L; is the Markstein length.

For this work, extrapolation using the non-linear method is used. However, neither of
these equations will give the unburned laminar flame speed, Sy, as expansion effects must
be accounted for.

Spherical Expansion Displacement Speed

Besides flame stretch effects, outward propagating premixed laminar flames are subjected to
expansion effects of the burned mixture pushing the fluid further. Luckily, Giannakopoulos
[23] has proposed a way to account for this expansion effect relating the burned unstretched
displacement speed to the unburned unstretched displacement speed, V,(r,t)%, based on the
density differences of the burned and unburned gases, as given by Equation 2.22.

CHAPTER 2. BACKGROUND 14

Vit =Ly (2.22)
Pub
Relation 2.22 can then be used with 2.19 to relate the raw displacement speed with the
true unburned laminar flame speed, Sy,.

Stratification Layer and Stratified Flames

Not all gaseous mixtures are homogenous perfect premixed mixtures, and many are subject
to or undergo mixing. Such mixing may be due to concentration gradients that are present
within the mixture. These gradients in the concentration of differing combustible mixtures
are what make up a stratification layer.

There are many ways a stratification layer may exist. Stratification layers are present
any time there is gaseous diffusion of fuel and/or oxidizer. One such case can be imagined
as depicted in Figure 2.1 where a fuel concentration is graphed above a pool of evaporating
liquid, such as gasoline, mixing with ambient air from the atmosphere.

Fuel
Concentration

Ignition Source

Liquid Hydrocarbon
Pool

Figure 2.1: Fuel Concentration of Liquid Hydrocarbon Pool Evaporating in Air.

The gaseous concentration will vary from highly fuel rich close to the liquid pool’s surface,
dropping off to fuel lean above the surface as you move away from the liquid pool and
move closer to the atmosphere full of air. Ignition and subsequent flame propagation in the
direction of changing concentration occurring within a concentration gradient layer such as
this is considered a stratified flame. Stratification layers are also present in numerous other
applications, many of which are actively being researched. One such example is gaseous
injection systems, where a fuel rich stream is mixing with another fuel lean mixture.

Stratified flames are chemical reaction zones that propagate through a stratification layer.
The dynamics of these flames may deviate from homogenous premixed flame speeds as

CHAPTER 2. BACKGROUND 15

the flame propagates though the mixture, heavily influenced by the dynamic changes in
concentration.

2.2 Schlieren Imaging Theory

Schlieren imaging is an optical technique used to observe density gradients in a transparent
fluid by use of the differences in the index of refraction, modifying the trajectories of light
rays as they passes through different index of refractions. There are numerous optical layouts
to achieve Schlieren imaging, but a common low error configuration is a Z-configuration using
spherical mirrors. A Z-configuration with spherical mirrors, as used in this work, is depicted
in Figure 2.2.

Point Light Source <>

(White LED)
Constant Volume 2 Spherical
Mirror
15t Spherical
Mirror

Vertical Knife edge at
Focal Point of 2" Mirror

High Speed
Camera

Figure 2.2: Top down view of Schlieren experimental setup with Z-configuration using spher-
ical mirrors and vertical knife edge.

Light is emitted from an LED light source and reflected off a spherical mirror, collimating
the light into parallel rays, before passing though the experimental observation volume, the
constant volume chamber. Differing densities have slight differences in the optical properties
and specifically the index of refraction and will distort the parallel rays of light as they pass
though the observation volume. These rays of light exit the chamber and are reflected off a
second spherical mirror, where they are focused down to a point where a knife edge cuts off
half of the rays of light that have deviated from the differences in the index of refraction.
The light rays that are not blocked by the knife edge pass though into a high speed camera
and images are captured into frames of a video.

The gradient in the index of refraction is of interest as it can be related to the gradient
of the density. Index of refraction can be related to the density by the Gladstone-Dale
coefficient, GG, as given in equation 2.23. For air the Gladstone-Dale coefficient is about
0.23cm?/g [53].

CHAPTER 2. BACKGROUND 16

dp On
n—1=Gp= =~ Ba (2.23)
Since the deflected light rays due to the difference in the index of refraction are highlighted
as light and dark pixels on each Schlieren image, density differences can be correlated. A
propagating flame will have the sharpest density gradient near the flame surface as the
unburned gas reacts. Therefore, the location of the flame surface can be identified from the

sharp gradient in density from each image indicated by the dark and light pixel surfaces.

2.3 Fluid Dynamics

As a flame propagates through a fluid, it is important to consider the coupled interaction
of combustion and fluid dynamics. There arises a few relevant instability dynamics in this
work that arise from a shearing layer and unequal diffusion of energy and mass. As also
highlighted by Law([34] and assembled by Pelcé[15], early experimental and theoretical work
on hydrodynamic instability of flames by Darrieus[13], Landa[33], Markstein [36][37], and
Einbinder [17] et. al developed the early framework in flame instabilities. Their early
work and theory laid down the framework for both thermo-diffusive instabilities as well as
hydrodynamic instabilities.

Thermo-diffusive instabilities

Thermo-diffusive instabilities occur when there is a unequal molecular diffusion compared
to thermal diffusion under flame stretch. To gauge the relevance of this type of instability
in a flame, the Lewis number, Le, may be determined in the region of interest. The Lewis
number, defined as the ratio of the simultaneous heat and mass transfer by convection,
namely equation 2.24.

Le =

where « is the thermal diffusivity, a = %, and D is the mass diffusivity present in Fick’s
P

(2.24)

Sl

law of diffusion. As such, the Le number depends on the fluid, the flow, and the species
present.

It has been shown that when Le < 1, instabilities may be generated in the flow. Small
molecules are usually the only species that can move fast enough and penetrate further than
their ability to transfer heat. While low conducting gases can also exhibit such behavior,
typically the presence of hydrogen species in a flame is the only type of flame to exhibit
this instability behavior due to hydrogen’s small size and fast molecular diffusion within
combustion. This type of instability manifests itself typically as a cellular structure in the
flame surface.

It is important to note that both Einbinder and Markstein studied flame instabilities and
noted that there were various thermo-diffusive instabilities present in a finite thickness flame

CHAPTER 2. BACKGROUND 17

leading to stabilizing or destabilizing net effects depending on the Le number. In particular,
Einbinder[17] noticed that in slow lean flames that propagate by atomic radicals will exhibit
small cellular instabilities when they transition to a richer mixture that is dominated by
thermal diffusion. This transition leads to a Le < 1 that induces instabilities, and for
methane-air flames in the form of small cellular structures. Furthermore, Markstein[37] and
Behrens[4] found that addition of hydrogen to methane flames lead to cellular structures.

Kelvin-Helmholtz Instabilities

Kelvin-Helmholtz instabilities are hydrodynamic instabilities resulting from velocity shearing
between two fluids moving at different velocities. This fluid dynamic effect is typically seen
in cresting of ocean waves and is common in weather patterns visualized by characteristic
billowing wave pattern also called fluctus cloud patterns. This pattern has been modeled
using a phase-field model and shown by Geun and Kim[22] that higher surface tensions or
density ratios lead to reduced growth of this instability.

2.4 Past Work in the Literature

Homogenous Premixed Laminar Flames

Numerous past experimental studies have investigated methane-air flames in quiescent cham-
ber environments where propagating flames are observed and measured. Techniques to quan-
tify the flame displacement speed have been used for a number of decades. The use of jet
burners[52], et. al. , opposed jet fuel-oxidizer streams [16], et. al. , flat plate burners [14], et.
al. , constant volume chambers and constant pressure chambers and channels [35], [59], [56],
[50], [40], et. al, have all used pressure and or optical means to measure gaseous methane-air
flame displacement speeds with reasonable success.

Reasonable yet not precise agreement on the laminar flame speed has been achieved be-
tween the different methods. Figure 2.3, gives a selection of extrapolated values of unburned
laminar flame speed given in the literature for varying equivalence ratios.

Discrepancies in the literature from spherical premixed flame measurements in particular
have been analyzed and the sources of error and uncertainty have been well documented. The
main sources of deviation in flame speed are outlined by Chen[8] and can be attributed to
deviations in equivalence ratio, hydrodynamic effects, and numerical extrapolation, among
other reasons. Equivalence ratio control is paramount given the high sensitivity of flame
speed to equivalence ratio, however, temperature and pressure deviations in mixture equiv-
alence ratio preparation can result in deviations in the equivalence ratio and in turn, in the
flame speed. Additionally, buoyancy effects can influence slower flames and can be neglected
when the laminar flame speed is more than 15 cm/s. While thermo-diffusive instabilities
may not be typically present in methane-air flames, the flame may develop hydrodynamic
instabilities. Additionally confinement of the flame that raises the pressure and radiation

CHAPTER 2. BACKGROUND 18

45 Homogenous Premixed Experiment in Literature

O O
O))
“0 o B A o
VAN S T
35 @ 2) Y
g & o
hol O — D
325~ o)]
Q @
(%) O =
GE) 20 O) | O Bourque, Lowry, Serinyel, et al. (2010) Y
o)] Dyakov, Konnov, Ruyck, et al. (2010)
i n & Egolfopoulos, Cho, Law. (1989) e
© Wang, Zhang, Jarosinki, et al. (2010) YaN
é 15 - (O Hassen, Aung, Faeth. (1998)
© O O () Law, Vagelopoulos, Egolfopoulos. (1994) o
— S : Maaren, Thung, Goey. (1994)
10 - ’ (O Rozenchan, Zhu, Law, Tse. (2002) \D
O Aung, Tseng, Ismail, Faeth. (1995)
Tahtouh, Halter, Mounaim-Rousselle. (2009)
5 O Tseng, Ismail, Faeth. (1993)
/\ Vagelopoulos, Egolfopoulos. (1998)
‘ O Gu, Hag, Lawes, Woolley. (2000) ‘ ‘
0 T T T
0.4 0.6 0.8 1 1.2 1.4 1.6

Equivalence Ratio of Unburt Mixture

Figure 2.3: Laminar flame speeds in the literature for methane-air premixed mixtures near
ambient conditions as a function of equivalence ratio.

losses can both affect the development of the flame and lead to deviations in the laminar
flame speed determined between different experimental apparatuses. In particular, radiation
has been shown to decrease the flame speed for spherical flames far from stoichiometric [7].

Finally, there are a number of techniques in post-processing of the spherical flame data
to limit the deviations in the experimental results. Proper selection of the radius to remove
ignition effects is key and typical values given in the literature are around 6 mm to 8 mm.
Different methods of zero stretch extrapolation have been used and may result in deviations,
dependent on the equivalence ratio. For methane-air flames and a non-linear method is rec-
ommended for high equivalence ratios that correspond to large Lewis number. Furthermore,
the radius chosen for zero-stretch extrapolation can result in deviations in the flame speed.

Building off these and other measurements, models have been derived to estimate the
laminar flame speeds for a wide variety of mixtures. Countless numerical models have used
these estimates as well as chemistry data to build chemical kinetic mechanisms to model the
complex interactions of chemistry and flame dynamics. A heavily validated chemical kinetic
mechanism, the 53 species GRI 3.0[55] natural gas mechanism, is commonly used to model
methane-air combustion. This mechanism was used in this work for methane-air combustion
numerical models.

CHAPTER 2. BACKGROUND 19

Stratified Flames

Significantly less experimental and numerical work has been done in the past compared with
homogenous premixed flames. The limited experimental work may be due to the extreme
difficulty in controlling the physical setup of stratified mixtures.

Early experiments by Karim and Tsang[31]| using a vertical quartz circular tube of 9.5
cm (3.75 in) inner diameter with a plate to separate two methane-air mixtures and high
speed photography to detect the initial flame speed enhancements. Their work utilized a
theoretical model to determine the fuel concentration profiles along the flame path from two
homogenous premixed mixtures. The plate was removed and the gases were mixed by the
induced convective motion of the plate as well as natural inter-molecular mixing a few min to
hours before ignition, and noted the flame propagation deviated from predicted homogeneous
values.

Girard, Huneau, Rabasse and Leyer[24] studied two nearly concentric hemispherical soap
bubbles of radius 15mm to 30 mm (0.59 in to 1.18 in) made of aqueous sodium oleate separat-
ing mixtures of propane-air and hydrogen-air for stratified mixtures between stoichiometric
and lean, detecting the flame front speed from Schlieren images. They noted that the flame
either became cellular or turbulent as the flame passed through eddies induced by the soap
bubble popping, and that any flame they looked at could be accelerated by the eddies in-
duced by the popping of a bubble. Despite this, they noted qualitative enhancements that
depended on the stratification direction with higher speeds in the rich to lean case, and
a slight expansion of the lower flammability limit of hydrogen. In addition, Girard et. al
noted in a theoretical model of the pressure fields that the stoichiometric to lean case had a
different burning and pressure profile than the lean to stoichiometric case.

Badr and Karim[1] continued the semi-planar flame propagation in a constant pressure
63.5 mm (2.5 in) diameter circular Plexiglass tube with a plate to separate two methane-
air mixtures, looking at different tube orientations and measured the flame propagation
speed from light detectors located along the tube. Due to the setup, the flame responded to
pressure oscillations from the semi-closed end on the order of the diameter of the tube. They
placed heavier mixtures above lean mixtures to enhance the intermolecular diffusion, and
concentrations were determined theoretically and checked using sonic transducers. Speed ups
of stoichiometric to rich and stoichiometric to lean were noted while rich to stoichiometric
and lean to stoichiometric showed no significant difference in speed, and differences in flame
spread were attributed only to the mixture stratification when compared to homogeneous
cases. They also noted that flame front instabilities in their work were enhanced with
stratified mixtures, and therein the velocities of the flame fronts.

Continuing that work, Karim and Lam|[30] focused on the 63.5 mm (2.5 in) diameter
vertical tube separating methane below and air above with a more detailed concentration
profiling using an ultrasonic pressure transducer and a sparking system along different points
of the tube. A section of their work was on profiling the concentration gradient and indi-
cated that significant diffusion of the mixtures happened near the interface in less than a
second and longer than 30 min were required to reach a steady concentration profile. Igni-

CHAPTER 2. BACKGROUND 20

tion was achieved at the leaner mixtures below that reached with homogeneous mixtures and
attributed to the stratification and mixing. They noted disturbances in the flame front, but
attributed it solely based on the pressure disturbances from the closed tube. Enhancements
were noted for flames traveling from the lean limit to stoichiometric and attributed to the
enhanced convective mixing ahead of the flame, disrupting the expected local concentra-
tion.Slow downs were also noted in stoichiometric to rich stratified flames, but were faster
than their determined homogeneous counterpart flames which was attributed to preheating
of the unburned mixture by the flame from conductive and radiative processes.

Preliminary work and development of a method to investigate igniting lean burning
zones and the effect on emissions, Furuno et. al[19] developed a method to ignite a flame
and propagate it through into a lean mixture using a soap bubble to separate the mixtures.
In this work, they prepared lean mixtures, ¢=0.6 and 0.7, and richer mixtures, ¢p=0.8, 1.0,
and 1.2, within tanks equipped with agitators and allowed to premix for 12 hours. The
use of a undisclosed soap mixture composed mainly of a surfactant and Glycerol was used
to make the NO, emission optimal 7.5mm (0.295 in) in radius bubble separation. Initially
they tested homogenous mixtures with the bubble and they noted that THC was higher
by about 10% for bubble cases, but that NO, emissions did not increase appreciably for
the smaller bubble sizes tested. They noted an overall improvement of 39% in the overall
combustion time, indicating a faster flame, for the stoichiometric to lean case. Although
Schlieren imaging was used in this set of experiments, there was no discussion of the flame
surface.

Using the method developed by Furuno et. al to ignite a flame, Ra[44] looked at pressure
rise measurements within a sealed 76.2 mm (3 in) radius spherical constant volume chamber
using a 3.175 mm (0.125 in) tube to form a bubble of radius 7.5 mm (0.295 in) to separate two
mixtures from rich to lean ignited by a Nd-YAG laser were noted to accelerate the flame.
However, in this study Ra used Schlieren imaging to observe the ignition kernel and the
initial flame development and noticed wrinkling of the flame at interface region of the two
mixtures. The flame surface was neglected in the analysis as the wrinkling dissipated and
was attributed to the bubble and the quantity of soap solution used run by run. Homogenous
mixtures were made in a mixing tank using the partial pressure method, but were not noted
to be validated. The mixture stratification setup was assumed an idealized step function in
theoretical modeling. The bubble’s ability to contain the mixture was checked experimentally
by noting that the slope of the pressure rise from a stoichiometric mixture within the bubble
and air outside did not appreciably change when different bubble sizes were blown. An
aberration was noted in the pressure trace and attributed to the flame reaching the bubble,
but no additional evaluation of the flame surface through propagation was made.

Later, Kang and Kyritsis[28][29] used a novel isobaric 2 cm by 2 cm (0.78 in by 0.78 in)
square channel fed by two gas streams above, a mixture of methane and air, and below, air,
to measure the semi-planar downward flame propagation speed through a stratification layer.
The mixture stratification was modeled through a one dimensional theoretical diffusion rela-
tion and measured by the methane-air stream doped with acetone and PLIF measurements
to determine the concentration by assuming acetone perfectly mixed with methane and in-

CHAPTER 2. BACKGROUND 21

dicative of mixture concentration. One dimensional concentration was determined through
a curve fit of the PLIF data, with noise in the equivalence ratio was attributed to image
gain of the camera used. Using a Schlieren with a high speed camera they noted higher than
adiabatic flame speeds and an extension of the lammability limit. With the assumptions and
models employed, they noted flame propagated beyond the flammability limit. In addition,
they concluded that there was a holistic and integrated dependence on the flame history
and not just the local equivalence ratio or the local equivalence ratio gradient alone. Little
comment on the flame structure was made and assumed relatively planar, and flame speeds
were noted to increase by a factor of two compared to homogenous values.

In a different setup, an oblique stratified methane-air flame was studied extensively by
Galizzi and Escudié[20], where they setup a flame front stabilized on a 2 mm (0.0787 in)
diameter rod on the exit of a wind tunnel operating at 5 m/s and 2 mm upstream a rail
injected pure methane to setup the mixture and stratification of both lean to rich and rich to
lean in the same setup. Mixture concentration, flame topology, combustion characteristics
and temperature were measured extensively through the use of Particle Image Velocimetry
(PIV), laser tomography, C' H* chemiluminescence, Laser Doppler Velocimetry (LDA), ther-
mocouple measurements, and Non-Dispersive Infrared (NDIR) for C'H, concentration. They
noted a wrinkling of the stratified flame on the order of the stratification thickness with a
periodic structure even though both the flame and the flow were laminar and attributed
the wrinkling to instabilities created in the shear layer at the burner edge. In this region
they noted a widening of the flame front with the flame propagating faster into the stratified
mixture. This stratification induced a disturbance in the flow that disrupted the symmetry
of the flame, affecting the upstream flow nature including propagating into the upstream
mixture, and disrupted the ability to fully measure flame speed through the stratification
layer. The wrinkling structure they noted to be attributed to various velocity disturbances
and were unable to fully describe the origins but noted that the process took approximately
0.5 ms to form and grew regularly. Additionally, within the stratified mixture they noted a
diffusion front due to higher CH* radicals downstream of the flame front and as the flame
propagates into a richer mixture.

Experimental and numerical work by Schmidt and Kyritsis[51] on methane-air and propane-
air stratified flames over a flat plate burner with stratification generated by changing the
incoming mixture stream and visualized with chemiluminescence. They indicated that flames
burning through stratified mixtures underwent local stretch effects and some reduced mecha-
nisms may be unable to accurately capture the chemistry resulting in additional instabilities.
The chemiluminescence photographs indicated a wrinkled propane flame and an even fur-
ther wrinkled methane flame. They discussed how slight disturbance in homogeneous flames
amplify disturbances, and the wrinkled flame structure in their images was noted to be
disturbed but attributed to limitations of the flow field experimental setup.

Preheated (300°C) premixed and stratified oscillating opposed flow methane-air flames
were studied by Cuoci, Frassoldati, Faravelli, and Ranzi[12] in a 14 mm (0.551 in) counter-
flow burner with 0-3% hydrogen addition with a separation of Tmm (.275 in) and acoustic
speakers provided oscillations and Laser Doppler Anemometry measured the velocity pro-

CHAPTER 2. BACKGROUND 22

file. They indicated that the back support of a stratified mixture could support the flame
through stretch extinction limits normally allowed a steady flame. It was noted that a partial
stratification was induced by the oscillating flow with an accumulation of methane in the
stagnation plane and a enlargement of the flame zone. The flame structure with the addi-
tion of hydrogen was noted to not change compared to the no hydrogen case, and hydrogen
was able to extend the strain rate of oscillating flame further than originally capable with
contribution related to its influence on the flow field.

Balusamy Cessou and Lecordier[2] looked at propane-air stratified mixtures using a im-
pinging laminar 5 mm (1.96 in) jet to introduce a mixture stratification in a 2 cm by 2 cm
by 16 cm (0.787 in by 0.787 in by 6.299 in) constant volume chamber with quartz windows.
PIV-PLIF measurements with seeded Anisole were used to deduce the local equivalence ra-
tio to about half a millimeter and the flame speed. The mixture is setup using a mass flow
meter and a sonic orifice plate. The flame was subject to additional stretches not present
in a spherical flame, and it was noted a qualitative enhancement into the lean mixture was
achieved when burning from a rich region. No flame structure analysis was performed but it
was noted that disturbances could arise from differing stretch and equivalence ratio expan-
sion. In addition, some small ripples were present in the presented images of instantaneous
flow and scalar equivalence ratio field.

All of the above mentioned small-scale stratified flame experiments have helped with the
understanding of stratification. In support of numerous theoretical models developed by
these experimental teams, past numerical work has highlighted possible mechanism of the
effect of stratification.

Following experimental work, Westbrook and Chang at Sandia investigated the possibility
of stratified flame propagation deviating from homogenous premixed flame propagation.

Later, in support of the experimental work, Ra[44] used the Sandia HCT code to simulate
a one dimensional planar flame to account for the faster expansion of stratified flames noted
in experiments.

Building off prior work from Ra and the Sandia report, Cruz et. al[41] further investigated
a stratified adiabatic methane-air planar flame with the Sandia HCT code and attributed
differences in stratified flames to both chemical and mass and heat transfer effects, providing
a better understanding of the underlying mechanisms as to why the stratified flame speed did
not exhibit premixed flame speed transitions. In particular, they attributed the flame speed
up from rich flames providing preferentially diffusing Hs species when transitioning from
rich mixtures to stoichiometric. Conversely, the speed up from stoichiometric to lean flames
was attributed less with a preferential diffusion of hydrogen, and more with the additional
thermal transport from the burned gases, leading to faster thermal breakdown of the fuel
into H and H; species. In addition, they noted a rich flame burned into lean burning zone
well beyond experimentally determined extinction limits but partially attributed it to the
numerical setup and its ability to sustain chemical reactions beyond which are sustainable in
an experimental context. Their simulations also demonstrated a memory effect on the flame
when burning through a set of thin layered stratified mixture layers. The simulated flame
burned from a stoichiometric mixture into a rich mixture before continuing to propagate

CHAPTER 2. BACKGROUND 23

through a thin layer of air where it was able to continue into a stoichiometric mixture.

Kang and Kyritsis [27] continued this work on the memory effect on methane-air flames
using theory to give further backing to the importance of the overall history the stratified
flame undergoes.

A numerical model of a methane-air counterflow burner using a part of the CHEMKIN
Collection, OPPDIF, was studied by Richardson, Granet, Eyssartier, and Chen[48] where
they simulated a flow of reactants opposing a flow of products to investigate equivalence
ratio gradient, strain rate effects and steady and oscillatory effects. In particular, they
looked at stratified equivalence ratios starting/ending from 0.6 to 0.9. They attributed
speed enhancements and flame thickness increase of stoichiometric to lean stratified flames
to the diffusion of radical species ahead of the flame, and in particular for back supported
flames compared to premixed flames they noted that despite the lower flame temperature
at the peak heat release of the stratified case it contained 0.3% higher H, species, 5.8% H
species, and 6% OH species. Many of these radicals were noted in higher concentrations
through the flame front and into the unburned gas, indicating a higher radical flux through
the flames in the stratified cases.

Zhou and Hochgreb [64] also investigated the counter flow behavior of reactant opposing
products of methane-air stratified equivalence ratio streams with additional stratification
equivalence ratios investigated. They concluded similarly as Richardson et. al, that stratified
flames from the lean side are dominated by heat support while rich flames dominated by
hydrogen preferential diffusion.

Zhang and Abraham [63] studying methane-air and hydrogen-air flame simulations in a
one dimensional Flow Large-Eddy Direct-Simulation code. They noted that speed ups of
the stoichiometric to lean methane-air stratified flame may be partially attributed to the
thickening of the flame as a stratified mixture transitions into a lean mixture.

Later, Shi[54] simulated a spherical stratified flame using a one dimensional adaptive
compressible flow code for hydrogen-air, methane-air, and propane-air fuels with a stratifi-
cation thickness on the order of 1 mm. He noted that methane produces more intermediate
hydrogen in rich flames and the flame propagation enhancement of methane-air stratified
flames are enhanced by the preferential diffusion of molecular hydrogen. Expanding strati-
fied flame simulations to include a full history effect of a rich mixture, equivalence ratio of
1.6, to a lean mixture, equivalence ratio of 0.6, and indicated the local stratification gradient
and equivalence ratio insufficient to capture the flame dynamics.

Even with all of this experimental and numerical work, additional questions remain re-
garding the physical mechanisms, structure, enhancements and emissions of laminar flames
and as they relate to downstream models and applications.

24

Chapter 3

Experimental Methodology:
Apparatus and Relevant Procedures

3.1 Constant Volume Chamber Setup and Data
Acquisition

The experimental setup was built with a 1.45 L constant volume chamber that has been
used successfully to measure flame, flow, and ignition experiments. The chamber is made
from two intersecting stainless steel pipes, welded together and closed off with two quartz
windows for optical access, and two aluminum plates and grounded, as depicted in Figure
3.1. Mounted on one of the aluminum plates, a 6052B Kistler piezoelectric high frequency
pressure transducer connected to a Type 5010B Kistler amplifier to allow for fast and accurate
pressure measurements within the chamber. On the opposite side aluminum plate, a type K
thermocouple was installed to measure the unburned gas temperature.

An optical pass-through is afforded by two 11.43 c¢m (4.5 in) quartz optical windows,
with a view circumference of 10.16 cm (4 in) that allows light to penetrate the main chamber
experimental area, allowing Schlieren imaging of the flame surface and structure as the flame
develops and propagates in the chamber. A Schlieren z-configuration utilizing two 7.62 cm
(3 in) spherical mirrors allows for low error flame surface detection visualized from the light
deflections due to gas density gradients. A 2.1 MP high speed Photron FASTCAM SA4
camera captured raw full resolution black /white Schlieren images at 6000 frames per second,
or 0.166 ms between each frame.

The Schlieren images were used to determine the reaction zone as the flame propagated
through 10.16 cm (4 in) in diameter. The flame speeds measured using this imaging method
followed a nearly constant pressure as determined by the pressure transducer during the
initial expansion viewed in the window, and so pressure effects on the flame speed were
deemed negligible.

The chamber is sealed to allow for constant volume experiments, as well as to contain
the burned gases for emission testing after a test is performed. Between each run, a vacuum

CHAPTER 3. EXPERIMENTAL METHODOLOGY: APPARATUS AND RELEVANT
PROCEDURES 25

AN

AR
(]

0;

4Ll

yan)

AN

Figure 3.1: Constant Volume Chamber with optical access and side mount for pressure
transducer and top hole for stratification and sparking systems.

pump extracted the residual gases through a port in the top of the chamber. A second
vacuum line was accessible from within the soap dish pan, and was used to vacuum and
purge the straw line before filling. The chamber was filled with mixtures either from a
second port on the top of the chamber or from the straw tube used to blow the bubble. This
setup allows for the safe experimentation of combustible gas mixtures with measurement of
numerous relevant characteristics.

Ignition in the constant volume chamber was employed by the use of a custom set of
0.15875 c¢m (0.0625 in) diameter pins to provide a consistent pin-pin sparking for development
of a spherical flame. Good alignment in the pin-pin ignition system was achieved, and a spark
gap of 1.727 mm (0.068 in) was used. The ignition energy was held constant through out
the runs and radial measurements were taken away from the initial kernel to eliminate any
stray ignition effects. A stock engine sparking coil and a 12V battery was used to provide
the ignition energy for each spark. To estimate the spark energy deposited in the chamber
to ignite each flame, a multi meter was used to measure the battery voltage and a current
clamp was used to measure the sparking coil charging current.

The experiments utilized a custom LabVIEW VI program, shown in Appendix A.1, using
a National Instruments USB-6343 DAQ board to provide safe experimental control and data
acquisition (DAQ), including syncing of the ignition and high speed camera. The program
allowed for changing the spark coil charging time to modify the ignition energy deposited, the
ignition timing, and gathered various measurements before and during an experimental run.
The DAQ also read in data that was captured from a Tektronix TDS 3024B Four Channel
Oscilloscope and saved to a separate output file. The signal from the pressure amplifier was
read in simultaneously by the onboard DAQ as well as well as captured from an oscilloscope.
Charging current to the spark coil was measured with a Hantek CC-65 AC/DC Current

CHAPTER 3. EXPERIMENTAL METHODOLOGY: APPARATUS AND RELEVANT
PROCEDURES 26

Clamp set to 1mV/10mA and connected to the oscilloscope. In addition, the spark and
camera signals were sent to the oscilloscope to providing timing shifts and align the data.

All of the components and upgrades to the constant volume chamber was designed and
manufactured in-house. Assistance was provided by undergraduate volunteers and guidance
from shop staff. Post-processing of the high speed camera data was done using a custom
code due to the constrains of the Schlieren images, and is further discussed in the following
chapter and relevant code is provided in Appendix A.2.

3.2 Homogenous Premixed Mixtures

To setup the stratification layers, the use of controlled and well mixed homogenous premixed
mixtures were made and separately tested for validation and benchmarking. Numerous ho-
mogenous premixed methane-air mixtures were made in batches and mixed in high pressure
tanks. All of the flame experiments utilized a set of the homogenous premixed tank mix-
tures, and great care was given to ensure the mixture was as accurate and as well mixed as
possible.

To reduce the limited variability in mixing tank, the high pressure tanks were filled as high
as possible to allow the most relevant comparisons and to check for variability in the tank
mixtures. Temperature and pressure within the tanks was limited to ensure safe operation.
The minimum auto-ignition temperature of methane-air mixtures in ambient pressure is
around 600 C[49] et. al, and so care was taken to avoid temperature fluctuations well below
half this temperature to ensure decomposition of the fuel did not occur. Additionally, the
maximum pressure of the house air line provided a limit to the maximum pressure of a fully
mixed tank that was well below the maximum pressure following an unlikely combustion
event within the tank. The maximum pressure of gas was determined safe through two
considerations. First a deflagration wave was assumed, giving the maximum pressure rise
from complete adiabatic combustion of a full tank at the maximum pressure would not raise
the pressure of the gas over the designed pressure limits of the high pressure tank. Second, a
detonation wave was deemed impractical as the initiation energy was significantly higher than
capable with the setup, with values of approximately 4.7E4 MJ as given by Wolanski[62], et.
al. Despite the above points, additional care was taken to ensure no reaction could propagate
into the tanks with both procedural and engineering safeguards.

Making the Mixtures: Partial Pressure Tank Mixture Filling

To make specific premixed mixtures, a partial pressure fill technique was used measuring
each tank pressure with a high precision 3D Instruments Accu Cal Plus 100 PSI pressure
gauge, model 75514-23B55. The procedure to fill each tank followed the general form as
outlined below.

First the mixing tank is purged to ensure accurate tank target concentration. To do this,
the tank is vacuumed out to remove as much previous gas as possible. Then, to remove

CHAPTER 3. EXPERIMENTAL METHODOLOGY: APPARATUS AND RELEVANT
PROCEDURES 27

residual impurities, the tank is purged by filling it with dry house air. The tank is allowed
to mix for a minimum specified time, and then vacuumed out to remove the purging air
mixture.

Once cleaned, raw gas filling starts and the tank is filled with a three layer fill technique.
The tank is filled first with dry house air to slightly above atmospheric pressure, P
where the pressure gauge is most accurate. Subsequently, the fuel, methane, is then added
to a target pressure, Pa%,. slowly and allowed to equalize. Finally, dry house air is added
to pressurize the tank to the target pressure, P%* , to reach the desired tank mixture
equivalence ratio following the partial pressure equivalence ratio technique.

Partial Pressure Equivalence Ratio Determination

The partial pressure technique provides a way to closely target a specific equivalence ratio.
It relies on the idealization that a mixture of ideal gases do not individually interact, thereby
the overall pressure, P, of a mixture is a sum of the individual pressures, P;,Ps, ..., of the
individual gases. For air and methane at filling temperatures and pressures in this work,
their behavior can be modeled as an ideal gas, which follows the following ideal gas law
equation given in equation 3.1.

NRT
V

Since the high pressure tank is relatively rigid, the volume does not change noticeably.
With an appropriate fill procedure, the mixture temperature will also not change appreciably,
and therefore the molar ratio of fuel-to-air can be determined from the pressure ratio alone
to determine the concentration of the fill gas.

The equivalence ratio of the mixture can then be determined based on the concentration
ratio of fuel-and-air given the intermediate filling pressures of air, P%* | and P2 |, and
intermediate pressure of fuel, P2%3,. These intermediate pressure values can then be used
with equation 3.2 to determine the overall mixture equivalence ratio.

pP= (3.1)

Pabs o qus
abs < abs - abs (32)
P, (Pétia — Fai)

air—2 air—1

FA=

Dividing equation 3.2 by the ideal molar stoichiometric fuel-to-air ratio, equation 2.3, the
equivalence ratio can then be determined as given by equation 2.4. Slight corrections were
performed to account for such pressure effects as daily fluctuations in ambient pressure.

Tank Settling and Mixing Time Estimate

Ideally the tank mixtures could be agitated or mixed through a controlled diffusion en-
hancing process. Various methods with the equipment available were attempted. However,
limitations in the equipment available limited the extensive use of such external mixing

CHAPTER 3. EXPERIMENTAL METHODOLOGY: APPARATUS AND RELEVANT
PROCEDURES 28

mechanisms with the high pressure tanks used. In addition, since numerous prior experi-
mental work on homogenous premixed flames have used a mixing tank to prepare mixtures
of various equivalence ratios, this method was used.

Initially, the tank mixing time was estimated based on past experimental methods pre-
sented in the literature after accounting for pressure effects. However, following a variety of
tests for the homogeneous premixed tank mixtures, additional care was necessary to ensure
proper mixing and limit variability between runs for the same tank mixture.

The estimated minimum time allowed for mixing was determined through theory, and
is dominated by the end filling tank pressure and the size of the tank. Since many of
the mixtures tested ran close to the flammability limit, the flame surface speed was highly
sensitive to the mixture concentration. An appropriate waiting time was used to allow the
mixture to thoroughly mix. A dimensional analysis was developed to account for the mixing
time, estimating the mixing time, and confirmation through experimentation.

To estimate the comparative time it takes for a gas to mix, a characteristic time can be
determined. Using multiple characteristic times can be used to determine adequate mixing,
and such a method was used in this work along with subsequent consistency validation
experiments. To estimate the time for each time constant and therefore the time to properly
mix the tank, gas kinetic theory was used to adjust for each tank mix depending on the tank
size and the pressure of the final mixture. Fick’s law gives a linear proportional relationship
between the diffusive mass flow rate and the concentration gradient, given in equation 3.3.

J - (3.3)

The proportionality constant is called the diffusion coefficient, D with units of m?/s, and
relates the diffusion rate, J with units of kg/s, to the molar concentration gradient. If D is
known or can be approximated, the rate of diffusion for a given concentration gradient, %,
can be determined. Therefore, estimating the diffusion coefficient gives some indication of
the relative speed at which molecules diffuse.

Gas kinetic theory can be used to estimate the diffusion coefficient for a molecule to diffuse
through another gas. For an ideal gas, the diffusion coefficient can be modeled following gas
kinetic theory and relationship to temperature and pressure extracted, as given by Warnatz
et. al[60],

T3
D Iz (3.4)

Armed with this relationship, the rate of diffusion dependence on pressure and temperature
can be determined.
A non-dimensional characteristic time, 7, can then be determined using equation 3.5.
LZ

=75 (3.5)

CHAPTER 3. EXPERIMENTAL METHODOLOGY: APPARATUS AND RELEVANT
PROCEDURES 29

The characteristic time depends on a characteristic length, L, which will depend on the
length the gas mus travel to mix, and the diffusion coefficient. Using the preceding equations
together, if a gas takes 10 seconds to diffuse and mix with another gas at ambient pressure,
at 10 times the ambient pressure the same gas molecule will diffuse 10 times slower and take
about 10 times as long to diffuse the same amount.

Diffusion coefficients for methane in air at ambient pressure have been determined and
summarized in the literature [11], [38], et. al. For this work, it was determined necessary
though experimentation and evaluation of the variability of the flame speeds from numerous
tank mixtures, that on the order of 10 time constants were needed to ensure sufficient tank
mixing and minimize tank variability. With the size of the tanks used and considering the
temperature and pressure for safe operation, this resulted in a mixing time on the order
of two weeks between filling the tank and for complete stabilization to be ready for use.
Multiple methods were attempted utilizing the resources available to decrease the wait time,
but none were able to replace time.

3.3 Experimental Setup: Homogenous Premixed
Flame Propagation

A series of homogenous premixed experimental runs were performed to provide necessary
validation and benchmarking. Homogenous premixed mixtures were burned in the constant
volume chamber and the resulting flame speeds were measured over the course of the work.
Some gas from each tank used in the stratified experiments were were tested in this way.
Following vacuuming the chamber from a port on the top of the chamber, the chamber was
filled with a premixed gaseous mixture using a well mixed homogenous high pressure tank
through another port on the top of the chamber. The pin-pin setup ignited the spherical
flame in the center and allowed to freely propagate while pressure and Schlieren imaging
data was collected. After the gas had burned through, gas products were fed into a purged
and vacuumed exhaust tank for measurement.

As there is limited exploration performed in mixtures far from stoichiometric, burning
homogenous premixed mixtures provides additional flame speed data. This particular exper-
imentation category also provided necessary baseline values of flame speeds to compare later
stratification runs to that controls for the specific geometric, setup, and conditions present
in this experiment that cannot be accounted for otherwise.

Practically, the homogenous premixed mixture experiments provided a secondary method
of verification of each tank mixture on top of the mixture concentration determined from the
partial pressure technique. Homogenous premixed flames were a necessary validation tool
when procedure improvements or equipment upgrades were made during this work. Lastly,
these experiments allowed for a controlled way to refine many of the procedures and initial
post-processing in this work.

CHAPTER 3. EXPERIMENTAL METHODOLOGY: APPARATUS AND RELEVANT
PROCEDURES 30

Validation of Setup

Extensive validation of the homogenous mixtures was undertaken. The equivalence ratios
determined through the atmospheric corrected partial pressure measurements were com-
pared with the equivalence ratio determined from gas analysis and using the Brettschneider
method[5]. The flame speeds were compared to literature and numerical values with excellent
agreement.

Numerous homogenous premixed runs were performed and aggregated flame surface speed
data from the high speed Schlieren setup was used to determine the flame front propaga-
tion speeds of the homogeneous premixed mixtures and values were compared to literature
values. Measurement of dilute gas mixtures were examined using the gas analyzers and
provided additional confirmation that the burned gas equivalence ratio was achieved. After
each experimental run, gas samples were measured and this procedure provided an addi-
tional validation method to ensure a known tank equivalence ratio and provide a basis for
comparison with the stratified experimental results.

In addition to extensive post-processing of the Schlieren images, to better quantify the
soap bubble’s affect on the flame propagation a set of experiments using a series of homoge-
nous mixtures with the soap bubble were run.

3.4 Experimental Setup: Stratified Flame
Propagation

To controllably form a stratification layer is quite a formidable challenge. Fundamentally,
entropy fights experimentalists on developing a controlled and sharp interface between two
miscible gaseous mixtures. As such, a variety of techniques to develop a stratification layer
were brainstormed. Due to various equipment, financial, and time limitations, only a subset
of the possible setups were tried but ultimately a soap bubble was chosen as the best option.

Evaluation of the Stratification Setup

Ideally a diagnostic tool such as planar laser-induced florescence (PLIF), chemiluminescence,
gas chromatography (GC), or nondispersive infrared (NDIR), would be able to determine
the spacial concentration profile of methane or its combustion. However, none of these tool
were available for this work and therefore alternative methods were devised as a proxy to
estimate the stratification layer. To reduce the uncertainty of the layer, extensive validation
and procedures were undertaken to improve the separation boundary as best as possible.
As past experiments of gaseous methane permeating through pure water have indicated a
low diffusion rate of about 1.88E-5 cm?/s[61] compared with methane in air with a diffusion
rate of about 0.2 ¢cm?/s[11], [38]. Therefore, it was initially assumed that soap mixtures
that contain mostly water would exhibit the same desirable high permeability characteris-
tics observed in the literature. Additionally, as prior work has not indicated permeability

CHAPTER 3. EXPERIMENTAL METHODOLOGY: APPARATUS AND RELEVANT
PROCEDURES 31

issues with using soap bubbles to separate mixtures, this assumption was deemed initially
appropriate. However, rigorous testing of the permeability was deemed necessary following
odd behavior in the stratified flame experiments.

Permeability through Bubble

Therefore, to test the efficacy of the bubble to separate two mixtures adequately, a number
of systematic tests were devised. One key test used was found to have been previously used
by Karim et. al [30] in which a sparking system is used to detect the ignitability of the
flame and therefore evaluate the diffusive characteristics of the mixture. Such a method was
modified to test the permeability of gas through the bubble with the main goal to determine
the time at which the rich ignition limit would be reached when the soap bubble initially
contained too high of fuel to ignite and air in the rest of the chamber. With such knowledge,
an estimate of the combined effect of the permeability and diffusion of the mixture within
the bubble down to the upper flammability limit could be made and an evaluation of the
separation between the bubble and the outer mixture could be evaluated.

The test was setup by blowing a super rich, ¢ greater than the upper flammability limit
ignitable in the setup, bubble and using air in the outer mixture within the chamber. A series
of systematic sparking tests were then performed to determine if and when the mixture would
be ignited, indicating sufficient permeation and molecular diffusion to support ignition. At
different times following a successfully blown bubble, a spark was used to attempt to ignite
the mixture within the bubble. If the mixture within the bubble didn’t ignite, the mixture
and time were noted and the chamber was vacuumed before a new bubble was blown and a
different time to ignition was set.

Following these tests, it became clear that considerable care must be taken to minimize
the permeability through the bubble and the subsequent diffusion that follows. Initially the
mixture would not ignite. However, following a finite time that depended on the specific
soap mixture, the mixture became ignitable. Later times again lead to a condition where
the mixture would not ignite, indicating passing into the lean ignition limit.

It was noted that mixtures with more dilute surfactants in the soap mixture provided
increased resistance to permeability, however at the cost of both the integrity of the bubble
and additional influence of the bubble on the flame. Increasing the water content in the soap
mixture reduced the surfactant count in the soap and eventually led to premature popping of
the bubble prior to ignition. Increasing the water content also increased the surface tension
of the water mixture, which holds the bubble in the spherical shape. With increased surface
tension, the vigorousness of the bubble popping increased as appeared influence on the flame
passing through the bubble induced disturbance region. A trade-off then became apparent
between the desired popping characteristics and the desired low permeability through the
bubble.

CHAPTER 3. EXPERIMENTAL METHODOLOGY: APPARATUS AND RELEVANT
PROCEDURES 32

Stratification Setup Procedure

The mixture stratification layers were setup for a spherical flame geometry using a soap
bubble to separate two homogenous premixed mixtures. First, the constant volume chamber
was filled with the external gas mixture in the same manner as the homogenous premixed
experiments. Then, a metal tube was dropped into a pan filled with a custom soap mixture.
The tube was then vacuumed out with a vacuum pump and then filled with a second mixture.
When the tube was lifted out of the soap-filled pan and set to a specified distance, a bubble
of approximately 29 mm (1.14 in) in diameter was blown with a second mixture. The size of
the bubble was controlled using a controlled volume and regulating the pressure as indicated
by a gauge. The distance of the tube was set such that the bubble floated freely in the center
of the optical area while at the same time the grounded bottom pin of the spark ignition
system penetrated the bottom of the bubble. Figure 3.2 shows a schematic of the setup with
a bubble within the constant volume chamber following the proceeding procedure has been
followed.

Figure 3.2: Stratified mixture experimental setup of side profile of constant volume chamber
with soap bubble and enclosed mixture, ¢; in blue and second mixture, ¢o, filling rest of
chamber in white.

Following the bubble’s formation, the top pin was descended though the metal tube and
set a specified distance from the bottom pin. After a specified time from the initial bubble
blowing, the inside mixture was ignited and the flame propagated spherically outward and, if
necessary, burst the bubble to continue the propagation outward into the secondary chamber
mixture.

Kelvin-Helmholtz Instabilities

As mentioned prior, much effort was focused on reducing the observed effect of the bubble on
the flame structure. However, Kelvin-Helmholtz instabilities were limited yet unavoidable
with the bubble stratification setup. When the bubble popped the bubble itself acted as

CHAPTER 3. EXPERIMENTAL METHODOLOGY: APPARATUS AND RELEVANT
PROCEDURES 33

a moving sheet of fluid relative to the stagnant surrounding mixtures, the characteristic
of a velocity shear layer that induces Kelvin-Helmholtz instabilities. Similar to the two
layer couette flow with an interface leading to interfacial stabilities as described by Charru
and Hinch[6], the popping bubble generates vorticities within the stratified mixing layer.
These vorticities enhance the mixing and with time reduce the sharpness of the stratification
layer. Also, as pointed out by Govindarajan and Sahu[25], the origins and extent of miscible
shearing layers has only recently been a focus of research. Subsequently, the three layer
flow of two miscible mixtures separated by a third immiscible layer as the bubble pops from
the leading edge transitioning into a disturbed two layer miscible flow is quite a formidable
fluid dynamic challenge that is beyond the scope of this work. Fortunately, as demonstrated
numerically by Geun and Kim|[22], higher surface tensions, as in this work, leads to reduced
growth of this instability. Therefore, this would indicate that the region of influence on
the flame would be short lived in it’s expanding propagation. From the Schlieren images,
the flow around the bubble popping fluid was determined to be laminar, Rep 1.6F4 to
max(Req,e) 4.9E4, with limited time influence on the flame. These instabilities appeared as
ripples in the flame as the flame propagated through the flow instability region.

