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An Overview and Perspectives  
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Stochastic Model 
Predictive Control

M
odel predictive control (MPC) has demon-
strated exceptional success for the high-per-
formance control of complex systems [1], [2]. 
The conceptual simplicity of MPC as well as 
its ability to effectively cope with the complex 

dynamics of systems with multiple inputs and outputs, in-
put and state/output constraints, and conflicting control 
objectives have made it an attractive multivariable con-
strained control approach [1]. MPC (a.k.a. receding-horizon 
control) solves an open-loop constrained optimal control 
problem (OCP) repeatedly in a receding-horizon manner 
[3]. The OCP is solved over a finite sequence of control ac-
tions { , , , }u u uN0 1 1f -  at every sampling time instant that the 
current state of the system is measured. The first element 
of the sequence of optimal control actions is applied to the 
system, and the computations are then repeated at the next 
sampling time. Thus, MPC replaces a feedback control law 
( ),$r  which can have formidable offline computation, with 

the repeated solution of an open-loop OCP [2]. In fact, re-

peated solution of the OCP 
confers an “implicit” feed-
back action to MPC to cope 
with system uncertainties 
and disturbances. Alterna-
tively, explicit MPC approaches 
circumvent the need to solve an 
OCP online by deriving relationships 
for the optimal control actions in terms of an “explicit” 
function of the state and reference vectors. However, explic-
it MPC is not typically intended to replace standard MPC 
but, rather, to extend its area of application [4]–[6].

Although MPC offers a certain degree of robustness to 
system uncertainties due to its receding-horizon imple-
mentation, its deterministic formulation typically renders 
it inherently inadequate for systematically dealing with 
uncertainties. Addressing the general OCP for uncertain sys-
tems would involve solving the dynamic programming (DP) 
problem over (arbitrary) feedback control laws ( )$r  [7], [8]. 
Solving the DP problem, however, is deemed to be imprac-
tical for real-world control applications since computational 
complexity of a DP problem increases exponentially with 
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uncertainties and their interactions with the system 
dynamics, constraints