Emissions

Gas composition was determined by passing a test gas through a five-gas HORIBA Analyzer,
measuring unburned hydrocarbons (T"HC'), molecular oxygen (Os), carbon monoxide (CO),
carbon dioxide (C'O,), and nitrogen oxides (NO,,).

Exhaust gas of numerous experimental runs were collected and diluted for measurement
with the gas analyzers in batches. To collect the products and evaluate emissions, an argon
purged and vacuumed tank was connected to the constant volume chamber and filled with
the exhaust gases after each flame experiment. After a set number of similar experiments
were collected in the emission tank, the gaseous exhaust mixture was diluted with argon
and allowed to mix for a specified time. The argon diluted exhaust gas was then measured
using the gas analyzer, which was calibrated each day before use, and average values were
recorded. Due to limitations with the equipment, C'O measurements were unreliable and
unable to properly calibrate, and so only estimates were recorded.

To further validate the homogeneous gas compositions, homogenous premixed unburned
tank mixtures were diluted to match the capabilities of the gas analyzers and measured. The
equivalence ratio was determined using the equation outlined by Brettschneider[5]. Good
agreement was achieved in the values predicted by the partial pressure method, both for the
unburned and burned emissions.

CHAPTER 3. EXPERIMENTAL METHODOLOGY: APPARATUS AND RELEVANT
PROCEDURES 34

3.5 Experimental Setup: Flame Propagation through
Electric Field

As this work was initially undertaken to understand the combined effects of stratification
layers and electric fields, the experimental setup was modified to provide a quick and straight
forward addition to the stratification layer setup. As numerous work has been done prior on
the effects of electric fields, limited experimental work was performed with the electric field
setup alone and focus was devoted to the stratification layer experiments following successful
proof of concept design of the electric field setup. The designed electric field modified setup
used for preliminary findings in this work for the electric field’s effect is presented below and
designed for use separately with homogeneous premixed mixtures as well as in conjunction
with the stratified experimental setup.

Applied Electric Field Experimental Setup

The electric field setup was employed though the use of a thin wire mesh connected to the
chamber by use of ceramic stand-offs and a high voltage cable connected to the meshes and
a high voltage power supply provided the high voltage to the meshes. The chamber and the
ignition pins were grounded following ignition. This has been similarly done by Meng, et. al
[39]. A depiction of the mesh standoff arrangement used in this work is sketched in Figure
3.3.

High Voltage Wire
2 x 2.5in Disk [| »]r f
Meshes ! - ——
at High Voltage '*
Light Unobstructed T
Electrically Insulating Ro

Figure 3.3: Schematic of mesh arrangement within chamber

The mesh plates were held at a specified voltage and powered by one of two model
NO030HA2/P030HA2 Acopian power supplies where were able to supply between 0 and +30
kV, of which were connected with a switch to provide safe control and operation of the units.
Voltage was set and monitored by a voltmeter attached to a reduced voltage readout. The
flame was ignited and allowed to propagate after the electrostatic field stabilized and the
resulting pressure and Schlieren images were captured. The voltage was limited to no more
than £9 kV as corona discharge and breakdown was noted at higher voltages. The electric
field setup within the constant volume chamber is depicted in Figure 3.4.

CHAPTER 3. EXPERIMENTAL METHODOLOGY: APPARATUS AND RELEVANT
PROCEDURES 35

Figure 3.4: Constant Volume Chamber with optical access and enclosed mesh plates.

36

Chapter 4

Post-Processing: Determining Flame
Speed

The raw image and sensor data captured by the high speed camera and data acquisition
system for each run was output into avi container of uncompressed Schlieren image frames
and text files that were saved to the hard drive for later processing.

A custom edge tracking post processing code was developed to accurately and repeatably
interpret the flame speed data from Schlieren high speed camera frame data. The code was
developed using the MATLAB language, but structured in a way to easily be adapted for
use in Python or other similar interpreter.

Overall, the post-processing involved converting the image data to flame radius as a
function of time. The unstretched flame surface speed was determined using the stretch rate
calculation in Equation 2.19 and the non-linear zero stretch extrapolation calculation using
Equation 2.21 to determine the unstretched flame surface speed. Finally, the laminar flame
speed was determined once accounting for the expansion effects using Equation 2.22.

For the homogeneous cases, the laminar flame speed was also determined.

4.1 Image Post-Processing: Robust Interface
Tracking of Dynamic Radial Surface Fronts

Limitations of Built-in Image Processing

The goal of the initial phase of the image processing was to determine the location of the
flame at each frame.

Various image processing techniques and packages have been developed are available
for straight forward use, and were tried, including Sobel, Canny, Prewitt operator, among
others. Most of these methods rely on a thresholding technique to determine the interface
between two regions and subsequently to determine the edge of a closed surface. These
methods ideally will detect all of the possible edges in an image. However, in reality there

CHAPTER 4. POST-PROCESSING: DETERMINING FLAME SPEED 37

are errors in the detection due to noise in the experimental data. In addition, difficulty
arises in selecting the appropriate edge within the superset of edges detected. With the
Schlieren, numerous edges are detected within and out of the flame of which thresholding
alone was unable to separate. The strict built-in thresholding techniques partially succeeded
in locating the flame front of homogeneous premixed flames, but more fine tuned control
was necessary. Aberrations due to noise induced from the Schlieren setup, such as a ’dirty’
window, gave off irregular lighting gradient effects that the built-in codes were unable to
reliably differentiate from the flame surface. Furthermore, however successful the built-
in packages were at determining the flame surface of a homogenous premixed flame, the
methods struggled when the ’shadow’ of a bubble was present. The tracking algorithm
could not differentiate a bubble’s surface with a flame’s surface, and did not incorporate
any history or physics to where the flame surface was physically likely to be. In addition,
differentiating flames from bubbles was paramount and bubbles were present in a large
portion of the experimental runs. In particular, since the concentration gradient was sharpest
at the bubble interface for the stratified flame experiments improper measurement of the
flame surface could lead to inaccurate conclusions when smoothing alone is used to account
for the differences.

Unfortunately, due to the variability of the Schlieren images and the varying lighting
effects imposed by using vertical knife edge Schlieren, a customized in-house code was needed
to accurately and repeatably capture the flame front and, where applicable, simultaneously
the bubble interface.

Flame Surface Tracking: Overall Algorithm Employed

A custom code was built that incorporated the physical limitations of the experiment and
tuned to best handle the recorded data. Key image reference data was selected manually
and checked by the code, but the surface tracking was developed to more robustly and au-
tonomously track the flame and bubble surfaces. A modular approach was used to determine
the location of the flame edge.

As most of the equivalence ratios considered had expected flame speeds greater than
15 ecm/s and thereby limited buoyant effects, a single row was used initially to determine
flame surface speed. However, after later development, this code was expanded to include
a significantly broader set of pixel rows to determine the location of the flame even more
accurately and dynamically, where the surface front was temporarily not smooth as in many
of the stratified cases.

For each row, the code process followed a similar methodology to the Canny edge detector
scheme as follows:

e Determine region where flame physically possible

e Within this region, smooth the brightness data and spline fit for additional points

e Given desired estimated thresholding criteria, determine possible locations of the flame
and location of a bubble

CHAPTER 4. POST-PROCESSING: DETERMINING FLAME SPEED 38

e Evaluate and select the flame location from the set of possible points

To determine the region to search for the flame, flame history was incorporated along
with an expected upper bound to the flame speed where a flame was physically possible to
be found. For the cases where a bubble was possibly present, a similar method to determine
the physical search region was used, incorporating the maximum lifespan of the bubble.

Then, within the physically possible flame location area, a target brightness threshold
was searched for to determine the set of points that may indicate the location of the flame.
Then, each row’s brightness values were smoothed to remove irrelevant sensor noise and
aberrations due to the experimental setup. A spline fit was used to interpolate between
the pixels to better locate the flame front. In homogenous experimental cases, the target
brightness corresponded to the average temperature between the flame and the unburned
mixture. For the experiments where a bubble was present, the tracking brightness chosen
corresponded to a significantly higher temperature as the fluctuations in the density of the
flame and bubble prevented the average temperature from being selected. This was deemed
acceptable in these cases as the flame thickness was thin and on the order of 1 mm. The
selected brightness targets were chosen but tolerance was allowed to account for fluctuations
in the flame as well as to account for when the bubble popped.

For each possible flame location found, a series of tests were performed to located the
true location of the flame and differentiate it from other causes. The slope of the brightness
data was also tested to ensure it aligned with the expected positive density gradient of an
expanding flame. In addition, each of the found thresholded targets were tested for other
possible cases, such as a bubble, and differentiated so as to select the best location of the
flame.

From each row processed, the number of which depending on the size of the flame, the
location of the flame found was aggregated to determine the leading flame surface front
location. Multiple rows allowed for flexibility and error mitigation in finding the flame
location. In addition, as the flame was not smooth during many of the stratified cases,
unlike the homogenous cases, aggregations provided a better way to estimate the overall
surface speed.

A visual example of the code tracking a flame and bubble can be seen in Figure 4.1. The
flame is tracked in red, while the bubble is tracked in blue. Excellent repeatable and robust
tracking was achieved with the code and the radius data was used for later additional post
processing.

Flame Surface Tracking: Geometric Considerations

To account for the flame stretch and evaluate buoyant and ripple effects, various geomet-
ric properties were calculated. Initial geometric considerations were determined, given the
pin-pin ignition center as the center of the spherical flame. The radius of the flame was
determined as the difference between the pin-pin ignition center and the geometric distance
to the flame surface at the leading edge. However, in some cases, such as very slow homo-

CHAPTER 4. POST-PROCESSING: DETERMINING FLAME SPEED 39

Figure 4.1: Example of post processing of flame tracking, in red, and bubble tracking, blue.

geneous premixed flames, the single row flame tracking algorithm inaccurately located the
flame as buoyant forces drove the flame upwards. In addition, there were some cases where
the bubble moved the flame as it popped or the flame propagated slowly and was subjected
to buoyant driven movement upwards. These and other cases necessitated an increase in the
robustness of the flame tracking algorithm and to better account for the radius of curvature
needed to determine the flame stretch each of the flames were subject to.

To determine the spherical radius necessary for alternative determination of the flame
stretch as well as track the flame leading edge for flames that were subject to buoyancy,
multiple row tracking was implemented and the information from each row location were
aggregated to estimate relevant geometric properties. As spherical flames have a circular
projection the best fit circle through all of the flame surface tracked pixels was sought.

The flame surface location of multiple rows at each frame were grouped together into
a set to calculate the best fit circle through the set of points detected. In addition, the
location of the bubble’s center and radius were determined from a best fit circle from a series
of detected points along the bubble. The best fit circles were determined using an algorithm
outlined by Gander et. al[21], where the minimization problem is solved for the distance
between the circle’s ring and the distance from a set of data points. In particular, it involves
solving the following minimization problem for a set of m data points located at (z;,y;) by
selecting the best circle, (Zeen, Yeen,) that satisfies equation 4.1.

m
D [@eens Yeen) = (i, 9:)|| = 7)* = min (4.1)

i=1
This minimization was solved using an iterative method that used a first guess to minimize
the algebraic distance of the circle and the points of interest. The successful minimization
gave the circle center and radius of the best fit circle and closely inscribed the points of the
rows found of the flame locations. From the best fit circle, the apparent circle center was

CHAPTER 4. POST-PROCESSING: DETERMINING FLAME SPEED 40

used to compare both an additional, apparent, flame radius for each row flame location as
well as identify the row location of the leading flame front. A depiction of a typical set of
detected points from the flame surface with the flame tracking points and the center of these
points in red can be seen in Figure 4.2.

Figure 4.2: Typical flame tracked rows as red dots with flame best fit circle center as red
circle.

The leading flame front location was determined based on the y-location of the circle
center. This allowed a close monitoring of buoyant effects on the overall movement of the
flame.

If the flame is assumed a perfect sphere, the flame will follow a circular shape in the
Schlieren image. However, due to heat transfer to the pins and straw as well as the initial
shape of the ignition regime, the flame initially develops a slight toroid in shape, as confirmed
by simulation. This slight deviation could then be evaluated to compare with the spherical
assumption.

Flame Surface Tracking: Influence of the Bubble

As previously mentioned, the cases where a bubble was also present in the chamber was a
contributing factor in generating the custom code. As mentioned in the literature, the first
frame can often be subtracted from the rest of the frames and the difference in the brightness
is used to track the flame surface. However, in many cases considered the background was

CHAPTER 4. POST-PROCESSING: DETERMINING FLAME SPEED 41

a large function of time, complicating the strict image subtraction procedure. In the cases
where a bubble was present, the bubble acts as an additional moving surface boundary that
is present from the first frame and which expands and eventually pops, disrupting the flame’s
background image. Therefore, the usual frame subtraction technique was not possible and
the bubble location was instead tracked in a similar way as the flame to limit the impact.

Furthermore, as the flame approached the bubble, in some cases the differentiation be-
tween the bubble and the flame became nearly impossible to distinguish. However, the
flame’s location could be deduced with reasonable accuracy over this short zone and time
span.

For some mixtures far away from stoichiometric values, the flame was significantly slower
the flame moved upwards due to buoyancy. Additionally, for these same mixtures when
flames propagated through a bubble, the bubble at times pushed the flame upwards signifi-
cantly. In both of these cases, the leading edge of the flame was tracked using the using the
row of the apparent circle center after solving Equation 4.1.

Code Speed Improvements

The image processing to determine the flame radius as a function of time took considerable
computational effort. Initially with the manual method of radius gathering a video could
be processed somewhere between 3 and 10 minutes, depending on the length of the video.
Speed improvements were initially gained with the initial automatic method of a single row
point used, the processing time significantly decreased with less human interaction required.
However, tracking additional rows as required by geometric determinations increased and at
times orders of magnitude increases in the time to processes a video. This prompted improve-
ments to the speed of the image processing code to efficiently work with the experimental
data.

Initially, the workflow was augmented to allow for a decoupling of the image processing
and subsequent post processing. However, it soon became clear that this alone was not
adequate. As changes were made to the code to improve the capabilities and robustness of the
code, continued profiling highlighted relevant gains. Various serial and parallel programming
techniques were then employed successively to incrementally speed up the image processing
code. Speed-ups of multiple orders of magnitude compared to the initial multi-row code
development were performed through astute profiling and subsequent code enhancements.
Some of these process speed enhancement methods utilized in the code development included
improved memory management and access time, parallel processing, and grouping of similar
tasks.

Specific focus was given to memory management where the data storage within the post-
processing code was restructured to reduce access time. The hard drive input/output calls
and operations were limited where possible, and reads and writes were grouped together.
Other focus was given to parallel running techniques where multiple subprocesses were run
in parallel. This iterative speed-up processed allowed for additional image post-processing

CHAPTER 4. POST-PROCESSING: DETERMINING FLAME SPEED 42

to be done in a reasonable amount of time as the number of experimental videos quickly
grew.

4.2 Post Processing: Radial Flame Surface Speed

The raw radius data gathered from the image edge detection algorithm was interpreted to
interpolate and determine the flame speed. The algorithm was structured as follows:

e Cropping endpoints of raw radius data for relevance
Filtering of radius data

Spline fit interpolation of radius data

Calculate the flame surface front displacement speed
Determine the unburned gas expansion factor
Calculate the stretch rates the flame experiences
Evaluate flame speed

The raw radius data was cropped to only include the time from when the flame was
ignited until the flame reached the edge of the optical frame. To minimize ignition effects,
in this work a radius of greater than about 1 cm was deemed no-longer subject to ignition
effects, while lower values have been used in the literature. The selected data was then
lightly filtered using a moving least squares fitting algorithm. Care was taken to minimize
the diffusive characteristics of the filter, and parameters were chosen judiciously. The third
order Savitzky-Golay filter with a frame length of 15 for homogenous flames without a bubble,
and a frame length of 9 was chosen for cases with a bubble. These values provided a good
balance between reducing noise without removing or changing relevant features of the flame
surface.

The radius data was interpolated using a spline fit before the flame surface front dis-
placement speed was calculated using a fourth order 5-point centered finite difference first
derivative approximation from the radius data as given in equation 4.2.

(4.2)

dr\’ B —pd T2 4 Qpitl — 8pi—l 4 i 2
dt) 3(tit2 — ¢i-2)

The stretch rate was then determined from the flame surface speed and the radius. The
flame surface speed vs smoothed stretch rate was then used to extrapolate to an unstretched
flame speed using a fit of the data from a radius of about 1 ¢m to 2.5 cm to eliminate the
ignition effects. Both a linear fit as given in Equation 2.20 and a nonlinear fit as given
in Equation 2.21 were computed and used in the zero stretch extrapolation The nonlinear
method was used in the results as this method is noted to be superior in the rich equivalence
ratio region, as given by [9] et. al.

To determine the laminar flame speed of the homogenous mixtures from the unstretched
flame surface speed, the expansion of unburnt gas was used to estimate the expansion effects.

CHAPTER 4. POST-PROCESSING: DETERMINING FLAME SPEED 43

The initial gas temperature from the DAQ was used as the unburned gas temperature while

the burned gas temperature was estimated as the equilibrium temperature of the specific
equivalence ratio as calculated from the CHEMKIN code EQUIL.

4.3 Validation of Code

Validation of the flame tracking post-processing code was performed first by comparison to
the initial, manual human input edge tracking program as well as comparison to previous
literature values. First, the frames were read in and the same user inputs as the automatic
flame detection system were used. Then the location of the centerline of the flame was
selected for each frame to build up the radius data manually. The radius was then compared
with the automatic flame tracking algorithm, and excellent agreement was achieved with
minimal deviations.

Additionally, the homogenous data was processed, and the unstretched laminar flame
speed was in good agreement with past literature values and within literature uncertainty.

The relevant post processing codes developed for this work can be found in Appendix

A2

44

Chapter 5

Numerical Simulation and Modeling

5.1 CHEMKIN Collection

The CHEMKIN Collection[43] is a library and set of application tools initially developed
at Sandia National Labs to determine and analyze gas phase chemical kinetics. The li-
braries incorporate and evaluate thermodynamic properties, transport properties, and gas
phase chemistry from a chemical kinetic mechanism. The base subroutines evaluate gas-
phase multicomponent viscosities, thermal conductivities, diffusion coefficients, and thermal
diffusion coefficients. These calculated properties and data are used to determine chemical
kinetics relevant for combustion and coupling with fluid dynamic solvers. There are a number
of modules developed and adapted from the base library, and a few of them are referenced
and used in this work.

Chemical Kinetic Mechanism

The library requires a chemical kinetic mechanism which details the mathematical model of
the complex chemistry reactions. The layout follows a specific format including the following:
species, reactions, and relevant parameters for specific model used. Various chemical reaction
models can be used including an Arrhenius rate model, the Lindemann formulation, the Troe
formulation, the SRI formulation, and the Landau-Teller formulation. In addition, duplicate
and reverse reaction rates can be specified. For this work, the reduced mechanisms used
were GRI 1.2 and GRI 3.0[55].

PREMIX

PREMIX is a semi one dimensional planar isobaric unstretched premixed laminar flame
speed solver developed as part of the CHEMKIN collection[43]. Tt solves the boundary value
problem needed for predicting the laminar flame speed given temperature, pressure, gas con-
centration, gas transport properties, and a chemical kinetic mechanism. The PREMIX code

CHAPTER 5. NUMERICAL SIMULATION AND MODELING 45

converges to the steady-state premixed-flame solution on a finite-difference discretization, si-
multaneously solving the continuity, energy, species and equation of state. More specifically,
PREMIX solves the continuity equation, Equation 5.1, the energy equation for K species,
Equation 5.2, and the species equation, Equation 5.3, and the ideal gas equation of state.

M = puA, (5.1)
AT 1d T AE i A&
M— = —— (M=) + > pYiViep—— + — ¥ wiphi Wy, = 0 5.2
dx cpdx(dﬂc’>+cpk:1pkkcpkdx+ckaIWkk g ’ (5:2)
. dY, d .
Md—; + o (pAYVi) = AW = 0 (5.3)

For this work, multicomponent transport properties were calculated using the CHEMKIN
subroutines and the premixed combustion flame computations were performed to determine
the adiabatic freely propagating flame speeds for comparison to the laminar flame speeds
determined in the experiment and in literature. To do so, PREMIX solves the eigenvalue
problem for the mass flow eigenvalue M by simulating the flame in the Lagrangian reference
frame, reducing a degree of freedom. The resulting adiabatic laminar flame speed gives an
upper bound of the expected experimental laminar flame speed.

PREMIX was used in this work to estimate the laminar flame speed for comparison to
experimental and other numerical methods. In addition, PREMIX was used to estimate the
influence of the soap solution and water vapor within the chamber for varying equivalence
ratios. More specifically, the adiabatic flame speed was determined with a worst case satu-
rated water condition to evaluate the effect of water, the main component of the soap, on
the flame speed for each of the concentrations. This provided a comparative flame speed
reduction when introducing water vapor to the flame.

EQUL

EQUL is also part of the CHEMKIN collection[43], which calculates the equilibrium concen-
tration at steady state through the use of STANJAN library subroutines. This FORTRAN
code does this by minimizing the total mixture Gibbs free energy. The code evaluates the
Gibbs function, g (T, P), for K species at the temperature and pressure and constrained to
conserve atomic species. Mathematically, the minimization problem is expressed in Equation
5.4 for the sum of N, moles of each species k.

K

Ny o
Z (gk(T, P)+ RTIn (ﬂ)) N;, = min (5.4)

k=1 k=1

In this work, EQUIL was used to determine the equilibrium concentrations and tempera-
ture at constant pressure and enthalpy problem to account for the compensation needed for

CHAPTER 5. NUMERICAL SIMULATION AND MODELING 46

the unburned gas density expansion effects of the initially expanding flame not accounted
for in the extrapolated zero-stretched flame speed, as proposed by Giannakopoulos|23].

5.2 One dimensional Compressible Flow Solver

A one dimensional radial unsteady reactive flow code with adaptive mesh refinement, named
Adaptive Simulation of Unsteady Reactive Flow (ASURF), was compared with the experi-
mental spherical flames building off past work by Shi[54] on spherically expanding methane-
air flames.

This code solves the one dimensional radial unsteady mass, momentum, species, and
energy conservation equations along with the ideal gas equation of state. ASURF uses the
CHEMKIN subroutines to calculate the transport properties needed for the multi-component
transport from Fourier’s, the mixture-averaged diffusion velocity formula expanded from
Fick’s law, and Stokes’ law. More details of the serial version of this code are given by
Chen[10],[7]. A chemical kinetic mechanism is used with CHEMKIN to calculate the reaction
rates at each time step.

As part of this work, the co-development of a MPI parallel version of this spherical flame
solver, called ASURF-Parallel, was completed to speed up the time consuming computations.
This included domain decomposition and splitting of the time dependent ordinary differential
equation to distribute the computational work load across multiple processes. More details
of this parallelization have been given by Shi[54].

This code assisted with determining initial design criteria to allow for optical visualization
of the flame stratified layer transition. Furthermore, this work included comparisons with
the simulated values of this one dimensional code with both homogenous and stratified flame
experiments.

5.3 Three Dimensional Compressible Flow Solver
with Chemistry

The commercial three dimensional solver CONVERGE Version 2.3[47][46] was used to com-
pare with the experimental results. The compressible fluid dynamic equations were computed
for a similar geometry as the experimental work using a finite volume method with adaptive
mesh refinement (AMR). Namely the mass conservation equation, Equation 5.5, the mo-
mentum conservation equation, Equation 5.6 , for each species k, the species conservation
equation, Equation 5.7, and the energy conservation equation, Equation 5.8, along with the
Redlich-Kwong equation of state were numerically computed. The orthogonal, structured
grid for these simulations were automatically generated at runtime using a modified cut-
cell Cartesian grid generation method from a set of surface geometry files derived from the
experimental setup.

CHAPTER 5. NUMERICAL SIMULATION AND MODELING 47

dp | Opu;

ot "o, (5:5)
Opu; Opuju; _8P 0 Ou; Ouj B 2105 Ouy, .
ot or; Ox * ox; <,u (0xj * ox; 3 Oy o (5.6)
3pk apkuj 0 oY},
= D,— .
875 + 3@ 8xj p t@xj +0k (5 7)

dpe aujpe__ Ou, Ou; Ou; _Quéij ouy, \ Ou; 0 oT
ot "o, Tam T\M\on, Ton) T 3 ow) o, on, Mo

] Loy, (5:8)
+a$j <pDth o)) +o
m

Two one-quarter geometries of the constant volume chamber were used to explore the three
dimensional effects. One case included the pin center to evaluate the effects of the pin heat
transfer on the shape of the flame. In addition, the same geometry but without the pins was
used to model the rest of the three dimensional effects, and is reference in Figure 5.1. With
the use of adaptive mesh refinement (AMR) to apply the grid spacing where necessary, the
finest grid spacing used in this numerical work for the one quarter constant volume chamber
geometry was 1.25 E-1 mm.

All of the mixtures within the three dimensional models were initially set to 300 K and
1 atm. The bubble was modeled as an ideal separation between the two mixtures, and was
achieved through the use of a disconnect region that is disabled upon start of the simulation.
The outer faces of the constant volume chamber were modeled as constant temperature
Dirichlet boundaries set at 300 K. The internal pseudo faces, where the constant volume
chamber was quartered due to symmetry, were set to a symmetric boundary condition,
thereby adiabatic along the x and y faces fully shown in Figure 5.1. Ignition was performed
by depositing 300 mJ over a 3 mm radius sphere over 2 ms. Chemistry was modeled using
a reduced 22 species mechanism, GRI 1.2.

For the flame surface structure calculations, the maximum grid count was unconfined
to allow the AMR to resolve the important features as required. For evaluation of the
confinement effects, a more restricted maximum was used to limit the computational cost
and memory required to execute the simulation.

Specifically in this work, the three dimensional numerical modeling was performed to
estimate the confinement and heat transfer effects on homogeneous and stratified flames due
to the experimental setup and conditions. Results were use to verify the flame shape and
explore various three dimensional effects.

CHAPTER 5. NUMERICAL SIMULATION AND MODELING 48

aCONVERGE
CFD SOFTWARE

Figure 5.1: Quarter constant volume chamber geometry with example refined mesh through
AMR, as used in this work.

49

Chapter 6

Experimental and Numerical Results

Experimental and numerical homogeneous and stratified flames were explored. As extrap-
olation to the laminar flame speed is not well developed for the stratified cases, the flame
surface speed is compared in subsequent results and discussion.

6.1 Experimental Findings

Nearly spherical flames were experimentally studied using premixed methane-air mixtures
of rich, lean, and near stoichiometric in one of several configurations.

Homogeneous premixed mixtures were tested to ensure internal consistency and agree-
ment with literature values of laminar flame speed. These mixtures were also used to evaluate
the influence of the bubble by testing a flame propagating from one mixture within the bubble
to another mixture in the rest of the chamber.

Homogenous Spherical Flames
Laminar Flame Speed

Validation of the experimental setup and further additional homogenous runs were performed
with good agreement with the literature. Laminar flame speeds in this work for near ambient
conditions (105 kPa, 15°C) of various mixtures used were determine from tracked displace-
ment speed that was extrapolated to zero stretch using the nonlinear fit method given in
Equation 2.21, corrected for expansion effects, and compared with the literature. Good
agreement was achieved and a summary of the experimental homogeneous tanks compared
with literature values is presented in Figure 6.1. Deviations in the laminar flame speed for
each of the mixtures is in relative agreement with literature values and satisfactory mixture
composition was noted.

CHAPTER 6. EXPERIMENTAL AND NUMERICAL RESULTS 50

Homogenous Comparisons: Experiment vs. Literature

45 T T I) [0)
o O O
40 (N
N O
- [—
% N
g 30 - : s |
O, C] o
Re) 9, —
§25 - @ |
n) O O Current Experiment 7 o
GE) 00 I = () Bourque, Lowry, Serinyel, et al. (2010) Y i
520 [Dyakov, Konnov, Ruyck, et al. (2010)
L - Egolfopoulos, Cho, Law. (1989) T
IS Wang, Zhang, Jarosinki, et al. (2010) yAN %P
; 15 O Hassen, Aung, Faeth. (1998) I n
(5] {) Law, Vagelopoulos, Egolfopoulos. (1994) o
= Maaren, Thung, Goey. (1994)
10 [~ O Rozenchan, Zhu, Law, Tse. (2002) 4
O Aung, Tseng, Ismail, Faeth. (1995)
&} Tahtouh, Halter, Mounaim-Rousselle. (2009)
5l O Tseng, Ismail, Faeth. (1993) Bl
/\ Vagelopoulos, Egolfopoulos. (1998)
O Gu, Hag, Lawes, Woolley. (2000)
T T

I \ \ \
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
Equivalence Ratio of Unburt Mixture

Figure 6.1: Laminar flame speed of homogenous mixtures compared to prior literature values,
where similar spherical flames measurements are plotted as circles.

Emissions

Both unburned gas and product exhaust gas were measured in a purged collection tank.
Exhaust gas emissions were measured for comparative analysis as well as used to validate
the equivalence ratio.

Exhaust gas was collected for relative comparison of different mixtures. The tank mix-
tures within each of the mixing tanks were measured both as made and after combustion.
Resulting emission measurements were used to determine the equivalence ratio, using the
method outlined by Brettschneider[5]. The resulting calculated equivalence ratio of the tank
mixtures agreed well with the expected equivalence ratio from the partial pressure method.

Additionally, measurements of product gas emissions for the stratified cases are presented
in Tables 6.1 and 6.2. For comparison, emission data for a set of stratified runs of rich
(¢ = 1.4) to lean (¢ = 0.63) are compared with a set of runs of an equivalent homogeneous
mixture composed of the exact two stratified components without a bubble and injected into
the constant volume chamber in the same quantity injected with the bubble and allowed to
mixed for 2 minuets, in Table 6.1. The stratified rich (¢ = 1.4) to severely lean (¢ = 0.5)
mixtures are presented in Table 6.2.

CHAPTER 6. EXPERIMENTAL AND NUMERICAL RESULTS 51

Run Type THC [PPM] | Oz [%] | CO [PPM] | CO, [%] | NO [PPM]
Rich — Lean Stratified 1982.66 4.88 146.33 5.08 15.75
Homogeneous Equivalent 2,421.37 5.22 114.98 2.35 36.99

Table 6.1: Comparison of stratified rich to lean flame emissions verses lean equivalent ho-
mogeneous emissions.

Run Type THC [PPM] | Oz [%] | CO [PPM] | CO, [%] | NO [PPM]
Rich — Too Lean Stratified | 36,304.60 12.97 34.70 0.33 0.48

Table 6.2: Stratified rich to too lean flame emissions.

Homogenous Spherical Flames Propagating through Bubble

Besides strictly homogenous flame propagation, the influence of the soap bubble was rigor-
ously tested. Various tests were performed to evaluate the effect of the bubble by filling the
bubble with the same tank mixture as filling the constant volume chamber with. Results
are presented below, and the makeup of the soap solution eventually used in this work is
presented in Table 6.3, which was combined in lab glassware and covered with Parafilm be-
fore using the following day. The soap base solution used in this work goes by trade name
Natural Castile Liquid Soap Base and distributed by Bramble Berry. The soap base consists
of a blend of water, Olea Oil, Glycerin, and Potassium Hydroxide.

Distilled Water | Soap Base | Glycerine | Total
Soap Solution: 96.4087% 3.5582% | 0.0331% | 100%

Table 6.3: Mass percentage of soap solution selected and used in this work.

Rich Premixed with Bubble

For flames propagating through homogeneous mixtures of premixed rich mixtures through a
bubble and into the same rich premixed mixture, the surface tension of the popping bubble
appeared to assist the buoyant upward movement of the slow flame. As the flame maintained
a relatively spherical shape as it propagated and was pushed upwards, the leading edge of
these flames was successfully tracked by the use of the row of the apparent circle center
following determination of the apparent circle center from Equation 4.1. Fortunately, the
bubble popping and subsequent propagation had minimal impact on the flame surface speed
compared to the same rich mixture without a bubble.

Despite the strong influence on the location of the leading flame front edge, the structure
of the flame surface was not impacted by the popping of the bubble and the relatively

CHAPTER 6. EXPERIMENTAL AND NUMERICAL RESULTS 52

smooth surface of the flame can be seen. A typical case of a homogenous premixed rich
mixture propagating through a bubble and into the same mixture, highlighting the effect of
the bubble is presented in Figure 6.2. As can be seen in Figure 6.2, typical lames propagating

| ———

Figure 6.2: Typical Schlieren image of both the location and flame surface structure of the
flame propagating from premixed rich mixture through the bubble and into same premixed
rich mixture after propagating 3.18 cm from the ignition point.

from rich bubble mixtures into rich chamber mixtures after passing through the bubble layer
did not appear to exhibit flame instabilities. The surface remained relatively smooth through
out the flame propagation area, including the area where the bubble induced fluid dynamic
instabilities.

Lean Premixed with Bubble

Similar to the homogenous rich flame cases where a flame propagated through a bubble’s
region of influence, the lean homogeneous bubble case had a similar set of limited influence
from the bubble. The popping bubble also assisted with the buoyant movement of the slow
flame upwards. Following successful tracking of the leading edge of having traveled 3.18
cm from the ignition pin center, the bubble exhibited little influence on the flame surface
as can be seen in Figure 6.3. As can be seen in this figure and similar to the rich case,
the structure of the flame surface was minimally impacted. For vigorous popping bubbles,
some instabilities were seen in the flame for the lean to lean case. The structures of these
flame surface deviations manifested as ripples and lines in the Schlieren image, normal to
the direction of bubble popping.

CHAPTER 6. EXPERIMENTAL AND NUMERICAL RESULTS 53

1.00 cm

Figure 6.3: Typical Schlieren image of both the location and flame surface structure of the
flame propagating from premixed lean mixture through the bubble and into same premixed
lean mixture after propagating 3.18 cm from the ignition point.

Stoichiometric Premixed with Bubble

Unlike the rich and lean cases, the stoichiometric homogeneous mixture case with a bubble
had slightly more influence from the bubble as the flame propagated significantly faster,
leading to a much more vigorous bubble pop. The Schlieren images of a typical flame
propagating from a stoichiometric mixture within the bubble to a stoichiometric mixture in
the chamber can be seen in Figure 6.4. With the increased vigor of the bubble pop, the
flame was pushed upwards and more instabilities were noted both in the fluid and in the
flame structure. The flame surface exhibited some cellular features that slightly enhance the
tracked flame surface speed.

Stratified Flames: Rich into Lean Flames

Given the relative limited influence of the bubble on the flame speed and flame surface
structure of the particular experimental setup from flames propagating from a premixed
mixture into the same premixed chamber mixture, stratified mixtures of rich within the
bubble and lean in the chamber were prepared and flames were ignited and propagated.
The stratified cases were noted to exhibit a subdued bubble popping similar to both the
bubble cases with either rich and lean mixtures. While the vigorousness of the popping
bubble for the stratified cases was limited, the flame surface was noticeably changed as
the flame approached the stratification layer. Similar to Figure 6.5, a significant cellular
structure developed following propagation through the stratification layer. Interestingly, the
cellular structure subsided as the flame continued into the lean mixture. In addition, the

CHAPTER 6. EXPERIMENTAL AND NUMERICAL RESULTS 54

Figure 6.4: Typical Schlieren image of both the location and flame surface structure of the
flame propagating from premixed stoichiometric mixture through the bubble and into same
premixed stoichiometric mixture after propagating 3.18 cm from the ignition point.

tracked flame surface speed was noticeably higher during the transition region. A typical
Schlieren image of the stratified flame propagation can be seen in Figure 6.5.

.

Figure 6.5: Typical Schlieren image of both the location and flame surface structure of
the flame propagating from premixed rich mixture (¢ = 1.4) through the bubble and into
premixed lean mixture (¢ = 0.63) after propagating 3.18 ¢cm from the ignition point.

In addition to the cellularity seen in the flame structure, significant speed ups were
noted in the flame surface speed. As has been done by others, the flame surface speed was

CHAPTER 6. EXPERIMENTAL AND NUMERICAL RESULTS 55

calculated assuming that the speed up effects were only due to the stratification, including
ignoring the flame surface structure effects and assuming it stayed spherical. Figure 6.6
shows a typical flame surface speed profile of a stratified flame propagating from a rich
mixture and into a lean mixture, while Figure 6.7 shows an aggregated set of similar setup
runs. The first two dips and first rise were attributed to the difficulty in tracking the flame
surface as the flame approached the bubble. However, the second rise was noted to occur
through the stratification layer and no difficulty was found in tracking the surface in this
region. This flame surface speed is compared with a maximum flame speed for methane of
equivalence ratio 1.1 and an equivalent homogeneous mixture composed of the exact two
stratified components without a bubble and injected into the constant volume chamber and
allowed to mixed for 2 minuets.

Typical Stratified Rich->Lean Comparison

T T T

350

300 .

N
(&)
o

200

150

Typical Stratified Rich->Lean
100 + Homogeneous Equivalent Mixture
+ Equivalence Ratio=1.1

Flame Surface Speed [cm/s]

50 AR Py

1 1 1 1

1 1.5 2 2.5 3 3.5
Radius [cm]

Figure 6.6: Typical flame surface speed of stratified rich (¢ = 1.4) to lean (¢ = 0.63)
compared with equivalence ratio 1.1 and an equivalent homogeneous mixture of the two
stratified components. The first two dips and first rise near 2 cm attributed to the difficulty
tracking flame as it approached the bubble.

Interestingly, a similar flame surface structure effect as seen in Figure 6.5 was seen in the
reverse case where a flame is propagating from a lean to a rich outer mixture but without
the same enhancement of the flame surface speed. Figure 6.8 shows the lean (¢ = 0.65) to
rich (¢ = 1.4) case also contained cellularities in all of the runs.

CHAPTER 6. EXPERIMENTAL AND NUMERICAL RESULTS 56

Ensemble Ave Stratified Rich->Lean Comparison

T

350

300 .

250

200

150

Stratified Rich->Lean
100 | + Homogeneous Equivalent Mixture
+ Equivalence Ratio=1.1

Flame Surface Speed [cm/s]

50 AR Ty

1 1 1 1

1 1.5 2 2.5 3 3.5
Radius [cm]

Figure 6.7: Aggregated flame surface speed of stratified rich (¢ = 1.4) to lean (¢ = 0.63)
compared with equivalence ratio 1.1 and an equivalent homogeneous mixture of the two
stratified components. The first two dips and first rise near 2 ¢cm attributed to the difficulty
tracking flame as it approached the bubble.

g

Figure 6.8: Typical Schlieren image of both the location and flame surface structure of the
flame propagating from premixed lean mixture (¢ = 0.63) through the bubble and into
premixed rich mixture (¢ = 1.4) after propagating 3.18 cm from the ignition point.

CHAPTER 6. EXPERIMENTAL AND NUMERICAL RESULTS o7

Stratified Flames: Rich into Exceedingly Lean Flame

To investigate the claim that stratified flames can propagate into lean mixtures, a lean mix-
ture of equivalence ratio 0.5 was prepared and rigorously tested to confirm it was unignitable
with a homogeneous premixed setup. Subsequently, a stratification layer setup was used to
observe a stratified flame propagating from a rich flame ignited in the bubble and into the
severely lean mixture.

Figure 6.9 shows a typical flame surface when propagating from a rich mixture into
the severely lean premixed mixture following the flame propagating 3.18 cm from the pin
ignition center. Similar to Figure 6.5, severe cellular structures were noted in the flame
following passage through the stratification layer. As with the rich to lean case, the cellular
structure subsided as the flame continued into the severely lean mixture before the flame
halted propagation. To highlight and best isolate this effect from the bubble’s impact, a thin
bubble was made separating the rich and exceedingly lean mixtures. The observed popping
of the bubble had significantly limited influence of the flame surface as the bubble popped
near the start of ignition and yet cellularities were noted as the flame propagated through
the stratification layer.

Figure 6.9: Typical Schlieren image of both the location and flame surface structure of the
flame propagating from premixed rich mixture through bubble and into premixed severely
lean mixture after propagating 2.52 ¢m from the ignition point.

Further investigation of the cellular structure lead to observing the flame surface of a
stratified mixture from a rich mixture into air with cellularities noted in all cases. A typical
Schlieren image of a stratified rich to air mixture setup following flame propagation of 2.52
cm from the ignition point can be seen in Figure 6.10.

To evaluate the influence of the mixture composition gradient on the flame front propa-
gation speed, Figure 6.11 shows a typical speed profile of a stratified mixture case where a

CHAPTER 6. EXPERIMENTAL AND NUMERICAL RESULTS 58

Figure 6.10: Typical Schlieren image of both the location and flame surface structure of the
flame propagating from premixed rich mixture through bubble and into air after propagating
2.52 cm from the ignition point.

flame propagates from a rich mixture through a bubble and towards a mixture that is too
lean to ignite with the setup. A mean of the rich to air setup is also plotted for comparison.

In both the typical and the mean aggregated flame surface speed, Figure 6.12, the flame
appears to burn into the exceedingly lean mixture. It is important to note that the flame
surface leading front was tracked and appeared to burn into the lean mixture, however the
flame speed dropped as the flame reached the stratification layer and buoyancy effects started
to play a role. The buoyant forces distorted the flame shape with minimal change in the
overall area observed in the frame.

To further evaluate the location of the flame when the flame stopped burning into the
unburned mixture, an evaluation of when the flame halted was taken as a last burning loca-
tion. The flame location past this point was deemed due to buoyancy effects that artificially
tracked the flame forward. When the flame stopped burning downward and the rate of the
flame surface movement was no longer nearly uniform in all directions, the frame was marked
and the location the flame had progressed was used as the last flame location. However, even
accounting for this apparent ending flame location, the flame progressed further than in the
rich to air cases.

CHAPTER 6. EXPERIMENTAL AND NUMERICAL RESULTS 59

Typical Stratified Rich->Too Lean Comparison

T

350

300 - .

250 + N
+ + &

P R R +

200 r y

150 r .

Flame Surface Speed [cm/s]

100 .

Typical Stratified Rich->Too Lean
50 - Stratified Rich->Air i
+ Equivalence Ratio=1.1

1 1 1 1

1 1.5 2 2.5 3 3.5
Radius [cm]

Figure 6.11: Typical flame surface speed of rich to too lean to ignite compared with equiva-
lence ratio 1.1 and a stratified mixture of rich to air. The first two dips and first rise near 2
cm attributed to the difficulty tracking flame as it approached the bubble.

CHAPTER 6. EXPERIMENTAL AND NUMERICAL RESULTS 60

350 Ensemble Ave Stratified Rich->Too Lean Comparison

300 .

)]

(&)

o
T

+++++"""+++

++++++++

200

150

100

Flame Surface Speed [cm/s]

Stratified Rich->Too Lean
50 F Stratified Rich->Air i
+ Equivalence Ratio=1.1

1 1 1 1

1 1.5 2 2.5 3 3.5
Radius [cm]

Figure 6.12: Aggregated flame surface speed of rich to too lean to ignite compared with
equivalence ratio 1.1 and a stratified mixture of rich to air.

CHAPTER 6. EXPERIMENTAL AND NUMERICAL RESULTS 61

Flame Propagating through an Applied Electric Field

As noted earlier, limited experimental work on the influence of an electric field on flame
surface speed was performed and only a proof of concept was developed and tested for later
combination. Those preliminary findings are presented below.

A number of applied voltages to the meshes in the electric field setup were tested and
it was found that both the positive and negative electric voltages influence the leading
flame surface speed. The flame surface was notably distorted and the leading flame front
propagated significantly faster than for a similar flame without an applied electric field.
Figure 6.13 demonstrates a typical case for an equivalence ratio of 1 for two different applied
voltages compared to no applied voltage.

Figure 6.13: Homogenous mixture in applied electric field at two separate times for a negative
applied voltage of -6kV (left), no applied voltage (center), and positive applied voltage of 6
kV (right) with the chamber and ignition pins grounded following ignition.

Flame front propagation speeds were noted to increase significantly compared with the
no applied voltage case and on the order of 50% in the normal direction of the flame front.
However, due to the severe change in shape, the laminar flame speed was difficult to de-
termine and comparisons were performed with propagation speed alone. Additional leading
edge flame propagation speeds and further distortion of the flame were noted for higher
applied voltage.

CHAPTER 6. EXPERIMENTAL AND NUMERICAL RESULTS 62

Note on Combined effects of Stratified Flames in the Presence of
an applied Electric Field

Given the challenges and instabilities found in the stratified field alone in addition to the
electric field’s propensity to pop the bubble at the applied voltages, extremely limited cases
were run. Furthermore, the bubble was popped as the high voltage system was turning
on, distorting the stratification layer prematurely before the system had enough time to
equilibrate the voltage.

6.2 Numerical Findings

In addition to the experimental findings studying nearly spherical flames, idealized planar
and spherical flames were investigated to better understand the experimental factors. Both
homogeneous and stratified cases were simulated using a number of models and are compared
with the experimental findings below. Since fully modeling the bubble would take enormous
computational resources, premixed mixtures were used with stratification modeled as a near
step change in equivalence ratio.

Homogenous Flame Propagation in Quazi-one Dimensional Model

To better account for the water that is present in the chamber when a soap bubble is
present, PREMIX was used to account for the deviation in the flame speed for comparison
with the literature. The adiabatic flame speed for the planar flame under dry and worst case
saturated water conditions were determined. Saturated water conditions resulted in flame
speed reductions of 5-10% that varied based on equivalence ratio, as seen in Figure 6.14.

Homogenous Flame Propagation in One Dimensional Spherical
Homogenous Flame Propagation Model

In addition to using a quasi one dimensional model to validate the homogeneous mixtures and
compare with laminar flame speed, an axisymmetric flame code (ASURF) with the GRI 3.0
detailed mechanism was used to compare with the experimental values. Laminar flame speeds
of the experimental homogeneous mixtures are compared with the one dimensional code and
agree well, seen in Figure 6.15. The flame surface speeds and therefore the laminar flame
speeds predicted in the simulations were noted to be somewhat faster than observed in the
experimental conditions of this work. However, this was also observed when comparing the
simulation with many experimental values in the literature with reasonably good agreement
achieved.

CHAPTER 6. EXPERIMENTAL AND NUMERICAL RESULTS 63

0 - PREMIX Planar Laminar Flame Speed Under Wet and Dry Conditions

..........
...........
......
o

n N w
o o =)
I I I

Laminar Flame Speed [cm/s]
o
\

.
*~
Tay
Yeay
™

Sim PREMIX GRI 3.0 in Air
| | | === Sim PREMIX GRI 3.0 in Wet Air | ‘ ‘ ‘
5 i i
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Equivalence Ratio of Unburt Mixture

Figure 6.14: PREMIX planar laminar flame speed of methane-air at various equivalence
ratios under wet vs. dry ambient conditions.

Homogenous Flame Propagation with Three Dimensional Code

Simulations of homogeneous flames were preformed using a three dimensional CFD code
(CONVERGE) with coupled chemistry to undergo an initial investigation of a possible cause
to the instabilities noted in the experiment. The boundary and initial conditions are laid out
in Section 5.3, with a quartered constant volume chamber divided on the lines of symmetry.
An example of the mesh and grid is referenced in Figure 5.1 using AMR to ensure enough
grid points near the flame. The rich (¢ = 1.4) mixture throughout the chamber was initially
at 300 K and 1 atm and ignited by depositing 300 mJ over a 3 mm radius sphere over 2 ms
and the resulting flame allowed to propagate.

In particular, the flame structure was of particular interest in the stratified cases as the
behavior of the stratified experiments deviated with the expected results following recent
literature. While the flame could not be resolved to the same level of refinement as the
one dimensional flame code due to memory and computational effort scaling, homogeneous
results provided a way to observe the flame surface structure under ideal conditions and to
see if it remained smooth and to compare this to a stratified case. The flame surface front
can be nearly located by H species as these radicals are short lived and only exist near the
reacting gas, however the flame surface temperature represents an integrated effect of the
varying chemical reactions. The limited distortions in the flame surface front were observed
in the iso-temperature surface near the equilibrium temperature of the gas mixture for the

CHAPTER 6. EXPERIMENTAL AND NUMERICAL RESULTS 64

Homogenous Comparisons: Experiment vs. Literature

45 T T T T T

40 - -

35 - - % ~— =

/// \

—_— /
Q30 - -
g 7
= ¢
925 - .
o3
n
£
5 20 — =
T
§ 15 - Y % -
: o

10 ; =

5 — —
o Current Experiment
——Sim ASURF GRI 3.0
0 | | | | T T | | |
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Equivalence Ratio of Unburt Mixture

Figure 6.15: Typical homogeneous experimental laminar flame surface speed vs. one dimen-
sional spherical flame propagation in good agreement.

homogeneous case. The flame surface was relatively smooth for the homogeneous flame as
can be seen for a typical rich flame in the iso-temperature surface plot in Figure 6.16.

Note on Three-Dimensional Confinement and Heat Transfer Effects

In reviewing long times of the three dimensional results, confinement effects started to play
a role later in the flame development as the flame began to interact with the walls of the
constant volume chamber. However, these effects were noted to take place beyond the optical
space and after the flame had already passed beyond the view of the window and therefore
confinement effects were not considered a significant factor in the flame speed calculations
from the optical setup.

Stratified Flame Propagation in One Dimensional Spherical
Stratified Flame Propagation Model
Various numerical tools were used to evaluate and compare to the experimental findings. In

particular one and three dimensional tools were used to evaluate the flame dynamics and
structure.

CHAPTER 6. EXPERIMENTAL AND NUMERICAL RESULTS 65

temp

2400
2200
2000
1800
1600
1400
1200
1000

@ SONVERGE

Figure 6.16: Three dimensional flame iso-temperature surface profile near the equilibrium
temperature of homogeneous rich flame within the ARM refined region after 25.2 ms.

Expanding on work done by Shi, one dimensional stratification results were compared
to the experimental work. As with the homogenous cases, the numerical results predicted
higher flame speeds than were observed in the experimental work. A comparative plot of the
experimental stratified rich to lean case with a series of one dimensional spherical stratified
flame speeds can be seen in Figure 6.17 and further discussions are provided in the following
chapter, Chapter 7.

Stratified Flame Propagation in Three Dimensional Stratified
Flame Propagation Model

Three dimensional modeling of the constant volume chamber and subsequent flame dynamics
were investigated. Using the same geometry of the homogeneous cases, the ideal stratified
case of a flame propagating from a rich (¢ = 1.4) to a lean (¢ = 0.65) mixture was investi-
gated due to the cellular structures noted in the experiment, following the otherwise identical
initial and boundary conditions as referenced in Section 5.3. If the non smooth flame surface
structure were due to the stratification, it would not be inherently obvious with the lower
dimensional codes performed by others in the literature.

CHAPTER 6. EXPERIMENTAL AND NUMERICAL RESULTS 66

35(%Ensemble Ave Stratified Rich->Lean ASURF Comparison

— — —ASURF 1D Sim 1.2->0.65
— — —ASURF 1D Sim 1.3->0.65
ASURF 1D Sim 1.4->0.65 7 1
Stratified Rich->Lean 77N

300

T

250

200

150

Flame Surface Speed [cm/s]

100

1 1 1 1

1 1.5 2 2.5 3 3.5
Radius [cm]

Figure 6.17: Aggregated experiment stratified flame burning from rich into lean mixture
compared with one dimensional spherical simulation.

Care was taken to ensure the mesh was as fine as possible, and an adaptive mesh refine-
ment scheme was used to ensure the grid was focused near the relative combustion driving
factors of temperature and radical concentration. The mesh was modified to ensure a rea-
sonable refinement of 1.25E-1 mm through the stratification layer and equivalent parameters
set as the homogeneous case as the flame progressed through the stratification layer. The
equations, boundary conditions, and initial conditions are laid out in Section 5.3, with the
same dimensions as the experimental work but with the constant volume chamber quartered
and divided along the lines of symmetry. An example of the mesh and grid is referenced
in Figure 5.1 using AMR to ensure enough grid points near the flame. The rich (¢ = 1.4)
mixture within the bubble zone as well as the lean (¢ = 0.65) mixture throughout the rest
of the chamber was initially at 300 K and 1 atm and ignited by depositing 300 mJ over a 3
mm radius sphere over 2 ms and the resulting flame allowed to propagate. A few particular
features were noted different than the homogenous cases, besides higher temperatures at the
flame surface during the transition into the lean mixture.

As with the homogeneous flame, the flame surface front can be nearly located by the
H species and temperature near the equilibrium temperature. However, the temperature
of the flame in the stratified case increased as it passed through the stratification layer.
Interestingly as the flame transitioned through the stratification layer, a set of irregular

CHAPTER 6. EXPERIMENTAL AND NUMERICAL RESULTS 67

structures formed on the surface of the flame front that were not present before when in a
purely rich mixture. With the first pass of the simulation with less refinement, the flame
front had irregular structures that was initially attributed to the limitations of resolving
the computational grid of the flame. However, both with the more refined mesh and when
compared with the experimental results, the findings appeared to agree well.

The refined version of the three dimensional flame front of the iso-temperature surface
plot as the flame transitioned into the stratification layer can be seen in Figure 6.18. While
the adaptive mesh refinement grid allocation was not focused on resolving the inner region
of the burned gas, the outer layers at the reacting region are clearly irregular and appears
as cells and surface disturbances similar to the onset of the cellular structures noted in the
experiment.

z

L.

temp
2500
2400
2300
2200
2100
2000
1900
1800
1700
1600
1600
1400
1300
1200
1100
1000

@ CONVERGE

Figure 6.18: Three dimensional flame iso-temperature surface profile near the equilibrium
temperature of stratified rich to lean flame within the ARM refined region after 25.2 ms,
with middle surface indicative of the non-smooth flame surface front.

68

Chapter 7

Discussion of Experimental and
Numerical Findings

A variety of homogenous premixed mixtures were made and used in either homogeneous
or stratified setups. The homogenous premixed laminar flame speeds determined from the
experiment agreed well with past work in the literature. In addition, the flame surface
speed of a homogeneous premixed methane-air equivalence ratio corresponding to the fastest
deflagration speed was experimentally measured and compared with the stratified cases. A
variety of noticeable differences arose between the stratified mixtures and the homogeneous
mixtures tested. Overall in the experiments three key differences arose.

The stratified flames exhibited a faster flame surface speed within the transition region
than capable with a homogeneous premixed mixture alone. Emissions differed with the
stratification as compared with an equivalent homogeneous mixture. The flame surface
structure was noted to be distorted in the transition region. Lastly, the flammability limit
appeared to be extended and is further discussed in this chapter.

7.1 Stratification Layer Flame Speed Enhancement

Simplifying the flame structure as done in the past by others, and assuming that the flame
propagation occurs nearly smoothly and that the flame surface speed enhancements are only
due to the stratification layer, an overall speed enhancement was noted. Experimentally, the
flame surface speed of the stratified cases burned at a significantly faster rate through the
transition region than was possible with a homogeneous mixture alone by a peak increase
of 17 % over a maximum for a corresponding radius of the max homogeneous flame case
(¢ = 1.1), as seen in Figures 6.6 and 6.7. Accounting for the water content, the stratified
flame speed enhancement is nearly 29% increase.

CHAPTER 7. DISCUSSION OF EXPERIMENTAL AND NUMERICAL FINDINGS 69

Experiment Compared with one dimensional spherical
stratification

As can be seen in Figure 6.17, the numerical one dimensional model of a stratified case of
similar geometry compared with the experiments show reasonable agreement. However, there
were three main regions of interest that indicated a variety of differences in the experimental
setup than the idealized one dimensional simulation results.

The first region of interest is in the initial rising slope of the experiment from 1 cm to
the interface of the expanded bubble near 2 cm. Interestingly, the trend of the flame speed
rises at a similar rate as that of a stratified transition from equivalence ratio of 1.3 to an
equivalence ratio of 0.65. The initial rise in speed occurs before the flame front reaches
the bubble and at a rate much greater than seen in the simulation. This is attributed to a
finite amount of permeability and a diffusion layer through the bubble. This diffusion occurs
from both the finite time from blowing the bubble and ignition as well as from the enlarged
thinning bubble from the sudden expansion of the burned gases. The two dips in flame
surface speed along with an intermediate rise are attributed to the difficulty in tracking the
flame surface when the flame neared the bubble, and are therefore not physically meaningful.

The second region of interest is in the transition region as the flame propagated through
the stratification layer. The experimental stratified flames exhibited a noticeable flame speed
increase above that reached with a flame propagating through a homogeneous premixed mix-
ture of equivalence ratio of 1.1, the highest deflagration speed for a methane-air premixed
mixture, achieved in the setup. This also agrees well with past literature and is due to the
back support of both the thermal diffusion and preferential hydrogen ahead of the flame.
While there are differences in the extent of the flame surface speed enhancement, the dis-
crepancy in the stratification transition region from the one dimensional simulation can be
attributed by two factors. For one, the simulation did not model the bubble and the resulting
stratification layer in the same way as was present in the experiment. The experiment had a
finite amount of water vapor in the transition layer that was not modeled in the simulation
which accounts for a portion of the drop in flame speed, as can be seen in laminar flame
speed differences in wet and dry mixtures shown in Figure 6.14. In addition, the stratifica-
tion layer modeled in the simulation may have been sharper than found in the experiment,
subduing the stratification speed enhancement. Simulations have assumed a very sharp gra-
dient around 1 mm, while the exact thickness is unknown in the experiment and likely much
larger. Larger stratification thicknesses will reduce the effects of the stratification. Lastly, as
the simulated flame speeds were higher in the simulation for all homogeneous cases as seen
in Figure 6.15, there is likely an over prediction of the flame surface speed compared to the
experimental values for the stratification transition region as well.

The last region of interest is the flame surface speed as the flame transitions further into
the lean mixture, and in particular the slope of the flame surface speed. The flame speed
drop off has a similar rate as that seen in the simulated stratified transition from equivalence
ratio of 1.3 to an equivalence ratio of 0.65.

While the maximum flame speed enhancement is difficult to quantify as the underlying

CHAPTER 7. DISCUSSION OF EXPERIMENTAL AND NUMERICAL FINDINGS 70

local equivalence ratio in the experiment is difficult to ascertain, excellent qualitative agree-
ment is achieved between the experimental and numerical values after taking into account
the differences.

7.2 Emissions

Both unburned premixed tank mixtures as well as exhaust gas of the experiments were
collected, diluted with argon, and tested with a gas analyzer. As mentioned previously, due
to calibration limitations in the C'O analyzer,the exact quantitative value was not available
but a quantitative reference was trusted. As can be seen in Tables 6.1 and 6.2, overall the
rich to lean stratified cases underwent partial oxidation of the fuel more efficiently than the
homogeneous equivalent, however at the expense of additional CO.

Total Unburnt Hydrocarbons

Decreased hydrocarbon emissions were noted in the experiments with stratification layers
from rich to lean. However, an increase was noted for the rich to severely lean stratified
cases.

For the rich to lean case, the decrease in unburned hydrocarbons indicates a better
breakdown of the fuel and subsequent oxidation. This may be due to the back support as
noted in the literature as the flame burns. Additionally, as most of the unburnt mixture
comes from the rich side of the stratification layer, local mixing is an important factor
following flame propagation. After the flame propagates through the mixtures, additional
reactions near where the burned rich mixture is located take place as it mixes with the
lean mixture that contains unreacted oxygen, thereby it is locally more reactive than in the
homogeneous equivalent mixture. In addition, the temperature of this rich region mixing
with the leaner burned gas is elevated, resulting in faster mixing and breakdown of the fuel
before the reaction is quenched.

For the rich to severely lean cases, a different effect occurred. Most of the unburnt
hydrocarbons can be attributed to the severely lean mixture presence as the flame did not
fully propagate into this region. Additionally, an increase in the unburned hydrocarbons is
due to the reduction in overall chamber temperature from the reduced volume burned by
the flame. With this reduced temperature, reactions stop quickly and mixing of fuel and
oxidizer occurs slower. Both of these effects support quenching of the reaction zone and lead
to increased unburnt hydrocarbons in the exhaust gas. This result was in agreement with
work by Galizzi and Escudié[20], where additional C H* was noted past the oblique flame
front.

Molecular Oxygen

In both cases, a significant portion of oxygen remained as expected given that a large portion
of fuel was left unburned.

CHAPTER 7. DISCUSSION OF EXPERIMENTAL AND NUMERICAL FINDINGS 71

For the stratified rich to lean case as well as the homogeneous equivalent, the overall
equivalence ratio was lean. As lean homogeneous premixed flames typically exhibit uncon-
sumed oxygen, this was expected.

Similarly for the rich to severely lean case, the oxygen remained high from incomplete
combustion.

Carbon Dioxide

For the stratified rich to lean case, the concentration of carbon dioxide in the exhaust was
lower than the homogeneous equivalent. This would indicate the reduction in the oxidation
reaction of C'O. As the breakdown pathways of fuel first oxidize the carbon atom into C'O,
it is clear the temperature was not sustained to oxidize the C'O into C'Oy through the dry
routes given in Equations 2.12 and 2.13. Additionally, with the quenching of the flame, less
OH radicals are likely to be present which limits the oxidation step given in Equation 2.11.
These incomplete reactions occur more frequently in this stratified cases as the reactions
following flame propagation are at a higher temperature but below the minimum required
to convert C'O into C'O2 in the presence of molecular oxygen or oxygen radicals. Similarly
for the rich to too lean case, the incomplete combustion was noted in the lack of conversion

to CO,. However, with a cooler temperature, less unburnt hydrocarbons were converted to
CO.

Nitrous Oxides

For all cases considered, the exhaust gas concentration of nitrous oxides was low, with the
lowest value from the rich to severely lean. This result from the rich to severely lean experi-
ments is unsurprising as previously mentioned this mixture prematurely ended combustion,
limiting the thermal pathways given in Equations 2.14, 2.15, and 2.16. As much of the NO,,
production comes from high temperature breakdown of the nitrogen molecules, without the
sustained high temperature of the flame to the gas, extremely low values were expected.
Even though the mixture continues to react at an elevated temperature, the thermal NO,
production is not sustained due to the lower temperatures and NO, is mainly produced only
through less efficient pathways such as those referenced in Equation 2.17.

For the rich to lean stratified cases, the decrease in NO, production is also due to the
reduced thermal pathways from the reduced temperature while some reactions continued
following flame propagation. Limited NO, is produced in the rich region as the flame has
limited oxygen, limiting the oxygen dependent pathways referenced in Equations 2.14, 2.15,
and 2.16, In addition, the correspondingly reduced flame temperature limits the prompt
formation pathways referenced in Equation 2.17. As the flame propagates through the lean
mixture, the temperature of the flame is lower than that of an equivalent overall homoge-
neous mixture case. Subsequently, the NO, formed from the homogeneous equivalent to the
stratified case produced more NO, as the temperature was higher during this flame propa-

CHAPTER 7. DISCUSSION OF EXPERIMENTAL AND NUMERICAL FINDINGS 72

gation. This is in partial agreement with past work on NO, emission by Furuno et. al[19]
who noted that the NO, production was not severely impacted by the stratification.

7.3 Stratified Flame Surface

As previously noted when the flame propagated through the transition layer and soon after,
the stratified flame experiments exhibited a flame surface structure that deviated from the
expected smooth surface. Although there were instabilities present in the flame due to a
variety of fluid dynamic effects from a popping bubble, there were pronounced differences
in the flame surface that the bubble popping alone could not account for. The initial lame
development in the stratified rich to lean cases approached the bubble slowly with a pro-
ceeding flame-bubble interaction similar to that seen in the flame surface structure of the
homogeneous premixed rich and homogeneous premixed lean cases. It was expected that the
flame surface would similarly be smooth as seen following propagation through the transition
layer, however this was not the case. In particular, cellular structures were noted to form in
all of the rich to lean mixtures, rich to air mixtures, as well as the lean to rich mixtures, as
noted in Figures 6.5, 6.9, 6.10, and 6.8.

As the cell structures in the flame were observed soon after the flame passed through the
initial transition region, special attention was paid to this transition layer. During severe
bubble popping as in the case of thick bubbles or with very fast propagating flames, ripples
and in some cases cell structures were noted to briefly appear in the flame structure during
the transition between mixtures before self-healing and returning to a near-spherical shape.
While, the transient instabilities seen in the stratified cases can be partially attributed to
a variety of fluid dynamic instabilities, these cases appeared to exhibit additional inherent
instabilities that fluid dynamics alone could not account for. Unlike the homogeneous cases
with a bubble, the cell structures in the stratified cases appeared regardless of how vigorous
the bubble was popped and regardless of when the bubble popped. Interestingly, the cellular
structures appeared for all stratified cases including thin bubbles, which had minimal impact
on the homogeneous premixed cases.

Idealized Flame Structure Assumption

Stratified flame propagation in past work has mostly focused on the overall burning rate of
the flame using either pressure rise rate or light detection networks to deduce the propagation
speed of the flame. Such methods employed rely on several key assumptions regarding the
surface of the flame, namely that the flame exhibits a smooth and regular surface and that
idealized models such as perfectly spherical flame or planar flame accurately models the
flame dynamics. However, such methods ignore the possible relevant flame structure which
may play a significant role in the determination of the flame speed.

Analysis in this work was first performed assuming a perfectly spherical flame, as has
been done with similar experiments in the literature to quantify the spherical flame propa-

CHAPTER 7. DISCUSSION OF EXPERIMENTAL AND NUMERICAL FINDINGS 73

gation. As, this work has mostly relied on using visual methods to track the flame surface,
significant differences were observed than expected. While a smooth flame transition be-
tween the decreasing equivalence ratio gradient was expected, various unexpected structures
were observed for all stratified cases explored. The differences may be accounted for by not
only hydrodynamic instabilities induced by a moving surface sheet but also thermo-diffusive
instabilities inherent in a stratified flame.

Following review of the flame surface structure and relevant possible instabilities in these
cases, several mechanisms stuck out as likely culprits. Those mechanisms inherent in the
bubble’s presence and those inherent in the stratification itself. In particular, the velocity
shear layer induced by a popping bubble, the added compositions from the bubble, in addition
to thermo-diffusive instabilities.

Influence of the Soap Bubble
Velocity Induced Instabilities

To mitigate this inherent disturbance caused by a popping bubble that could not be appro-
priately modeled numerically, varying soap mixtures were made with a variety of different
bases and their effectiveness was partially evaluated based on optimizing the mixture to
have a limited impact on the flame and stratification layer when the bubble popped. At
first, a very thin bubble was desired as minimal impact on the flame propagation behavior
was observed. However, it became apparent in subsequent experiments that this sacrificed
the impermeability of the soap mixture, increasing the permeability to an undesirable level.
This permeability reduced the equivalence ratio within the bubble in the initial rich to lean
cases as well as the stratification layer gradient by significantly increasing the stratification
layer thickness.

To confirm this, ignition tests with a non ignitable severely rich to air stratified setups
with this bubble soap mixture evaluated the extent of the combined permeability and diffu-
sion of fuel through the bubble and the air into the bubble. Results of these tests indicated
a quick reduction of equivalence ratio within the bubble to the greater chamber on the order
of seconds. Therefore, a trade-off was necessary between the soap mixture permeability and
velocity induced effects on the flame.

Increasing the water content had the desired effect of decreasing the permeability with the
side effect of increased velocity shear layer disturbances. The soap solutions with the most
water made the thickest bubbles as noted in the Schlieren images, which were noted to have
the largest impact on the flame. This influence of the bubble was also observed depending
on the amount of fluid and the soap solution used while exploring different soap solutions.
In particular, depending on the surface tension when the bubble popped, the bubble pushed
the fluid of mixture to varying degrees. This effect was limited to some degree by the
selection of soap solutions used. Several methods of bubble popping were attempted, but
were not successful for the final soap solution attempted. In addition, the dynamics of the
bubble popping and subsequent influence on the flow and mixture stratification field occurred

CHAPTER 7. DISCUSSION OF EXPERIMENTAL AND NUMERICAL FINDINGS 74

quickly, obstructing the known mixture stratification. Image processing was undertaken to
account for the slight bulk fluid flow induced by the bubble popping dynamics that was
allowed for in the trade offs of the experiment. Despite the fluid dynamic movement of the
unburned gas and flame, this was determined to have limited impact on the flame surface
structure and flame surface speed noted in this work.

It is important to also note that the speed at which the flame surface speed progressed
within the bubble directly impacted the popping dynamics of the bubble. As most of the
cases considered either had a rich or lean flame within the bubble, the approach of the flame
had minimal impact to the popping dynamics of the bubble. However, for mixtures that
propagated faster, as in the case of a near stoichiometric mixture, the flame appeared to have
significantly more influence on the bubble popping as these flames are characterized by a
quick flame propagation, a resulting faster pressure rise, and a higher and faster expansion of
the gases. Due to less time for evaporation and the fluid stretch of the expanding bubble, the
thickness of the bubble when it popped was thicker. With a thicker bubble present at bubble
breakdown, the extent of velocity shearing was greater. Therefore the extent at which flame
passing through this region had an increased impacted by this fluid instability. Therefore, it
was reasoned that the cellular structure of the stoichiometric case with a bubble was due to
the coupled effect of this instability and the fast propagating leading up to the bubble.

However, for the stratified cases, the flame propagated slowly as it approached the bubble
with significantly less overall volumetric expansion and pressure rise rate. Therefore, the
coupled effect of the flame and bubble was limited, and provided a limitation on the extent
of the velocity shear layer instability.

Undoubtedly the bubble played some role in the instabilities present as the flame prop-
agated, however the effects of the bubble was severely limited in a set of experiments to
tease out its effect. By selecting the thinnest bubble possible and sacrificing permeability
and diffusion temporarily, it was seen to confirm the cellular structure appeared. Therefore,
while the exact extent of the velocity shear layer’s effect on the flame surface structure was
not directly modeled, it was experimentally explored and indicated a decoupled effect from
the fluid dynamic instabilities.

Soap Bubble Mixture Contributions

An alternative possible explanation to the cellular structure may be partially attributed to
either the water or the hydrocarbons embedded within the aqueous solution, the saponified
Olea oil and glycerine. For reference, the contents of the soap solution is referenced in Table
6.3.

In past work with heavier hydrocarbons, instabilities were noted to form in the flame
surface. The hydrocarbon gases that have been tested prior in the literature may appear in
the pyrolysis reactions of the heavier hydrocarbons within the soap solution.

For the hydrocarbon contribution, the cellular structure was not observed for any of the
wet homogeneous cases run. If the cellular structures were from the soap solution, similar

CHAPTER 7. DISCUSSION OF EXPERIMENTAL AND NUMERICAL FINDINGS 75

strong cellular structures would be in all of the homogeneous cases including those ran
homogeneously with the bubble. This was not the case as seen in Figures 6.2 and 6.3.

Furthermore, if the addition of hydrocarbons from the soap bubble played a key role
beyond its vapor saturation in the cellular structure formation, this would have meant that
the cellular structure would scale with the concentration of hydrocarbons within the soap
mixture. This type of cellular scaling was not observed with the concentrations or soap base
solutions tested. Additionally, the concentration of hydrocarbons with the soap solution
selected was quite minimal with a small fraction of both the mass and volume coming from
the soap solution.

For all of these reasons, it was determined that the hydrocarbons within the soap were
unlikely to significantly contribute to the cellular structures observed in all the stratified
cases.

While the hydrocarbons within the soap may have extremely limited impact on the flame,
the water content is another possibility. This would indicate that the cellular structures
are due to either water vapor or water droplets. Water vapor has not been reported to
cause cellular structures, nor was it seen when homogeneous mixtures were burned in wet
environments or with a bubble in this work. In addition, in this work the flame exhibited
the cellular structures long after the bubble popped in many cases for all of the stratified
cases with enough time for large water droplets to move away from the transition region.
Therefore, the influence of the water was ruled out as a possible main contributing cause.

Therefore, the influence on the flame structure from the mixture components of both
water and additional hydrocarbons was determined to have limited impact on the structure
of the flame.

Thermo-diffusive Instabilities

While the velocity shear layer may play a large role for severely popping bubbles, as in the
case of a stoichiometric mixture quickly expanding and exploding the bubble, additional
factors were explored to account for the cellular structure of slower flames that had less
vigorous or nearly non-existent impacts from the popping bubble within the flame surface
path.

As thermo-diffusive instabilities can arise when there is a miss match of thermal and mass
diffusion as well as under flame stretch. Either the unequal heat transfer from the exhaust
gas to the unburnt mixture or the preferential diffusion of hydrogen species would need to
play a role. Given the work from Shi et. al[54], one dimensional simulations of spherical
expanding stratified flames have been shown in simulation to exhibit a strong preferential
diffusion of hydrogen species ahead of the flame front as a stratified flame is propagating
from a rich to lean region.

Cell structures were observed as the flame propagated through all of the stratified cases
explored, in addition to the speed enhancements. These structures were mostly attributed to
the back support of hydrogen species from the rich flames that temporarily induce thermo-

CHAPTER 7. DISCUSSION OF EXPERIMENTAL AND NUMERICAL FINDINGS 76

diffusive instabilities. As presented in past work, the hydrogen species diffused ahead of the
thermal diffusion front, indicating a non-unity Lewis number.

In stratified rich to lean flames, the instabilities is accounted for by the preferential
diffusion of hydrogen noted by Shi in one-dimensional studies but the stability of the flame
could not be uncovered in these one-dimensional flames. This work has shown both in the
extensive experiments and the limited exploration of numerical three dimensional modeling
that flame instabilities may arise at the interface of the stratification layer of a rich to lean
flame, and in particular cellular structures as can be seen in Figure 6.18 but not in in the rich
case as in Figure 6.16. The three dimensional modeling of spherical flames in the constant
volume chamber have indicated a flame structure similar to that of a grouping of cells, first
attributed to numerical meshing effects but later shown to appear even with a refined mesh.

Experimentally, all of the rich to severely lean stratified flames and rich to air stratified
cases exhibited the cellular instabilities in a similar way as the rich to lean cases. Inter-
estingly, stratified lean to rich flames in this work were also noted to exhibit cellular flame
surface as seen in Figure 6.8. This lean to rich case was attributed less to hydrogen pref-
erentially diffusing ahead of the flame and more to the thermal conductivity differences of
the burned gas and the unburned gas as has been noted in planar flames in past work by
Einbinder, et. al[17].

Comparison with Past Work

It is also important to note prior work on methane-air flames with the addition of hydrogen
disrupts the stability of an otherwise spherically smooth outwardly propagating flame.

Initial flame instability work by Markstein[37] and Behrens[4] found that addition of
hydrogen to methane flames lead to cellular structures. Work of Einbinder[17] saw that the
lean to rich planar flames exhibit instabilities due to the non unity lewis number as the
thermal diffusion is limited in transferring the thermal energy into the flame front.

More recently, Hu et. al[26] noted in their work that the addition of hydrogen increased
the propensity of a methane-hydrogen-air flame to exhibit thermo-diffusive instabilities and
the flame surface appeared similar to that of the well studied lean hydrogen flame. Lean
hydrogen flames exhibit cellular structures similar to that seen in this work.

As cellular structures were noted in the experiment during the transition region, this
work partially focused on comparisons with past numerical work and the notation from past
experimentation on stratified flames.

Past numerical work has not indicated such instabilities in stratified flames, although this
may be attributed to the fact that the numerical simulation and model work on stratified
flames has mostly used either theoretical models or idealized one-dimensional models. The
one-dimensional simulation was unable to confirm the existence of additional instabilities
as the cellular structure is a three dimensional effect that would not manifest itself in an
idealized one dimensional code. As such, these models are unable to fully account for various
multi-dimensional effects including the onset of a variety of instabilities such as the effect of
thermo-diffusive inequalities on the flame structure.

CHAPTER 7. DISCUSSION OF EXPERIMENTAL AND NUMERICAL FINDINGS 77

Past work on identifying the flame structure disturbance has been impeded by various
experimental setups. In reviewing the experimental literature, this cellular structure phe-
nomenon is either supported or not excluded by past experimental work on stratified flames.
Other several past experimental works noted or showed images of wrinkles in the flames, but
was only attributed to the limitations of the experimental setup and no further investigation
was sought.

Past spherical flame experiments similar to this work by Ra[44] briefly mentioned the
existence of a disturbance from the Schlieren images but did not present an investigation or
further discussion. Additionally, even with highly advanced species and flow measurements
in the work by Galizzi and Escudié|20], instabilities developed but were attributed to the
flow conditions yet were noted to initialize in less than 0.5 ms. The time frame is indicative
of either mass or thermal transport related instabilities as the flow was laminar and the fluid
dynamic effects will likely take longer to develop. Later imaging of the flame structure by
Schmidt [51] noticed wrinkling in their experimental work on stratified planar flames observed
on a flat plate burner with chemiluminescence but all of the wrinkling were attributed to
the experimental setup.

A large portion of the past work did not provide a description of the flame structure.
For instance, early work by Karim et. al[31] visualizing the flame using Schlieren made
no mention of the flame structure and given the choice of vertical tube, the experiment
likely suffered from Rayleigh-Taylor instabilities that would have prevented the accurate
accounting of the flame structure in the Schlieren images.

Contrary to prior work, additional focus has been paid to the structure of the flame
in this work. Additionally, this work does not have the same limitations in the previous
experimental setups, and the spherical flame is free to propagate through a stratified layer
mostly undisturbed.

It is possible however, that the size of the flame at the transition was such that the
instabilities took a much greater impact than past work. As stretch has been known to
provide a support to an otherwise unstable flame, the stretch rate when the flame in this
work reached the transition may not have been enough to suppress the instabilities. Full
exploration of different size bubbles was not possible in this setup to confirm the unanimous
nature of the cellular structures, but it is believed that it is a likely tripping mechanism in
all stratified flames.

7.4 Evaluation of Flammability Limit

There is no consensus of whether a stratified flame will assist in propagating through a lean
flammability limit if it is back supported by a rich flame. Some previous experiments have
indicated this to be the case, however in this work the extent of this was not definitive in
post-processing or subsequent modeling. Numerical work has also shown this to not to be
significant. Simulated stratified spherical flames propagating to the lean flammability limit
do not continue to propagate through the mixture significantly as noted by Shi[54].

CHAPTER 7. DISCUSSION OF EXPERIMENTAL AND NUMERICAL FINDINGS 78

In both the typical and the mean aggregated flame surface speed, seen in Figures 6.11 and
6.12, the flame appears to burn into the exceedingly lean mixture, appearing to be confirmed
by the additional manual exploration of the flame halt location. However, there are several
factors that make it difficult to ascertain the exact extent of the lean burning, even while
the flame progressed further into the mixture than ideally allowed with a step change in
mixture concentration. Three areas of likely contribution include the original mixtures used,
the finite diffusion time, and the difficulty in tracking the local equivalence ratio as the flame
approaches the mixture.

Discrepancies in Mixture

Possible discrepancies may be due to mixture preparation and inadequate determination of
the equivalence ratio near the lean limit. Past work has relied on extremely limited mixing
times for premixed mixtures. However, the burning rate of flames far from stoichiometric
becomes increasingly sensitive to equivalence ratio and the short times used in past work
may be inadequate to ensure no local zones of more highly rich zones. As highlighted by
Chen[8], methods in the literature may be highly sensitive to the method of mixing. Rigorous
procedural methods were undertaken in this work to target mixtures and ensure proper tank
mixing.

Tracking of Burned Zone

The flammability limit appeared to extend into the exceedingly lean mixture, however it
is important to note that tracking of the flame became questionable as the flame became
exceedingly non spherical both in surface structure as well as in overall shape. The side
projection as seen in the Schlieren became non circular as the flame slowed as it reached the
interface with the severely lean mixture and buoyant effects distorted the progress of the
flame. Additionally, the cellular structures made it difficult to evaluate expansion effects.
Without an appropriate method to decouple the dependence of the flame surface speed on
this fluid dynamic effect, evaluation of the burned zone is tenuous at best. Unfortunately, the
resulting pressure rise during the flame propagation within the optical window was near the
pressure equipment minimum threshold, so it couldn’t be used to discern the exact amount
of burning with a high degree of confidence.

Finite Diffusive Time

It is important to note that given the limited diagnostic tools available in this work, the
mixture diffusion layer was difficult to measure in this setup and may be a contributing
factor. Furthermore, since the existence of diffusion and permeability influences the mixture
concentration, the exact equivalence ratio may not be experimentally determined with the
methods used and available in this and past work on stratified flames. The finite amount
of diffusion that occurs either from the permeability of the bubble once blown and as it

CHAPTER 7. DISCUSSION OF EXPERIMENTAL AND NUMERICAL FINDINGS 79

expands and thins, in addition to the convective and molecular diffusion that occurs as the
flame approaches the stratification layer distorts the true local equivalence ratio before the
flame reaches the lean severely lean equivalence ratio interface. Therefore, while the second
mixture within the chamber may have initially been too lean to propagate through, the flame
deflagration occurs over a finite time while the stratification layer mixes. By the time the
flame reaches the end of the stratification layer, the end gas mixture has already somewhat
mixed and it is possible to underestimate the equivalence ratio that the flame sees locally.

80

Chapter 8

Concluding Remarks

8.1 Summary of Findings

An experimental setup was constructed to test and explore the effect of both stratification
and electric fields on spherically expanding flames of various methane-air concentrations. A
majority of the focus of this was on the stratification exploration. A number of nearly spher-
ical outward propagating flames passing through homogeneous and stratified mixtures were
investigated both experimentally and numerically. Constant volume chamber experiments
were observed from Schlieren image frames captured by a high speed camera and processed
by a semi-autonomous in-house developed parallelized object oriented code to robustly track
the surface flame front and the location of the bubble to determine the relevant combustion
characteristics.

The flame surface speeds of the experiment were compared with both simulation and past
work in the literature. The flame surface speed enhancements were noted in the stratified
rich to lean cases assuming the flame surface structure remained smooth, in agreement with
past literature. Qualitative agreement was achieved with the numerical results, agreeing with
and supporting the literature sited mechanisms of both thermal and hydrogen preferential
diffusion. Emission data was measured for the cases considered and the stratified flames
exhibited reduced unburned hydrocarbons and increased C'O production and reduced NO,
production. Additionally, carbon monoxide production increased with the stratification as
well as a decrease in C'O, production.

Unexpectedly, the flame surface exhibited cellular structures during the transition region
which complicates the findings. Even accounting for the limited effects of the soap bubble,
this work has found that both of the stratified rich to lean or stratified lean to rich flames
are likely unstable flames due to the thermo-diffusive instabilities present surrounding the
flame during the transition. Upon compare three dimensional combustion simulations, a
set of cellular structures appeared in the flame front surface agreeing with the experimental
determination. Although the flame speed enhancements noted in this work could not be
fully decoupled from the cellular structures noted in the images of the flame surface, this

CHAPTER 8. CONCLUDING REMARKS 81

stratified enhancement effect appears to be real.

The lean limit was explored in a stratified setup and appeared to be extended. However
further local equivalence ratio determination in the region is needed to fully confirm the
extent of severely lean burning.

8.2 Future Directions

As there are many applications as well as in the pursuit of greater fundamental knowledge of
the relevant physical processes inherent in current and future power production technology,
stratified flame combustion research is needed. Both experimentally and numerically, fur-
ther investigations of the stratification effect are needed to continue to decouple from fluid
dynamics and quantify the effects stratification has on laminar flames.

Numerical directions

While past and numerical work supports the existence of inherent instabilities within the
stratified flames, further investigation is necessary to completely tease out if cellularity is
inherent in the stratification or only a product of various experimental setups. More detailed
modeling of the bubble is necessary to control for the fluid dynamic instabilities present as
the flame approaches and burns through this region. A more extensive numerical study
able to accurately model the three dimensional instability effects is needed to explore the
extent the instabilities resulting from stratified flames persist. In particular, additional
comparisons with planar and spherical geometries with stratification layers of different size
and different stretch rates may assist in determining the limits of the instabilities observed
in the experiment. Furthermore, additional work is required to investigate the effects of
stratification on turbulence seen in numerous experiments and real world application.

Possible Experimental Directions

Experimentally, modifications to the experimental setup will assist in isolating key effects.
With testing different sized spherical stratified test setups, the effect of stretch on the strat-
ification layer can be further studied. Additional sizes of optical view area relative to the
bubble size will assist in better tracking of the flame surface into the lean limit. Addi-
tional diagnostics to determine the local equivalence ratio including preferential diffusion of
hydrogen species is needed to confirm extension of the lean flammability limit.

82

Appendix A

Appendix

A.1 LabView Block Diagram

The custom LabVIEW program utilized in the data aquisition system is presented in this
appendix. The following pages outline the block diagram used.

Block Diagrams for DAQ

83

APPENDIX A. APPENDIX

Larata]

|
8

i

APPENDIX A. APPENDIX

84

85

APPENDIX A. APPENDIX

L f
8
e
=

s

APPENDIX A. APPENDIX

86

APPENDIX A. APPENDIX 87

A.2 Post Processing Code

The custom post proessing code to edge track the flame surface and bubble fronts is presented
in this appendix.

Main Driving Code

function ProcessSchlieren_Bubble(folderPath, flameCutoffThreshold, bubbleCutoffThresh,
SolidBodyThreshold, autoFlameLocMinBrtThresh, maxFlameSpeedPhysical_cms,
initialChambPressure_psig, philnit, phiPost, isBubble, tankiTup, tanklDate,
tank2Tup, tank2Date, frameBubPopped, isWet)

/% Schlieren Movie Post Process Code by Charles Scudiere

/% Main paramters to change: (make sure to adjust Tambient and Tadiabatic
/% for the specific conditions tested at (In Filename and PREMIX))

% Homogenous cases => Target average temperature

/% Bubble cases => Pin center tracks as best as possible

% folderPath - location of movie and pressure data files

% flameCutoffThreshold - lower if bubble showing in flame tracker

% 0-255 (use to be between 0 and 1), cutoff for black/white framing.

% Adjust to better track flame front, 30-80 reasonable

% Increase to see lighter points, decrease to see darker points

% bubbleCutoffThresh - identical to flameCutoffThreshold, but for the bubble
% SolidBodyThreshold - Lower values (Darker) from first frame are

% converted to white, decrease to remove mon-body whited parts in

/% ModifiedFrames photos

% autoFlameBrightnessThresh - (Obsolete) - Local Min determination

/% Threshold to check light intensity local mins to avoid

% catching the bubble too as in the raw darkness cases. Lower if

/% catching bubble, raise if not tracking flame.

% maxFlameSpeedPhysical_cms - [cm/s] Mazimum flame speed ezpected, to
% eliminate unphysical jumps to bubble.

% initialChambPressure_pstg - [PSIG] Initial pressure in Chamber before spark
% Defaults to 0.5 PSIG

% philnit & phiPost - Equivalence ratio before and after bubble or early and
% late burn properties. Defaults to -1, plotting homogenous values

/% isBubble - Whether or not there is a bubble in the video

% tankl1Tup/tank2Tup - tank 3 pressure tuple for equivalence ratio determination

% tanklDate/tank2Date - Date tank made, for serialing tank miztures

% frameBubPopped - frame bubble pop influences pin center row (0 for no bubble)

% isWet - Logical of whether chamber is wet

APPENDIX A. APPENDIX 88

%
%
%
%
%
%
%
%
%
%

Main Structures in Code:

PSUsrInput - User input related wvars

PSConditions - Conditions that don’t change on a particular run,
but includes vars passed from function call

PSFlags - Flags for debug, plot display, etc.

PSRunData - Main Data is storred here

PSScopeData - Scope and Pressure Data is Storred here
PSLoopingParam - Looping parameters that may change on each of
the main loop iterations

VY VA4, VA4, VA4, VA4, Y44 VA4, VA4, Y44 994
A A A A A A Y Y A A YA
v Iy
%% FLAGS 7 W W Whih W Wh Whih W
VY VA4, YA, VA4, VA4, YA, VA4, VA4, YA, 994
A A A A A Y A Y Y A YA

if true

A% Running Flags

PSFlags.isRunLoop=true;
/% Whether to run to loop through videos or grab previus session vars
/% WARNING overwrites user input data with previous values used in loop

PSFlags.debug_skipUsrInput=true;
/% Whether or not to skip code getting new user input
% Grabbs previous user input from previously saved matlabsession file
/% for faster loop parameter processing

PSFlags.isJustGetUsrInput=false;
/% Whether to just get the user input and then exzit
% NOTE: isRunLoop flag must be true to gather correctly

PSFlags.isTrackCirCenter="isBubble;
/% Whether or not to use circle center to move tracking Tow
PSFlags.isUseTrackedCirCenter=false; /false;
/% Whether or not to use tracked circle center for flame radius with
% merging with pin center

PSFlags.isForceBubble=false;

% Force run to have bubble when running loop is selected, in cases where

% user input was taken with a bubble but errored
PSFlags.isRedoPressureNSpark=false;

% Force rereading DAQ txzt files, scope and pulse data: plotting, etc.
PSFlags.isForceUsrInputBubbleDia=false;

% Whether or not to grab user input for bubble diameter

PSFlags.isFilterRadius=false;
/% false sets PSPostProcData.r_cm_interp to splined value
/% true sets PSPostProcData.r_cm_interp to filtered splined value

%% Display Flags
PSFlags.dispLoopingPlot=true;

% Displays looping plot
PSFlags.dispKeyPlots=false;

% Displays post-processing plots

PSFlags.plotBrightnessHistogram=false;
% Plots histogram next to frame image plot in a sub plot
PSFlags.debug_autoScaleAxis=false;
/% Whether or not to plot on a scale determined to show ~“all the data or
% a specified axes plotting...disable for comparison between plots

PSFlags.isPrintFlameCM=true;

APPENDIX A. APPENDIX

/% Whether or nmot to output the flame front location [cm] to the screen

4% Presentation/Photo Saving Flags
PSFlags.saveFrameStills=false;

/% False better default, speeds up code.

% For Presentations, saves each video frame separately.

/% Wheter or not to make and save folder of avi frame jpg images
PSFlags.savelmgFrameOnly=false;

/% Whether or nmot to only plot the image and not plot the row tracked data
PSFlags.isZoomRightSide=false;

% Whether to automatically zoom into region of interest

% from pin center to little to the right of the flame location
PSFlags.isZoomToTrackRow=true;

/% If zoom based on mazimum track row

PSFlags.isPlotCirOnly=false;
% Will not plot schlieren, only detected circle center of flame

PSFlags.isAddScale=false;
X Whether or mot to add a scale to frame stills in bottom right corner

%% Speed up Flags
PSFlags.suppressDebugQutput=true;

% True is faster. Less output for error checking, etc.
PSFlags.useMatlabVideoReader=false;

/% False is faster, uses a modified matlab structure (same format) that only uses

% the read functionality for speed up and no frame conversion.
/% Works for Greyscale cases!
PSFlags.useMatlabVideoWriter=true;
% True is faster. Ezploring speedups - writing images for ffmpeg later.
% Using EPSC is better quality but much much slower
PSFlags.writeVideoAtEndOfLoop=true;
% True is better. Whether to write frame at each frame by frame (false),
% or all at once at the end of looping through the frames (true).
% True has less wear on hard drive but marginal speed improvement.

PSFlags.reduceLoopFeatures=true;
% True is faster.
/% Speed Up by removing legend and other time consuming items on loop ploting

4% Saving work Flags (Costs time but records values)
PSFlags.saveOQutVideo=false;

/% Whether or not to save output video, so speed up code and get input correct
isSortNameVideo=PSFlags.saveOutVideo;

/% Whether or mot to copy output video to a name that is more descriptive

PSFlags.savePostPlots=false;
/% Whether or nmot to save post-processing plots

PSFlags.saveOrigStills=false;

/% False speeds up code, do once. For saving original frames as jpg/png in folder.

/% False better default, speeds up code.

Vyaaopayyaaopavyyaoaovavyyaopayyaaopavyyaoaavavyyaopayyaaopavyyaoaavavyyy
/o /o /o /o /o /o /o /o /o 0/o/o/o

end

A END FLAGS UL L L d LS LLdLLLLLLLLY

ya
0/0/0.

VA4, YA, VA4, VA4, Y44 VA4, VA4, Y44 V9994
A A A A A A Y A S A

funcStartTime=cputime;

% Start timer for timing output in looping

89

APPENDIX A. APPENDIX

4% Suppress Warnings
fprintf (’\n\nStarting Post-Processing on Video in folder: %s\n’, folderPath)

if PSFlags.suppressDebugOutput
warning(’off’);
fprintf (’\tSuppressing Most Debug Output and warnings\n’)
else
warning(’on’);
warning(’off’, ’Images:initSize:adjustingMag’);
% Suppress warning of "Warning: Image is too big to fit on screen”
warning(’off’, ’MATLAB:subscripting:noSubscriptsSpecified’);
end

o0, 0/0/0/0, o0, o0, aapnvnoaovayyoaovayyaaoaapnvnoaop47777
/o /o /o /o /o /o 0/o/o/o

4% Load Known/Passed Conditions, File Information, etc.

Y A A Y A A Y YA Ay
PSConditions.folderPath = folderPath;

PSConditions.flameCutoffThreshold = flameCutoffThreshold;
PSConditions.bubbleCutoffThresh = bubbleCutoffThresh; /% Too low gives false bubble pops...
PSConditions.SolidBodyThreshold = SolidBodyThreshold;
PSConditions.autoFlameLocMinBrtThresh = autoFlameLocMinBrtThresh;
PSConditions.maxFlameSpeedPhysical_cms = maxFlameSpeedPhysical_cms;
PSConditions.initialChambPressure_psig = initialChambPressure_psig;
PSConditions.isBubble=isBubble;

PSConditions.frameBubPopped = frameBubPopped;

if phiInit “= phiPost
/% Calculate Initial spark region Tank Phi
philnit_calc = getPSTankEqR(tankiTup, tankiDate);
fprintf (’\tInit: %f Given vs. %f Calculated from tank made %s\n’,
philnit, philnit_calc, tankiDate)

phiPost_calc = getPSTankEqR(tank2Tup, tank2Date);
fprintf (’\tPost: %f Given vs. %f Calculated from tank made %s\n’,
phiPost, phiPost_calc, tank2Date)
else
% Calculate Initial spark region Tank Phi
phiInit_calc = getPSTankEqR(tank1Tup, tankiDate);
fprintf (’\tInit: %f Given vs. %f Calculated from tank made %s\n’,
philnit, philnit_calc, tankiDate)
phiPost_calc=philnit_calc; % Same when no bubble.
end

PSConditions.philnit = philnit_calc; Zphilnit;
PSConditions.phiPost = phiPost_calc; /phiPost;

printPSEquivalenceRatio(phiInit, phiPost, PSConditions, true)
% Checks Equivalence Ratio to ensure in correct bin, and prints it

if PSConditions.philnit == PSConditions.phiPost
PSConditions.isHomogenous=true;
% Whether or mot to plot simulation curves for Homogenous Runs: .65, 1, 1.4
PSConditions.isRichLeanStrat=false;
elseif PSConditions.philnit > PSConditions.phiPost
PSConditions.isHomogenous=false;

PSConditions.isRichLeanStrat=true;
% Whether or mot to plot simulation curves for stratified from 1.4->.65
elseif PSConditions.phiInit < PSConditions.phiPost

APPENDIX A. APPENDIX

% If Lean to Rich Stratified!
PSConditions.isHomogenous=false;

PSConditions.isRichLeanStrat=false;
/% Whether or nmot to plot simulation curves for stratified from .65->1.4
fprintf(’\tNote: No current graphs for Lean to Rich Implemented\n’)
end
PSConditions.isWet=isWet;

% Auto detect video filename using system ls command:
try
aviFilenameList=1s(strcat(PSConditions.folderPath, filesep,’*.avi’));
aviFilenames=split(aviFilenameList, PSConditions.folderPath);
[*, PSConditions.VideoName, Video_ext] = fileparts(aviFilenames{2});
if “strcmp(Video_ext(1:4),’.avi’)
fprintf (’Error detecting avi file\n’)
end
catch e
fprintf (’Error determining foldername with %s.\n’, PSConditions.folderPath)
PSConditions.VideoName = PSConditions.folderPath(end-14:end);
Video_ext = ’.avi’;
fprintf (’Minor Error in detmining folderPathLoc: %s Occured in post-Processing %s\n’,...
e.identifier, PSConditions.VideoName)
fprintf (°\t%s\n’, e.message)

if “exist(fullfile(strcat(PSConditions.folderPath, filesep, PSConditions.VideoName,
’.avi’)), ’file’)
fprintf (’MAJOR ERROR: avi file %s does not exist...exiting.\n’,
[PSConditions.VideoName, ’.avi’])
return
else
fprintf (’Recovered setting VideoName (%s) from folderpath (%s)\n’,
PSConditions.VideoName, PSConditions.folderPath)
end
end
if length(PSConditions.VideoName)>=18 && ...
strcmp (PSConditions.VideoName(1:18),’Flame_Propagation_’)
% If just post-processing and only video is the Flame_Prop video and the matlab file...
PSConditions.VideoName = PSConditions.VideoName(19:end);
end

PSConditions.rawVideofilename = ...
char(strcat (PSConditions.VideoName,Video_ext)); /4 video file name
/% Matlab likes character arrays over strings...

/% See if previous matlab saving format exzists
PSConditions.prevRunMatlabFN= ...
fullfile(strcat(PSConditions.folderPath, filesep,’MatlabSessionVars.mat’));
PSConditions.specificRunMatlabFN = ...
fullfile(strcat (PSConditions.folderPath, filesep,’MatlabSessionVars_’,
PSConditions.VideoName,’.mat’));

PSFlags.isPrevRunMatlab=exist(PSConditions.prevRunMatlabFN, ’file’) == 2;
PSFlags.isSpecificRunMatlab=exist(PSConditions.specificRunMatlabFN, ’file’) ==2;

VY VA4, YA, VA4, VA4, Y44 VA4, VA4, Y44 V9994
A A A A A A A Y Y A A YA

K% Check User Input ARRRNNNIIER LRI I IR IR DDA TR RIIIIR LI RIIIIRIRBIIII BT
if PSConditions.isBubble && “PSConditions.frameBubPopped

91

APPENDIX A. APPENDIX

% If bubble and bub pop frame is O...can’t happen!

fprintf (’\n\tWARNING in reading %s: Bubble but no valid pop frame input\n’,
folderPath)

pause(3)

elseif “isBubble && frameBubPopped
% If no bubble and pop frame isn’t O...can’t happen!
fprintf (’\n\tWARNING in reading %s: No bubble but input frame when it popped!\n’,
folderPath)
pause (60)
end
if PSConditions.isBubble && “PSConditions.isWet
% If not given wet condition but obviously should be wet...
fprintf (’\n\tWARNING in reading %s: Marked as NOT WET, but bubble exits?!\n’,

folderPath)
pause (60)
end
%% End Check User Input UA445AAKALAGALS? YL L LSS LS LLLY AL LIS

4% Video Radius Gathering and Post-Processing
Y A A Y A A Y YA YA

try

% Use try-catch to ensure parallel goes forward

%% Load Previous Bub/Struct

if “PSFlags.isRunLoop || PSFlags.debug_skipUsrInput
[PSConditions.isBubble, PSFlags.isPrevRunMatlabStruct] = ...

grabPrevBubNMatSaveType (isBubble, PSConditions, PSFlags);

else
% Else running a normal run to grab usr input and run the loop
% (Or exit early with the just gradb user input flag)
PSFlags.isPrevRunMatlabStruct=false;
% Must be set when grabbing user input to check and see if in structure format
% Mark as false as running loop without grabbing previous input

end

A B Bl Bl AN I I I I I I I I I III IR BBBHT

4% Post-Process Pressure/Scope/FPS Data

T Bl AN I I I I I I I I I I IIIIIIIIIIIIIIITIK I BBHT
[PSScopeData, PSConditions] = getPSPresScopeFpsFileData(PSConditions, PSFlags);

PSConditions.dBubble_assumed_cm=2.9; / [cm] Diameter of assumed bubble

/ Check bubble size
if PSFlags.isRunLoop
if "PSFlags.suppressDebugQutput
fprintf (’\tFPS=/,d, assuming bubble size of %.3f cm\n’,PSConditions.fps,
PSConditions.dBubble_assumed_cm);
if PSConditions.isBubble
fprintf (’\tCheck further below for selected bubble size for validation.\n’)
end
end
end

Y A A A A A Y Y I Y AN Ao
%% Get User Input

Y A A A A Y Y Y I A I NI A Y
PSUsrInput = getPSUsrInput(PSConditions, PSFlags);

% return J For debugging bubble brightness, etc. from user input

92

APPENDIX A. APPENDIX

% Save User Input Data for later runs
if PSFlags.isJustGetUsrInput
%save (PSConditions. prevRunMatlabFN)
save (PSConditions.specificRunMatlabFN)
fprintf(’Got User Input Saved to Disk, now exiting\n’)
return / exit just exits matlab...
end

TRRRRTRTRTRTRTTRTTTTL LB LB LLBBBBABBAAAAAIIIIIIIIIIIIIITITITITRTRTLRTLTTTTTTT
4% Loop through frames
TIRRRTRTRTRTRTTRTTTTLLL LB LLBBBBABBAAAIAIIIIIIIIIIIIIITITTTITRTRTLRTRTTTTTTT
if PSFlags.isRunLoop

fprintf (’\n\tRunning loop through video frames:\n’)

PSLoopingParam = initPSLoopingParam(PSConditions, PSUsrInput, PSFlags);

A A A A A Y A Y YAy A YA
%% Read RAW Video for all frames in 4-D array of size(height,width, 3, nFrames)

if "PSFlags.useMatlabVideoReader
if PSUsrInput.isRightDark
PSAllFrames = read(PSLoopingParam.HSCmovObj) ;
% Try Reading only (without format converting), using own version of read
else
% If dark is on the left hand size, flip read video frames to RHS
% User input is not flipped and horizontal wvalues are flipped along azis.
PSAllFrames = flip(read(PSLoopingParam.HSCmovObj), 2);

% Flip user input if needed
if PSUsrInput.pixEdge0fRI0 < PSUsrInput.pinsCenter_x
% If user input hasn’t been flipped yet
PSUsrInput.pinsCenter_x = size(PSAllFrames(:,:,1), 1)/2 +...
(size(PSAllFrames(:,:,1), 1)/2 - PSUsrInput.pinsCenter_x);
PSUsrInput.pixEdgeOfRI0 = size(PSAllFrames(:,:,1), 1)/2 +...
(size(PSAl1Frames(:,:,1), 1)/2 - PSUsrInput.pixEdgeOfRI0);

if PSConditions.isBubble
/% Update the values not already accounted for
pixel_bubble_right_avg = ...

size(PSAll1Frames(:,:,1), 1)/2 + (size(PSAllFrames(:,:,1), 1)/2 ...

- PSUsrInput.pixel_bubble_left_avg);
/%Shouldn’t this be left average and flip to right?
pixel_bubble_left_avg = ...

size(PSAllFrames(:,:,1), 1)/2 + (size(PSAllFrames(:,:,1), 1)/2 ...

- PSUsrInput.pixel_bubble_right_avg);

% Now overwrite value, since flipping
PSUsrInput.pixel_bubble_right_avg=pixel_bubble_right_avg;
PSUsrInput.pixel_bubble_left_avg=pixel_bubble_left_avg;

% Fiz bubble radius
PSUsrInput.rBubble_cm = ...
(PSUsrInput.pixel_bubble_right_avg - ...
PSUsrInput.pinsCenter_x)/PSUsrInput.pixel2cm;
end
end
end
end

93

APPENDIX A. APPENDIX

Y A A A A A A A Y A YA

4% Determine Video Conditions from PSLoopingParam HSCmov file
PSConditions.totaltime=PSLoopingParam.HSCmov0Obj.duration;
/#seconds, duration of the file, NOT the physical time
PSConditions.numFrames = ...
PSLoopingParam.HSCmov0bj.duration*PSLoopingParam.HSCmov0bj.frameRate;
PSConditions.truetotaltime=PSConditions.numFrames/PSConditions.fps;
Ztrue physical time in which event took place
PSConditions.raw2TrueTimeRatio=...
PSConditions.truetotaltime/PSLoopingParam.HSCmov0Obj.duration;

4% Initialize flame tracking RunData

% Allocate to numFrames, will crop later to PSLoopingParam.frameVidEnd
PSRunData.dumbflameloc=zeros (PSConditions.numFrames,1);
PSRunData.autoflameloc_cirCen=zeros (PSConditions.numFrames,1);
PSRunData.autoflameloc_pinCen=zeros(PSConditions.numFrames,1);

PSRunData.xCirCenter=zeros (PSConditions.numFrames,1);
PSRunData.yCirCenter=zeros(PSConditions.numFrames,1);
PSRunData.CirRad=zeros (PSConditions.numFrames,1);

PSRunData.circleCenterLeadRow = zeros(PSConditions.numFrames,1);

A% Initialize ROW flame tracking RowData
PSRunData. j_frameCol_pinCenter = int64(PSUsrInput.pinsCenter_y);
circleCenterLead=int64 (PSUsrInput.pinsCenter_y);

% First track at pin center, moves as needed

4% Initialize the initial 2D Array
% parfor
for iRow=PSRunData.j_frameCol_pinCenter-PSLoopingParam.numRowPrior:...
PSRunData. j_frameCol_pinCenter+PSLoopingParam.numRowPost
PSRunData.PSRows (iRow) = initPSRowData(iRow, PSConditions, PSUsrInput,
PSLoopingParam, PSAllFrames(:,:,:,1));
/% Blanks are ok, the blanks are taking only 85) of one full struct ~10 kB
if iRow == PSRunData.j_frameCol_pinCenter
PSRunData.PSRows (iRow) .isLead = true; / Start with lead as pin center
end
end
PSRowData = PSRunData.PSRows(PSRunData.j_frameCol_pinCenter);

A% Create an out avi video file if saving video
if PSFlags.saveOutVideo
if PSFlags.useMatlabVideoWriter
outputVidflnm =[’Flame_Propagation_’,PSConditions.rawVideofilename];
% Name of file to be saved
outputVideoPath=fullfile(PSConditions.folderPath, outputVidflnm) ;
outputVideoObj=VideoWriter (outputVideoPath); JFileFormat
outputVideoObj.FrameRate=...
PSConditions.numFrames/PSConditions.totaltime*0.125;
/% increase to make faster
outputVideoObj.Quality=100;
open (outputVideoObj) ;

PSA110utputFrames=...
struct(’cdata’, uint8(zeros(1024,1024, 3)), ’colormap’, [1);
% Initialize initial structure array used to save video frames,
7% but will adjust as necessary

94

APPENDIX A. APPENDIX

else
if “exist(fullfile(strcat(PSConditions.folderPath, filesep,’MovieFrames’)),...
’dir’)
mkdir (fullfile(strcat (PSConditions.folderPath, filesep,’MovieFrames’)));

end
outputVidflnm =[’Flame_Propagation_’,PSConditions.rawVideofilename];
% Prefiz of Name to be saved
outputVideoPath=...
fullfile(PSConditions.folderPath, filesep,’MovieFrames’, outputVidflnm) ;
end
end

%% Begin video looping
PSLoopingStartTime=cputime;
frameLoopingFigHand = figure(’Visible’, ’On’, ’Position’,
[900, 245, 1120, 8401);

/% ’Position’, [left bottom width height]

% Make looping frame larger for higher res video
if "PSFlags.dispLoopingPlot

frameLoopingFigHand.Visible="off’;
end
dispPercent=5;
printUpdateFreq=int8(PSConditions.numFrames*dispPercent/100) ;

% int8(PSConditions.numFrames/10); J Print about every X percent

while PSLoopingParam.iCurrentFrame <= PSLoopingParam.frameVidEnd
4% Output Current Progress/Status

if “mod(PSLoopingParam.iCurrentFrame-1,printUpdateFreq)
% Print compltion rate every *th step
if PSLoopingParam.iCurrentFrame~=1
PSLoopingElapsedTime=cputime-PSLoopingStartTime;
dateTime=clock;

pinLeadPercComp = 100%*...
(PSRunData.leadPSRow.autoflameloc (PSLoopingParam. iCurrentFrame-1) ...
- PSUsrInput.pinsCenter_x)/...
(PSUsrInput.pixEdge0fRI0 - PSUsrInput.pinsCenter_x);

fprintf (strcat(’@ %d:%02d, %.1£f%) complete with %.2f %% of input’,
’read from video %s.avi, at ’,
dateTime(4), dateTime(5), pinLeadPercComp,
100*PSLoopingParam. iCurrentFrame/PSConditions.numFrames,
PSConditions.VideoName) ;

fprintf(’~%.2f frames/sec. Elapsed time: %.0f sec\n’,
(PSLoopingParam.iCurrentFrame-1) /PSLoopingElapsedTime,
PSLoopingElapsedTime)

end
end

%% Read next frame
if PSFlags.useMatlabVideoReader
PSLoopingParam.frame_orig = readFrame(PSLoopingParam.HSCmovObj) ;
sread(mov, 1) ; Jreads the specified frame

else
PSLoopingParam.frame_orig = ...
PSAllFrames(:,:,:, PSLoopingParam.iCurrentFrame);
/% reads the specified frame
end

PSLoopingParam.frame = PSLoopingParam.frame_orig;

95

APPENDIX A. APPENDIX

/% Keep for later plotting against original frame
if PSLoopingParam.iCurrentFrame==

PSLoopingParam.firstFrame=PSLoopingParam.frame;
end

7y70aavayyaaopavavaopovyyyoaavavyaaava0777
0/0/0 /o /o 0/o/o/o /o 0/o/o/o

%% Check to see if flame has expanded and need to add more rows
if PSLoopingParam.isFlameStart

maxGrowSize=10; 750; %20;
testSize=min(int64(min(0.25*%PSLoopingParam.numRowPrior,
max (size (PSLoopingParam.frame,2)-PSRunData. j_frameCol_pinCenter, 0)...
)), maxGrowSize);
% Test for this number of rTows to see if one of them has ignited to add
addSize=min(int64(min(0.25*PSLoopingParam.numRowPrior,
max (size (PSLoopingParam.frame,2)-PSRunData. j_frameCol_pinCenter, 0)...
)), maxGrowSize);
% Number of rows to start tracking
/% Test to see if need to add more rows Prior
addPrior=false;
if PSLoopingParam.numRowPrior <= PSLoopingParam.numRowPriorMAX
% If can add more points prior the center (enough points before)
for iRow=PSRunData.j_frameCol_pinCenter-PSLoopingParam.numRowPrior...
:PSRunData. j_frameCol_pinCenter-PSLoopingParam.numRowPrior+testSize
if PSRunData.PSRows(iRow) .isFlameStart
addPrior=true;
end
end
if addPrior
% If need to add more points prior the center column, add them
startRange=max (PSRunData. j_frameCol_pinCenter-...
PSLoopingParam.numRowPrior-addSize, 1);
endRange=. ..
(PSRunData. j_frameCol_pinCenter-PSLoopingParam.numRowPrior-1);
currAddSize=length(startRange:endRange) ;
for iRow=startRange:endRange
PSRunData.PSRows (iRow) = ...
initPSRowData(iRow, PSConditions, PSUsrInput,
PSLoopingParam, PSAllFrames(:,:,:,1));
end
PSLoopingParam.numRowPrior=PSLoopingParam.numRowPrior+currAddSize;
end
end
/% Test to see if need to add more rows Post
addPost=false;
if PSLoopingParam.numRowPost <= PSLoopingParam.numRowPostMAX
% If can add more points post the center
for iRow=PSRunData.j_frameCol_pinCenter+...
PSLoopingParam.numRowPost-testSize:...
PSRunData. j_frameCol_pinCenter+PSLoopingParam.numRowPost
if PSRunData.PSRows(iRow).isFlameStart
addPost=true;
end
end
if addPost
% If need to add more points post the center column, add them
startRange=(PSRunData.j_frameCol_pinCenter+. ..
PSLoopingParam.numRowPost+1) ;

APPENDIX A. APPENDIX

endRange=min (PSRunData. j_frameCol_pinCenter+. ..
PSLoopingParam.numRowPost+testSize,
size (PSLoopingParam.frame_orig, 1));

currAddSize=length(startRange:endRange) ;

for iRow=startRange:endRange
PSRunData.PSRows (iRow) = initPSRowData(iRow, PSConditioms,

PSUsrInput, PSLoopingParam, PSAllFrames(:,:,:,1));
end
PSLoopingParam.numRowPost = PSLoopingParam.numRowPost+currAddSize;
end
end
end

4% Find location of flame, cir. cen, etc.
7% j_frameCol=int16 (PSUsrInput.pinsCenter_y); J Which row we are looking at
PSLoopingParam.leadJ_FrameCol = int64(PSUsrInput.pinsCenter_y);

PSRowData = getPSRowFlameLoc(PSLoopingParam.leadJ_FrameCol, PSRowData,
PSRunData, PSConditions, PSUsrInput, PSLoopingParam, PSFlags);

7 Save Lead Row to Rum Data
PSRunData.leadPSRow = PSRowData;

% Row Plotting Parameters
PSLoopingParam.autoPickedPixelslocFull = PSRowData.autoPickedPixelslocFull;
PSLoopingParam.testVectEndIdx = PSRowData.testVectEndIdx;
PSLoopingParam. timesPrevJumpedSoModAdv = ...
PSLoopingParam.timesPrevJumpedSoModAdv+ PSRowData.isJumpedSoModAdv;
% Add 1 if held back with modified advancement from a previous jump

/% Detect if flame just started and set appropriate parameters
if “PSLoopingParam.isFlameStart && (PSRowData.flameKernalDevelFrameNumb ~=...
PSLoopingParam.flameKernalDevelFrameNumb)
% If detected flame starting, reset PSLoopingParam Frame Number Limit.
/% Should happen once as setting equality in getFlameLocation Function!
PSLoopingParam.flameKernalDevelFrameNumb=. ..
PSRowData.flameKernalDevelFrameNumb;

elseif “PSLoopingParam.autoHitEdge && (PSRowData.frameVidEnd ~= ...
PSLoopingParam.frameVidEnd)
/% If detected flame ending, reset PSLoopingParam VidEnd Limit.
% Should happen once as setting equality in getFlameLocation Function!
PSLoopingParam.frameVidEnd = PSRowData.frameVidEnd;
end
PSLoopingParam.isFlameStart = PSRowData.isFlameStart;
PSLoopingParam.hitEdge = PSRowData.hitEdge;
PSLoopingParam.autoHitEdge = PSRowData.autoHitEdge;

% Update Rows to Run Data
PSRunData.leadPSRow = PSRowData;
leadPSRow=PSRunData.leadPSRow.frameCol;
if PSLoopingParam.isFlameStart
% Previous value of autoflameloc is used.
% Since skipping up until pin center detects flame,
% prior values set when detect if flame just started
numbRowsBubblePopped=0;
X% parfor J if not using spmd
for iRow=PSRunData.j_frameCol_pinCenter-PSLoopingParam.numRowPrior:...
PSRunData. j_frameCol_pinCenter+PSLoopingParam.numRowPost
if “PSRunData.PSRows(iRow).isLead

APPENDIX A. APPENDIX

PSRunData.PSRows (iRow) = getPSRowFlameLoc (iRow,
PSRunData.PSRows (iRow), PSRunData, PSConditioms,
PSUsrInput, PSLoopingParam, PSFlags);
if PSRunData.PSRows (iRow) .autoflameloc(PSLoopingParam.iCurrentFrame)
> PSRunData.PSRows (leadPSRow) . autoflameloc (PSLoopingParam.iCurrentFrame)
% Find lead row in this set. Only need to test here as starting with lead flame.
leadPSRow=iRow;
end
else
PSRunData.PSRows (iRow) = PSRunData.leadPSRow;
end
if "PSLoopingParam.BubblePopedStartedFrame &&...
PSRunData.PSRows (iRow) .BubblePopedFrame
numbRowsBubblePopped=numbRowsBubblePopped+1;
end
end
if “PSLoopingParam.BubblePopedStartedFrame ...
&& (numbRowsBubblePopped-PSLoopingParam.prevNumbRowsBubblePopped >...
PSLoopingParam.numRowBubblePopThresh)
% Look at rate of Tow bubble pops to detect when bubble actually popped.
7% If several rows tindicate bubble has popped, mark tt!!
PSLoopingParam.BubblePopedStartedFrame = PSLoopingParam.iCurrentFrame;
fprintf ([’ \tAt frame %d VS %d passed for Ys.avi.’,...
’Speculatively Detected bubble popped (Lost bubble tracking)'!\n’],
PSLoopingParam.BubblePopedStartedFrame,
PSConditions.frameBubPopped, PSConditions.VideoName)
end
PSLoopingParam.prevNumbRowsBubblePopped = numbRowsBubblePopped;

% Determine Aparent Center for frame segment, uses prior and post points
[PSRunData.xCirCenter (PSLoopingParam.iCurrentFrame) ,
PSRunData.yCirCenter (PSLoopingParam.iCurrentFrame),
PSRunData.CirRad (PSLoopingParam. iCurrentFrame)]
= getPSAparentFlameCenter (PSRunData, PSUsrInput, PSLoopingParam) ;

/% Find Lead Flame Row!
possibleNewLeadRow=int64 (PSRunData.yCirCenter (PSLoopingParam.iCurrentFrame)) ;
if possibleNewLeadRow<=PSRunData.j_frameCol_pinCenter+PSLoopingParam.numRowPost ... % If in
bound set
&& possibleNewLeadRow>=PSRunData.j_frameCol_pinCenter-PSLoopingParam.numRowPrior
circleCenterLead=possibleNewLeadRow;
end

% Determine and Update Aparent Radius for stretch rate calc
for iRow=PSRunData.j_frameCol_pinCenter-PSLoopingParam.numRowPrior:...
PSRunData. j_frameCol_pinCenter+PSLoopingParam.numRowPost
PSRunData.PSRows (iRow) = getPSRowFlameStretchRad(...
PSRunData.PSRows (iRow) , PSRunData, PSLoopingParam);

7% Determine deviation from circle center and radius
PSRunData.rowRadDevs (iRow)=. ..
(PSRunData.CirRad (PSLoopingParam.iCurrentFrame)- ...
PSRunData.PSRows (iRow) . StretchRad (PSLoopingParam.iCurrentFrame)) ;
if abs(PSRunData.rowRadDevs (iRow))>=PSLoopingParam.flameRadDevTol
&& PSRunData.PSRows (iRow) .isFlameStart &&. ..
“PSRunData.PSRows (iRow) .autoHitEdge
PSRunData.PSRows (iRow) . isRowSuspectAtFrame (PSLoopingParam.iCurrentFrame) = true;
end
end
rowIterPts=PSRunData.j_frameCol_pinCenter-PSLoopingParam.numRowPrior:...

98

APPENDIX A. APPENDIX

PSRunData. j_frameCol_pinCenter+PSLoopingParam.numRowPost;
PSRunData.TotalDev(PSLoopingParam.iCurrentFrame) = ...
(sum(PSRunData.rowRadDevs (rowIterPts).~2))~0.5;

PSRowData = getPSRowFlameStretchRad(PSRowData, PSRunData, PSLoopingParam);
end
/% Update Rows to Run Data
PSRunData.leadPSRow = PSRowData;

if "PSLoopingParam.autoHitEdge ...
&& (isPSRowExist(PSRunData, PSLoopingParam.trackingRow) && ...
“PSRunData.PSRows (PSLoopingParam.trackingRow) . autoHitEdge)
% Save tracking row as tracked lead row since following flame lead here...
PSRunData.circleCenterLeadRow(PSLoopingParam.iCurrentFrame) = ...
circleCenterLead;
if PSFlags.isTrackCirCenter
/% Move tracking row if tracking circle center flag set
PSLoopingParam.trackingRow = circleCenterLead;
end
elseif "PSFlags.isTrackCirCenter && ...
“isPSRowExist (PSRunData, PSLoopingParam.trackingRow)
%4 Save tracking row as tracked lead Tow since following flame lead here...
PSRunData.circleCenterLeadRow(PSLoopingParam.iCurrentFrame) = ...
circleCenterLead;
else
% No change anymore since at the end
PSRunData.circleCenterLeadRow(PSLoopingParam.iCurrentFrame) = ...
PSRunData.circleCenterLeadRow(PSLoopingParam. iCurrentFrame-1) ;
% PSLoopingParam. trackingRow;
end

4% Save Pin Center and Circle Center flame locations
PSRunData.dumbflameloc_cirCen(PSLoopingParam.iCurrentFrame) = ...
PSRunData.PSRows (circleCenterLead) .dumbflameloc (PSLoopingParam.iCurrentFrame) ;
PSRunData.dumbflameloc (PSLoopingParam.iCurrentFrame) = ...
PSRowData.dumbflameloc (PSLoopingParam.iCurrentFrame) ;

PSRunData.autoflameloc_cirCen(PSLoopingParam.iCurrentFrame) = ...
PSRunData.PSRows (circleCenterLead) .autoflameloc (PSLoopingParam.iCurrentFrame) ;

PSRunData.autoflameloc_pinCen(PSLoopingParam.iCurrentFrame) = ...
PSRowData.autoflameloc (PSLoopingParam.iCurrentFrame) ;

%% Plot Video of Current Flame Locations
/% Make looping fig current
set(0,’currentfigure’ ,frameLoopingFigHand)

if PSFlags.dispLoopingPlot || PSFlags.saveFrameStills || PSFlags.saveQOutVideo

% Only plot +if seeing or saving the output...

if PSFlags.savelImgFrameOnly
subplot(1,1,1)

elseif “PSFlags.reducelLoopFeatures || PSFlags.plotBrightnessHistogram
subplot(2,2,1)

else J PSFlags.reduceLoopFeatures & “PSFlags.plotBrightnessHistogram
subplot(2,1,1)

end

plotPSImgWithTicks (frameLoopingFigHand, PSRunData, PSConditions,
PSUsrInput, PSLoopingParam, PSFlags);

if "PSFlags.savelmgFrameOnly
if “PSFlags.reducelLoopFeatures || PSFlags.plotBrightnessHistogram

99

APPENDIX A. APPENDIX 100

subplot (2,2, [3,4])
/% Bottom two plot grids
else
subplot(2,1,2)
7% Bottom of 2zl grid
end
if “PSLoopingParam.isFlameStart ||
~isPSRowExist (PSRunData, PSLoopingParam.trackingRow)
plotPSRowData(frameLoopingFigHand, PSRowData, PSConditions,
PSUsrInput, PSLoopingParam, PSFlags);
else
plotPSRowData(frameLoopingFigHand,
PSRunData.PSRows (PSLoopingParam. trackingRow) ,
PSConditions, PSUsrInput, PSLoopingParam, PSFlags);
end
else
if PSLoopingParam.isFlameStart ||
~isPSRowExist (PSRunData, PSLoopingParam.trackingRow)
flameDist=(PSRowData.autoflameloc (PSLoopingParam.iCurrentFrame)-...
PSUsrInput.pinsCenter_x)/PSUsrInput.pixel2cm;
if PSFlags.isPrintFlameCM
fprintf (’\tFrame J%d, Flame Traveld: %.2f cm\n’,
PSLoopingParam. iCurrentFrame, flameDist)
end
else
flameDist=...
(PSRunData.PSRows (PSLoopingParam. trackingRow) .autoflameloc (PSLoopingParam.
iCurrentFrame)-...
PSUsrInput.pinsCenter_x)/PSUsrInput.pixel2cm;
if PSFlags.isPrintFlameCM
fprintf (’\tFrame %d, Flame Traveld: %.2f cm\n’,
PSLoopingParam. iCurrentFrame, flameDist)
end
end
end

end

%% Save Frames and Video as desired
if PSFlags.saveFrameStills
saveas (frameLoopingFigHand,
fullfile(strcat(PSConditions.folderPath, filesep,
strcat (’PostProcessVideo’ ,filesep, ’PPVideo_’, PSConditions.VideoName,...
’_?, num2str(PSLoopingParam.iCurrentFrame), ’.png’))), ’png’);
end
if PSFlags.saveOrigStills
imwrite (PSLoopingParam.frame,
fullfile(strcat(PSConditions.folderPath, filesep,
strcat(’OriginalFrames’, filesep, ’Original_’, PSConditions.VideoName,...
’_?, num2str(PSLoopingParam.iCurrentFrame),’.png’))));
end
if PSFlags.saveQOutVideo
[PSA110utputFrames, outputVideoObj, PSLoopingParam]
= writePSOutputLoopingVideo(PSAl110utputFrames, frameLoopingFigHand,...
outputVideoObj, PSConditions, PSLoopingParam, PSFlags);
end

if PSFlags.dispLoopingPlot && “PSFlags.useMatlabVideoReader
pause(.001) % Pause to allow display to catch up
end

APPENDIX A. APPENDIX 101

PSLoopingParam.iCurrentFrame=PSLoopingParam.iCurrentFrame+1;
end

4% Cleanup Video Loop Reading
if PSFlags.saveOutVideo && PSFlags.useMatlabVideoWriter
if PSFlags.writeVideoAtEndOfLoop
% If writting at end of loop to save time, mow write them!
% Crop unnecessary frames
PSA110utputFrames = PSAllQutputFrames(1:PSLoopingParam.frameVidEnd);
try
writeVideo (outputVideoObj, PSAllOutputFrames)
catch e
fprintf (’Errored on video write here\n’)
end
% Clear so it doesn’t save all the frames of the output video
clear PSAll0utputFrames

end

close(outputVideoObj)
end
close(frameLoopingFigHand)

if "PSFlags.useMatlabVideoReader
clear PSAllFrames
% Clear so it doesn’t save all the frames of the input video
end
% Crop Variables to PSLoopingParam.frameVidEnd instead of PSConditions.numFrames
PSRunData.dumbflameloc=PSRunData.dumbflameloc(1:PSLoopingParam.frameVidEnd) ;
PSRunData.autoflameloc_pinCen=...
PSRunData.autoflameloc_pinCen(1:PSLoopingParam.frameVidEnd) ;
PSRunData.autoflameloc_cirCen=...
PSRunData.autoflameloc_cirCen(1:PSLoopingParam.frameVidEnd) ;
if "PSFlags.suppressDebugOutput
fprintf (’\tCropped vars to end at %d instead of %d. ’,
PSLoopingParam.frameVidEnd, PSConditions.numFrames)
end

fprintf (’Looping elapsed time: %.1f\n’, cputime-PSLoopingStartTime)

else
X% Load Previous matlab Session
fprintf (’\n\tLoading previous matlab session instead of looping through frames’)
[PSRunData, PSScopeData, PSConditions, PSUsrInput, PSLoopingParam, PSFlags] = ...
grabPrevRunData(PSConditions, PSFlags);

end / End video progression

if PSFlags.saveFrameStills || PSFlags.saveImgFrameOnly
fprintf(’Done with Saving Video Frames, exiting now...\n’)
return

end

% VA4, VA4, Y44 VA4, VA4, Y44 VA4, A9
A A A A Y Y A YA

4% Write user input from PSConditions and PSUsrInput to file for documenting
B T e oa
writePSUsrInput (PSConditions, PSUsrInput, PSFlags);

fprintf (’Wrote key input (within PSConditions, PSUsrInput) to file\n’)
4% Rename output video file with relevant file indicators for easier storing

APPENDIX A. APPENDIX 102

if isSortNameVideo && PSFlags.saveOutVideo
if PSConditions.isBubble || PSConditions.philnit ~= PSConditions.phiPost
eqNominalName=sprintf (’%.3finto%.3f’, philnit, phiPost);
elseif PSConditions.philnit==PSConditions.phiPost
eqNominalName=sprintf (’Homogen_%.3f’ ,phiPost);
else
fprintf (’Error in determining eqApproxName\n’)
end
status = system(sprintf(’cp %s%sFlame_Propagation_%s.avi %s/sFlame_Prop_%s_%s.avi’,
PSConditions.folderPath, filesep, PSConditions.VideoName,
PSConditions.folderPath, filesep, eqNominalName, PSConditions.VideoName), ’-echo’);
if status™=0
fprintf ("ERROR in saving process Flame_Prop_x video! Errored in /s\n",
PSConditions.VideoName)
pause (360)
else
fprintf ("\tSaved copy of /s with different filename\n", PSConditions.VideoName)
end
end

R rRs LA ALY LA LY
A% Post Process image data gathered
fprintf (’\nInterpreting Gathered Data...\n’)

tic

if true
4% Assemble Gathered Data into Structure
PSPlotDispProp = initPSPlotDispProperties;
PSRunData = gatherPSRunData(PSRunData, PSConditions, PSUsrInput,
PSLoopingParam, PSPlotDispProp, PSFlags);

4% Interpolating/smoothing

PSPostProcData = interpPSRunData(PSRunData, PSScopeData, PSConditions,
PSUsrInput, PSPlotDispProp, PSFlags);

PSPlotDispProp.bubbleAxisHeigh=...

max (PSPostProcData.drdt_5pt_SG(1:...

int64 (PSPlotDispProp.splineResolutionFactor/. ..
PSPlotDispProp.splineDisplayReducFactor) :end));

PSPlotDispProp.SGMax=. ..

max (PSPostProcData.SR_SG(PSLoopingParam.flameKernalDevelFrameNumb:end))+. ..

2*std (PSPostProcData.SR_SG) ;

7% Compute maz stretch rate after flame kernal development for plotting

/% Plotting parameter to plot ~95)

/% first stretch points are very large and throws off plot axzis
end

YA A A A A A A A A A

%% Plot Pizel changes
SIS IIIIIIIY o BERTRTRTTLY, 5 s
if PSFlags.dispKeyPlots || PSFlags.savePostPlots
plotPSPixelChanges (PSRunData, PSConditions, PSFlags);

end
4% Plot Splined Radius and Velocity vs. Time
VA A A A A A A A3
if PSFlags.dispKeyPlots || PSFlags.savePostPlots
plotPSRadiusVsTime (PSPostProcData, PSRunData, PSConditions, PSUsrInput,
PSLoopingParam, PSPlotDispProp, PSFlags);

plotPSVelcityVsTime (PSPostProcData, PSRunData, PSConditions, PSUsrInput,
PSPlotDispProp, PSFlags);

APPENDIX A. APPENDIX 103

end

VA A A A A S A S A A YA
4% Plot drdt vs. Radius, drdt vs. Stretch rate, stretch rate, etc.
VA A A A A A A A YA
if PSFlags.dispKeyPlots || PSFlags.savePostPlots
plotPSVelocityVsRadius (PSPostProcData, PSRunData, PSConditions,
PSUsrInput, PSPlotDispProp, PSFlags)

plotPSVelocityVsStretchRate (PSPostProcData, PSConditions, PSUsrInput,
PSPlotDispProp, PSFlags);

plotPSStretchRateVsRadius (PSPostProcData, PSRunData, PSConditions,
PSPlotDispProp, PSFlags);
plotPSStretchRateVsTime (PSPostProcData, PSRunData, PSConditionms,
PSPlotDispProp, PSFlags);
end

% YA IAAIIIIIAA, YA AIAAI I IR, BRBBBIIIIRERIIIIIT DB
A% Plot Combined Scope data: Pressure and matching flame radius data
% REBBRIIIITD 7 REBRBIIIETBBRIIIT DD BRBBRIIIIR LRI T DB
if PSFlags.dispKeyPlots || PSFlags.savePostPlots
plotPSRadiusAndPressureVsTime (PSPostProcData, PSRunData, PSScopeData,
PSConditions, PSUsrInput, PSLoopingParam, PSPlotDispProp, PSFlags)
plotPSRadiusAndPressure_allVsTime (PSPostProcData, PSRunData, PSScopeData,
PSConditions, PSUsrInput, PSLoopingParam, PSPlotDispProp, PSFlags)

end

Y A Y Y Y Y A YA A Y

4% Write Key outputs to tztfile if looping, changed user input, or saving post plots
Y A A Y Y A Y YA A Yo

% Write key output if changed something. ..
if PSFlags.isRunLoop || "PSFlags.debug_skipUsrInput || PSFlags.savePostPlots
writePSKeyOutput (PSPostProcData, PSRunData, PSScopeData, PSConditions,
PSUsrInput, PSLoopingParam, PSPlotDispProp, PSFlags)
fprintf (’WROTE KEY OUTPUTS TO FILES\n’)
end

VY o AN IIIA o o Khhh o o 4
%% Clean Up and Save Vars, always saving
VY o AN IIIA o AAIIIIAIIIA o BIKBBIIIBIIT
clear usrInputFrameFigHand figHandPixDiff figHandSpline figHandRvT ...
figHandDrdtVT figHandSrvDrdt figHandSrvDrdt frameLoopingFigHand ...
schfig figHandDrdtVR singleFrameFigHand figHandRnPvT h
/Areduce size of matlab variables, removing figure handles and other large data info

if “isfield(PSConditions, ’specificRunMatlabFN’)

PSConditions.specificRunMatlabFN = fullfile(strcat(PSConditions.folderPath,
filesep,’MatlabSessionVars_’, PSConditions.VideoName,’.mat’));

end

save (PSConditions.specificRunMatlabFN)

%% Completed Note

fprintf (’Completed processing %s in %.0f sec.\n’, PSConditions.VideoName,
cputime-funcStartTime) / Pauseing for long run at end of process script file

catch e / Catch the MEzception struct for primnting
A% Print error message
fprintf (’Caught Error at end of Bubble looping: %s Occured in post-Processing %s\n’,

APPENDIX A. APPENDIX

e.identifier, PSConditions.VideoName)
fprintf (’\t%s\n’, e.message)

fprintf (’\n\nProcessSchlieren_Bubble.m ERROR: ¥%s\n\n’, PSConditions.VideoName)
if strcmp(e.identifier, ’MATLAB:handle_graphics:exceptions:UserBreak’) ... / ctr-c

|| strcmp(e.identifier, ’MATLAB:structRefFromNonStruct’) J close looping window

% If user is trying to kill job
fprintf (’STOPPING: Recieved user input to stop.\n’)
return; Jrethrow(e)

else / Print everything without rethrowing error...
getReport(e,’extended’, hyperlinks’,’on’)

end

4% Do something about the error...

Zrethrow(e)

if “strcmp(e.identifier, ’MATLAB:handle_graphics:exceptions:UserBreak’) ... / ctr-c

&& ~“strcmp(e.identifier, ’MATLAB:structRefFromNonStruct’) / closes looping window
% If not user input error...
writePSRunError (PSConditions, e)
end
end

pause(0) 7% 0 for 2, 5 for 3, maybe 10 for 4...
Get Row Relevant Locations: getPSRowFlameLoc

function [PSRowData] = getPSRowFlameLoc(j_frameCol, PSRowData, PSRunData,
PSConditions, PSUsrInput, PSLoopingParam, PSFlags)

% Detect the flame location, ignition

%

% Find flame location using dumb and auto ways given input conditions, frame shown as:

% frame(col, row) Black is 0, 255 is white

/% Check PSRowData j_frameCol

if PSRowData.frameCol = j_frameCol
fprintf (’Error in j Frame and PSRowData\n’)
pause (10)

end

/% Determine plausible section to look in to reduce spline load

4% Grab Row Data from PSLoopingParam. frame

PSRowData = getPSLoopingParamUpdateRow(PSRowData, PSRunData, PSConditions,
PSUsrInput, PSLoopingParam);

4% Dumb Flame Tracker Flame Loc
PSRowData = getPSRowDumbFlameLoc (PSRowData, PSConditions, PSUsrInput, PSLoopingParam) ;

%% Bubble Tracker Loc
PSRowData = getPSRowBubbleLoc(PSRowData, PSConditions, PSUsrInput, PSLoopingParam);

4% Auto Flame Tracker Flame Loc

PSRowData = getPSRowAutoFlameLoc (PSRowData, PSRunData, PSConditions, PSUsrInput,
PSLoopingParam, PSFlags);

Get Row Flame Location: getPSRowAutoFlameLoc

function PSRowData = getPSRowAutoFlameLoc(PSRowData, PSRunData, PSConditions, PSUsrInput,
PSLoopingParam, PSFlags)

4% Determine if in bubble popping frame or already at the edge of window

104

APPENDIX A. APPENDIX 105

NumbFramesHold=1;
if (PSRowData.BubblePopedFrame && (PSRowData.BubblePopedFrame > ...
PSLoopingParam. iCurrentFrame - NumbFramesHold))
&& (PSRowData.autoBubbleloc (PSRowData.BubblePopedFrame-1)-...
PSRowData.autoflameloc (PSRowData.BubblePopedFrame-1). ..
<=PSLoopingParam.unPhysicalPixJump)
% If within X frames of popping bubble close to flame that it may distort tracker...
% Temporarily inhibit jump
PSRowData = getPSRowBubbleHoldAdvancement (PSRowData, PSRunData, PSConditions,
PSUsrInput, PSLoopingParam, PSFlags, 0.6);
return
elseif PSRowData.autoHitEdge
% If already hit edge, speed up run and skip point...
PSRowData.autoflameloc (PSLoopingParam.iCurrentFrame)=. ..
PSRowData.autoflameloc(PSLoopingParam.iCurrentFrame-1) ;
return
end

4% Try to find flame front from 1D auto method.
useFindPeaks=false;
if “useFindPeaks
% Instead, setting to 1 since looking at smoothed with cut-off
maxIdx = 1;
maxThreshedIdx_Full = 1;
autoPickedPixelslocFull_uncut=1;
autoPickedPixelslocFull_validIdxs=1;
PSRowData.autoPickedPixelslocFull=1;
maxThreshedIdx=1;
else
% Determine possible flame locations
[,maxIdx] = findpeaks(-PSRowData.rowValOfInterest_Smoothed);
% Finds local minima and their index by finding the max of the inverse...
maxThreshedIdx_Full = maxIdx(PSRowData.rowValOfInterest_Smoothed(maxIdx)...
< PSConditions.autoFlameLocMinBrtThresh) ;
% Find minima’s index of index mazIdz, to Find minima lower than a threshold
maxIdx = [1; maxIdx]; 7 always check the first point as search point
maxThreshedIdx_Full = [1; maxThreshedIdx_Full];

autoPickedPixelslocFull_uncut=PSRowData.rowValOfInterest_Smoothed(maxThreshedIdx_Full);
if PSLoopingParam.iCurrentFrame>PSRowData.flameKernalDevelFrameNumb
% If outside the sparking window, ie mo longer in flame kernal development
autoPickedPixelslocFull_validIdxs=autoPickedPixelslocFull_uncut <= ...
PSRowData.autoflameloc (PSLoopingParam.iCurrentFrame-1) ;
else
autoPickedPixelslocFull_validIdxs=autoPickedPixelslocFull_uncut <= ...
PSUsrInput.pixEdge0OfRIO;
end
PSRowData.autoPickedPixelslocFull=...
autoPickedPixelslocFull_uncut (autoPickedPixelslocFull_validIdxs);
maxThreshedIdx = maxThreshedIdx_Full (autoPickedPixelslocFull_validIdxs);
end

A% Check if starting or erroring (whether to keep at pin center location)

% Pick last pizel and follow to find point of a specified darkness, do not grab the bubble

if isempty(PSRowData.autoPickedPixelslocFull)
% If in beginning or inm an error, autoHitEdge captures the latter
autoPickedPixelsloc=PSUsrInput.pinsCenter_x;
PSRowData.autoflameloc (PSLoopingParam. iCurrentFrame)=autoPickedPixelsloc;

if “PSRowData.isFlameStart

APPENDIX A. APPENDIX 106

PSRowData.testVectEndIdx=1;
else
if PSUsrInput.pixEdgeOfRI0 - PSRowData.autoflameloc(PSLoopingParam.iCurrentFrame-1)
< 2*PSLoopingParam.unPhysicalPixJump
% If near PSUsrInput.pizEdge0fRIO
fprintf ([’Errored in finding autoPickedPixelslocFull, empty.’,...
’\nSet to pinsCenter_x, but reduce PSUsrInput.pixEdge0OfRIO in next run\n’])
else
/% Else flame tracking lost....or possibly a mis-fire and can ignore.
end
end
return
end
if "PSUsrlInput.isRightDark
Zlook to the left for drop to darknessSelection
if PSUsrInput.pixEdge0OfRI0 < PSUsrInput.pinsCenter_x
fprintf (’LEFT SIDE NOT FLIPPED, need to reflect/rotate and continue...\n’)
pause(10)
end
end

%% Check each possible flame location
% While loop to find index for NEarest Detected mazThreshed.
% Subtract until reach point where jump is real
idxForNearestDetectedIdx=length(maxThreshedIdx) ;
7% Initial guess is try with end of local mins
iWhile=1;
while true && iWhile<=length(maxThreshedIdx)
% Do while loop hack. ..
isSubLocPastPhysical=false;
/% Set at each iteration for finding the correct local min to use
PSRowData.nearestDetectedIdx=maxThreshedIdx (idxForNearestDetectedIdx) ;
% Try another

4% Auto Adjust brightnessThickness loop
7 Keep advancing along rowValOfInterest curve until hit the first darknessSelection
if PSRowData.isFlameStart

bubbleExpansionTol=50;

pixBubbleLocTolBefore=0;

pixBubbleLocTolAfter=bubbleExpansionTol;

rowHadBub= abs(int64 (PSUsrInput.pinsCenter_y)-PSRowData.frameCol) <= ...
int64 (PSUsrInput.pinsCenter_y)+bubbleExpansionTol;
if PSConditions.isBubble
initBubLoc_row=sqrt(...
(PSUsrInput.pixel_bubble_right_auto-PSUsrInput.bubbleCenter_x_pixLoc)~2 ...
-double (int64 (PSUsrInput.bubbleCenter_y_pixLoc)-PSRowData.frameCol) "2) +...
PSUsrInput.bubbleCenter_x_pixLoc; / Using true bubble center
else
7% Assuming circle centered at pins center with radius pizel_bubble_right_avg
initBubLoc_row=sqrt(...
(PSUsrInput.pixel_bubble_right_avg-PSUsrInput.pinsCenter_x)"2 ...
-double (int64 (PSUsrInput.pinsCenter_y)-PSRowData.frameCol)"2) + ...
PSUsrInput.pinsCenter_x;
end
if PSConditions.isBubble && “PSRowData.BubblePopedFrame && rowHadBub....
&& ((PSRowData.autoflameloc(PSLoopingParam.iCurrentFrame-1)>=...
initBubLoc_row-pixBubbleLocTolBefore)
&& (PSRowData.autoflameloc(PSLoopingParam.iCurrentFrame-1)<...
initBubLoc_row+pixBubbleLocTolBefore))

APPENDIX A. APPENDIX 107

7% Flame within initial bubble region and bubble hasn’t poped yet
/% need additional assistance as flame merges with bubble
brightBonusStart= 4;/abs (PSRowData. initialMean—-PSRunData. leadPSRow. initialMean) ;
else
brightBonusStart=0;
end
initBrightnessThickness=1 + brightBonusStart;
/% thickness to just catch 1 pizel, +/- adjusts automatically in while loop below,
% with an additional boost depending on brightness differences with the lead
else
% Increased from 1 to capture steep flame fronts...
initBrightnessThickness=5;
end
brightnessThickness=initBrightnessThickness;
logicBrightnessTestVect=[0 0]; / legnth=2 to get the while loop running
whIterNum=0;
if PSLoopingParam.iCurrentFrame<=PSRowData.flameKernalDevelFrameNumb
X If trying to catch the initial flame, lower brightness to reduce noFlame workload
if “PSRowData.isLead && ~“PSRowData.isFlameStart && PSRunData.leadPSRow.isFlameStart
/% Test whether it %s early or late lagging flame start
if (PSRunData.leadPSRow.flameKernalDevelFrameNumb > ...
PSRowData.flameKernalDevelFrameNumb - 10)
% If starting around the time as the lead flame, no modifications necessary
brightAdjIterMax=100; 7 100 allowed for early start
else
% Else if trying to start tracking a long time after
brightAdjIterMax=30;
end
% If lead flame started, but lagging rows haven’t started,
7 increase brightness adjust to catch known exzisting flame
else
brightAdjIterMax=10; % limit to keep it tight at the start of flame kernel
end
elseif PSRowData.autoHitEdge
brightAdjIterMax=255; 7 no limit when at the end...
else
brightAdjIterMax=100; 7 Ezpect to be close along flame path
end
while “PSRowData.autoHitEdge && nnz(logicBrightnessTestVect)<1
&% whIterNum <= brightAdjIterMax
% count number of non-zeros to see if incresaing brightnessThickness s a good value
/% Keep small as possible to not grab the wrong point that is darker than the value
if PSRowData.isFlameStart
7% Looking instad of until end of array, look only until unPhysicalPizJump....
% Find unphysical pizel location, using rowValOfInterest_Smoothed
if PSLoopingParam.iCurrentFrame>PSRowData.flameKernalDevelFrameNumb
Z%allow some slip with initial 20 or so frames for flame kernal development
idxUnphysicalS = find(PSRowData.ipixLocOfInterest_Smoothed(. ..
PSRowData.nearestDetectedIdx:end)
>= PSRowData.autoflameloc (PSLoopingParam.iCurrentFrame-1) +...
PSLoopingParam.unPhysicalPixJump) ;
else
idxUnphysicalS = find(or(...

PSRowData.ipixLocOfInterest_Smoothed (PSRowData.nearestDetectedIdx:end)
>= PSRowData.autoflameloc (PSLoopingParam.iCurrentFrame-1) + ...
PSRowData.initUnPhysPixJump, ...

PSRowData.ipixLocOfInterest_Smoothed (PSRowData.nearestDetectedIdx:end)

> PSRowData.iPixEndOfRow-2*PSLoopingParam.unPhysicalPixJump));

% Additional flame jump not lead flame

7% but limit to not jump to edge of window in this vulnerable point

APPENDIX A. APPENDIX

end
if isempty(idxUnphysicalS)
/% Changing for reduced smoothed, since if mo unphysical points
% (cut them off before smoothing) it gives an unphysical number here
PSRowData.testVectEndIdx=1length(PSRowData.ipixLocOfInterest_Smoothed) ;
else
PSRowData.testVectEndIdx=idxUnphysicalS(1)-1+PSRowData.nearestDetectedIdx;
% use instead of "end"
if idxUnphysicalS(1) ==
isSubLocPastPhysical=true;
end
end
else Jif i small, before flame is detected...
% Find unphysical pizel location
PSRowData.nearestDetectedIdx=1;
if PSRowData.possiblySparked
idxUnphysicalS = find(or(...
PSRowData.ipixLocOfInterest_Smoothed (PSRowData.nearestDetectedIdx:end)
>= PSRowData.possiblySparked + PSRowData.initUnPhysPixJump,...
PSRowData.ipixLocOfInterest_Smoothed (PSRowData.nearestDetectedIdx:end)
> PSRowData.iPixEndOfRow-2*PSLoopingParam.unPhysicalPixJump)) ;
else
idxUnphysicalS = find(or(...
PSRowData.ipixLocOfInterest_Smoothed (PSRowData.nearestDetectedIdx:end)
>= PSUsrInput.pinsCenter_x + PSRowData.initUnPhysPixJump,...
PSRowData.ipixLocOfInterest_Smoothed (PSRowData.nearestDetectedIdx:end)
> PSRowData.iPixEndOfRow-2*PSLoopingParam.unPhysicalPixJump)) ;
end

if isempty(idxUnphysicalS)
% If close to the end, just use the end as end
idxUnphysicalS = length(PSRowData.ipixLocOfInterest_Smoothed);
end
PSRowData.testVectEndIdx=idxUnphysicalS(1)-1+PSRowData.nearestDetectedIdx;
% use instead of "end"

end
idxRangeOfrowVals=PSRowData.testVectEndIdx-PSRowData.nearestDetectedIldx;

AUN%AL Need to look only in physically acceptable region
logicBrightnessTestVect=and(...
PSRowData.rowValOfInterest_Smoothed (PSRowData.nearestDetectedIdx:. ..
PSRowData.testVectEndIdx) > ...
(PSRowData.flameCutoffThreshold-brightnessThickness),
PSRowData.rowValOfInterest_Smoothed (PSRowData.nearestDetectedIdx:...
PSRowData.testVectEndIdx) < ...
(PSRowData.flameCutoffThreshold+brightnessThickness). ..
); % Adding flameSlipTolerance for looking at current step to prevent jumps
AUARAK Need to look only in physically acceptable region
if PSLoopingParam.iCurrentFrame==
break; % Will fail here as flame doesn’t exist here!
elseif isSubLocPastPhysical
% Sub point is too far forward, no logical points ezist! Try a different point!
break;
elseif whIterNum == brightAdjIterMax-1
if sum(logicBrightnessTestVect) ==
brightnessThickness=brightnessThickness+1;
% Increase as want to have at least 1 walid point!
elseif sum(logicBrightnessTestVect) ==
% Do nothing i1f oscilating between 2 values and already at the 2 point mark

108

APPENDIX A. APPENDIX 109

break; / Break as want these 2 points

end

elseif sum(logicBrightnessTestVect) ==
%if brightnessThickness too small
brightnessThickness=brightnessThickness+1;

elseif sum(logicBrightnessTestVect) > 1 && brightnessThickness > initBrightnessThickness
7% brightnessThickness too large, but make sure not last iter,
/% don’t end here if mot a point that ezactly gives 1 point
brightnessThickness=brightnessThickness-1;

else
/#Do nothing as found tt! Will exit while loop on own

end

whIterNum=whIterNum+1; Jescape method in runaway cases!

end 7/ Auto Adjust brightnessThickness loop

A% Test Brightness Loop
if whIterNum >= brightAdjIterMax && sum(logicBrightnessTestVect)==
/% Ok, as have two choices to choose between
elseif whIterNum >= brightAdjIterMax && sum(logicBrightnessTestVect)>2
ZIf ran on and off...and more than 2 (2 case well debugged)
elseif sum(logicBrightnessTestVect) =1 &% whIterNum >= brightAdjIterMax ...
&& idxForNearestDetectedIdx==
if PSRowData.isFlameStart
% else Spark likely not initiated yet...
end
end

4% Advance with flameldzAutoS
flameIdxAutoS = find(logicBrightnessTestVect);
if PSRowData.isFlameStart && “PSRowData.autoHitEdge && PSLoopingParam.iCurrentFrame > ...
PSRowData.flameKernalDevelFrameNumb &&. ..
“isempty(flameIdxAutoS) && length(flameIdxAutoS)>1
&& ((PSConditions.isBubble ... J “PSConditions.isBubble [/
&& (PSRowData.BubblePopedFrame==0 || PSRowData.BubblePopedFrame && ...
(PSLoopingParam.iCurrentFrame<=PSRowData.BubblePopedFrame+5)))) % And no bubble
% If in flame regime and no longer in flame devel region,
% Assuming there is still a bubble to watch out for
flameIdxAuto=getPSClosestValidIdx(PSRowData, PSLoopingParam, flameIdxAutoS, PSFlags);
elseif PSRowData.isFlameStart && “PSRowData.autoHitEdge && PSLoopingParam.iCurrentFrame...
> PSRowData.flameKernalDevelFrameNumb &&. ..
“isempty(flameIdxAutoS) && length(flameIdxAutoS)>1
&% ~“PSConditions.isBubble || (PSConditions.isBubble
&& PSRowData.BubblePopedFrame ...
&& PSLoopingParam.iCurrentFrame>PSRowData.BubblePopedFrame+5) /7 Still a bubble
% If in flame regime and no longer in flame devel region, And no bubble issues
flameIdxAuto=getPSFarthestValidIdx (PSRowData, PSLoopingParam, flameIdxAutoS, PSFlags);
elseif PSRowData.isFlameStart && “PSRowData.autoHitEdge ...
&% PSLoopingParam.iCurrentFrame <= PSRowData.flameKernalDevelFrameNumb &&. ..
“isempty(flameIdxAutoS) && length(flameIdxAutoS)>1
% If flame developing choose farthest rising edge, so start from end and check backwards
flameIdxAuto=getPSFarthestValidIdx (PSRowData, PSLoopingParam, flameIdxAutoS, PSFlags);
elseif “PSRowData.isFlameStart && length(flameIdxAutoS)>1
if nnz(flameIdxAutoS) >=2 && (
(PSConditions.isBubble && ~PSRowData.BubblePopedFrame ... / Bubble and exists
&& (PSRowData.ipixLocOfInterest_Smoothed(flameIdxAutoS(end))
< PSUsrInput.pixel_bubble_right_auto ...
&& (PSRowData.ipixLocOfInterest_Smoothed(flameIdxAutoS(end))
< getPSMinNearBubPt (PSRowData, PSLoopingParam)...
-PSLoopingParam.unPhysicalPixJump)))...
Il (("PSConditions.isBubble || PSConditions.isBubble ...

APPENDIX A. APPENDIX 110

&& PSRowData.BubblePopedFrame) ... / If there isn’t a bubble
&& (idxUnphysicalS(1) ~= length(PSRowData.ipixLocOfInterest_Smoothed))))
% If only 1 element, then check...will be too high to ever be a problem
flameIdxAuto=getPSFarthestValidIdx (PSRowData, PSLoopingParam, flamelIdxAutoS, PSFlags);

elseif nnz(flameldxAutoS) >=2 && ("PSConditions.isBubble || PSConditions.isBubble ...
&& PSRowData.BubblePopedFrame) && length(idxUnphysicalS)==1 ... 7 No bubble
&& idxUnphysicalS == length(PSRowData.ipixLocOfInterest_Smoothed)
% If “isFlameStart &9 length(flameIdzAutoS)>1 and If greather than 2 points found,
% that aren’t cut for unphysical since expanded...
7% so have included the end and need to crop off unphysical points
if max(PSRowData.autoflameloc)==PSUsrInput.pinsCenter_x
% If never have had a flame propigating aka only at pin center...
priorValidSolidCutoffPt=...
PSRunData.leadPSRow.autoflameloc(PSLoopingParam.iCurrentFrame)
+ PSLoopingParam.unPhysicalPixJump; % Then use lead flame
else
% Else use prior flame
priorValidSolidCutoffPt=max (PSRowData.autoflameloc)
+ 2*PSLoopingParam.unPhysicalPixJump;
end
subIdxFlameIdxAutoS = and(...
PSRowData.ipixLocOfInterest_Smoothed(flameIdxAutoS)
< (PSRunData.leadPSRow.autoflameloc(PSLoopingParam.iCurrentFrame)...
+PSLoopingParam.unPhysicalPixJump) ,
“and(... Z And cut off end solid body thresholded values
PSRowData.ipixLocOfInterest_Smoothed(flameIdxAutoS)
> priorValidSolidCutoffPt,... 7 solid body after fatherest flame loc
PSRowData.rowValOfInterest_Smoothed(flameIdxAutoS)
< PSConditions.SolidBodyThreshold));
% Had to remove threshold of solid body threshold
if nnz(subIdxFlameIdxAutoS)>0
tmpFlameIdxAutoS = flameIdxAutoS(subIdxFlameIdxAutoS);
% Use end of possible points, restricted by the lead flame tracked point
flameIdxAuto=getPSFarthestValidIdx (PSRowData, PSLoopingParam,
tmpFlameIdxAutoS, PSFlags);
else
% Else no walid points, skipping...
flameIdxAuto=[];
end
elseif PSConditions.isBubble && ~“PSRowData.BubblePopedFrame ... / Bubble ezists
&& (PSRowData.ipixLocOfInterest_Smoothed(flameIdxAutoS(end))
>= PSUsrInput.pixel_bubble_right_auto ...
|l (PSRowData.ipixLocOfInterest_Smoothed(flameIdxAutoS(end))
>= getPSMinNearBubPt (PSRowData, PSLoopingParam). ..
-PSLoopingParam.unPhysicalPixJump))
% “isFlameStart & length(flameIdzAutoS)>1 and if have included points near bubble,
7% need to crop off bubble points if nmot in the possible flame region
subIdxFlameIdxAutoS = or(...
PSRowData.ipixLocOfInterest_Smoothed(flameIdxAutoS)
< getPSMinNearBubPt (PSRowData, PSLoopingParam)...
-PSLoopingParam.unPhysicalPixJump,
PSRowData.ipixLocOfInterest_Smoothed(flameIdxAutoS)
<= max(PSRowData.autoflameloc) + PSLoopingParam.unPhysicalPixJump) ;
% To allow for approach of bubble when nearby
% Crop off bubble points, and those near it!
if nnz(subIdxFlameIdxAutoS)>0
tmpFlameIdxAutoS = flameIdxAutoS(subIdxFlameIdxAutoS) ;
flameIdxAuto=getPSFarthestValidIdx (PSRowData, PSLoopingParam,
tmpFlameIdxAutoS, PSFlags);

APPENDIX A. APPENDIX 111

else
% Else no walid points, skipping...
flameIdxAuto=[];
end
else
flameIdxAuto=flameIdxAutoS(1);
end
% If detected more than 1 point before flame detected, just select first point...
else
flameIdxAuto=flameIdxAutoS;
end

4% Test flameIdzAuto

if “PSRowData.isFlameStart && isempty(flameIdxAuto)
% If failed because flame hasn’t started...
flameIdxAuto=1;

elseif PSRowData.autoHitEdge
%hit edge already...
autoPickedPixelsloc=PSRowData.autoflameloc (PSLoopingParam.iCurrentFrame-1);
break;

elseif isempty(flameldxAuto)
% If failed to detect a physical flame...

end

/% Check for special case that need not continue,first or hit the edge
if PSLoopingParam.iCurrentFrame==
% If first case, PSRowData.autoflameloc doesn’t have any values!
autoPickedPixelsloc=PSUsrInput.pinsCenter_x; / Set as will be empty
pixJump=autoPickedPixelsloc-PSUsrInput.pinsCenter_x;
break; / Break out of while loop as i=1 case is special...
elseif PSRowData.autoHitEdge
break; /7 Flame tracking has ended
end

% Check if detection failed previously
if isempty(flameIdxAuto) || isSubLocPastPhysical
/% Other logical tests fail below...for debugging
% Local min in location not flame detectable
idxForNearestDetectedIdx=idxForNearestDetectedIdx-1;
% Go into while loop with a previous local min - jumped passed a bubble
if idxForNearestDetectedIdx<1
idxForNearestDetectedIdx=1;
end
else
% Else mo prior errors detected, so continue
/% Determine the automatic detection pizel location,
% autoPickedPizelsloc=ipizLocOfInterest (flameIdzAuto+nearestDetectedldr-1);
autoPickedPixelsloc=...
PSRowData.ipixLocOfInterest_Smoothed(flameIdxAuto+PSRowData.nearestDetectedIdx-l);

% Determine pizJump to ensure physical!
pixJump=autoPickedPixelsloc-PSRowData.autoflameloc (PSLoopingParam.iCurrentFrame-1);
if isempty(pixJump)
7% Skip this point as it causes other logical test to fail...but unknown why
fprintf (°’\t i=Yd Error: pixJump is empty but flameIdxAuto isnt\n’,
PSLoopingParam. iCurrentFrame)
end

% Brightness rising slope test
if PSRowData.isFlameStart

APPENDIX A. APPENDIX

brtVal_FlameSelected=PSRowData.rowValOfInterest_Smoothed(...
flameIdxAuto+PSRowData.nearestDetectedIdx-1);
brtVal_LeftOfFlameSelected=PSRowData.rowValOfInterest_Smoothed(. ..
max (flameIdxAuto+PSRowData.nearestDetectedIdx-1 -1, 1));
brtVal_RightOfFlameSelected=PSRowData.rowValOfInterest_Smoothed(...
min(flameIdxAuto+PSRowData.nearestDetectedIdx-1 +1,
length(PSRowData.rowValOf Interest_Smoothed)));
end
/% Process jump in pizel

if (PSLoopingParam.iCurrentFrame>PSRowData.flameKernalDevelFrameNumb && pixJump ...

> PSLoopingParam.unPhysicalPixJump) ||
PSLoopingParam. iCurrentFrame<=PSRowData.flameKernalDevelFrameNumb && ...

((PSRowData.possiblySparked && (pixJump > PSRowData.initUnPhysPixJump ...

+ (PSRowData.possiblySparked-PSUsrInput.pinsCenter_x)))
|l ("PSRowData.possiblySparked && pixJump ...
> PSRowData.initUnPhysPixJump))
% if not physical or pizel jump exzeceds physical limitations
if PSRowData.isFlameStart
% Local min in location not flame detectable
idxForNearestDetectedIdx=idxForNearestDetectedIdx-1;

/% Go into while loop with a previous local min likly jumped passed bubble

if idxForNearestDetectedIdx<1
idxForNearestDetectedIdx=1;
end
else
% Skip this point, no flame yet detected
end
elseif "PSRowData.isFlameStart
if pixJump > O && ((PSRowData.possiblySparked ...
&& (pixJump <= PSRowData.initUnPhysPixJump ...
+ (PSRowData.possiblySparked-PSUsrInput.pinsCenter_x)))
|1 ("PSRowData.possiblySparked && pixJump ...
<= PSRowData.initUnPhysPixJump))
% If flame start has just been detected!
if “"PSRunData.leadPSRow.isFlameStart ...
&& PSRowData.possiblySparked ...
&& autoPickedPixelsloc<=PSRowData.possiblySparked ...
|| PSRunData.leadPSRow.isFlameStart && (autoPickedPixelsloc ...
< max(.5*(PSRunData.leadPSRow.autoflameloc(. ..

PSLoopingParam. iCurrentFrame)-PSUsrInput.pinsCenter_x), 10)...

+PSUsrInput.pinsCenter_x)

PSRowData.possiblySparked=0;
break; / Break as have not detected spark yet

elseif “PSRowData.possiblySparked
PSRowData.possiblySparked=autoPickedPixelsloc;
% Flip flag so next time here it sparked!
break; / Break out of loop as flame possibly initialized

else
PSRowData.isFlameStart=true;
PSRowData.flameKernalDevelFrameNumb=PSLoopingParam.iCurrentFrame. ..

+PSLoopingParam. flameKernalDevelFrameAdjust/3600%PSConditions.fps;

7% frame number to start limiting flame speed (allows flame development)
break; /JBreak out of loop as flame just initialized

end

else

% Skip this point as flame not yet detected

% Local min in location not flame detectable

idxForNearestDetectedIdx=idxForNearestDetectedIdx-1;

% Go into while loop with a previous local min as must have jumped bubble

if idxForNearestDetectedIdx<1

112

APPENDIX A. APPENDIX 113

idxForNearestDetectedIdx=1; 7 For debugging
end
end
elseif pixJump < O
/% Detected Flame point retreating
break;
elseif pixJump ==
break; / Flame hasn’t moved!
elseif pixJump > O
break;
7% Normal pizJump?
end
end
iWhile=iWhile+1;
end

% Check flame is advancing, otherwise hit edge
try
if “exist(’autoPickedPixelsloc’, ’var’)
autoPickedPixelsloc=[]; /% set to empty
end
if isempty(autoPickedPixelsloc) && (length(...
PSRowData.startIdxPt (PSRowData.startIdxPt>1))) < 10 &% “PSRowData.isLead
/% If doesn’t exist and hasn’t exzisted, then flame is not started and needs to be reset...
PSRowData.misFire = true; / Flame reset flag

elseif “isempty(autoPickedPixelsloc)
&& nnz(PSRowData.autoflameloc-PSUsrInput.pinsCenter_x)>1
&% PSRowData.autoflameloc(PSLoopingParam.iCurrentFrame-1)>autoPickedPixelsloc...
+PSLoopingParam.flameSlipTolerance
end
catch e / Catch the MEzception struct for printing
fprintf (’Error in checking flame advancement: %s Occured in post-Processing %s\n’,...
e.identifier, PSConditions.VideoName)
fprintf (’\t%s\n’, e.message)
rethrow(e)
end

4% Test whether or not to save point

try
if "PSRowData.isLead && “PSRowData.misFire && PSRowData.isFlameStart ...
&& “PSRowData.autoHitEdge && (isempty(autoPickedPixelsloc)
Il (pixJump>PSLoopingParam.stallThresh ...
&& (abs(autoPickedPixelsloc-PSLoopingParam.stallThresh)
<= PSRowData.autoflameloc(PSLoopingParam.iCurrentFrame-1)))
|l ((PSRowData.autoflameloc(PSLoopingParam.iCurrentFrame-1)...
“=PSUsrInput.pinsCenter_x)
&& PSRowData.autoflameloc(PSLoopingParam.iCurrentFrame-1)
== (PSRowData.autoflameloc(PSLoopingParam.iCurrentFrame-2))))
% Or last 2 frames are tdentical...posstibly stalled on window blemish...
% Or past two points were held const..but not held at pin center (past failure)
PSRowData = getPSRowLostFrameAction(PSRowData, PSLoopingParam) ;
end
catch e
fprintf (’Errored on testing if lost flame\n’)
end

if PSLoopingParam.iCurrentFrame==
PSRowData.autoflameloc (PSLoopingParam.iCurrentFrame)=PSUsrInput.pinsCenter_x;

APPENDIX A. APPENDIX 114

elseif PSRowData.autoHitEdge || “PSRowData.misFire && ~PSRowData.isFlameStart
% If already hit edge, errors can be ignored and keep stationary
PSRowData.autoflameloc (PSLoopingParam.iCurrentFrame)=. ..
PSRowData.autoflameloc (PSLoopingParam.iCurrentFrame-1) ;

elseif PSRowData.misFire
PSRowData.isFlameStart=false;
PSRowData.possiblySparked = 0;

% Not flame start, previous was miss-categorized
% Correct current and previous time step
PSRowData.autoflameloc (PSLoopingParam. iCurrentFrame-1:...

PSLoopingParam. iCurrentFrame)=PSUsrInput.pinsCenter_x;
PSRowData.flameKernalDevelFrameNumb = PSLoopingParam.initflameKernalDevelFrameNumb;
PSRowData.misFire = false;

/% Reset missfire for next run

elseif isempty(autoPickedPixelsloc)
PSRowData.autoflameloc (PSLoopingParam. iCurrentFrame)=. ..
PSRowData.autoflameloc (PSLoopingParam.iCurrentFrame-1) ;
elseif autoPickedPixelsloc < PSRowData.autoflameloc(PSLoopingParam.iCurrentFrame-1)
- PSLoopingParam.flameSlipTolerance ||.../slipped backward
PSRowData.autoflameloc (PSLoopingParam.iCurrentFrame-1)...
>= PSUsrInput.pixEdgeOfRIO ||...7% went to end
PSRowData.autoflameloc (PSLoopingParam.iCurrentFrame-1)...
>= PSRowData.iPixEndOfRow -2%PSLoopingParam.unPhysicalPixJump ||... 7 near edge
PSLoopingParam.iCurrentFrame>PSRowData.flameKernalDevelFrameNumb ...
&& autoPickedPixelsloc > PSRowData.autoflameloc(PSLoopingParam.iCurrentFrame-1)
+ PSLoopingParam.unPhysicalPixJump ||...7% Unphysical jump forward
PSLoopingParam. iCurrentFrame<=PSRowData.flameKernalDevelFrameNumb && ...
((PSRowData.possiblySparked ...
&& (pixJump > PSRowData.initUnPhysPixJump ...
+ (PSRowData.possiblySparked-PSUsrInput.pinsCenter_x)))
|| ("PSRowData.possiblySparked ...
&& pixJump > PSRowData.initUnPhysPixJump)) /% Unphysical jump
% See if hit edge
pixLocOfMinFlameTravelDistance=PSUsrInput.pixEdge0fRIO; %400;
if PSRowData.isFlameStart && (PSRowData.autoflameloc(PSLoopingParam.iCurrentFrame-1)
>= pixLocOfMinFlameTravelDistance) || PSRowData.isFlameStart
&& (PSRowData.autoflameloc(PSLoopingParam.iCurrentFrame-1)
>= PSRowData.iPixEndOfRow-2*PSLoopingParam.unPhysicalPixJump)
% If in a region likely to have reached the end of the flame propigation
if "PSRowData.autoHitEdge
PSRowData.autoHitEdge=true;
PSRowData.frameVidEnd=min (PSLoopingParam.iCurrentFrame. ..
+PSLoopingParam.frameVidEnd_flameEndAdd, PSConditions.numFrames);

end
end
if PSRowData.autoHitEdge

% If hit edge

PSRowData.autoflameloc (PSLoopingParam.iCurrentFrame)=. ..

PSRowData.autoflameloc (PSLoopingParam.iCurrentFrame-1) ;
elseif autoPickedPixelsloc > PSRowData.autoflameloc(PSLoopingParam.iCurrentFrame-1)
+ PSLoopingParam.unPhysicalPixJump
% Auto detected flame advanced more than physically possible...
if PSLoopingParam.iCurrentFrame>PSRowData.flameKernalDevelFrameNumb
PSRowData.autoflameloc (PSLoopingParam.iCurrentFrame)=. ..
PSRowData.autoflameloc(PSLoopingParam.iCurrentFrame-1);
else
PSRowData.autoflameloc (PSLoopingParam.iCurrentFrame) = autoPickedPixelsloc;
end
elseif PSConditions.isBubble && autoPickedPixelsloc ...

APPENDIX A. APPENDIX

< PSRowData.autoflameloc (PSLoopingParam.iCurrentFrame-1)
- PSLoopingParam.flameSlipTolerance
PSRowData = getPSRowBubbleHoldAdvancement (PSRowData, PSRunData, PSConditions,
PSUsrInput, PSLoopingParam, PSFlags, 0.75);

if "PSRowData.isLead && “PSRowData.misFire && PSRowData.isFlameStart
&& ~“PSRowData.autoHitEdge
% If mot going to screw up the rest of the flame tracking
PSRowData = getPSRowLostFrameAction(PSRowData, PSLoopingParam) ;
% Increment lost frame advancement to prepare for reset if needed
end
else
% All other unphysical things should be saved by leaving flame statioary
PSRowData.autoflameloc(PSLoopingParam.iCurrentFrame)=. ..
PSRowData.autoflameloc (PSLoopingParam.iCurrentFrame-1) ;
end

else Jeverything ok to save point
PSRowData.autoflameloc (PSLoopingParam.iCurrentFrame) = autoPickedPixelsloc;

idxAutoLocBrightness = dsearchn(PSRowData.ipixLocOfInterest_Smoothed, autoPickedPixelsloc);

PSRowData.autoFlameLocBrightNess(PSLoopingParam.iCurrentFrame) = ...
PSRowData.rowValOf Interest_Smoothed (idxAutoLocBrightness) ;
end

Get Row Bubble Location: getPSRowBubbleLoc

function PSRowData=getPSRowBubbleLoc (PSRowData,PSConditions,PSUsrInput,PSLoopingParam)

/% Finds location of bubble, if exists and finds when it pops

/% pins center when can’t find bubble

% Looks at PSConditions.bubbleCutoffThresh for initial darkness at pin sparking

% extrapolates from it to track the bubble

if “PSConditions.isBubble || PSRowData.BubblePopedFrame
% If no bubble to detect, or if already detected a popped bubble
PSRowData.autoBubbleloc (PSLoopingParam. iCurrentFrame)=PSUsrInput.pinsCenter_x;
return / Set default and return

end

PSRowData.bubbleStartLoc=PSRowData.autoflameloc (max (PSLoopingParam.iCurrentFrame-1,1))+...

PSLoopingParam.unPhysicalPixJump;
pixBubSearchRange=int64 (PSRowData.bubbleStartLoc) : int64 (PSRowData.bubbleEndSearchLoc) ;
/% Weigh rTight avg much more, as should be closer to this side
4% Find possible bubble location
if “isempty(pixBubSearchRange) && length(pixBubSearchRange)>3
% If a valid range and enough to do a find peaks call
[*,allPossibleBubbleIdx] = findpeaks(-smooth(double(. ..
PSRowData.rowValOfInterest (pixBubSearchRange-int64 (PSUsrInput.pinsCenter_x)))));
possibleBubbleIdx = allPossibleBubbleIdx(PSRowData.rowValOfInterest(...
pixBubSearchRange (allPossibleBubbleIdx)-int64 (PSUsrInput.pinsCenter_x))
<= PSRowData.bubbleDarknessFrac*255) ;
elseif “isempty(pixBubSearchRange)
% Else if there is still a Tange to find the bubble but not enough to call findpeaks
possibleBubbleIdx=dsearchn(. ..
smooth (double (PSRowData.rowValOfInterest(. ..
pixBubSearchRange-int64 (PSUsrInput.pinsCenter_x)))),
min(smooth(double (PSRowData.rowValOfInterest(. ..
pixBubSearchRange-int64 (PSUsrInput.pinsCenter_x))))));
else
/% Else no search range and therefore no bubble in walid location
possibleBubbleIdx=[];
end
4% Pick which possible bubble loc is bubble

115

APPENDIX A. APPENDIX 116

if “isempty(possibleBubbleldx) ...
% Crop off solid bodyies (pins, staw, etc.)
possibleBubbleIdx_NonSolidBody = find(PSLoopingParam.frame(PSRowData.frameCol,
pixBubSearchRange (possibleBubbleIdx)) > PSConditions.SolidBodyThreshold) ;
if isempty(possibleBubbleIdx_NonSolidBody)
Jfprintf(’No bubble points found after solid bodies removed...\n’)
% Likely mo more bubble
possibleBubLoc=possibleBubbleIdx(end) + PSRowData.bubbleStartLoc;
else
pixThreshedBubble_black_NonSolidBody_Pts2Use=pixBubSearchRange(. ..
possibleBubbleIdx (possibleBubbleIdx_NonSolidBody)) ;
possibleBubLoc=double (pixThreshedBubble_black_NonSolidBody_Pts2Use(end)) ;
end
detectedBubBrightness=PSRowData.rowValOfInterest (int64(dsearchn(. ..
PSRowData.ipixLocOfInterest, possibleBubLoc)));
end
% Select what to do with the right most pizel found
if "PSRowData.autoHitEdge && PSLoopingParam.iCurrentFrame>1
&& (isempty(possibleBubbleldx) ... / If couldn’t find bubble

|l (nnz(PSRowData.autoBubbleloc)>1
&& ((abs(possibleBubLoc - PSRowData.autoBubbleloc(PSLoopingParam.iCurrentFrame-1)) >= PSLoopingParam

.unPhysicalPixJump) ... % Was tracking but bubble moved ahead rapidly
|l (PSLoopingParam.iCurrentFrame > PSRowData.flameKernalDevelFrameNumb && abs(possibleBubLoc -
PSRowData.autoflameloc (PSLoopingParam.iCurrentFrame-1)) <= PSLoopingParam.unPhysicalPixJump)
)) ... % Or bubble slipped to near recent flame loc
|| (PSLoopingParam.BubblePopedStartedFrame && ... 7 Or Bubble popping started and didn’t really find
bubble (row value too great/small) and not false from catching solid body (straw)
(PSLoopingParam.iCurrentFrame <= PSLoopingParam.BubblePopedStartedFrame+5 && detectedBubBrightness >

PSConditions.SolidBodyThreshold ...
&& abs(detectedBubBrightness-PSRowData.bubbleDarknessFrac#*255)>PSRowData.bubBrightnessTolerance)

...
|l (possibleBubbleIdx(end)==1length(pixBubSearchRange))) 7 If bubble reached maz of range, bubble likley

not here
% Test for flame existence before hitting right edge (and after for a smooth flame)
PSRowData.autoBubbleloc (PSLoopingParam. iCurrentFrame)=PSUsrInput.pinsCenter_x;
%if there are no black pizels in between the pins and right wall, assign = at the pins
if “PSRowData.BubblePopedFrame && nnz(PSRowData.autoBubbleloc) > 0
% If hasn’t yet ben detected as popped, and there was a bubble, then it must have popped here
PSRowData.BubblePopedFrame = PSLoopingParam.iCurrentFrame;
end
elseif PSRowData.autoHitEdge
% If previously hit right edge...
PSRowData.autoBubbleloc (PSLoopingParam.iCurrentFrame)=PSUsrInput.pinsCenter_x;
else

try
PSRowData.autoBubbleloc(PSLoopingParam.iCurrentFrame)=possibleBubLoc;

% bubble location is the last black pizel before the right edge

catch e
fprintf (’Warning no possibleBubLoc? Errored on setting possible BubLoc in getPSRowBubbleLoc\n’)

end

end

idxAutoBubLocBrightness = dsearchn(PSRowData.ipixLocOfInterest_Smoothed,
PSRowData.autoBubbleloc(PSLoopingParam. iCurrentFrame)) ;

PSRowData.autoBubblelocBrightNess (PSLoopingParam.iCurrentFrame) = ...
PSRowData.rowValOfInterest_Smoothed(idxAutoBubLocBrightness);

Get Tank ¢ From Partial Pressure: getPSTankEqR

function phi_calc = getPSTankEqR(tankTup, tankDate)

APPENDIX A. APPENDIX 117

% Calculates the equivalence ratio of CH4{-Air with ambient pressure offset

PGaugeOffset_psi=0;
ambPress_psi=getPSAmbPress (tankDate) ;

A% Calculate Fuel/Air Molar Ratio

FA_molar=(tankTup(2)-tankTup(1))/...
(tankTup(3) + ambPress_psi+PGaugeOffset_psi - (tankTup(2)-tankTup(1)));
7% Ambient cancels in numerator

FA_molar_Stoich=1/(2%4.76); J Fuel/air
/ Methane is assumed

4% Calculate Fuel/Air Mass Ratio

presAirl = tankTup(1)+ ambPress_psi+PGaugeOffset_psi;
presCH4 = tankTup(2)+ ambPress_psi+PGaugeOffset_psi;
presAir2 = tankTup(3)+ ambPress_psi+PGaugeOffset_psi;

MMFuel=16;
MMAir=.21%32+.79%28;
FA = MMFuel*(presCH4-presAirl)
/ (MMAirx(presAiri+(presAir2-presCH4)));
stoichFA = MMFuel/(MMAirx*(1+4/4-0/2)*(1+.79/.21));

X% Calculate Equivalence Ratio —-- Using Molar?
phi_calc_Molar=FA_molar/FA_molar_Stoich;
phi_calc=FA/stoichFA;

Get Flame Center: getPSAparentFlameCenter

function [xCirCenter, yCirCenter, CirRad] = getPSAparentFlameCenter (PSRunData,
PSUsrInput, PSLoopingParam)

% Container for getThreePtCenterCircle to get aparent center of PSRunData Points

% and put them in PSRunData at the current frame

% Updates to come w/ minimization prob to find min geo distance

/% Find which indexz have started flaming and aren’t at the pin center (reset) nor hit edge
iAdd=1;
for iRow=PSRunData.j_frameCol_pinCenter-PSLoopingParam.numRowPrior:...
PSRunData. j_frameCol_pinCenter+PSLoopingParam.numRowPost
if PSRunData.PSRows(iRow).isFlameStart && “PSRunData.PSRows(iRow).autoHitEdge...
&& PSRunData.PSRows (iRow) .autoflameloc (PSLoopingParam.iCurrentFrame)
"= PSUsrInput.pinsCenter_x ...
&& “PSRunData.PSRows (iRow) . isRowSuspectAtFrame (PSLoopingParam.iCurrentFrame)
idxStartedRows (iAdd) = iRow;
x_points(iAdd, 1) = PSRunData.PSRows(iRow) .autoflameloc(PSLoopingParam.iCurrentFrame) ;
y_points(iAdd, 1) = double(PSRunData.PSRows(iRow) .frameCol) ;
iAdd=iAdd+1;
end
end

if “exist(’idxStartedRows’,’var’) || length(idxStartedRows) < 3
% If didn’t find emough points that have started, just output 1D Approach...
% x1=PSRunData.PriorPSRow.autoflameloc(PSLoopingParam. iCurrentFrame) ;
% x2=PSRunData.leadPSRow. autoflameloc (PSLoopingParam. iCurrentFrame) ;
% &3=PSRunData.PostPSRow. autoflameloc (PSLoopingParam. iCurrentFrame) ;
%
% yl=double(PSRunData.PriorPSRow. frameCol) ;
% y2=double (PSRunData. leadPSRow. frameCol) ;
% y3=doudble (PSRunData.PostPSRow. frameCol) ;
%

APPENDIX A. APPENDIX 118

7% [zCirCenter, yCirCenter] = getThreePtCenterCircle(zl, y1, z2, y2, z3, y3);
xCirCenter = nan;
yCirCenter = nan;
CirRad = nan;
return;
end

%% Best Fit Circle Center
[xCirCenter, yCirCenter, CirRad] = getPSBestFitCircle(x_points, y_points);

Get Best Fit Circle: getPSBestFitCircle

function [center_x, center_y, r] = getPSBestFitCircle(x, y)
% Calculates the circle center and radius of a best fit circle through all the points
% specified in (z,y) of given input

%% Form B, matriz
B = [x.72+y."2, x, y, ones(length(x),1)];

4% Compute Singular value of B
[U, S, V] = svd(B);
u_algebraic = V(:, 4);

4% deconstruct u
a=u_algebraic(1);
b=u_algebraic(2:3);
c=u_algebraic(4);

%% Determine center and radius, assuming norm(b) 2/(4*a"2) - c/a is positive
if norm(b)~2/(4*a~2)-c/a > 0
center_x_algebraic=-b(1)/(2*a);
center_y_algebraic=-b(2)/(2*a);
r_algebraic=sqrt(norm(b)~2/(4*¥a"2) - c/a);
end
u_algebraic=[center_x_algebraic; center_y_algebraic; r_algebraic];
% Column vector of algerbraic best fit circle as initial guest of best fit circle
4 F_eval=B*u;

4% Iterate starting with min algebraic dist to find minimum geometric distance
% util=[center_z, center_y, r];
util=u_algebraic;
iter=1;
er(iter)=1; / get loop started
while er(iter) > 1E-5 && iter <=100
% Form Jacobian
for curPt=1:length(x)
du(curPt,1) = norm([util(1)-x(curPt), util(2)-y(curPt)],2)-util(3);
J_util(curPt, :) = [...
(util(1)-x(curPt)) /sqrt((util(1)-x(curPt)) "2+(util(2)-y(curPt))"2),
(util(2)-y(curPt)) /sqrt((util(1)-x(curPt)) "2+(util(2)-y(curPt))"2),
-1 73
end
4% Solve System of equations for correction term
% Matlab’s built in uses qr: h_Ucorrection=-J_util\du
% Solve J(util)*h == -d(u)
[Q, R] = qr(J_util); % Check: Q+R-J_util ~ 0;
/ QR*h=—du, R*h = -’*du
h_Ucorrection=R\ (-Q’*du) ;
A% Check solving algorithm error of approzimation:
util=util+h_Ucorrection;

APPENDIX A. APPENDIX 119

er(iter+1)= norm(h_Ucorrection, inf) / norm(util, inf); 7% Should be zero...
iter=iter+1;

end

%% Save output

center_x=util(1);

center_y=util(2);

r=util(3);

Function: initPSRowData

function PSRowData = initPSRowData(j_frameCol, PSConditions, PSUsrInput,
PSLoopingParam, PSInitialFrame)

% Initialize values for PSRowData before loop

persistent initLeadPinRow

PSRowData.isFlameStart = false;
PSRowData.flameKernalDevelFrameNumb = ...
PSLoopingParam.initflameKernalDevelFrameNumb;
7% Set an inital value for detecting initial flame kernal
% reset to 20 frames after flame detected

% Flame Tracking
PSRowData.dumbflameloc=zeros (PSConditions.numFrames,1);
PSRowData.autoflameloc= PSUsrInput.pinsCenter_x.*ones(PSConditions.numFrames,1);
PSRowData.autoFlameLocBrightNess = zeros(PSConditions.numFrames,1);
/% Brightness values at the autoflameloc

/% Bubble Tracking
PSRowData.autoBubbleloc = zeros(PSConditions.numFrames,1);

% 0 means mot processed, at pins center if errored or no bubble/popped
PSRowData.autoBubblelocBrightNess = zeros(PSConditions.numFrames,1);

/% Brightness values at the autoBubbleloc
PSRowData.BubblePopedFrame=PSLoopingParam.BubblePopedStartedFrame;

% 0 until bubble popped, then contains frame row detected bubble pop

/% But if bubble already popped, then use

PSRowData.frameCol = j_frameCol;
PSRowData.StretchRad = nan.*zeros(PSConditions.numFrames,1);
PSRowData.possiblySparked = 0;
% Two step to find spark...
/% First detection sets this flag to what would have been the initial spark,
% If called again then it truely did spark...
PSRowData.misFire = false;
PSRowData.isLead = false;
/% Keep track if main lead flame

PSRowData.ipixLocOfInterest=double(0) ;
PSRowData.ipixLocOfInterest_Smoothed=double(0) ;
PSRowData.rowValOfInterest=uint8(0);
PSRowData.rowValOfInterest_Smoothed=double(0) ;
PSRowData.hitEdge=false;
PSRowData.autoHitEdge=false;
PSRowData.frameVidEnd=PSLoopingParam.frameVidEnd;
PSRowData.isJumpedSoModAdv=0;
PSRowData.autoPickedPixelslocFull=double(0);
PSRowData.nearestDetectedIdx=0;
PSRowData.testVectEndIdx=0;

% Need to increase number of points for brightness catching
PSRowData.rowValOfInterest_SmoothedMulFact=10;

APPENDIX A. APPENDIX 120

PSRowData.startIdxPt(1) = 1;

% The indez of rowValOfInterest and ipizLocOfInterest the flame s sitting on
PSRowData.initUnPhysPixJump = O;

% Initial unphysical pizel jump, moved to getPSLooping ParamUpdateRow

PSRowData.NumFrameLostFlame = 0;
7% In case lose track of flame, counts the nubmer of times lost flame

VYAV BV VAV A SV A A A S A A A VAV A A VA A SV VAV A SV AV AV AV AV A A
% Different Rows may have different thresholds due to Schlieren differences
% Grab pizel loc of end of Row. Tranpose to get in column major format
initRowVals=...

transpose (PSInitialFrame (PSRowData.frameCol,

int64 (PSUsrInput.pinsCenter_x:size(PSInitialFrame, 2))));
initiPixVals=transpose(PSUsrInput.pinsCenter_x:size(PSInitialFrame, 2));
initSolidCutoffiPixVals=initiPixVals(initRowVals>PSConditions.SolidBodyThreshold) ;
PSRowData.iPixEndOfRow=initSolidCutoffiPixVals(end);

if PSConditions.isBubble
% If Bubble, cutoff bubble from initial mean values
PSRowData.initialMean = getPSRowMean(PSRowData.frameCol,
PSConditions, PSUsrInput, PSInitialFrame);
PSRowData.bubbleDarknessFrac=mean([ones(1,2).*PSRowData.initialMean,
ones(1,3) .*PSConditions.bubbleCutoffThresh]+10)/255;
PSRowData.bubBrightnessTolerance=...
abs (PSRowData.initialMean-PSRowData.bubbleDarknessFrac*255)/4;
Z#Tolerance bubble can be found before deemed not found
PSRowData.bubbleStartLoc=0; % Start pizel search point for bubble location

% End pizel search point for bubble location
if isfield(’PSUsrInput’, ’pixel_bubble_right_auto’)
PSRowData.bubbleEndSearchLoc=. ..
mean ([ones(1,3) .*PSUsrInput.pixel_bubble_right_auto, PSUsrInput.pixEdge0fRIO0]);
else J Use usr input if have to when initializing pizel_bubble_right_auto
PSRowData.bubbleEndSearchlLoc=...
mean([ones(1,3) .*PSUsrInput.pixel_bubble_right_avg, PSUsrInput.pixEdge0fRIO0]);
end
% Same as above but for pin center...do once
if PSLoopingParam.iCurrentFrame==
% If initial frame, reset initLeadPinRow since isempty call only
% checks for ezistence and will use other rTuns for this value...
initLeadPinRow=getPSRowMean (int64 (PSUsrInput.pinsCenter_y),
PSConditions, PSUsrInput, PSInitialFrame);
end
brightDevFromLead=(PSRowData.initialMean-initLeadPinRow) ;
if brightDevFromLead>0
% Only add if brighter to better catch flame in row that is bias brighter
PSRowData.flameCutoffThreshold=...
PSConditions.flameCutoffThreshold + brightDevFromLead;
else
PSRowData.flameCutoffThreshold=PSConditions.flameCutoffThreshold;
end
else
/% Else solid body cutoff should be good enough to estimate mean brightness value
PSRowData.initialMean=getPSRowMean (PSRowData.frameCol, ...
PSConditions, PSUsrInput, PSInitialFrame);
PSRowData.flameCutoffThreshold=PSConditions.flameCutoffThreshold;
end

PSRowData.isRowSuspectAtFrame = logical(zeros(PSConditions.numFrames,1));

APPENDIX A. APPENDIX 121

Function: interpPSRunData

function PSPostProcData = interpPSRunData(PSRunData, PSScopeData, PSConditions, PSUsrInput, PSPlotDispProp,
PSFlags)
% Interpret PSRunData, applying filters to radius and splining, generating main plotting parameters

A A A A Y A S YA YA
4% Filtering Radius Data

A I A A A A Y A Y YA YA
% Savitzky-Golay Filtering

PSPostProcData.SG_order=3;

% calculate 3/ range for framelength SG smoothing
sg_framlenThreePer=length(PSRunData.r_cm_raw_cropped)*3/100;
if “mod(sg_framlenThreePer,2) / if even, add one. Requires odd number
sg_framlenThreePer=sg_framlenThreePer+1;
end
if PSConditions.isBubble
PSPostProcData.SG_framelen=9; /Sets SG Framelength for rest of code,
% increase for more smoothing, compare to sg_framlenThreePer
% "9 for Stratified/Bubble
else
PSPostProcData.SG_framelen=15;
% ~15 for Homogenous
end
PSPostProcData.r_cm_SG = sgolayfilt(PSRunData.r_cm_raw_cropped,PSPostProcData.SG_order,
PSPostProcData.SG_framelen);
PSPostProcData.r_cm_SG_Aparent = sgolayfilt(PSRunData.r_cm_raw_Aparent_cropped,
PSPostProcData.SG_order, PSPostProcData.SG_framelen);
% Aparent for Stretch Rate Radius Calc
PSPostProcData.r_cm_SG_Aparent_avg = sgolayfilt(PSRunData.r_cm_raw_Aparent_cropped_avg,
PSPostProcData.SG_order, PSPostProcData.SG_framelen);

if "PSFlags.suppressDebugOutput
fprintf([’Using a %d Order Savitzky-Golay Filter with frame length of %d’,...
> (%.2f corresponds to 3%%)\n’], PSPostProcData.SG_order,
PSPostProcData.SG_framelen, sg_framlenThreePer);

end
% Median Filtering - Not used
Med_order=4;

r_cm_Med = medfiltl(PSRunData.r_cm_raw_cropped—PSRunData.r_cm_raw_cropped(end),Med_order) +...
PSRunData.r_cm_raw_cropped(end) ;

#Spline
if length(PSRunData.timeReal_raw_cropped) ~= length(PSRunData.timeReal_interp)
PSPostProcData.r_cm_interp_spline = ...
spline (PSRunData.timeReal _raw_cropped, PSRunData.r_cm_raw_cropped,
PSRunData.timeReal_interp);
PSPostProcData.r_cm_interp_SG = ppval(spline(PSRunData.timeReal_raw_cropped,
PSPostProcData.r_cm_SG), PSRunData.timeReal_interp);
#Using S-G Filtering and spline
PSPostProcData.r_cm_interp_Med = ppval(spline(PSRunData.timeReal_raw_cropped,
r_cm_Med), PSRunData.timeReal_interp);
else
PSPostProcData.r_cm_interp_spline = PSRunData.r_cm_raw_cropped;
PSPostProcData.r_cm_interp_SG = PSPostProcData.r_cm_SG;
PSPostProcData.r_cm_interp_Med = r_cm_Med;
end

APPENDIX A. APPENDIX 122

if "PSFlags.isFilterRadius
PSPostProcData.r_cm_interp = PSPostProcData.r_cm_interp_spline;
/% Chosen interpolated result used in flame speed, etc.
else
PSPostProcData.r_cm_interp = PSPostProcData.r_cm_interp_SG; / Smooths more. ..
end

% Determine Aparent Radius from stretch rate radius, spline from cropped value
PSPostProcData.r_cm_SG_Aparent (isnan(PSPostProcData.r_cm_SG_Aparent))=0;
PSPostProcData.r_cm_SG_Aparent (abs (PSPostProcData.r_cm_SG_Aparent)>10%1024)=0;
7 Set non-sensical values to 0 radius
try
PSPostProcData.aparentRadStart = ...
find (PSPostProcData.r_cm_SG_Aparent(1:...
int64 (length(PSPostProcData.r_cm_SG_Aparent)/4))<=0, 1, ’last’) + 1;
% Grab point where radius makes sense after it has been developed
PSPostProcData.aparentRadEnd = length(PSPostProcData.r_cm_SG_Aparent);
PSPostProcData.r_cm_interp_SG_Aparent = ppval(spline(...
PSRunData.timeReal_raw_cropped (PSPostProcData.aparentRadStart:. ..
PSPostProcData.aparentRadEnd) ,
PSPostProcData.r_cm_SG_Aparent (PSPostProcData.aparentRadStart:. ..
PSPostProcData.aparentRadEnd)) ,
PSRunData.timeReal_interp(PSPostProcData.aparentRadStart:end));
/% Aparent for Stretch Rate Radius Calc
catch e / If errored in finding the aparentstart position
PSPostProcData.aparentRadStart=...
length(PSRunData.timeReal_interp)-PSPostProcData.aparentRadEnd+1;
% Needs to be this size for later plotting, etc.
PSPostProcData.r_cm_interp_SG_Aparent = ...
zeros (size(PSRunData.timeReal_interp(PSPostProcData.aparentRadStart:end)));
% Would have been interpolated to this size
fprintf (’Warning: PSPostProcData.r_cm_interp_SG_Aparent set to Os\n’)
end

% Doing averaged flame center aparent flame radius:
if sum(~isnan(PSPostProcData.r_cm_SG_Aparent_avg)) &&...
sum(PSPostProcData.r_cm_SG_Aparent_avg) && ...
sum(abs (PSPostProcData.r_cm_SG_Aparent_avg)./...
length(PSPostProcData.r_cm_SG_Aparent_avg)) < 5
% If there is at least 1 data point...and values make sense
PSPostProcData.r_cm_interp_Aparent_avg = ...
spline (PSRunData.timeReal_raw_cropped, PSPostProcData.r_cm_SG_Aparent_avg,
PSRunData.timeReal_interp);
else
PSPostProcData.r_cm_interp_Aparent_avg = zeros(length(PSRunData.timeReal_interp),1);
end

% Must be strictly increasing at begining, crop off those values
PSPostProcData.aparentStartIdx=1;
for i=2:10 % Look at the first 10 points for a decreasing term. set to first increasing value
if PSPostProcData.r_cm_interp_Aparent_avg(PSPostProcData.aparentStartIdx) >= ...
PSPostProcData.r_cm_interp_Aparent_avg(i)
% If decreasing, crop this point off.. must be just starting off
PSPostProcData.aparentStartIdx=i;
end
end

% Find location of bubble, index
if PSConditions.isBubble
[PSPostProcData.initialBubble_cm_interpLocIndex] = ...

APPENDIX A. APPENDIX

dsearchn(PSPostProcData.r_cm_interp, PSUsrInput.pinCentRadialBubbleLoc_Auto_cm);

else

end

7% Just pick a centerpoint if no bubble
PSPostProcData.initialBubble_cm_interpLocIndex=...
int64((PSRunData.startSpotPastFlameKernal+length(PSRunData.timeReal_interp))/2);

A% Find slope of lines, internal/(Transition)/external to bubble
PSPostProcData.idx_InternalBubbleZone_start=int64 (PSRunData.startSpotPastFlameKernal);

% =40 for flame wripple in 20181026_121419, PSRunData.startSpotPastFlameKernal;

PSPostProcData.idx_InternalBubbleZone_end=PSPostProcData.initialBubble_cm_interpLocIndex;

% Internal to Bubble Zone
PSPostProcData.time_InternalBubbleZoneInterp_ms=[...

ones (length (PSRunData.timeReal_interp(PSPostProcData.idx_InternalBubbleZone_start:...
PSPostProcData.idx_InternalBubbleZone_end)),1),...

PSRunData.timeReal_interp(PSPostProcData.idx_InternalBubbleZone_start:...
PSPostProcData.idx_InternalBubbleZone_end) .*1000] ;

PSPostProcData.rad_InternalBubbleZone=...

PSPostProcData.r_cm_interp(PSPostProcData.idx_InternalBubbleZone_start:...
PSPostProcData.idx_InternalBubbleZone_end) ;

rad_InternalBubble_linefit=...

PSPostProcData.time_InternalBubbleZoneInterp_ms\PSPostProcData.rad_InternalBubbleZone;

PSPostProcData.rad_InternalBubble_slope_cms=rad_InternalBubble_linefit(2)*1000;

if PSConditions.isBubble

/% Transition to Bubble Zone
PSPostProcData.idx_TransitionBubbleZone_start=PSPostProcData.idx_InternalBubbleZone_end;

% Find end of transition
rTransitionAddition_cm=2*(1.8-1.5);
PSPostProcData.idx_TransitionBubbleZone_end= ...
dsearchn(PSPostProcData.r_cm_interp,
PSUsrInput.pinCentRadialBubbleLoc_Auto_cm+rTransitionAddition_cm) ;

PSPostProcData.time_TransitionBubbleZoneInterp_ms=[...

ones(length(PSRunData.timeReal_interp(PSPostProcData.idx_TransitionBubbleZone_start:...

PSPostProcData.idx_TransitionBubbleZone_end)),1),...
PSRunData.timeReal_interp(PSPostProcData.idx_TransitionBubbleZone_start:...
PSPostProcData.idx_TransitionBubbleZone_end) .*1000] ;
PSPostProcData.rad_TransitionBubbleZone=...
PSPostProcData.r_cm_interp(PSPostProcData.idx_TransitionBubbleZone_start:...
PSPostProcData.idx_TransitionBubbleZone_end) ;
rad_TransitionBubble_linefit=PSPostProcData.time_TransitionBubbleZoneInterp_ms\...
PSPostProcData.rad_TransitionBubbleZone;
PSPostProcData.rad_TransitionBubble_slope_cms=rad_TransitionBubble_linefit (2)*1000;

7 External to Bubble Zone Start
PSPostProcData.idx_ExternalBubbleZone_start=PSPostProcData.idx_TransitionBubbleZone_end;

else

end

/% Ezternal to Bubble Zome Start
PSPostProcData.idx_ExternalBubbleZone_start=PSPostProcData.idx_InternalBubbleZone_end;

% Exzternal to Bubble Zome
PSPostProcData.idx_ExternalBubbleZone_end=length(PSRunData.timeReal_interp) ;

PSPostProcData.time_ExternalBubbleZoneInterp_ms=[...

ones (length (PSRunData.timeReal_interp(PSPostProcData.idx_ExternalBubbleZone_start:...
PSPostProcData.idx_ExternalBubbleZone_end)),1),...

123

APPENDIX A. APPENDIX 124

PSRunData.timeReal_interp(PSPostProcData.idx_ExternalBubbleZone_start:...
PSPostProcData.idx_ExternalBubbleZone_end) .*1000] ;
PSPostProcData.rad_ExternalBubbleZone=...
PSPostProcData.r_cm_interp(PSPostProcData.idx_ExternalBubbleZone_start:...
PSPostProcData.idx_ExternalBubbleZone_end);
rad_ExternalBubble_linefit=PSPostProcData.time_ExternalBubbleZoneInterp_ms\...
PSPostProcData.rad_ExternalBubbleZone;
PSPostProcData.rad_ExternalBubble_slope_cms=rad_ExternalBubble_linefit(2)*1000;

Y A A Y A A A Y YA YA
4% Radius Spline Sanity Check Plot
Y A A Y A A A Y YA A
if PSFlags.dispKeyPlots || PSFlags.savePostPlots
figHandSpline=figure(’Visible’, ’0n’); % Spline Check
if "PSFlags.dispKeyPlots
figHandSpline.Visible=’off’;
end
plot (PSRunData.timeReal_raw_cropped*1000,PSRunData.r_cm_raw_cropped, ...
’0’, ’DisplayName’, ’Raw’);
hold on
plot (PSRunData.timeReal_interp*1000,PSPostProcData.r_cm_interp_spline,
’DisplayName’, ’Spline’);
plot (PSRunData.timeReal_interp*1000,PSPostProcData.r_cm_interp_SG,
’DisplayName’, ’Spline Savitzky-Golay’);
plot (PSRunData.timeReal_interp(PSPostProcData.aparentStartIdx:end)*1000,
PSPostProcData.r_cm_interp_Aparent_avg(PSPostProcData.aparentStartIdx:end),
’g’, ’DisplayName’, ’Aparent Center’)
7% plot (PSRunData. timeReal_interp*1000,PSPostProcData.r_cm_interp_Med, ’c’)
xlabel(°Time [ms]’), ylabel(’r [cm]’);
title(strcat(’Raw compared with Spline: cm vs. ms data (’,
PSConditions.VideoName, ’)’) , ’Interpreter’,’none’)
legend(’location’, ’best’), legend show

if PSConditions.isBubble
i AN 994
/% Find and add bubble location in specified thickness of bubble
ind_bubbleStart_SG = dsearchn(PSPostProcData.r_cm_interp_SG,
PSUsrInput.pinCentRadialBubbleLoc_Auto_cm) ;
ind_bubbleEnd_SG=min(ind_bubbleStart_SG+1, length(PSPostProcData.r_cm_interp_SG));
r_x=PSRunData.timeReal_interp(ind_bubbleStart_SG)*1000;
r_y=min(PSPostProcData.r_cm_interp_SG) ;
r_dx=PSRunData.timeReal_interp(ind_bubbleEnd_SG)*1000-...
PSRunData.timeReal_interp(ind_bubbleStart_SG)*1000;
r_dy=(max (PSPostProcData.r_cm_interp_SG)-min(PSPostProcData.r_cm_interp_SG));
R=rectangle(’Position’, [r_x, r_y, r_dx, r_dy],’Tag’, ’BubblelLocation’,...
’FaceColor’, [0.302 0.745 0.933]); /%, ’EddgeColor’,’r’)
hold off; alpha(.25);
if PSFlags.debug_autoScaleAxis
text (r_x+2xr_dx, r_y+r_dy*9/10, sprintf(’Initial\nBubble\nLocation’))
else
text (r_x+2xr_dx, r_y+r_dy*9/10, sprintf(’Initial\nBubble\nLocation’))

end
hold off; alpha(.5)

Bt III DI BIIIBIII IR IR DIT K

% Find location the bubble popped

PSPostProcData.bubblePopLocation = ...
PSRunData.leadPSRow.autoBubbleloc (PSRunData.leadPSRow.BubblePopedFrame-1) -...
PSUsrInput.pinsCenter_x;

PSPostProcData.bubblePopLocation_cm = ...

APPENDIX A. APPENDIX

PSPostProcData.bubblePopLocation/PSUsrInput.pixel2cm;
PSPostProcData.bubblePopLocation_Aparent_avg = ...

PSRunData.leadPSRow.autoBubbleloc (PSRunData.leadPSRow.BubblePopedFrame-1) -...

PSRunData.x_Aparent_avg;
PSPostProcData.bubblePopLocation_Aparent_avg_cm = ...

PSPostProcData.bubblePopLocation_Aparent_avg/PSUsrInput.pixel2cm;
ind_bubblePop_SG = dsearchn(PSPostProcData.r_cm_interp_SG,

PSPostProcData.bubblePopLocation_cm) ;

ind_bubblePop_Aparent_avg = dsearchn(PSPostProcData.r_cm_interp_Aparent_avg,

PSPostProcData.bubblePopLocation_Aparent_avg_cm) ;
hold on;
h=plot (PSRunData.timeReal_interp(ind_bubblePop_SG)*1000, ...
PSPostProcData.r_cm_interp_SG(ind_bubblePop_SG),’xb’);
%, ’DisplayName’, ’Spline Savitzky-Golay’);
h.Annotation.LegendInformation.IconDisplayStyle=’off’;
h=plot (PSRunData.timeReal_interp(ind_bubblePop_Aparent_avg)*1000,

PSPostProcData.r_cm_interp_Aparent_avg(ind_bubblePop_Aparent_avg), ’xb’);

%, ’DisplayName’, ’Aparent Center’)
h.Annotation.LegendInformation.IconDisplayStyle=’off’;
hold off;
end
filename =[’Raw_Spline_GS_Flame_Radius_vs_Time_’,...
PSConditions.rawVideofilename,’.eps’]; /Name of file to be saved
outputVideoPath=fullfile(PSConditions.folderPath, filename);
if PSFlags.savePostPlots
saveas(figHandSpline, outputVideoPath, ’epsc’)
end
if strcmp(figHandSpline.Visible, ’off’)
close(figHandSpline)
end
end
Y A A A Y A A S A A I
/A% Calculate the wvelocity data cm/s
Y A Y A A A YA S YA
PSPostProcData.drdt_f=zeros(length(PSRunData.timeReal_interp)-1, 1);
ZForward diff
PSPostProcData.drdt_c = zeros(length(PSRunData.timeReal_interp)-1, 1);
/Center diff
PSPostProcData.drdt_bpt = zeros(length(PSRunData.timeReal_interp)-1, 1);
% 5 point center diff O(h~4)
PSPostProcData.drdt_5pt_SG = zeros(length(PSRunData.timeReal_interp)-1, 1);
PSPostProcData.drdt_5pt_Med = zeros(length(PSRunData.timeReal_interp)-1, 1);

% DrDt = getPSRadiusVelocity(time, radius)

PSPostProcData.drdt_bpt = getPSRadiusVelocity(PSRunData.timeReal_interp,
PSPostProcData.r_cm_interp);
% 5 point center diff 0(h™4)

PSPostProcData.drdt_bpt_SG = getPSRadiusVelocity(PSRunData.timeReal_interp,
PSPostProcData.r_cm_interp_SG) ;

PSPostProcData.drdt_bpt_Med = getPSRadiusVelocity(PSRunData.timeReal_interp,
PSPostProcData.r_cm_interp_Med) ;

XChoose O(h4) center diff
PSPostProcData.drdt=PSPostProcData.drdt_bpt_SG;
PSPostProcData.drdt_mean=...
mean (PSPostProcData.drdt_5pt (PSRunData.startSpotPastFlameKernal:end));
/% Move to cutoff initial flame peak due to flame kernal development
PSPostProcData.drdt_mean_SG=...
mean (PSPostProcData.drdt_5pt_SG(PSRunData.startSpotPastFlameKernal:end)) ;
7% Move to cutoff initial flame peak due to flame kernal development

125

APPENDIX A. APPENDIX 126

if PSConditions.isBubble
PSPostProcData.drdt_beforeBubble=...
mean (PSPostProcData.drdt_5pt (PSRunData.startSpotPastFlameKernal:. ..
PSPostProcData.initialBubble_cm_interpLocIndex));
PSPostProcData.drdt_afterBubble=...
mean (PSPostProcData.drdt_bpt (PSPostProcData.initialBubble_cm_interpLocIndex:end)) ;
else
PSPostProcData.drdt_beforeBubble=PSPostProcData.drdt_mean;
PSPostProcData.drdt_afterBubble=PSPostProcData.drdt_mean;
end
VA A A A A A
%% Stretch Rate calcs...
VA A A A A A
% Calculate the stretch rate 1/s, assuming burned and unbruned have same density
isUseNonLinearExtrap=true;
/% Whether to use a linear method to extrapolate to zero stretch,
7 otherwise uses a more robust mon-linear method
if true / For code folding...
4% Find T and P for density comensation, Assuming equal pressures
[PSPostProcData.TBurnt, PSPostProcData.SLoSimulated, r_cm_SR_rStart, r_cm_SR_rEnd] = ...
getPSTBurntNSLo (PSConditions.phiPost);
PSPostProcData.TUnburnt=PSScopeData.tempAutoDetected +273.15;
% K, Ti from Text File measuring gas unburnt temp, ~ambientTemp
mmBurnt=27.62; mmUnburnt=27.62;
%% Initialize Variables. man so doesn’t plot wvalues that don’t exist
PSPostProcData.SR_SG = nan.*zeros(length(PSPostProcData.drdt),1);
PSPostProcData.SRMod_SG = nan.*zeros(length(PSPostProcData.drdt),1);
PSPostProcData.SR_SG_drdt = nan.*zeros(length(PSPostProcData.drdt),1);

%% Calculate raw stretch rate, different ways
SR_Spherical_Fact_cm_interp_SG=2./PSPostProcData.r_cm_interp_SG(1l:end-1);

PSPostProcData.SR_SG_drdt (1:1length(SR_Spherical_Fact_cm_interp_SG)) = ...
PSPostProcData.drdt(1:length(SR_Spherical_Fact_cm_interp_SG)).*...
SR_Spherical_Fact_cm_interp_SG;

% Separate loop for aparent as cutting off initial values when radius not detected
for j = PSPostProcData.aparentRadStart:...
min(length(PSPostProcData.r_cm_interp_SG_Aparent), length(PSPostProcData.drdt))
PSPostProcData.SRMod_SG_drdt(j) = ...
PSPostProcData.drdt(j)*2/ (PSPostProcData.r_cm_interp_SG_Aparent(j));
end

4% Crop and Smooth Stretch rate values, based on end radius given by getPSTBurntNSLo
PSPostProcData.SR_SG_rStart= max(dsearchn(...

PSPostProcData.r_cm_interp_SG, r_cm_SR_rStart), 1);

% Crop off, so only looking at stretch rate from 1.0 to 2.5 cm....

% If using regulat SR calculated from drdt...Literature way

PSPostProcData.SR_SG_rEnd = min(dsearchn(PSPostProcData.r_cm_interp_SG, r_cm_SR_rEnd),
length (PSPostProcData.SR_SG_drdt));
% Crop off, so only looking at stretch rate from 1.0 cm to 2.5 cm....

7 Smooth stretch rate to reduce noise
PSPostProcData.SR_SG_drdt_Filtered=...
sgolayfilt (PSPostProcData.SR_SG_drdt (PSPostProcData.SR_SG_rStart:...
PSPostProcData.SR_SG_rEnd),
PSPostProcData.SG_order, PSPostProcData.SG_framelen);
x=PSPostProcData.SR_SG_drdt_Filtered;

APPENDIX A. APPENDIX 127

%% Find Unstretched Flame Speed, linear method:
% Slope Intercept for O stretch laminar flame speed w/o compensating for density yet
y=PSPostProcData.drdt (PSPostProcData.SR_SG_rStart:PSPostProcData.SR_SG_rEnd) ;
X=[ones(length(x),1), xI1;
PSPostProcData.SL_linefit=X\y;
PSPostProcData.SLo_linear=PSPostProcData.SL_linefit(1);

% Slope intersept for zero stretch exztrapolated from data

4% Find Unstretched Flame Speed, non-linear method:

Z ln(dr_dt) = ln(dr_dt_zeroStretch) -alpha*dr_dt_zeroStretch*Lb, alpha=2/(Rf*dr_dt)

y_two_RfSb=log(PSPostProcData.drdt (PSPostProcData.SR_SG_rStart:PSPostProcData.SR_SG_rEnd));
% Form natural log for

x_two_RfSb=2./(PSPostProcData.r_cm_interp_SG(PSPostProcData.SR_SG_rStart:...
PSPostProcData.SR_SG_rEnd) ...

.*PSPostProcData.drdt (PSPostProcData.SR_SG_rStart:PSPostProcData.SR_SG_rEnd));
X_rfSb=[ones (length(x_two_RfSb),1), x_two_RfSb];
nonLinearSL_linefit=X_rfSb\y_two_RfSb;
1nSbUs=nonLinearSL_linefit(1);

PSPostProcData.SLo_nonLin = exp(1lnSbUs);

%% Determine Markstein length/number Lb
PSPostProcData.Lbs_linear = (PSPostProcData.drdt(PSPostProcData.SR_SG_rStart:...
PSPostProcData.SR_SG_rEnd)-PSPostProcData.SLo_linear)...
./ (-PSPostProcData.SR_SG_drdt_Filtered);
PSPostProcData.Lb_linear = mean(PSPostProcData.Lbs_linear);

PSPostProcData.Lbs_nonLin = (log(PSPostProcData.drdt(PSPostProcData.SR_SG_rStart:...
PSPostProcData.SR_SG_rEnd))-log(PSPostProcData.SLo_nonLin))./...
(-2.*PSPostProcData.SLo_nonLin./...
(PSPostProcData.r_cm_interp_SG(PSPostProcData.SR_SG_rStart:...
PSPostProcData.SR_SG_rEnd) .*. ..
PSPostProcData.drdt (PSPostProcData.SR_SG_rStart:PSPostProcData.SR_SG_rEnd)));
PSPostProcData.Lb_nonLin = mean(PSPostProcData.Lbs_nonLin);

A% Plot Markstein Lengths vs. Rf, taken the mean
if PSFlags.dispKeyPlots || PSFlags.savePostPlots
markSteinFigHand=figure(’Visible’, ’0n’); /plots welocity vs time
if "PSFlags.dispKeyPlots
markSteinFigHand.Visible=’off’;
end
plot(PSPostProcData.r_cm_interp_SG(PSPostProcData.SR_SG_rStart:...
PSPostProcData.SR_SG_rEnd), PSPostProcData.Lbs_linear, ’DisplayName’, ’Linear’)
hold on
plot (PSPostProcData.r_cm_interp_SG(PSPostProcData.SR_SG_rStart:...
PSPostProcData.SR_SG_rEnd), PSPostProcData.Lbs_nonLin, ’DisplayName’,’Nonlinear’)
legend(’show’)
ylabel (’Markstein Length’)
xlabel (°Rf’)

filename =[’Lb_vs_Radius_’,PSConditions.rawVideofilename,’.eps’];

outputVideoPath=fullfile(PSConditions.folderPath, filename);

if PSFlags.savePostPlots
saveas (markSteinFigHand, outputVideoPath, ’epsc’)

end

if strcmp(markSteinFigHand.Visible, ’off’)
close(markSteinFigHand)

end

end

%% Compensate for density difference

APPENDIX A. APPENDIX 128

rhou_rhob=(mmUnburnt/mmBurnt) * (PSPostProcData.TBurnt/PSPostProcData.TUnburnt) ;

% Linear method
PSPostProcData.SLo_linear_denComp = PSPostProcData.SLo_linear/rhou_rhob;

% Nonlinear method
PSPostProcData.SLo_nonLin_denComp = PSPostProcData.SLo_nonLin/rhou_rhob;

PSPostProcData.SR_SG=PSPostProcData.SR_SG_drdt;

/% Save relevant parameters
if isUseNonLinearExtrap
PSPostProcData.SLo = PSPostProcData.SLo_nonLin;
PSPostProcData.SLo_denComp = PSPostProcData.SLo_nonLin_denComp;
else
PSPostProcData.SLo = PSPostProcData.SLo_linear;
PSPostProcData.SLo_denComp = PSPostProcData.SLo_linear_denComp;
end

A% Write output if necessary
/% if "PSFlags.suppressDebugOutput
if "PSConditions.isBubble
% No need to print when there is a bubble... but still calculated above for now
fprintf (’\tLinear: %.2f cm/s (%.3f cm/s with rho comp) Lb=}.2f\n’,
PSPostProcData.SLo_linear, PSPostProcData.SLo_linear_denComp,
PSPostProcData.Lb_linear)
fprintf (’\tNonlinear: %.2f cm/s (%.3f cm/s with rho comp) Lb=%.2f\n’,
PSPostProcData.SLo_nonLin, PSPostProcData.SLo_nonLin_denComp,
PSPostProcData.Lb_nonLin)
fprintf (’\t(Simulated SLo: %.3f cm/s)\n’,
PSPostProcData.SLoSimulated)
fprintf (’\t(Burned Gas Temp assumed: %.2f K, Unburned Gas Temp: %.2f C)\n’,
PSPostProcData.TBurnt, PSPostProcData.TUnburnt-273.15)

end
end
o /4 Y o o Y o " Y Y
%% Radius Ezpansion Calculation if Lean or Air
" /4 Y o o Y o " Y Y

if PSConditions.isBubble / &% PSConditions.phiPost
fprintf (’\nCalculating expansion radius of Bubble\n’)

% Left of center
loc_cm=(PSUsrInput.pinsCenter_x-PSUsrInput.pixel_bubble_left_avg)/PSUsrInput.pixel2cm;

/% Right of Center
roc_cm=(PSUsrInput.pixel_bubble_right_auto-PSUsrInput.pinsCenter_x)/PSUsrInput.pixel2cm;

fprintf ([’\tCenter offset, from left side %.3f cm, from right side %.3f cm’,...
> (Bubble off pin center by %.3f cm from selected right bubble endpoint)\n’],
loc_cm, roc_cm, abs((PSUsrInput.pinsCenter_x)-PSUsrInput.bubbleCenter_rad_pixLoc)/...
PSUsrInput.pixel2cm) ;

[initial_TBurnt, ~, =, "] = getPSTBurntNSLo(PSConditions.philnit);
initial_rhou_rhob=(mmUnburnt/mmBurnt)*(initial_TBurnt/PSPostProcData.TUnburnt);

AR IR R IR DRI LRI LD IIIITEBRIIIIRBRIIIITIIRIITT

4% Find Ezpected burned radius

% assuming SPHERICAL burning from center perfectly aligned with bubble
radiusUnburned_cm=PSUsrInput.dBubble_selected_cm/2;

APPENDIX A. APPENDIX 129

expectRadiusBurnedFromPinCenter_cm = radiusUnburned_cm*nthroot(initial_rhou_rhob,3);

4% Find bubble-pin center offset
#bubbleCent_Piz=(PSUsrInput.pizel_bubble_right-PSUsrInput.pizel_bubble_left)/2;
PSUsrInput.bubblePinOffset_x_pix = ...

PSUsrInput.bubbleCenter_x_pixLoc - PSUsrInput.pinsCenter_x;
PSUsrInput.bubblePinOffset_x_cm = PSUsrInput.bubblePinOffset_x_pix/PSUsrInput.pixel2cm;

PSUsrInput.bubblePinOffset_y_pix = ...
PSUsrInput.bubbleCenter_y_pixLoc - PSUsrInput.pinsCenter_y;
PSUsrInput.bubblePinOffset_y_cm = PSUsrInput.bubblePinOffset_y_pix/PSUsrInput.pixel2cm;

4% Find Expected radius if bubble expanded from center of initial bubble
expectRadiusBurnedFromBubCirCenter_cm = ...
(PSUsrInput.bubbleCenter_rad_pixLoc/PSUsrInput.pixel2cm)*nthroot(initial_rhou_rhob,3);

% Shift expected radius based on bubble circle center
expectMaxRadFromPinCenter_CorrectedforBubbleOffCenterX = ...
expectRadiusBurnedFromBubCirCenter_cm - PSUsrInput.bubblePinOffset_x_cm;

4% Find farthest detected radius for all rows tracked
farthestPinCenRadiusDetected_cm = max(PSRunData.r_cm_raw_cropped); /(end);

farthestRadiusDetected_cm=farthestPinCenRadiusDetected_cm;
for i=1:length(PSRunData.PSRows)
if “isempty(PSRunData.PSRows(i).autoflameloc) && ...
(max (PSRunData.PSRows (i) .autoflameloc)-PSUsrInput.pinsCenter_x)/...
PSUsrInput.pixel2cm>farthestRadiusDetected_cm
farthestRadiusDetected_cm=(max (PSRunData.PSRows (i) .autoflameloc)-...
PSUsrInput.pinsCenter_x)/PSUsrInput.pixel2cm;
end
end

A% Print radius data

fprintf (strcat (’\n\tSpherical Method: Expected flame radius at end:’,
’\n %.3f cm if expanded at pin center,’,...
’\n %.3f cm from pin center_x if expanded from bubble center,’,...
’\n\tFarthest radius detected from raw cropped (usually pin center): %.3f cm\n’),
expectRadiusBurnedFromPinCenter_cm,
expectMaxRadFromPinCenter_CorrectedforBubbleOffCenterX, farthestPinCenRadiusDetected_cm)

lastRadiusExtrap_cm=PSRunData.CirRad (PSRunData.r_raw_firstEndZero-1)/PSUsrInput.pixel2cm;
fprintf (’\t\tLast Extrapolated radius (circen): %.3f cm\n’, lastRadiusExtrap_cm)

7 o0, o0,
0/0/0 /o 0/0/o/o /o /o 0/0/o/o /o 0/0/o/o/o/o

%% Calculate TORROIDAL Possible Exzpanded Volumes
aRadSrVol_cm=transpose(2:1E-2:5);
% Apparent Radius to search for estimated Ezpanded volume

d_r=getPSChordDist (aRadSrVol_cm, PSRunData, PSUsrInput, PSFlags);
theta=acos(d_r./aRadSrVol_cm);

% Calculate Torroid Volumes depending on given radius

volToSearch_Torroid=2*pi~2.*d_r.*aRadSrVol_cm."2 ...
- pi.*d_r.*aRadSrVol_cm."2.*((theta)- sin(theta));
% Volume of Torroid, derived by hand

4% Assuming Torroidal burning from pin center with size of bubble from radius input by user
volToMatch_UserInputDia=4/3*pi*radiusUnburned_cm~3*initial_rhou_rhob;
/% Determine exzpanded bubble volume from initial unburned radius assumed from user input

APPENDIX A. APPENDIX 130

radIdxFound_UserInputDia = dsearchn(volToSearch_Torroid, volToMatch_UserInputDia);

4% Assuming TORROIDAL burning from center perfectly aligned with initial bubble center

volExpandedFromInitAutoBub=...
4/3%pi*(PSUsrInput.bubbleCenter_rad_pixLoc/PSUsrInput.pixel2cm) ~3*initial_rhou_rhob;

radIdxFound_InitAutoBub = dsearchn(volToSearch_Torroid, volExpandedFromInitAutoBub) ;

% VA4, VA4, Y44 VA4, VA4, Y44
IRt IRl B IR DRI TR IR IRIIIR BRI EDRIIIT T

A% Quick plot to check w/ plot to solve nonlinear egn
if PSFlags.dispKeyPlots || PSFlags.savePostPlots
volFigHand=figure(’Visible’, ’0n’); /plots welocity vs time
if "PSFlags.dispKeyPlots
volFigHand.Visible="off’;
end
% Plot radius as calculated from torroidal calc (Aparent radius+aparent center offset)
plot(aRadSrVol_cm+getPSChordDist (aRadSrVol_cm, PSRunData, PSUsrInput, PSFlags),...
volToSearch_Torroid,
’k’, ’DisplayName’, ’Torroidal Expanded Volume’)
% Apparent Radius + distace from aparent center to pin center
hold on
% Plot initial volume in overbar
plot([aRadSrVol_cm(1) ,aRadSrVol_cm(end)], 4/3*pi()*radiusUnburned_cm~3.*[1,1],...
’b--’, ’DisplayName’, ’Initial Bubble Volume’)
% Plot ezpanded radiusUnburned_cm in overbar
plot([aRadSrVol_cm(1),aRadSrVol_cm(end)], volToMatch_UserInputDia.*[1,1],
’g’, ’DisplayName’, ’Bubble Expanded Volume to Match’)
% Plot radius to mazimum radius of expanded sphere from pin center
plot (expectRadiusBurnedFromPinCenter_cm.*[1,1],
[0, max([volToSearch_Torroid(end),volToMatch_UserInputDial)l,...
’g’, ’DisplayName’, ’Expected Spherical Radius’)
% Plot farthest radius detected from pin center and farthest detected
plot(farthestPinCenRadiusDetected_cm.*[1,1],
[0, max([volToSearch_Torroid(end),volToMatch_UserInputDial)],
’—+r’, ’DisplayName’, ’Furthest Radius @ pin center Detected’)
plot(farthestRadiusDetected_cm.*[1,1],
[0, max([volToSearch_Torroid(end) ,volToMatch_UserInputDial)],
’r’, ’DisplayName’, ’Furthest Burned Radius Detected’)
title({[’Expected/Tracked Burned Volumes for ’, PSConditions.VideoName],
[’Radius predict/matching, stopped at: ’, num2str(PSRunData.flameStopIdx),
>/’ , num2str(PSRunData.r_raw_firstEndZero),
’ (?, num2str(PSConditions.numFrames), ’ Total)’]},
’interpreter’, ’none’)
xlabel (’Expanded Burnt Bubble Gas Volume End Radius’, ’interpreter’, ’none’)
ylabel(’Volume [cm~3]’, ’interpreter’, ’none’)
legend(’location’,’best’, ’interpreter’, ’none’)
legend show

filename =[’Expanded_Volume_vs_Radius_’,PSConditions.rawVideofilename,’.eps’];
outputVideoPath=fullfile(PSConditions.folderPath, filename) ;

if PSFlags.savePostPlots
saveas(volFigHand, outputVideoPath, ’epsc’)
end
if strcmp(volFigHand.Visible, ’off’)
close(volFigHand)
end
end
lastApparentRadiusDetected_cm = PSRunData.r_cm_raw_Aparent_cropped(end) ;
expectApparentRadiusTorroidBurned_cm=aRadSrVol_cm(radIdxFound_UserInputDia) ;

APPENDIX A. APPENDIX 131

fprintf ([’ \tTorroidal Method: Expected flame radius at end: %.3f cm, while’,...
’ last aparent radius detected: %.3f cm\n’],
expectApparentRadiusTorroidBurned_cm, lastApparentRadiusDetected_cm)
end

A A A A A Y A S YA
4% Pressure and matching flame radius data Time Shift

A A A A A A Y A S YA YA
pressureFlameRadiusTimeOffset_ms = 3.9; / Pulse and Radius Time Spark Offset

% Offset time to match O=ignition time
PSPostProcData.time_scaled_Radius_ms= ...
PSRunData.timeReal_interp*1000 - PSRunData.timeReal_interp(1)*1000;
% Subtract off time until ignition so ignition is at t=0, already
% cut off first bit of radius so just bring back to O and scale

PSPostProcData.time_scaled_pressure_RadiusMatched_ms = ...
PSScopeData.scaledScopeData_ms_all - (pressureFlameRadiusTimeOffset_ms);
7% Subtract off time until ignition so ignition is at t=0

PSPostProcData.idx_pressureSplineRadiusMatchTimeStart = ...
dsearchn(PSPostProcData.time_scaled_pressure_RadiusMatched_ms, 0);
if PSPostProcData.idx_pressureSplineRadiusMatchTimeStart==
fprintf (’Error in finding PSPostProcData.idx_pressureSplineRadiusMatchTimeStart\n’)
end

PSPostProcData.idx_pressureSplineRadiusMatchTimeEnd =
dsearchn(PSPostProcData.time_scaled_pressure_RadiusMatched_ms,
PSPostProcData.time_scaled_Radius_ms(end));

if PSPostProcData.idx_pressureSplineRadiusMatchTimeEnd == ...

length(PSPostProcData.time_scaled_pressure_RadiusMatched_ms)
fprintf ([’WARNING in finding PSPostProcData.time_scaled_pressure_RadiusMatched_ms,’,...
’ Pressure captured not long enough...\n’])
end

PSPostProcData.resampledRadiusDataPressureMatch_cm = ...
spline(PSPostProcData.time_scaled_Radius_ms, PSPostProcData.r_cm_interp,
PSPostProcData.time_scaled_pressure_RadiusMatched_ms(...

PSPostProcData.idx_pressureSplineRadiusMatchTimeStart:...
PSPostProcData.idx_pressureSplineRadiusMatchTimeEnd));

PSPostProcData.resampledRadiusData_cm = ...
zeros (size (PSPostProcData.time_scaled_pressure_RadiusMatched_ms));

PSPostProcData.resampledRadiusData_cm(PSPostProcData.idx_pressureSplineRadiusMatchTimeStart:...
PSPostProcData.idx_pressureSplineRadiusMatchTimeEnd)
= PSPostProcData.resampledRadiusDataPressureMatch_cm;

It Il I R Tt IRl IR I NIRRT BR BRI T RRIIIEIERBIIIT
4% Pressure Filtering for overall smooth pressure and Pressure Rise Rate Calcs
A A A A A A A S A YA
if nnz(PSScopeData.pressureScopeUnfiltered_atm_all)>1
SG_order=3;
SG_framelen=2501;
%5001 works really well but is 3.7/ of the full length for the entire pressure trace
7% works really well for “200ms of pressure data
PSPostProcData.pressureScopeRefiltered_atm_all = ...
sgolayfilt (PSScopeData.pressureScopeUnfiltered_atm_all, SG_order, SG_framelen);

else
PSPostProcData.pressureScopeRefiltered_atm_all = ...
PSScopeData.pressureScopeUnfiltered_atm_all;
end

APPENDIX A. APPENDIX 132

Function: initPSLoopingParam

function PSLoopingParam = initPSLoopingParam(PSConditions, PSUsrInput, PSFlags)
% Sets initial loop parameters

A%%% DEBUG Tracking Row

PSLoopingParam.trackingRow = int64(PSUsrInput.pinsCenter_y) ;

PSLoopingParam.debugStopFrame = 1; /47;

% Conditional Breakpoint: PSLoopingParam.iCurrentFrame >=PSLoopingParam.debugStopFrame €3 PSRowData.frameCol ==
PSLoopingParam. trackingRow

A%%% Debug tracking for plotting to make errors easeier to find..

PSLoopingParam.pinsCenter_x =PSUsrInput.pinsCenter_x;
PSLoopingParam.pinsCenter_y =PSUsrInput.pinsCenter_y;

% Number of points to track, updated depending on number of ignighted points
% Number of points to start with for initial ignition, will grow as needed
% Prior = above pin center

PSLoopingParam.numRowPrior = 25;

PSLoopingParam.numRowPriorMAX = 1024;7600;

/% Post = below pin center
PSLoopingParam.numRowPost = 25;
PSLoopingParam.numRowPostMAX = 1024; /600;

PSLoopingParam.flameRadDevTol = 20;
/% Number of pizels before radius deviation is flagged, plotting in yellow

if PSFlags.saveFrameStills
if “exist(fullfile(strcat(PSConditions.folderPath, filesep,’PostProcessVideo’)), ’dir’)
mkdir(fullfile(strcat (PSConditions.folderPath, filesep,’PostProcessVideo’)));
end
end
if PSFlags.saveOrigStills
if “exist(fullfile(strcat(PSConditions.folderPath, filesep,’OriginalFrames’)), ’dir’)
mkdir(fullfile(strcat (PSConditions.folderPath, filesep,’OriginalFrames’)));
end
end
PSLoopingParam.testVectEndIdx=-1; / Set indez, but error if not set later...
if PSFlags.useMatlabVideoReader
PSLoopingParam.HSCmovObj=VideoReader (fullfile(strcat(PSConditions.folderPath,
filesep,PSConditions.rawVideofilename))) ;
/% Reread Mov objct as requested from using read. ..
else

PSLoopingParam.HSCmovObj=PSVideoReader (fullfile(strcat (PSConditions.folderPath,

filesep,PSConditions.rawVideofilename)));

/% Use Modified VideoReader for faster read
end
PSLoopingParam. iCurrentFrame=1;
PSLoopingParam.frame_orig=0; / Current frame, in original read video format
PSLoopingParam.firstFrame=0; / First frame read for subtraction, etc.
PSLoopingParam.frameVidEnd=. ..

PSLoopingParam.HSCmovObj.duration*PSLoopingParam.HSCmov0Obj.frameRate;

/ End video initial wvalue,

Zmodified to PSLoopingParam.frameVidEnd_flameEndAdd above when flame end detected
PSLoopingParam.frameVidEnd_flameEndAdd=10;

% Amount to add to PSLoopingParam.frameVidEnd when flame edge detected
PSLoopingParam.hitEdge=false; / For PSRunData.dumbflameloc
PSLoopingParam.autoHitEdge=false; / For PSRunData.autoflameloc

/% When hit right most side, end looking for right most black

APPENDIX A. APPENDIX 133

% Flame jump capping initialization
PSLoopingParam.isFlameStart=false;

% Flag for when flame initiates from a jump in flame detection!
PSLoopingParam.timesPrevJumpedSoModAdv=0;

7% Number of times artificially modifying flame speed to adjust

% to allow flame to catch up when previous flame jumped past flame
PSLoopingParam.unPhysicalPixJump= ...

floor(PSConditions.maxFlameSpeedPhysical_cms*PSUsrInput.pixel2cm/PSConditions.fps);

7% [piz/frame], # of pizels corresponding to PSLoopingParam.mazPizJump_cms
PSLoopingParam.maxPixJump_cms=...

PSLoopingParam.unPhysicalPixJump*PSConditions.fps/PSUsrInput.pixel2cm;

Zback calculate what will be used...

/PSLoopingParam. mazPizJump_cms=PSConditions.mazFlameSpeedPhysical_cms; J cm/s!
if "PSFlags.suppressDebugQutput

fprintf([’\tSet an Unphysical pixel jump of %.2f, ’,...

’corresponding to a flame propigating at %.2f cm/s\n’],...
PSLoopingParam.unPhysicalPixJump, PSLoopingParam.maxPixJump_cms)
end
if PSConditions.isBubble
if PSConditions.philnit > .9 && PSConditions.philnit < 1.1
% if near stoich, need more advancement tolerance
PSLoopingParam.firstKernelPixFlameJumpTolerance=80;
/% jump tolerance for initial flame kernal development
else
PSLoopingParam.firstKernelPixFlameJumpTolerance=70;
% jump tolerance for initial flame kernal development

end
else

if PSConditions.phiInit > .9 && PSConditions.phiInit < 1.1

% if near stotch, need more advancement tolerance
PSLoopingParam.firstKernelPixFlameJumpTolerance=100;
7% jump tolerance for initial flame kernal development
else
PSLoopingParam.firstKernelPixFlameJumpTolerance=60;
% jump tolerance for initial flame kernal development

end
end
PSLoopingParam.initflameKernalDevelFrameNumb=1000;

% Increased to allow past reset frames to catch their flame
PSLoopingParam.flameKernalDevelFrameNumb=PSLoopingParam.initflameKernalDevelFrameNumb;

% Set an inital value for detecting initial flame kernal,set to 20 after flame detected
PSLoopingParam.flameKernalDevelFrameAdjust=4;

% # of frames to allow large jumping to follow initial flame kernal & ignition effects
PSLoopingParam.flameSlipTolerance=1;

/% Pizels/data points, allows for some slip backwards (bubble disturbance) in the flame

% by this amount of pizels/data points
PSLoopingParam.BubblePopedStartedFrame=0;

PSLoopingParam.stallThresh=.1;
PSLoopingParam.minBrightSlopeRise=.075;
PSLoopingParam.LostFrameTol=1;

% Number of frames to allow flame to mot be tracked before being reset
PSLoopingParam.numRowBubblePopThresh = 10;
PSLoopingParam.prevNumbRowsBubblePopped = 0;

PSLoopingParam.initialCDataSize=0;

Function: getPSRadiusVelocity

function DrDt = getPSRadiusVelocity(time, radius)
/% (timeReal_interp, r_cm_interp_SG)

APPENDIX A. APPENDIX 134

DrDt = zeros(length(time)-1, 1);
DrDt(1) = (radius(2)-radius(1))/(time(2)-time(1));

for j = 2:length(radius)-1
% 5 point stenctl
if j>2 && j<length(radius)-2
DrDt(j) = (...
-radius(j+2)+8*radius(j+1)-8+radius(j-1)+radius(j-2)...

) ...
((time(j+2)-time(j-2))*3);
#Assuming average timestepchange, 12%k=(4)*3
else

% Else use centered difference
DrDt(j) = (mean([radius(j+1),radius(j)])-mean([radius(j-1), radius(j)1))/...
(mean([time(j+1),time(j)])-mean([time(j),time(j-1)1)); Zdrdt_c(<);
end
end

Function: getPSTBurntNSLo

function [TBurnt, SLoSimulated, r_cm_SR_rStart, r_cm_SR_rEnd] = getPSTBurntNSLo(passedPhi)
% Output burned temperature for density comp. and simulated planar laminar flame speed

Philist=[];
TBurntList=[];
SLoSimulatedList=[];

PhiList (end+1)=0.65;
TBurntList (end+1)=1748.0;
SLoSimulatedList(end+1)=15.221;

PhiList(end+1)=0.7;
TBurntList (end+1)=1832.8;
SLoSimulatedList (end+1)=19.107;

PhiList(end+1)=0.8;
TBurntList (end+1)=1991.4;
SLoSimulatedList (end+1)=27.175;

PhiList(end+1)=0.9;
TBurntList (end+1)=2129.3;
SLoSimulatedList (end+1)=34.041;

PhiList(end+1)=1.0;
TBurntList (end+1)=2221.2;
SLoSimulatedList (end+1)=38.078;

PhilList(end+1)=1.1;
TBurntList (end+1)=2205.4;
SLoSimulatedList (end+1)=39.001;

PhilList(end+1)= 1.2;
TBurntList (end+1)=2153.9;
SLoSimulatedList (end+1)=34.387;

PhiList (end+1)=1.3;
TBurntList (end+1)=2073.9;
SLoSimulatedList (end+1)=24.099;

PhiList(end+1)=1.4;

APPENDIX A. APPENDIX 135

TBurntList (end+1)=1995.3;
SLoSimulatedList (end+1)=13.672;

PhiList(end+1)=1.5;
TBurntList(end+1)=1919.1;
SLoSimulatedList (end+1)=10.286;

PhiExactTolerance=.01;
if abs(passedPhi - 0.65) <= PhiExactTolerance
% TBurnt=1745.6; % K, Tp from premiz, “adiabaticFlameTemp,
TBurnt=1748.0; 7 K, Tp from equilib constant H (Adiabatic) & P(No real pressure change) on Firebrand,
Equtlibrium_Burned_Temp
SLoSimulated=15.221; % cm/s
r_cm_SR_rStart=1.5;
r_cm_SR_rEnd=3.5;
elseif abs(passedPhi - 0.7) <= PhiExactTolerance
% TBurnt=1830.7; 7 K, Tp from premiz, “adiabaticFlameTemp,
TBurnt=1832.8; % K, Tp from equilib, “Equilibrium_Burned_Temp
SLoSimulated= 19.107; / cm/s
r_cm_SR_rStart=1.0;
r_cm_SR_rEnd=3.5;
elseif abs(passedPhi - 0.8) <= PhiExactTolerance
/% TBurnt= 1982.2; J K, Tp from premiz, ~adiabaticFlameTemp,
TBurnt=1991.4; % K, Tp from equilib, “Equilibrium_Burned_Temp
SLoSimulated= 27.175; / cm/s
r_cm_SR_rStart=1.0;
r_cm_SR_rEnd=3.5;
elseif abs(passedPhi - 0.9) <= PhiExactTolerance
/% TBurnt= 2108.6; % K, Tp from premiz, ~adiabaticFlameTemp,
TBurnt=2129.3; 7 K, Tp from equilib, “Equilibrium_Burned_Temp
SLoSimulated= 34.041; 7 cm/s
r_cm_SR_rStart=1.0;
r_cm_SR_rEnd=3.5;
elseif abs(passedPhi - 1.0) <= PhiExactTolerance
% TBurnt=2158.3;) K, Tp from premiz, ~“adiabaticFlameTemp,
TBurnt=2221.2; 7 K, Tp from equilidb, “Equilibrium_Burned_Temp
SLoSimulated=38.078; % cm/s
r_cm_SR_rStart=2.25;
r_cm_SR_rEnd=3.5;
elseif abs(passedPhi - 1.1) <= PhiExactTolerance
% TBurnt= 2169.6; J K, Tp from premiz, “adiabaticFlameTemp,
TBurnt=2205.4; 7 K, Tp from equilidb, “Equilibrium_Burned_Temp
SLoSimulated= 39.001; % cm/s
r_cm_SR_rStart=1.5;
r_cm_SR_rEnd=3.5;
elseif abs(passedPhi - 1.2) <= PhiExactTolerance
% TBurnt= 2113.9; % K, Tp from premiz, ~adiabaticFlameTemp,
TBurnt=2153.9; 7 K, Tp from equilib, ~Equilibrium_Burned_Temp
SLoSimulated= 34.387; % cm/s
r_cm_SR_rStart=1.0;
r_cm_SR_rEnd=3.5;
elseif abs(passedPhi - 1.3) <= PhiExactTolerance
% TBurnt= 2056.7; % K, Tp from premiz, ~adiabaticFlameTemp,
TBurnt=2073.9; 7 K, Tp from equilidb, "Equilibrium_Burned_Temp
SLoSimulated= 24.099; % cm/s
r_cm_SR_rStart=1.0;
r_cm_SR_rEnd=3.5;
elseif abs(passedPhi - 1.4) <= PhiExactTolerance
% TBurnt=1971.9; % K, Tp from premiz, ~adiabaticFlameTemp,
TBurnt=1995.3; 7 K, Tp from equilib, “Equilibrium_Burned_Temp

APPENDIX A. APPENDIX 136

SLoSimulated=13.672; /% cm/s
r_cm_SR_rStart=1.0;
r_cm_SR_rEnd=3.5;

elseif abs(passedPhi - 1.5) <= PhiExactTolerance
7% TBurnt= 1904.5; J K, Tp from premiz, “adiabaticFlameTemp,
TBurnt=1919.1; 7 K, Tp from equilib, “Equilibrium_Burned_Temp
SLoSimulated= 10.286; % cm/s
r_cm_SR_rStart=1.0;
r_cm_SR_rEnd=3.5;

else
idxPhiNearest=dsearchn(PhilList(:), passedPhi);
TBurnt=spline(Philist, TBurntList, passedPhi);
SLoSimulated=spline(PhilList, SLoSimulatedList, passedPhi);

fprintf ([’\tPhi not exact, setting to splined value %.2f for’,...
> TBurnt and %.2f for SLo Simulated, and defaulting on r_cm values\n’],...
TBurnt, SLoSimulated)

fprintf (’\tNearest to %.2f, values of TBurnt(nearest)=%.2f, SLo Simulated(nearest)=%.2f\n’,
PhiList (idxPhiNearest), TBurntList(idxPhiNearest), SLoSimulatedList(idxPhiNearest))

% Default r_cm values. ..

r_cm_SR_rStart=1.0;

r_cm_SR_rEnd=3.5;

end

Function: getPSRowLostFrameAction

function PSRowData = getPSRowLostFrameAction(PSRowData, PSLoopingParam)
% Function for resetting frame if something bad happened, aka lost flame

if PSRowData.NumFrameLostFlame >= PSLoopingParam.LostFrameTol
% If previously lost frame, bubble popping already accounted for
PSRowData.misFire=true;
PSRowData.NumFrameLostFlame=0;
else
PSRowData.NumFrameLostFlame = PSRowData.NumFrameLostFlame + 1;
end

Function: getPSLoopingParamUpdateRow

function PSRowData = getPSLoopingParamUpdateRow(PSRowData, PSRunData,
PSConditions, PSUsrInput, PSLoopingParam)

% Update Row data with Looping Parameter data

% necessary for multiple rows to talk with ome-another

%% Grab row and piz location of interest
% Different treatment of Schlieren Darkness not necessary as flipping in PS Main read section)
PSRowData.ipixLocOfInterest = ...
transpose (PSUsrInput.pinsCenter_x:size(PSLoopingParam.frame, 2));
% Tranpose to get in column major format
PSRowData.rowValOfInterest=transpose (PSLoopingParam.frame (PSRowData.frameCol,
int64 (PSUsrInput.pinsCenter_x:size(PSLoopingParam.frame, 2))));

X% Propigate (auto)hitEdge if lead flame hit edge
if “PSRowData.autoHitEdge
PSRowData.hitEdge = PSLoopingParam.hitEdge;
PSRowData.autoHitEdge = PSLoopingParam.autoHitEdge;
end

4% Determine i1f flame has already ended

APPENDIX A. APPENDIX 137

PSRowData.frameVidEnd = PSLoopingParam.frameVidEnd;

/4% Reset this jump in counter for jumped and modified advancement
/% Assume no previous jump, switches to 1 if holding flame speed back
PSRowData.isJumpedSoModAdv=0;

if (PSRowData.isLead)
PSRowData.initUnPhysPixJump= PSLoopingParam.firstKernelPixFlameJumpTolerance;

elseif (PSRunData.leadPSRow.flameKernalDevelFrameNumb > PSLoopingParam.iCurrentFrame - 10)
% If starting around the time as the lead flame, no modifications really necessary
if PSConditions.isBubble
PSRowData.initUnPhysPixJump= max (
PSRunData.leadPSRow.autoflameloc (PSLoopingParam.iCurrentFrame)-. ..
PSRowData.autoflameloc(PSLoopingParam.iCurrentFrame-1)+ ...
PSLoopingParam.unPhysicalPixJump, PSLoopingParam.firstKernelPixFlameJumpTolerance) ;
/% Give flame catching a boost if needs it, in flame kernal region with bubble
else
PSRowData.initUnPhysPixJump=...
PSRunData.leadPSRow.autoflameloc (PSLoopingParam.iCurrentFrame)-. ..
PSUsrInput.pinsCenter_x + PSLoopingParam.unPhysicalPixJump;
end

elseif PSRowData.isFlameStart && PSLoopingParam.iCurrentFrame <= ...
PSRowData.flameKernalDevelFrameNumb
/% Else if already started, no need to modify much
PSRowData.initUnPhysPixJump= max(abs(PSLoopingParam.firstKernelPixFlameJumpTolerance ...
- abs(PSRunData.leadPSRow.flameKernalDevelFrameNumb -...
PSRowData.flameKernalDevelFrameNumb)), PSLoopingParam.unPhysicalPixJump) ;
% Scale down the jump for non-lead flame tracking that has already started
/% ...but not too much as to go below global unphysical piz jump
else
/% Else if trying to start tracking a long time after
if "PSConditions.isBubble || (PSConditions.isBubble && ...
("PSRowData.autoBubbleloc(PSLoopingParam. iCurrentFrame-1) ||
PSRowData.BubblePopedFrame) ||
PSRowData.autoBubbleloc (PSLoopingParam.iCurrentFrame-1)-...
PSUsrInput.pinsCenter_x<=30)
% If no bubble to limit by, or 4if bubble hasn’t been detected yet in this row
PSRowData.initUnPhysPixJump = ...
PSRunData.leadPSRow.autoflameloc (PSLoopingParam.iCurrentFrame)-. ..
PSUsrInput.pinsCenter_x + PSLoopingParam.unPhysicalPixJump;
% Limit by jump by current lead flame and a jump
else
/% Need to limit by near bubble
PSRowData.initUnPhysPixJump = min(...
PSRunData.leadPSRow.autoflameloc (PSLoopingParam.iCurrentFrame)-. . .
PSUsrInput.pinsCenter_x + PSLoopingParam.unPhysicalPixJump,...
PSRowData.autoBubbleloc(PSLoopingParam. iCurrentFrame-1)-...
PSUsrInput.pinsCenter_x-5*PSLoopingParam.unPhysicalPixJump) ;
end

end

PSRowData.startIdxPt (max(PSLoopingParam.iCurrentFrame-1,1))= ...
dsearchn(PSRowData.ipixLocOfInterest,
PSRowData.autoflameloc (max (PSLoopingParam.iCurrentFrame-1,1)));

% Attempt to spline only that is necessary. First determine what is physically possible...

if PSRowData.isFlameStart
% Looking instad of until end of array, look only until PSLoopingParam.unPhysicalPizJump. . ..
/% Find unphysical pizel location, using rowValOfInterest_Smoothed

APPENDIX A. APPENDIX 138

if PSLoopingParam.iCurrentFrame>PSRowData.flameKernalDevelFrameNumb
Zallow some slip with initial frames for flame kernal development
idxUnphysical = find(PSRowData.ipixLocOfInterest(PSRowData.startIdxPt(...
max (PSLoopingParam. iCurrentFrame-1,1)) :end)
>= PSRowData.autoflameloc(max (PSLoopingParam.iCurrentFrame-1,1)) + ...
PSLoopingParam.unPhysicalPixJump)
+ PSRowData.startIdxPt(max(PSLoopingParam.iCurrentFrame-1,1));
else
idxUnphysical = find(PSRowData.ipixLocOfInterest(PSRowData.startIdxPt(...
max (PSLoopingParam. iCurrentFrame-1,1)) :end)
>= PSRowData.autoflameloc(max(PSLoopingParam.iCurrentFrame-1,1)) + ...
PSRowData.initUnPhysPixJump)
+ PSRowData.startIdxPt (max(PSLoopingParam.iCurrentFrame-1,1));
% Additional flame jump not lead flame
end
else Jif i small, before flame is detected...
7% Find unphysical pizel location
if PSRowData.possiblySparked
idxUnphysical = find(PSRowData.ipixLocOfInterest(PSRowData.startIdxPt(...
max (PSLoopingParam.iCurrentFrame-1,1)) :end)
>= PSRowData.possiblySparked + PSRowData.initUnPhysPixJump) ;
% Unphysical includes what would have been included from possibly sparked
else
idxUnphysical = find(PSRowData.ipixLocOfInterest(PSRowData.startIdxPt(...
max (PSLoopingParam.iCurrentFrame-1,1)) :end)
>= PSUsrInput.pinsCenter_x + PSRowData.initUnPhysPixJump) ;
end
end
if isempty(idxUnphysical)
% If close to the end, just use the end as end
idxUnphysical = length(PSRowData.ipixLocOfInterest);
end

if PSRowData.isFlameStart ...
&& (length(PSRowData.startIdxPt(PSRowData.startIdxPt>1))) > 10
% If flame started and has progressed more than 3 frames...
smoothStart = max(PSRowData.startIdxPt(max(PSLoopingParam.iCurrentFrame-1,1))-1 - ...
2xPSLoopingParam.unPhysicalPixJump, 1);
% Maz for making sure start doesn’t go out of bounds,
% Min for making sure end doesn’t go out of bounds
else
/% Need to check for mis-fire...
smoothStart = 1;
end
smoothEnd = min(idxUnphysical(1)+2*PSLoopingParam.unPhysicalPixJump,
length(PSRowData.rowValOfInterest));
% Min for making sure end doesn’t go out of bounds
if "PSRowData.autoHitEdge / Most time spent here
/% Only need to get computationally intensive smoothed data spline if getting flame
PSRowData.rowValOfInterest_Smoothed=transpose(spline(
1:1length(PSRowData.rowValOf Interest (smoothStart:smoothEnd)),
smooth(double (PSRowData.rowValOfInterest (smoothStart:smoothEnd))),
(1: (PSRowData.rowValOfInterest_SmoothedMulFact*length(. ..
PSRowData.rowValOfInterest (smoothStart:smoothEnd))))/...
PSRowData.rowValOfInterest_SmoothedMulFact));
PSRowData.ipixLocOfInterest_Smoothed=transpose(spline(
1:1length(PSRowData.ipixLocOfInterest (smoothStart:smoothEnd)),
double (PSRowData.ipixLocOfInterest (smoothStart:smoothEnd)),
(1: (PSRowData.rowValOfInterest_SmoothedMulFact*length(. ..
PSRowData.ipixLocOfInterest (smoothStart:smoothEnd))))/...

APPENDIX A. APPENDIX 139

PSRowData.rowValOfInterest_SmoothedMulFact));
end

Function: getPSRowDumbFlameLoc

function PSRowData=getPSRowDumbFlameLoc (PSRowData,PSConditions,PSUsrInput,PSLoopingParam)
% Get original method of flame tracker with darkness thresholding

k_black=find (im2bw (PSLoopingParam.frame (PSRowData.frameCol,:),
PSConditions.flameCutoffThreshold/255)==0) ;
4find which pizels are black along mid_y axzis for the flame front
if PSUsrInput.isRightDark
kr_black=find(k_black>PSUsrInput.pinsCenter_x & k_black<PSUsrInput.pixEdge0fRIO);
Zfinds list of black pizels before right edge
else
kr_black=find (k_black<PSUsrInput.pinsCenter_x & k_black>PSUsrInput.pixEdge0fRIO) ;
4finds list of black pizels before left edge
end
% Select what to do with the right most pizel found
if isempty(kr_black) && “PSRowData.hitEdge
/% Test for flame existence before hitting right edge (and after for a smooth flame)
PSRowData.dumbflameloc (PSLoopingParam. iCurrentFrame)=PSUsrInput.pinsCenter_x;
%if there are no black pizels in between the pins and right wall, assign x at the pins
elseif PSRowData.hitEdge
7% If previously hit right edge...
PSRowData.dumbflameloc (PSLoopingParam. iCurrentFrame)=PSUsrInput.pixEdge0fRI0;
else
PSRowData.dumbflameloc (PSLoopingParam.iCurrentFrame)=k_black(kr_black(end)) ;
%flame location is the last black pizel before the right edge
if abs(PSRowData.dumbflameloc(PSLoopingParam.iCurrentFrame) - ...
PSUsrInput.pixEdge0OfRI0) < 6 J[pizel] Test for flame end
PSRowData.hitEdge=true;
/% When hit right most side
end
end

Function: getPSFarthestValidldx

function farthestValidIdx = getPSFarthestValidIdx(PSRowData, PSLoopingParam,
rowValldxToTry, PSFlags)

% Find last value in list that %s an increasing term

% exclude the decrease aparent near the end of the frame window

idxFlameIdxAutoSRising=length(rowValIdxToTry)+1;
if length(rowValIldxToTry)>3
% If at least 4 points, Can user backward diff of seccond order!
pixJump(1:length(rowValIdxToTry)+1)=-100;
backDiffSlope=-100; 7 get loop started
while (idxFlamelIdxAutoSRising>4) && ((backDiffSlope <= PSLoopingParam.minBrightSlopeRise)
|l (pixJump(idxFlameIdxAutoSRising)<=2*PSLoopingParam.stallThresh))
% If sign of 2nd order finite difference positive, te rising slope we want
% Used Equation 9 from geometrictools.com/Documentation/FiniteDifferences.pdf
idxFlameIdxAutoSRising=idxFlameIdxAutoSRising-1;
backDiffSlope = ...
(3*PSRowData.rowValOfInterest_Smoothed(rowValIdxToTry(idxFlameIdxAutoSRising))...
-4xPSRowData.rowValOfInterest_Smoothed(rowValIdxToTry(idxFlameIdxAutoSRising)-1)...
+PSRowData.rowValOf Interest_Smoothed(rowValldxToTry(idxFlameIdxAutoSRising)-2))/2;
% Separated by 1 pizel so h=1
autoPickedPixelsloc=...

APPENDIX A. APPENDIX 140

PSRowData.ipixLocOfInterest_Smoothed(rowValIdxToTry(idxFlameIdxAutoSRising));
pixJump (idxFlameIdxAutoSRising)=...
autoPickedPixelsloc-PSRowData.autoflameloc (PSLoopingParam.iCurrentFrame-1);
end
if idxFlameIdxAutoSRising==
fprintf (’Error determining idxFlameIdxAutoSRising!\n’)
end
elseif length(rowValldxToTry)==2 || length(rowValIdxToTry)==3
/% Else i1f just 2-3 points...Just do single order backward diff
pixJump(1:length(rowValIdxToTry)+1)=-100;
backDiffSlope=-100; 7 get loop started
while (idxFlameIdxAutoSRising>=3)
&& ((backDiffSlope <= PSLoopingParam.minBrightSlopeRise)
|l (pixJump(idxFlameIdxAutoSRising)<=2*PSLoopingParam.stallThresh))
% If sign of 1st order finite difference positive, ie rising slope we want
idxFlameIdxAutoSRising=idxFlameIdxAutoSRising-1;
backDiffSlope = ...
PSRowData.rowValOf Interest_Smoothed(rowValldxToTry(idxFlameIdxAutoSRising))...
-PSRowData.rowValOfInterest_Smoothed(rowValldxToTry(idxFlameIdxAutoSRising)-1);
% Separated by 1 pizel so h=1

autoPickedPixelsloc=...
PSRowData.ipixLocOfInterest_Smoothed(rowValIdxToTry(idxFlameIdxAutoSRising));
pixJump (idxFlameIdxAutoSRising)=...
autoPickedPixelsloc-PSRowData.autoflameloc (PSLoopingParam.iCurrentFrame-1);
end
/% Check for case where not a rising slope, ie. ran out of points
if idxFlameIdxAutoSRising==0
fprintf (’Error determining idxFlameIdxAutoSRising!\n’)
end
elseif isempty(rowValIdxToTry)
farthestValidIdx=[];
return
else
/% Else no need to check point, and just outputs the full length...Debug
idxFlameIdxAutoSRising=length(rowValIdxToTry) ;
end
if length(rowValldxToTry)>3 && idxFlameIdxAutoSRising==
% If ended prematurely, Just peak minimal pizel jump greather than O
idxFlameIdxAutoSRising = find(pixJump>2*PSLoopingParam.stallThresh, 1, ’last’);
if isempty(idxFlameIdxAutoSRising)
idxFlameIdxAutoSRising=...
find (pixJump==max (pixJump (and (pixJump~=-100,
pixJump<=PSLoopingParam.unPhysicalPixJump))), 1, ’last’);
end

end

farthestValidIdx=rowValIdxToTry(idxFlameIdxAutoSRising) ;
Function: getPSClosestValidldx

function closestValidIdx = getPSClosestValidIdx(PSRowData, PSLoopingParam,
rowValldxToTry, PSFlags)

% Find last value in list that is an increasing term

% exclude the decrease aparent near the end of the frame window

flameIdxAutoSWhile_Max=length(rowValIdxToTry) ;
idxFlameIdxAutoSRising=0;
if length(rowValIldxToTry)>3

APPENDIX A. APPENDIX 141

7% Can use forward diff of seccond order
pixJump(1)=-100;
forwardDiffSlope=-100; /% get loop started
while (idxFlamelIdxAutoSRising<flameIdxAutoSWhile_Max-3)
&& ((forwardDiffSlope<=PSLoopingParam.minBrightSlopeRise)
|l (pixJump(idxFlameIdxAutoSRising)<=2*PSLoopingParam.stallThresh))
% While not at end of points that can be tried and not a positive slope (flame %s)
% and piz jump is not greather than the stall threshold.
% stallThresh*2 as double isn’t perfectly accurate
idxFlameIdxAutoSRising=idxFlameIdxAutoSRising+1;
if idxFlameIdxAutoSRising==length(rowValIdxToTry)
fprintf (’Error determining idxFlameIdxAutoSRising!\n’)
end
autoPickedPixelsloc=...
PSRowData.ipixLocOfInterest_Smoothed(rowValIdxToTry(idxFlameIdxAutoSRising));
pixJump (idxFlameIdxAutoSRising)=...
autoPickedPixelsloc-PSRowData.autoflameloc (PSLoopingParam.iCurrentFrame-1);
forwardDiffSlope = ...
(-3*PSRowData.rowValOfInterest_Smoothed(rowValIdxToTry(idxFlameIdxAutoSRising))...
+4xPSRowData.rowValOf Interest_Smoothed(rowValIdxToTry(idxFlameIdxAutoSRising)+1)...
-PSRowData.rowValOfInterest_Smoothed(rowValldxToTry(idxFlameIdxAutoSRising)+2))/2;
% Separated by 1 pizel so h=1
% If sign of 2nd order finite difference positive, ie rising slope we want
end
elseif length(rowValldxToTry)>=2
7% Just do single order forward diff
pixJump(1)=-100;
forwardDiffSlope=-100; 7 get loop started
while (idxFlameIdxAutoSRising<=flameIdxAutoSWhile_Max-2)
&& ((forwardDiffSlope<=PSLoopingParam.minBrightSlopeRise)
|l (pixJump(idxFlameIdxAutoSRising)<=2*PSLoopingParam.stallThresh))
idxFlameIdxAutoSRising=idxFlameIdxAutoSRising+1;
if idxFlameIdxAutoSRising==length(rowValIdxToTry)
fprintf (’Error determining idxFlameIdxAutoSRising!\n’)
end
autoPickedPixelsloc=...
PSRowData.ipixLocOfInterest_Smoothed(rowValIdxToTry(idxFlameIdxAutoSRising));
pixJump (idxFlameIdxAutoSRising)=. ..
autoPickedPixelsloc-PSRowData.autoflameloc(PSLoopingParam.iCurrentFrame-1);
forwardDiffSlope =...
-PSRowData.rowValOfInterest_Smoothed(rowValIdxToTry(idxFlameIdxAutoSRising))...
+PSRowData.rowValOf Interest_Smoothed(rowValIdxToTry(idxFlameIdxAutoSRising)+1);
/% Separated by 1 pizel so h=1
% If sign of 1st order finite difference positive, ie rising slope we want
idxFlameIdxAutoSRising=idxFlameIdxAutoSRising+1;
end
elseif isempty(rowValIdxToTry)
closestValidIdx=[];
return
else
/% Else no need to check point, and just outputs the full length...?
fprintf (’WARNING: Small rowValIdxToTry in getPSClosestValidIdx, using last Value.\n’)
idxFlameIdxAutoSRising=1;
end
if flameIdxAutoSWhile_Max>3 && idxFlameIdxAutoSRising>=flameIdxAutoSWhile_Max-3
% If ended early, J Just peak minimal pizel jump greather than O
idxFlameIdxAutoSRising = find(pixJump>2*PSLoopingParam.stallThresh, 1, ’first’);
if isempty(idxFlameIdxAutoSRising)
idxFlameIdxAutoSRising=flameIdxAutoSWhile_Max;
end

APPENDIX A. APPENDIX 142

end
closestValidIdx=rowValIdxToTry(idxFlameIdxAutoSRising) ;

Function: gatherPSRunData

function PSRunData = gatherPSRunData(PSRunData, PSConditions, PSUsrInput,
PSLoopingParam, PSPlotDispProp, PSFlags)
/% Gather relevant raw RunData

%% Flame Radius Selection: Pin Center, Circle Center, or Merge of the two
if PSConditions.isBubble / “PSFlags.isTrackCirCenter
isFlameMerge=false;
/% Whether or not to use the combined pinCenter for early and cirCent for later flame
else
isFlameMerge=true;
end
% Determine which flame detection to use,
% PSRunData.dumbflameloc, PSRunData.autoflameloc_pinCen, PSRunData.autoflameloc_cirCen
if isFlameMerge
/% Find Merge Point
pickedIdxMerge=...
find (PSRunData.circleCenterLeadRow-double (int64 (PSUsrInput.pinsCenter_y))==0,...
1, ’last’);
PSRunData.flameloc=zeros (length(PSRunData.autoflameloc_cirCen),1);
PSRunData.flameloc(1:pickedIdxMerge, 1)=PSRunData.autoflameloc_pinCen(1:pickedIdxMerge) ;
PSRunData.flameloc(pickedIdxMerge:length(PSRunData.autoflameloc_cirCen),1)=...
PSRunData.autoflameloc_cirCen(pickedIdxMerge:end) ;
elseif "PSFlags.isUseTrackedCirCenter
% If using pin center, otherwise could use: “PSFlags.isTrackCirCenter
PSRunData.flameloc=PSRunData.autoflameloc_pinCen;
else
/% else using circle center
PSRunData.flameloc=PSRunData.autoflameloc_cirCen;
end

4% Determine cropping points, starting flame radius and when flame stops
PSRunData.timeReal_raw=transpose((1:PSConditions.numFrames)/PSConditions.fps);
% Transpose so in column major format...

% Determine Radius and crop beginning and end before flame starts to propagate
r_raw_pinCen = PSRunData.autoflameloc_pinCen-PSUsrInput.pinsCenter_x;
Zpizel radius measured from center
r_raw_cirCen = PSRunData.autoflameloc_cirCen-PSUsrInput.pinsCenter_x;
Zpizel radius measured from center
r_raw = PSRunData.flameloc-PSUsrInput.pinsCenter_x;
r_raw_StartZeros = find(r_raw_pinCen <= 10%eps);
4find points that happen before the flame is detected
r_raw_EndZeros = find(abs(r_raw-r_raw(end)) <= 10%eps);
4find points that don’t change after the flame passes

/%Grab the first real datapoint
PSRunData.r_raw_lastStartZero=r_raw_StartZeros(end)+1;

%Grab end where radius stagnates when hit wall/dark spot
/%PSRunData.r_raw_firstEndZero=r_raw_EndZeros-1;
PSRunData.r_raw_firstEndZero=r_raw_EndZeros(1)-1;
if PSRunData.r_raw_lastStartZero>= PSRunData.r_raw_firstEndZero
fprintf (’Error in detecting first and last start zero with file ¥%s\n’,...
PSConditions.VideoName)
elseif "PSFlags.suppressDebugOutput

APPENDIX A. APPENDIX 143

% If fatls here, try increasing threshold
fprintf (’Spline Factor: %d, grabbing points from index %d (%.2f pix) to %d (%.2f pix)\n’,
PSPlotDispProp.splineResolutionFactor,
PSRunData.r_raw_lastStartZero, r_raw_pinCen(PSRunData.r_raw_lastStartZero),
PSRunData.r_raw_firstEndZero, r_raw_pinCen(PSRunData.r_raw_firstEndZero))
end

% Grab where flame stops and first goes backwards in the case of phi too lean
PSRunData.flamelocDiffs=PSRunData.flameloc(2:end)-PSRunData.flameloc(1:end-1);
if PSConditions.phiPost<0.5
if PSConditions.isBubble
startSearchLoc_pix = ...
PSRunData.PSRows (int64 (PSUsrInput.pinsCenter_x)) .bubbleEndSearchLoc;
idxStartSearch = ...
dsearchn (PSRunData.PSRows (int64 (PSUsrInput.pinsCenter_y)) .autoflameloc,
startSearchLoc_pix) ;
else
idxStartSearch=PSRunData.r_raw_lastStartZero;
end
idxNotMoving = find(...
PSRunData.flamelocDiffs(idxStartSearch:PSRunData.r_raw_firstEndZero)<=10%eps)...
+PSRunData.r_raw_lastStartZero-1;
if “isempty(idxNotMoving) && idxNotMoving(1l) > PSRunData.r_raw_firstEndZero
fprintf([’Found flame stopped moving at frame %d (radius=%.3f cm), and max travel’,
’ at pin center: radius=%.3f\n’],idxNotMoving(1), (PSRunData.flameloc(...
idxNotMoving(1))-PSUsrInput.pinsCenter_x)/PSUsrInput.pixel2cm,
(max (PSRunData.flameloc)-PSUsrInput.pinsCenter_x)/PSUsrInput.pixel2cm)
PSRunData.flameStopIdx=idxNotMoving(1);
else
PSRunData.flameStopIdx=PSRunData.r_raw_firstEndZero;
end
else
PSRunData.flameStopIdx=PSRunData.r_raw_firstEndZero;
end
PSRunData.startSpotPastFlameKernal=...
int64 (3*PSPlotDispProp.splineResolutionFactorx. . .
(PSLoopingParam.flameKernalDevelFrameNumb-PSRunData.r_raw_lastStartZero));
/Plotting start spot to crop off inital jump in radius...
/% Re-calculate radius based on average pin center in valid region
PSRunData.x_Aparent_avg = ...
mean (PSRunData.xCirCenter (PSRunData.r_raw_lastStartZero:...
int64 (PSRunData.r_raw_firstEndZero/2)), ’omitnan’);
PSRunData.y_Aparent_avg = mean(PSRunData.yCirCenter(PSRunData.r_raw_lastStartZero:...
int64 (PSRunData.r_raw_firstEndZero/2)), ’omitnan’);
DAINIIRRBIRIIIIT DB, o, BERRIIIRLH, " BERRIIKITLH, Vv

4% Sparked Center - To Do: Use to determine Flame center, smooth to get r_raw
Y A A A Y A A A A
if PSFlags.dispKeyPlots || PSFlags.savePostPlots
figHandCirCenter=figure(’Visible’,’0n’);
if "PSFlags.dispKeyPlots
figHandCirCenter.Visible=’off’;
end
xCirCen_Rel_cropped=...
PSRunData.xCirCenter (PSRunData.r_raw_lastStartZero:PSRunData.r_raw_firstEndZero)...
-PSUsrInput.pinsCenter_x;
yCirCen_Rel_cropped=...
PSUsrInput.pinsCenter_y-PSRunData.yCirCenter (PSRunData.r_raw_lastStartZero:...
PSRunData.r_raw_firstEndZero);

APPENDIX A. APPENDIX 144

7% zero values not on screen. Max is 1024x1024

xCirCen_onScreen=...
xCirCen_Rel_cropped+-1.*xCirCen_Rel_cropped.*(abs(xCirCen_Rel_cropped) > 1024);

yCirCen_onScreen=. ..
yCirCen_Rel_cropped+-1.*yCirCen_Rel_cropped.*(abs(yCirCen_Rel_cropped) > 1024);

subplot(2,1,1)

plot (PSRunData.r_raw_lastStartZero:PSRunData.r_raw_firstEndZero, xCirCen_onScreen,
’.-b’, ’DisplayName’, ’x-Spk Center’)

hold on;

plot ([PSRunData.r_raw_lastStartZero, PSRunData.r_raw_firstEndZero],
[1,1] .*#PSRunData.x_Aparent_avg-PSUsrInput.pinsCenter_x,
’k’, ’DisplayName’, ’Aparent x-Center Weighted Average’)

axis([-inf, inf, -50, 1024])

title(’Circle Center (Relative to Pin Center) vs Frame’)

ylabel(’x Cir. Cen., Rel.’); legend(’location’, ’best’); legend show

subplot(2,1,2)

plot (PSRunData.r_raw_lastStartZero:PSRunData.r_raw_firstEndZero, yCirCen_onScreen,
’.-b’, ’DisplayName’, ’y-Spk Center’)

hold on;

plot ([PSRunData.r_raw_lastStartZero, PSRunData.r_raw_firstEndZero],
[1,1] .#PSRunData.y_Aparent_avg-PSUsrInput.pinsCenter_y,
’k’, ’DisplayName’, ’Aparent y-Center Weighted Average’)

axis([-inf, inf, -1024/4, 1024/4])

ylabel(’y Cir. Cen., Rel.’); xlabel(’Frame’); legend(’location’, ’best’); legend show

% Save
filename =[’ApparentCenter_vs_Frame_’,PSConditions.rawVideofilename,’.eps’];
outputVideoPath=fullfile(PSConditions.folderPath, filename);
if PSFlags.savePostPlots
saveas (figHandCirCenter, outputVideoPath, ’epsc’)
end
if strcmp(figHandCirCenter.Visible, ’off’)
close(figHandCirCenter)
end
end

Rl AT I I I I I I I I IR IR IR B BB BBBBBBBABS

X% Gather Cropped radius data
r_raw_cropped= r_raw(PSRunData.r_raw_lastStartZero:PSRunData.r_raw_firstEndZero);
if nnz(r_raw_cropped)>0
% need to mark points that went to the pin center because they lost the flame
r_raw_cropped(r_raw_cropped==0)=nan;
end
r_raw_cropped_Aparent = ...
PSRunData.leadPSRow(end) .StretchRad (PSRunData.r_raw_lastStartZero:...
PSRunData.r_raw_firstEndZero);
% Aparent for Stretch Rate Radius Calc
r_raw_cropped_Aparent_avg =
sqrt ((PSRunData.autoflameloc_pinCen(PSRunData.r_raw_ lastStartZero:...
PSRunData.r_raw_firstEndZero)-PSRunData.x_Aparent_avg)."
+ (double(PSRunData.leadPSRow.frameCol)-PSRunData.y_Aparent_ avg) 2);
r_raw_cropped_cirCen = ...
r_raw_cirCen(PSRunData.r_raw_lastStartZero:PSRunData.r_raw_firstEndZero);
r_raw_cropped_pinCen = ...
r_raw_pinCen(PSRunData.r_raw_lastStartZero:PSRunData.r_raw_firstEndZero);

PSRunData.timeReal _raw_cropped=...
PSRunData.timeReal_raw(PSRunData.r_raw_lastStartZero:PSRunData.r_raw_firstEndZero);

APPENDIX A. APPENDIX

PSRunData.r_cm_raw_cropped = r_raw_cropped/PSUsrInput.pixel2cm;
PSRunData.r_cm_raw_Aparent_cropped = r_raw_cropped_Aparent/PSUsrInput.pixel2cm;

7% Aparent for Stretch Rate Radius Calc
PSRunData.r_cm_raw_Aparent_cropped_avg = r_raw_cropped_Aparent_avg/PSUsrInput.pixel2cm;
PSRunData.r_raw_cropped_cirCen = r_raw_cropped_cirCen/PSUsrInput.pixel2cm;
PSRunData.r_raw_cropped_pinCen = r_raw_cropped_pinCen/PSUsrInput.pixel2cm;
PSRunData.timeReal_interp=...

transpose(linspace (PSRunData.timeReal_raw_cropped(1), PSRunData.timeReal_raw_cropped(end),

length(PSRunData.dumbflameloc)*PSPlotDispProp.splineResolutionFactor));

% Tranpose so in column major format

4% Plot Radius Comparison of Pin Center ws. Aparent Circle Center vs. Merged Version
if PSFlags.dispKeyPlots || PSFlags.savePostPlots
figHandRCentsvT=figure(’Visible’,’0n’); /plots velocity vs time
if "PSFlags.dispKeyPlots
figHandRCentsvT.Visible=’off’;

end

plot (PSRunData.timeReal_raw_cropped.*1E3, PSRunData.r_cm_raw_cropped,
’r’, ’DisplayName’, ’PSRunData.r_cm_raw_cropped’)

hold on

plot (PSRunData.timeReal_raw_cropped.*1E3, PSRunData.r_raw_cropped_cirCen,
’c-.’, ’DisplayName’, ’PSRunData.r_raw_cropped_cirCen’)

plot (PSRunData.timeReal_raw_cropped.*1E3, PSRunData.r_raw_cropped_pinCen,
’g—--’,’DisplayName’, ’PSRunData.r_raw_cropped_pinCen’)

title(’Radius Comparison - Tracking Lead Flame on Rise’)
legend(’location’, ’best’, ’Interpreter’, ’none’)

legend show

xlabel(’Time [ms]’)

ylabel(’Radius [cm]’)

filename =[’Flame_RadiusPinCirCenters_vs_Time_’,PSConditions.rawVideofilename,...
’.eps’]; JName of file to be saved
outputVideoPath=fullfile(PSConditions.folderPath, filename);

if PSFlags.savePostPlots
saveas (figHandRCentsvT, outputVideoPath, ’epsc’)
end
if strcmp(figHandRCentsvT.Visible, ’off’)
close(figHandRCentsvT)
end
end

Function: getPSBubblelnitialCirCenter

function [xCirCenter, yCirCenter, CirRad] = getPSBubblelInitialCirCenter (PSConditions, PSUsrInput, PSFlags)

% Output Circle center knowing approzimate circle radius, etc.
isPlotFrame=false;

A% Grab Fist Frame
HSCmov0Obj = VideoReader (fullfile(strcat(...
PSConditions.folderPath, filesep, PSConditions.rawVideofilename)));
if isPlotFrame
firstFrameFigHand = figure(’Visible’, ’0On’);
end

% Read first frame and flip +f necessary
if PSUsrInput.isRightDark
readFirstframe = read(HSCmov0Obj,1);
else
readFirstframe = flip(read(HSCmov0Obj,1), 2);

145

APPENDIX A. APPENDIX 146

end

if isPlotFrame
set (0, ’currentfigure’, firstFrameFigHand)
imshow(readFirstframe)

end

A% Setup fake looping param
PSLoopingParam = initPSLoopingParam(PSConditions, PSUsrInput, PSFlags);
PSLoopingParam.frame = readFirstframe;

%% Fake modify conditions
PSConditions.numFrames=2;
PSLoopingParam. iCurrentFrame=2;

% Using radius to set limits on bubble circumference, use frame to find bubble center
rowBubSearchAboveRange = 2/3*PSUsrInput.rBubble_cm*PSUsrInput.pixel2cm;
rowBubSearchBelowRange = 5/6*PSUsrInput.rBubble_cm*PSUsrInput.pixel2cm;

%% Estimate location of bubble

xCirCenter = PSUsrInput.pinsCenter_x;

yCirCenter = PSUsrInput.pinsCenter_y;

CirRad = PSUsrInput.pixel_bubble_right_avg-PSUsrInput.pinsCenter_x;

if isPlotFrame
hold on
plot(xCirCenter, yCirCenter, ’cd’)

end

X% Loop through rows
numSkippedRows=0;
for iRow= int64(PSUsrInput.pinsCenter_y - rowBubSearchAboveRange):...
int64 (PSUsrInput.pinsCenter_y + rowBubSearchBelowRange)
Zinitialize row
PSRunData.PSRows (iRow)=initPSRowData(iRow, PSConditions, PSUsrInput,
PSLoopingParam, readFirstframe);

/% Fake an update to initialize the rest of the data...
PSRunData.PSRows (iRow) .autoflameloc(1:PSLoopingParam.iCurrentFrame)= ...
PSUsrInput.pinsCenter_x;

PSRunData.leadPSRow = PSRunData.PSRows(iRow) ;
PSRunData.PSRows (iRow)=getPSLoopingParamUpdateRow (PSRunData.PSRows (iRow) ,
PSRunData, PSConditions, PSUsrInput, PSLoopingParam) ;

/determine bubble loc

row=getPSRowBubbleLoc (PSRunData.PSRows (iRow) ,PSConditions,PSUsrInput,PSLoopingParam) ;
x=row.autoBubbleloc(PSLoopingParam.iCurrentFrame) ;

y=double (iRow) ;

4% Detect if location is reasonable before saving point, ok since selecting
if isPSIsPtNearCircle(xCirCenter, yCirCenter, CirRad, x, y)
x_points(iRow-(PSUsrInput.pinsCenter_y - rowBubSearchAboveRange)+1, 1) = x; 7 row.autoBubbleloc(
PSLoopingParam. iCurrentFrame) ;
y_points (iRow-(PSUsrInput.pinsCenter_y - rowBubSearchAboveRange)+1, 1) = y; % double(iRow);

if nnz(x_points)>150 %/ Get better estimate of circle center
% could do better here and just update every so often instead of every time

APPENDIX A. APPENDIX

147

[xCirCenter, yCirCenter, CirRad] = getPSBestFitCircle(x_points(x_points~=0), y_points(y_points~=0))

end
if isPlotFrame
#if saving tt, mark it down
set (0, ’currentfigure’, firstFrameFigHand)
hold on
plot(row.autoBubbleloc (PSLoopingParam. iCurrentFrame), double(iRow), ’b.’)
end
else
numSkippedRows=numSkippedRows+1;
% Mark it as skipped in red
if isPlotFrame
set(0,’currentfigure’, firstFrameFigHand)
hold on
plot (row.autoBubbleloc (PSLoopingParam.iCurrentFrame), double(iRow), ’r.’)
end
end
end
fprintf (’\tSkipped %d rows out of %d\n’, numSkippedRows, length(int64(PSUsrInput.pinsCenter_y -
rowBubSearchAboveRange) : int64 (PSUsrInput.pinsCenter_y + rowBubSearchBelowRange)));
[xCirCenter, yCirCenter, CirRad] = getPSBestFitCircle(x_points(x_points~=0), y_points(y_points~=0));

if isPlotFrame
set (0, ’currentfigure’, firstFrameFigHand); hold on
plot(xCirCenter, yCirCenter, ’bo’)
pause(3); close(firstFrameFigHand)

end

Function: getPSMinNearBubPt

function pixLocOfMinNearBub = getPSMinNearBubPt(PSRowData, PSLoopingParam)

surroundingPtThresh = 100/ (PSRowData.ipixLocOfInterest(2)-PSRowData.ipixLocOfInterest(1));
% +/- Number of piz points for serach for local min

idxBubble = dsearchn(PSRowData.ipixLocOfInterest,
PSRowData.autoBubbleloc(PSLoopingParam.iCurrentFrame)) ;
7% pointOfInterest = PSRowData.autoBubbleloc(PSLoopingParam.iCurrentFrame) ;
if isempty(idxBubble) || idxBubble ==
fprintf (’Error in finding bubble!\n’)
end

% Determine possible bubble locations
searchBubMinStart=max (idxBubble-surroundingPtThresh,1);
searchBubMinEnd=min (idxBubble+surroundingPtThresh, length(PSRowData.rowValOfInterest));
[*,maxIdx] = findpeaks(-smooth(double(...
PSRowData.rowValOfInterest (searchBubMinStart:searchBubMinEnd))));
if isempty(maxIdx) / Debug
pixLoc0fMinNearBub=PSRowData.autoBubbleloc(PSLoopingParam.iCurrentFrame) ;
return
end
idxToTry = maxIdx+searchBubMinStart-1;
maxThreshedIdx_Full = maxIdx(PSRowData.rowValOfInterest(idxToTry) < PSRowData.initialMean);

if “exist(’maxThreshedIdx_Full’, ’var’) || isempty(maxThreshedIdx_Full)
pixLocOfMinNearBub=PSRowData.autoBubbleloc(PSLoopingParam.iCurrentFrame) ;
else 7 Nab min
[, idxSmallest] = ...
min(PSRowData.rowValOf Interest (maxThreshedIdx_Full+searchBubMinStart-1));

APPENDIX A. APPENDIX 148

pixLocOfMinNearBub=...
PSRowData.ipixLocOfInterest (maxThreshedIdx_Full (idxSmallest)+searchBubMinStart-1);
end

Function: getPSRowBubbleHold Advancement

function PSRowData = getPSRowBubbleHoldAdvancement (PSRowData, PSRunData, PSConditions,
PSUsrInput, PSLoopingParam, PSFlags, multPrevDiff)

% If flame slipped back, hold advancement (derivative), do only for cases

% where there is a bubble and as bursting casues some issues with the flame tracking...

PSRowData.nearestDetectedIdx=1;
pointsBackAdvancementAve=min(PSLoopingParam.iCurrentFrame-1-2, 12);
% At most 12, but minimum to capture the initial points when flame slips in beginning

prevDiff=mean(...

PSRowData.autoflameloc (PSLoopingParam. iCurrentFrame-1-pointsBackAdvancementAve:. ..
PSLoopingParam. iCurrentFrame-1)...

-PSRowData.autoflameloc (PSLoopingParam. iCurrentFrame-2-pointsBackAdvancementAve:. ..
PSLoopingParam.iCurrentFrame-2));

if prevDiff>=0

PSRowData.isJumpedSoModAdv=1;

PSRowData.autoflameloc (PSLoopingParam. iCurrentFrame)=. ..
PSRowData.autoflameloc(PSLoopingParam.iCurrentFrame-1)+prevDiff*multPrevDiff;
/Relazation to allow flame to "catch up" as prior step must have advanced the flame too much. ..

else

PSRowData.autoflameloc (PSLoopingParam.iCurrentFrame)=. ..
PSRowData.autoflameloc(PSLoopingParam.iCurrentFrame-1);

end

Function: getPSUsrInput

function PSUsrInput = getPSUsrInput(PSConditions, PSFlags)
/% Get user input, such as pizel scale, sparking center location, end of detection region
% and initial guess of bubble diameter - auto calculated

Zlocation of help dialogue

PSUsrInput.dia_x_pos=0;

PSUsrInput.dia_y_pos=100;

PSUsrInput.dist_cm = 0.9525; Jcm, 3/8 in actual diameter of straw

numPixPtAve = 3; J Number of selected pizels to average over for pizel/cm ratio
numBubbleCheckPtAve = 3; / Number of selected pizels to average over for Bubble ratio

/% Figure for grabbing user input
if PSFlags.isRunLoop && (“PSFlags.debug_skipUsrInput || PSFlags.isForceUsrInputBubbleDia)
HSCmov0Obj = ...
VideoReader (fullfile(strcat (PSConditions.folderPath, filesep,
PSConditions.rawVideofilename))) ;
usrInputFrameFigHand = figure(’Visible’, ’0n’);
end

% % Pizel Scale
Z#loop captures the points from user which will later be used to track flame
if "PSFlags.isRunLoop

/% Grab from previous run

% nad fps

currentUsrIn = PSUsrInput;

load(PSConditions.specificRunMatlabFN, ’PSUsrInput’)

APPENDIX A. APPENDIX 149

% PSUsrInput.dist_pizel PSUsrInput.dist_pizel_avg PSUsrInput.pizellcm
if isfield(PSUsrInput, ’dist_pixel’)
currentUsrIn.dist_pixel = PSUsrInput.dist_pixel;
end
if isfield(PSUsrInput, ’dist_pixel_avg’)
currentUsrIn.dist_pixel_avg = PSUsrInput.dist_pixel_avg;
end
if isfield(PSUsrInput, ’pixel2cm’)
currentUsrIn.pixel2cm = PSUsrInput.pixel2cm;
end
PSUsrInput = currentUsrIn;
elseif "PSFlags.debug_skipUsrInput
% If grabbing user input
PSUsrInput.dist_pixel = zeros(numPixPtAve,1);
for j = 1:numPixPtAve
usrInputframe = read(HSCmovObj,20+5%j); /Show frames 25 and 30
set (0, ’currentfigure’, usrInputFrameFigHand)
imshow (usrInputframe)
title(PSConditions.VideoName, ’Interpreter’, ’none’);
h = helpdlg({’Select Two Points for Pixel Scale:’,... jhelp dialog instructions
> Pt 1: x-position of LHS of Straw’,...
> Pt 2: x-position of RHS of Straw ’});
set(h, ’position’, [PSUsrInput.dia_x_pos PSUsrInput.dia_y_pos 300 100]);
/imakes boz bigger [xlocation y location width height]

set (0, ’currentfigure’, usrInputFrameFigHand);
% Sometimes another frame gets posted and set as current herebefore this line
[x_PixelPos, ~] = ginput_CASmodified(2, [3, 41); /Zsimilar to ginput(2)
PSUsrInput.dist_pixel(j) = ...
abs (x_PixelPos(length(x_PixelPos))-x_PixelPos(length(x_PixelPos)-1));
fprintf (’\tSelected Two points %.2f, %.2f that are J.2f pixels apart\n’,
x_PixelPos(length(x_PixelPos)),
x_PixelPos(length(x_PixelPos)-1), PSUsrInput.dist_pixel(j))
delete(h) Jclose help dialog boz
Jclose(gcf) JimgHndlUsr.Parent)
end

PSUsrInput.dist_pixel_avg = mean(PSUsrInput.dist_pixel);
Zaverages pizel length between the two straw lengths
PSUsrInput.pixel2cm = PSUsrInput.dist_pixel_avg/PSUsrInput.dist_cm;
/converts pizel to cm

fprintf (’\tSelected Mean pixel2cm Ratio: %.2f\n’, PSUsrInput.pixel2cm)
elseif PSFlags.isSpecificRunMatlab || PSFlags.isPrevRunMatlab
% If Skipping user input and if matlab file ewists, load previous value
if "PSFlags.isPrevRunMatlabStruct && “PSFlags.isSpecificRunMatlab ...
&& PSFlags.isPrevRunMatlab
% Convert
load (PSConditions.prevRunMatlabFN, ’pixel2cm’)
PSUsrInput.pixel2cm = pixel2cm;
clear pixel2cm
elseif "PSFlags.isSpecificRunMatlab && PSFlags.isPrevRunMatlab
if “exist(’PSUsrInput’, ’var’) || ~isfield(PSUsrInput, ’pixel2cm’)
7 Prevent overwritting if already input
load(PSConditions.prevRunMatlabFN, ’PSUsrInput’);

end
elseif PSFlags.isSpecificRunMatlab
if “exist(’PSUsrInput’, ’var’) || ~“isfield(PSUsrInput, ’pixel2cm’)

% Prevent overwritting if already input
load(PSConditions.specificRunMatlabFN, ’PSUsrInput’);

APPENDIX A. APPENDIX 150

end
% Error check for cases previously ran that started the specificRunMatlab
% but no longer in the same structured format...
if “exist(’PSUsrInput’, ’var’) || “isfield(PSUsrInput, ’pixel2cm’)
/% Eztract isBubble from prior conditions if nmot loaded before
load(PSConditions.specificRunMatlabFN, ’pixel2cm’);
PSUsrInput.pixel2cm=pixel2cm;
clear pixel2cm
end
else
fprintf (’\tWARNING: No %s or %s file found.\n’,
PSConditions.prevRunMatlabFN, PSFlags.isSpecificRunMatlab)
end
fprintf (’\t Loaded Pixel2cm Ratio: %.2f\n’, PSUsrInput.pixel2cm)
else
PSUsrInput.pixel2cm = 152.68;
fprintf (’\t Using DEFAULT Pixel2cm Ratio: %.2f\n’, PSUsrInput.pixel2cm)
end

% % Flame Endpoint (Start/end) Selection
if "PSFlags.isRunLoop
% Grab from previous run
if "PSFlags.isSpecificRunMatlab && PSFlags.isPrevRunMatlab
% Convert
load(PSConditions.prevRunMatlabFN, ’pinsCenter_x’, ’pinsCenter_y’)
currentUsrIn = PSUsrInput;
if exist(’pinsCenter_x’, ’var’)
currentUsrIn.pinsCenter_x = pinsCenter_x;
clear pinsCenter_x
end
if exist(’pinsCenter_y’, ’var’)
currentUsrIn.pinsCenter_y = pinsCenter_y;
clear pinsCenter_y
end
PSUsrInput = currentUsrlIn;
elseif PSFlags.isSpecificRunMatlab
% If running newer version of matlab file, then just nab fps
currentUsrIn = PSUsrInput;
load(PSConditions.specificRunMatlabFN, ’PSUsrInput’)
% PSUsrInput.pinsCenter_z, PSUsrInput.pinsCenter_y
if isfield(PSUsrInput, ’pinsCenter_x’)
currentUsrIn.pinsCenter_x = PSUsrInput.pinsCenter_x;
end
if isfield(PSUsrInput, ’pinsCenter_y’)
currentUsrIn.pinsCenter_y = PSUsrlnput.pinsCenter_y;
end
PSUsrInput = currentUsrln;
end
elseif "PSFlags.debug_skipUsrInput
% If grabbing user input
usrInputframe = read(HSCmovObj,PSConditions.fps/100); JShow frame 100 for reference
#imgHndlUsr=imshow (usrInput)
set(0,’currentfigure’, usrInputFrameFigHand)
imshow (usrInputframe)
title(PSConditions.VideoName, ’Interpreter’, ’none’);
sset(t, ’Interpreter’, ’none’)
h = helpdlg({’Spark Center between pins:’,... Jhelp dialog instructions
> Pt: Midpoint between the pins’});
set(h, ’position’, [PSUsrInput.dia_x_pos PSUsrInput.dia_y_pos 300 100]);
Zmakes box bigger [xzlocation y location width height]

APPENDIX A. APPENDIX 151

set (0, ’currentfigure’, usrInputFrameFigHand);
[x_midBtPins, y_midBtPins] = ginput_CASmodified(1, [1, 2, 3, 41); Jgetpts;
delete(h) / Close help dialog boz

PSUsrInput.pinsCenter_x=x_midBtPins(length(x_midBtPins)); /% z midpoint between pins
PSUsrInput.pinsCenter_y=y_midBtPins(length(x_midBtPins)); 7/ y midpoint between pins
fprintf (’\tSelected pin center at: (%.2f,%.2f)\n’,

PSUsrInput.pinsCenter_x, PSUsrInput.pinsCenter_y);

elseif PSFlags.isSpecificRunMatlab || PSFlags.isPrevRunMatlab
% If Skipping user input and if matlab file exists, load previous value
if "PSFlags.isPrevRunMatlabStruct && “PSFlags.isSpecificRunMatlab ...
&& PSFlags.isPrevRunMatlab
% Convert
load(PSConditions.prevRunMatlabFN, ’pinsCenter_x’, ’pinsCenter_y’)
PSUsrInput.pinsCenter_x = pinsCenter_x;
PSUsrInput.pinsCenter_y = pinsCenter_y;
clear pinsCenter_x pinsCenter_y
elseif "PSFlags.isSpecificRunMatlab && PSFlags.isPrevRunMatlab
if “exist(’PSUsrInput’, ’var’) || “isfield(PSUsrInput, ’pinsCenter_x’)
7 Prevent overwritting if already input
load(PSConditions.prevRunMatlabFN, ’PSUsrInput’);

end
elseif PSFlags.isSpecificRunMatlab
if “exist(’PSUsrInput’, ’var’) || ~“isfield(PSUsrInput, ’pinsCenter_x’)

% Prevent overwritting if already input
load(PSConditions.specificRunMatlabFN, ’PSUsrInput’);
end
% Error check for cases previously ran that started the specificRunMatlab
% but no longer in the same structured format...
if “exist(’PSUsrInput’, ’var’) || “isfield(PSUsrInput, ’pinsCenter_x’)
% Extract isBubble from prior conditions if not loaded before
load (PSConditions.specificRunMatlabFN, ’pinsCenter_x’, ’pinsCenter_y’);
PSUsrInput.pinsCenter_x=pinsCenter_x;
PSUsrInput.pinsCenter_y = pinsCenter_y;
clear pinsCenter_x pinsCenter_y
end
else
fprintf (’\tWARNING: No %s or %s file found.\n’,
PSConditions.prevRunMatlabFN, PSFlags.isSpecificRunMatlab)
end
fprintf(’\t Loaded pin center at: (%.2f,%.2f)\n’,
PSUsrInput.pinsCenter_x, PSUsrInput.pinsCenter_y);
else
PSUsrInput.pinsCenter_x 451.03;7461.52;
PSUsrInput.pinsCenter_y = 458.53;%440.54;
fprintf (’\t Using DEFAULT pin center at: (%.2f,%.2f)\n’,
PSUsrInput.pinsCenter_x, PSUsrInput.pinsCenter_y);

end

% % Right or left edge
if "PSFlags.isRunLoop
% Grab from previous run
if "PSFlags.isSpecificRunMatlab && PSFlags.isPrevRunMatlab
% Convert
load(PSConditions.prevRunMatlabFN, ’pixEdge0fRI0’)
currentUsrIn = PSUsrlInput;
if exist(’pixEdge0fRIO’, ’var’)
currentUsrIn.pixEdge0fRI0 = pixEdge0fRIO;
clear pixEdgeOfRIO

APPENDIX A. APPENDIX 152

end
PSUsrInput = currentUsrln;

elseif PSFlags.isSpecificRunMatlab
% If running newer version of matlab file, then just nab fps
currentUsrIn = PSUsrInput;
load(PSConditions.specificRunMatlabFN, ’PSUsrInput’)
% PSUsrInput.pizEdge0fRIO

if isfield(PSUsrInput, ’pixEdgeO0fRIO’)
currentUsrIn.pixEdge0OfRI0 = PSUsrInput.pixEdgeOfRIO;
end
PSUsrInput = currentUsrln;
end
elseif "PSFlags.debug_skipUsrInput
% If grabbing user input

BW = im2bw(usrInputframe, PSConditions.flameCutoffThreshold/255);
set(0,’currentfigure’, usrInputFrameFigHand)
imgHnd1Usr=imshow (BW) ;

title(PSConditions.VideoName, ’Interpreter’, ’none’);

h = helpdlg({’Select end of Good Flame Region:’,... %help dialog instructions
> Pt: White pixel BEFORE outside most point ’,...
> Check threshold if you do not like image’});

set(h, ’position’, [PSUsrInput.dia_x_pos PSUsrInput.dia_y_pos 300 100]);
Zimakes boz bigger [zlocation y location width height]

set(0,’currentfigure’, usrInputFrameFigHand)
[x_flameEndpts, ~] = ginput_CASmodified(1, [1, 3, 4]); /Jgetpts;

PSUsrInput.pixEdge0fRI0O=x_flameEndpts(length(x_flameEndpts));
%z value which is right before edge of bomb
Arightedge is to tell where to stop looking for pizels

/% Detect, based on user input whether dark side is on the left or right
% PSUsrInput.isRightDark: To specify if right or left wertical knife edge, right
% is dark is default and previous assumption

delete(h) Jclose help dialog boz
fprintf (’\tSelected Edge of Flame for Dumb Flame tracking: %.2f\n’,
PSUsrInput.pixEdge0fRIO) ;

if PSUsrInput.pixEdge0OfRI0 < PSUsrInput.pinsCenter_x
PSUsrInput.isRightDark=false;

else
PSUsrInput.isRightDark=true;

end

elseif PSFlags.isSpecificRunMatlab || PSFlags.isPrevRunMatlab
% If Skipping user input and if matlab file exists, load previous value
if "PSFlags.isPrevRunMatlabStruct && “PSFlags.isSpecificRunMatlab ...
&& PSFlags.isPrevRunMatlab
% Convert
load(PSConditions.prevRunMatlabFN, ’pixEdge0fRIO0’) 7
PSUsrInput.pixEdge0OfRI0 = pixEdge0fRIO;
clear pixEdgeOfRIO
elseif "PSFlags.isSpecificRunMatlab && PSFlags.isPrevRunMatlab
if “exist(’PSUsrInput’, ’var’) || “isfield(PSUsrInput, ’pixEdge0fRIO0’)
/% Prevent overwritting if already input

APPENDIX A. APPENDIX 153

load(PSConditions.prevRunMatlabFN, ’PSUsrInput’);
end
elseif PSFlags.isSpecificRunMatlab
if “exist(’PSUsrInput’, ’var’) || “isfield(PSUsrInput, ’pixEdge0fRIO0’)
7% Prevent overwritting if already input
load(PSConditions.specificRunMatlabFN, ’PSUsrInput’);
end
% Error check for cases previously ran that started the specificRunMatlab
% but no longer in the same structured format...
if “exist(’PSUsrInput’, ’var’) || “isfield(PSUsrInput, ’pixEdge0fRIO0’)
/% Eztract isBubble from prior conditions if nmot loaded before
load(PSConditions.specificRunMatlabFN, ’pixEdge0fRI0’);
PSUsrInput.pixEdge0OfRIO=pixEdge0fRIO;
clear pixEdgeOfRIO
end
else
fprintf (’\tWARNING: No %s or %s file found.\n’,
PSConditions.prevRunMatlabFN, PSFlags.isSpecificRunMatlab)
end
fprintf (’\t Loaded Edge of Flame for Dumb Flame tracking: %.2f\n’,
PSUsrInput.pixEdge0fRIO0) ;
else
PSUsrInput.pixEdge0fRI0 = 983.27;7941.29;%947.29; }870.2793
fprintf (’\t DEFAULT Edge of Flame for Dumb Flame tracking: %.2f\n’,
PSUsrInput.pixEdge0fRIO0) ;
end

if PSUsrInput.pixEdgeOfRI0 > 1024 ...
- 2xfloor(PSConditions.maxFlameSpeedPhysical_cms*PSUsrInput.pixel2cm/PSConditions.fps)

fprintf ([’ \tWARNING: Given pixel end region of interest is too large’,...
’ and too close to edge of frame, reducing\n’])
PSUsrInput.pixEdge0fRI0 = PSUsrInput.pixEdgeOfRIO - ...
floor (PSConditions.maxFlameSpeedPhysical_cms*PSUsrInput.pixel2cm/PSConditions.fps);
end

if PSConditions.isBubble
if "PSFlags.isRunLoop
% Do nothing as going to over-ride this in load call
elseif “PSFlags.debug_skipUsrInput || PSFlags.isForceUsrInputBubbleDia
% If grabbing user input
PSUsrInput.dist_pixel_bubble = zeros (numBubbleCheckPtAve, 1) ;
for j = 1:numBubbleCheckPtAve
usrInputframe = read(HSCmovObj,1+5%j); /Show frames 1 and 6
set(0,’currentfigure’, usrInputFrameFigHand)
imshow(usrInputframe)
title(PSConditions.VideoName, ’Interpreter’, ’none’);
/set(t, ’Interpreter’, ’none’)
h = helpdlg({’Select Two Points for Bubble Diameter:’,...
> Pt 1: x-position of LHS of Bubble’,...
> Pt 2: x-position of RHS of Bubble’});
set(h, ’position’, [PSUsrInput.dia_x_pos PSUsrInput.dia_y_pos 300 100]);
/makes box bigger [zlocation y location width height]

[x_PixelPos, "] = ginput_CASmodified(2, [3, 41); Zginput(2)] getpts;

PSUsrInput.pixel_bubble_left(j) = x_PixelPos(length(x_PixelPos)-1);
PSUsrInput.pixel_bubble_right(j) = x_PixelPos(length(x_PixelPos));
PSUsrInput.d_pixel_bubble(j) = ...

abs (PSUsrInput.pixel_bubble_left(j)-PSUsrInput.pixel_bubble_right(j));

APPENDIX A. APPENDIX 154

fprintf (’\tSelected Two points %.2f, %.2f that are %.2f pixels apart\n’,
PSUsrInput.pixel_bubble_left(j), PSUsrInput.pixel_bubble_right(j),
PSUsrInput.d_pixel_bubble(j))

delete(h) Jclose help dialog box
Zclose(gef) JimgHndlUsr.Parent)
end

PSUsrInput.d_pixel_bubble_avg = mean(PSUsrInput.d_pixel_bubble);
Javerages pizel distance of bubble

PSUsrInput.pixel_bubble_left_avg = mean(PSUsrInput.pixel_bubble_left);
Javerages pizel LHS

PSUsrInput.pixel_bubble_right_avg = mean(PSUsrInput.pixel_bubble_right);
/averages pizel LHS

PSUsrInput.dBubble_selected_cm = PSUsrInput.d_pixel_bubble_avg/PSUsrInput.pixel2cm;
Zconverts pizel to cm

fprintf(’\tSelected Bubble Diameter: %.2f cm, left: %.2f, right: %.2f\n’,
PSUsrInput.dBubble_selected_cm, PSUsrInput.pixel_bubble_left_avg,
PSUsrInput.pixel_bubble_right_avg);

elseif PSFlags.isSpecificRunMatlab || PSFlags.isPrevRunMatlab
% If Skipping user input and if matlab file exists, load previous value
if "PSFlags.isPrevRunMatlabStruct && “PSFlags.isSpecificRunMatlab ...
&& PSFlags.isPrevRunMatlab
% Convert
load(PSConditions.prevRunMatlabFN, ’dBubble_selected_cm’,
’pixel_bubble_left_avg’, ’pixel_bubble_right_avg’)
PSUsrInput.pixel_bubble_left_avg = pixel_bubble_left_avg;
PSUsrInput.pixel_bubble_right_avg = pixel_bubble_right_avg;
if exist(’dBubble_selected_cm’, ’var’)
PSUsrInput.dBubble_selected_cm = dBubble_selected_cm;
end
clear pixel_bubble_left_avg pixel_bubble_right_avg dBubble_selected_cm

if PSConditions.isBubble && ~isfield(PSUernput, ’dBubble_selected_cm’)
% If running on previous version and there is a bubble
load(PSConditions.prevRunMatlabFN, ’pixel_bubble_left_avg’,

’pixel_bubble_right_avg’, ’dBubble_selected_cm’);

PSUsrInput.pixel_bubble_left_avg = pixel_bubble_left_avg;
PSUsrInput.pixel_bubble_right_avg = pixel_bubble_right_avg;
PSUsrInput.dBubble_selected_cm = dBubble_selected_cm;
clear pixel_bubble_left_avg pixel_bubble_right_avg dBubble_selected_cm

if “isfield(PSUsrInput, ’dBubble_selected_cm’)
&& (isfield(PSUsrInput, ’pixel_bubble_left_avg’)
&% isfield(PSUsrInput, ’pixel_bubble_right_avg’))
PSUsrInput.d_pixel_bubble_avg = ...
abs (PSUsrInput.pixel_bubble_left_avg-PSUsrInput.pixel_bubble_right_avg);
PSUsrInput.dBubble_selected_cm=...
PSUsrInput.d_pixel_bubble_avg/PSUsrInput.pixel2cm;

end
end
elseif "PSFlags.isSpecificRunMatlab && PSFlags.isPrevRunMatlab
if “exist(’PSUsrInput’, ’var’)

|| ~isfield(PSUsrInput, ’pixel_bubble_right_avg’)
% Prevent overwritting if already input
load(PSConditions.prevRunMatlabFN, ’PSUsrInput’)
end
elseif PSFlags.isSpecificRunMatlab
if “exist(’PSUsrInput’, ’var’)

APPENDIX A. APPENDIX 155

|| “isfield(PSUsrInput, ’pixel_bubble_right_avg’)
/% Prevent overwritting if already input
load(PSConditions.specificRunMatlabFN, ’PSUsrInput’);
end

/% Error check for cases previously ran that started the specificRunMatlab
7% but no longer in the same structured format...
if “exist(’PSUsrInput’, ’var’) || ~“isfield(PSUsrInput, ’pixel_bubble_right_avg’)
/% Eztract isBubble from prior conditions if mot loaded before
load(PSConditions.specificRunMatlabFN, ’pixel_bubble_right_avg’,
’pixel_bubble_left_avg’, ’dBubble_selected_cm’);
PSUsrInput.pixel_bubble_right_avg=pixel_bubble_right_avg;
PSUsrInput.pixel_bubble_left_avg = pixel_bubble_left_avg;
PSUsrInput.dBubble_selected_cm = dBubble_selected_cm;
clear pixel_bubble_left_avg pixel_bubble_right_avg dBubble_selected_cm
end
else
fprintf (’\tWARNING: No %s or %s file found.\n’,
PSConditions.prevRunMatlabFN, PSFlags.isSpecificRunMatlab)
end

else
PSUsrInput.dBubble_selected_cm = 2.97;
PSUsrInput.pixel_bubble_left_avg=188.66;
PSUsrInput.pixel_bubble_right_avg=644.44;
fprintf (’\t Using DEFAULT Bubble Diameter: %.2f cm, left px: %.2f, right px: %.2f\n’,...
PSUsrInput.dBubble_selected_cm, PSUsrInput.pixel_bubble_left_avg,
PSUsrInput.pixel_bubble_right_avg)
end
if "PSFlags.isRunLoop
% Do nothing as going to over-ride this in load call
else
PSUsrInput.dBubble_cm=PSUsrInput.dBubble_selected_cm;
% Find location of bubble, “radius as PSUsrInput.pinsCenter_z is considered
% ’0-point’
if PSUsrInput.isRightDark
PSUsrInput.rBubble_cm = ...
(PSUsrInput.pixel_bubble_right_avg - PSUsrInput.pinsCenter_x)...
/PSUsrInput.pixel2cm;
elseif PSUsrInput.pixEdge0fRI0 < PSUsrInput.pinsCenter_x
/% Else left is dark and not yet flipped
PSUsrInput.rBubble_cm = ...
(PSUsrInput.pinsCenter_x - PSUsrInput.pixel_bubble_left_avg)...
/PSUsrInput.pixel2cm;
elseif PSFlags.isForceUsrInputBubbleDia
7 Update the values not already accounted for
pixel_bubble_right_avg = 1024/2 + (1024/2 - PSUsrInput.pixel_bubble_left_avg);
#Shouldn’t this be left average and flip to right?
pixel_bubble_left_avg = 1024/2 + (1024/2 - PSUsrInput.pixel_bubble_right_avg) ;

% Now overwrite value, since flipping
PSUsrInput.pixel_bubble_right_avg=pixel_bubble_right_avg;
PSUsrInput.pixel_bubble_left_avg=pixel_bubble_left_avg;
PSUsrInput.rBubble_cm =
(PSUsrInput.pixel_bubble_right_avg-PSUsrInput.pinsCenter_x)...
/PSUsrInput.pixel2cm;
else
/% Else left is dark and key parameters flipped already
PSUsrInput.rBubble_cm = ...
(PSUsrInput.pixel_bubble_right_avg - PSUsrInput.pinsCenter_x)...

APPENDIX A. APPENDIX 156

/PSUsrInput.pixel2cm;
if PSUsrInput.rBubble_cm<1
% If messed up on left/right flip conversion. Fiz %t!
pixel_bubble_right_avg = 1024/2 ...
+ (1024/2 - mean(PSUsrInput.pixel_bubble_left));
pixel_bubble_left_avg = 1024/2 ...
+ (1024/2 - mean(PSUsrInput.pixel_bubble_right));

% Now overwrite value, since flipping
PSUsrInput.pixel_bubble_right_avg=pixel_bubble_right_avg;
PSUsrInput.pixel_bubble_left_avg=pixel_bubble_left_avg;

fprintf (’NOTE: Correcting left/right bubble edge and rBubble_cm\n’)

pause(300)

PSUsrInput.rBubble_cm = ...
(PSUsrInput.pixel_bubble_right_avg-PSUsrInput.pinsCenter_x)...
/PSUsrInput.pixel2cm;

end
end

4% Determine bubble center

[PSUsrInput.bubbleCenter_x_pixLoc, PSUsrInput.bubbleCenter_y_pixLoc,
PSUsrInput.bubbleCenter_rad_pixLoc] = ...
getPSBubbleInitialCirCenter (PSConditions, PSUsrInput, PSFlags);

PSUsrInput.pixel_bubble_right_auto = ...

PSUsrInput.bubbleCenter_x_pixLoc + PSUsrInput.bubbleCenter_rad_pixLoc;
PSUsrInput.rBubble_Auto_cm = PSUsrInput.bubbleCenter_rad_pixLoc/PSUsrInput.pixel2cm;
PSUsrInput.pinCentRadialBubbleLoc_Auto_cm = ...

(PSUsrInput.pixel_bubble_right_auto-PSUsrInput.pinsCenter_x)/PSUsrInput.pixel2cm;
PSUsrInput.dBubble_Auto_cm = 2%PSUsrInput.rBubble_Auto_cm;

end
else
7% Darkness tinspecific values when no bubble (No conv. Necessary)
PSUsrInput.dBubble_cm=PSConditions.dBubble_assumed_cm;
PSUsrInput.rBubble_cm=PSUsrInput.dBubble_cm/2;
PSUsrInput.pixel_bubble_right_avg=...
PSUsrInput.pinsCenter_x+PSUsrInput.rBubble_cm*PSUsrInput.pixel2cm;
end

if PSFlags.isRunLoop && ("PSFlags.debug_skipUsrInput || PSFlags.isForceUsrInputBubbleDia)
close(usrInputFrameFigHand)
end

157

Bibliography

[10]

Osama Badr and Ghazi Karim. “Flame propagation in stratified methane-air mix-
tures”. In: J. Fire Sci. 2.6 (1984), pp. 415-426. 1SSN: 15308049. por1: 10 . 1177/
073490418400200602.

Saravanan Balusamy, Armelle Cessou, and Bertrand Lecordier. “Laminar propagation
of lean premixed flames ignited in stratified mixture”. In: Combust. Flame 161.2 (2014),
pp. 427-437. 18sN: 00102180. poI: 10.1016/j . combustflame.2013.08.023.

J. K. Bechtold, C. Cui, and M. Matalon. “The role of radiative losses in self-extinguishing
and self-wrinkling flames”. In: Proc. Combust. Inst. 30.1 (2005), pp. 177-184. 1SSN:
15407489. por: 10.1016/j.proci.2004.07.031.

Hans Behrens. “Wasserstoftfdiffusion und Flammenstruktur”. In: Naturwissenschaften
32.40-43 (1944), pp. 297-299. 1ssN: 00281042. por: 10.1007/BF01475361.

Johannes Brettschneider. “Berechnung des Luftverhaltnisses A von Luft-Kraftstoff-
Gemischen und des Einflusses von Mefifehlern auf \”. In: Bosch Technische Berichte
6 (4 1997), pp. 177-186.

Francois Charru and E. John Hinch. “"Phase diagram’ of interfacial instabilities in a
two-layer Couette flow and mechanism of the long-wave instability”. In: J. Fluid Mech.
414 (2000), pp. 195-223. 1ssN: 00221120. por: 10.1017/8002211200000851X.

Zheng Chen. “Effects of radiation and compression on propagating spherical flames of
methane/air mixtures near the lean flammability limit”. In: Combust. Flame 157.12
(2010), pp. 2267-2276. 1SSN: 00102180. DOI: 10.1016/j . combustflame.2010.07.010.

Zheng Chen. “On the accuracy of laminar flame speeds measured from outwardly
propagating spherical flames: Methane/air at normal temperature and pressure”. In:
Combust. Flame 162.6 (2015), pp. 2442-2453. 1SSN: 15562921. po1: 10 . 1016/ j .
combustflame.2015.02.012.

Zheng Chen. “On the extraction of laminar flame speed and Markstein length from
outwardly propagating spherical flames”. In: Combust. Flame 158.2 (2011), pp. 291—
300. 18sN: 0010-2180. DOI: 10.1016/j.combustflame.2010.09.001.

Zheng Chen. “Studies on the Initiation , Propagation, and Extinction of Premixed
Flames”. PhD thesis. Princeton University, 2009.

BIBLIOGRAPHY 158

[11] M Cowie and Harry Watts. “Diffusion of Methane and Chloromethanes in Air”. In:
Can. J. Chem. 49.74 (1971).

[12] A. Cuoci et al. “Extinction of laminar, premixed, counter-flow methane/air flames
under unsteady conditions: Effect of H2 addition”. In: Chem. Eng. Sci. 93 (2013),
pp. 266-276. 1ssN: 00092509. DOI: 10.1016/j.ces.2013.02.009.

[13] G. Darrieus. Propagation d’un front de flame.

[14] 1. V. Dyakov et al. “Measurement of adiabatic burning velocity in methane-oxygen-
nitrogen mixtures”. In: Combust. Sci. Technol. 172.1 (2010), pp. 81-96. 1sSN: 00102202.
DOI: 10.1080/00102200108935839.

[15] Dynamics of Curved Fronts. San Diego, CA: Academic Press, Inc., 1959. 1SBN: 0125503555.
DOI: 10.1016/b978-0-08-092523-3.50003-4.

[16] Fokion N Egolfopoulos, P. Cho, and C.K. Law. In: ().

[17] Harvey Einbinder. “The hydrodynamic stability of flame fronts”. In: J. Chem. Phys.
21.3 (1953), pp. 480-489. 1ssN: 00219606. DOT: 10.1063/1.1698931.

[18] Energy Information Administration. “Household Energy Use in California”. In: (2019).

[19] Shigeo Furuno, Satoshi Iguchi, and Tokuta Inoue. “Lean combustion characteristics
of locally stratified charge mixture: Basic studies of in-vessel combustion ignited by
laser”. In: JSAE Rev. 16.4 (1995), pp. 357-361. 1sSN: 03894304. por1: 10.1016/0389-
4304 (95)00034-5.

[20] C. Galizzi and D. Escudié. “Experimental analysis of an oblique turbulent flame front
propagating in a stratified flow”. In: Combust. Flame 145 (2006), pp. 621-634. 1SSN:
00102180. por1: 10.1016/j.combustflame.2010.07.008.

[21] Walter Gander, Gene H. Golub, and Rolf Strebel. “Least-Squares Fitting of Circles
and Ellipses”. In: 34 (1994), pp. 558-578.

[22] Hyun Geun and Junseok Kim. “Fluids Two-dimensional Kelvin-Helmholtz instabilities
of multi-component fluids”. In: Eur. J. Mech. B/Fluids 49 (2015), pp. 77-88. ISSN:
0997-7546. DOI: 10.1016/j.euromechflu.2014.08.001.

[23] George K. Giannakopoulos et al. “Consistent definitions of ” Flame Displacement Speed”
and "Markstein Length” for premixed flame propagation”. In: Combust. Flame 162.4
(2015), pp. 1249-1264. 1SSN: 15562921. DOIL: 10.1016/j.combustflame.2014.10.015.

[24] P. Girard et al. “Flame propagation through unconfined and confined hemispherical
stratified gaseous mixtures”. In: Symp. Combust. 17.1 (1979), pp. 1247-1255. 1SSN:
00820784. por: 10.1016/50082-0784(79)80118-6.

[25] Rama Govindarajan and Kirti Chandra Sahu. “Instabilities in Viscosity-Stratified
Flow”. In: Annu. Rev. Fluid Mech. 46.1 (2014), pp. 331-353. 1SsN: 0066-4189. DOL:
10.1146/annurev-f1luid-010313-141351.

BIBLIOGRAPHY 159

[26]

[27]

28]

[29]

[30]

[31]

Erjiang Hu et al. “Measurements of laminar burning velocities and onset of cellular
instabilities of methane-hydrogen-air flames at elevated pressures and temperatures”.
In: Int. J. Hydrogen Energy 34.13 (2009), pp. 5574-5584. 1SSN: 03603199. poO1: 10.
1016/3 .1jhydene.2009.04.058.

T. Kang and D. C. Kyritsis. “Theoretical investigation of flame propagation through
compositionally stratified methane-air mixtures”. In: Combust. Theory Model. 13.4
(2009), pp. 705-719. 1SSN: 13647830. DOI: 10.1080/13647830903093765.

Taekya Kang and Dimitrios C. Kyritsis. “Methane flame propagation in composition-
ally stratified gases”. In: Combust. Sci. Technol. 177.11 (2005), pp. 2191-2210. 1SSN:
00102202. por1: 10.1080/00102200500240836.

Taekyu Kang and Dimitrios C. Kyritsis. “Departure from quasi-homogeneity during
laminar flame propagation in lean, compositionally stratified methane-air mixtures”.
In: Proc. Combust. Inst. 31 1.1 (2007), pp. 1075-1083. 1SSN: 15407489. DOIL: 10.1016/
j.proci.2006.07.051

G. A. Karim and H. T. Lam. “Ignition and flame propagation within stratified methane-
air mixtures formed by convective diffusion”. In: Symp. Combust. 21.1 (1988), pp. 1909—
1915. 18sN: 00820784. DOI: 10.1016/S0082-0784(88)80427-2.

G. A. Karim and P. Tsang. “Flame propagation through atmospheres involving con-
centration gradients formed by mass transfer phenomena”. In: J. Fluids Eng. Trans.
ASME 97.4 (1975), pp. 615-617. 1sSN: 1528901X. DOI: 10.1115/1.3448144.

A P Kelley and C K Law. “Nonlinear effects in the extraction of laminar flame speeds
from expanding spherical flames”. In: Combust. Flame 156.9 (2009), pp. 1844-1851.
1SSN: 0010-2180. por: 10.1016/j.combustflame.2009.04.004.

L. Landau. “On the Theory of Slow Combustion”. In: Acta Physicochim. U.R.S.S.
XIX.1 (1944), pp. 403-411. po1: 10.1016/b978-0-08-092523-3.50044~7.

Chung K. Law. “Combustion at a crossroads: Status and prospects”. In: Proc. Combust.
Inst. 31 1.1 (2007), pp. 1-29. 1SSN: 15407489. DOI: 10.1016/j.proci.2006.08.124.

William Lowry et al. “Laminar Flame Speed Measurements and Modeling of Pure
Alkanes and Alkane Blends at Elevated Pressures”. In: Proc. ASME Turbo Ezpo 2010
GT2010 (2010).

G. H. Markstein. “Cell structure of propane flames burning in tubes”. In: J. Chem.
Phys. 17.4 (1949), pp. 428-429. 1sSN: 00219606. DOI: 10.1063/1.1747278.

George H Markstein. “Experimental and Theoretical studies of Flame-front Stability”.
In: J. Aeronaut. Sci. 18 (1951), pp. 199-209. 1SSN: 00223654. DOIL: 10.1021/jp9531974.

W. J. Massman. “A review of the molecular diffusivities of H20, CO2, CH4, CO, O3,
SO2, NH3, N20, NO, and NO2 in air, O2 and N2 near STP”. In: Atmos. Environ.
32.6 (1998), pp. 1111-1127. 18SN: 13522310. DOI: 10.1016/S1352-2310(97)00391-9.

BIBLIOGRAPHY 160

[39]

[40]

Xiangwen Meng et al. “Effects of Direct-Current (DC) Electric Fields on Flame Propa-
gation and Combustion Characteristics of Premixed CH4/02/N2 Flames”. In: Energy
¢ Fuels 26.Dc (2012), p. 121018151704002. 1SSN: 0887-0624. DOI: 10.1021/e£300972g.

Akram Mohammad and Khalid A. Juhany. “Laminar burning velocity and flame struc-
ture of DME /methane + air mixtures at elevated temperatures”. In: Fuel 245.February
(2019), pp. 105-114. 1sSN: 00162361. DOI: 10.1016/j.fuel.2019.02.085.

A. Pires Da Cruz, A. M. Dean, and J. M. Grenda. “A numerical study of the laminar
flame speed of stratified methane/air flames”. In: Proc. Combust. Inst. 28.2 (2000),
pp. 1925-1932. 18SN: 15407489, DOL: 10.1016/S0082-0784(00)80597-4.

Quantis. “Measuring Fashion 2018: Environmental Impact of the Global Apparel and
Footwear Industries Study Full report and methodological considerations”. In: (2018),
p. 65.

R. J. Kee and F. M. Rupley and J. A. Miller and M. E. Coltrin and J. F. Grcar and
E. Meeks and H. K. Moffat and A. E. Lutz and G. Dixon- Lewis and M. D. Smooke and
J. Warnatz and G. H. Evans and R. S. Larson and R. E. Mitchell and L. R. Petzold and
W. C. Reynolds and M. Caracotsios and W. E. Stewart and P. Glarborg and C. Wang
and and O. Adigun. CHEMKIN Collection. Vol. Release 3.6. San Diego, CA: Reaction
Design Inc., 2000. DoI: 10.1007/978-1-4419-6247-8_9395.

Youngchul Ra. “Laminar Flame Propagation in a Stratified Charge”. PhD thesis. Mas-
sachusetts Institute of Technology, 1999.

M.V.S. Ranganadham. “Key world energy statistics”. In: IEA Publ. (2019), p. 101.

K. J. Richards, P. K. Senecal, and E. Pomraning. “CONVERGE Manual (v2.3)”. In:
(2019).

K. J. Richards, P. K. Senecal, and E. Pomraning. “CONVERGE (v2.3)”. In: (2019).

E. S. Richardson et al. “Effects of equivalence ratio variation on lean, stratified methane-
air laminar counterflow flames”. In: Combust. Theory Model. 14.6 (2010), pp. 775-792.
ISSN: 13647830. poI1: 10.1080/13647830.2010.490881.

C Robinson and D B Smith. “The auto-ignition temeperature of Methane”. In: J.
Hazard. Mater. Elsevier Sci. Publ. B.V 8 (1984), pp. 199-203.

G. Rozenchan et al. “Outward propagation, burning velocities, and chemical effects of
methane flames up to 60 ATM”. In: Proc. Combust. Inst. 29.2 (2002), pp. 1461-1470.
ISSN: 15407489. por: 10.1016/s1540-7489(02)80179-1.

David P Schmidt. “Laminar Flame Propagation in Mixtures With Compositional
Stratification at Small Length Scales”. PhD thesis. University of Illinois at Urbana-
Champaign, 2011.

BIBLIOGRAPHY 161

[52]

[53]

[54]

o ot
O,

Ut

[58]

[59]

L. Selle, T. Poinsot, and B. Ferret. “Experimental and numerical study of the ac-
curacy of flame-speed measurements for methane/air combustion in a slot burner”.
In: Combust. Flame 158.1 (2011), pp. 146-154. 1SSN: 00102180. por: 10.1016/j .
combustflame.2010.08.003.

Gary S. Settles. Schlieren and Shadowgraph Techniques: Visualizing Phenomena in
Transparent Media. Verlag Berlin Heidelberg New York: Springer, 2001.

Xian Shi. “Fundamental Processes in Combustion of Stratified Mixtures”. PhD thesis.
University of California, Berkeley, 2017.

Gregory P. Smith et al. URL: http://www.me.berkeley.edu/gri_mech/.
Toni Tahtouh, Fabien Halter, and Christine Mounaim-Rousselle. In: ().

UNDP. “Human Development Indices and Indicators. 2018 Statistical Update”. In:
United Nations Dev. Program. 27.4 (2018), p. 123.

U.S. EIA. “Annual Energy Outlook 2018 with projections to 2050”. In: Annu. Energy
Outlook 2018 with Proj. to 2050 (2018). 1SsN: 1387-1811. DOI: DOE/EIA-0383(2012)
U.S.. arXiv: arXiv:1011.1669v3.

Shuang-Feng Wang et al. “Laminar burning velocities and Markstein lengths of pre-
mixed methane/air flames near the lean flammability limit in microgravity”. In: Com-
bust. Flame 157.4 (2010), pp. 667—675. 1sSN: 00102180. DOI: 10.1016/j . combustflame.
2010.01.006.

J. Warnatz, U. Maas, and R.W. Dibble. Combustion: Physical and Chemical Funda-
mentals, Moldeling and Simulation, Exzperiments, Pollutant Formation. 4th ed. Verlag
Berlin Heidelberg: Springer, 2006.

P. A. Witherspoon and D. N. Saraf. “Diffusion of methane, ethane, propane, and n-
butane in water from 25 to 43°”. In: J. Phys. Chem. 69.11 (1965), pp. 3752-3755. ISSN:
00223654. DOI: 10.1021/3j100895a017.

P. Wolanski et al. “Detonation of methane-air mixtures”. In: Fighteenth Symp. Com-
bust. (1981).

Jiacheng Zhang and John Abraham. “A numerical study of laminar flames propagating
in stratified mixtures”. In: Combust. Flame 163 (2016), pp. 461-471. 1SSN: 15562921.
DOI: 10.1016/j.combustflame.2015.10.020.

Ruigang Zhou and Simone Hochgreb. “The behaviour of laminar stratified methane/air
flames in counterflow”. In: Combust. Flame 160.6 (2013), pp. 1070-1082. 1ssN: 00102180.
DOI: 10.1016/j.combustflame.2013.01.023.

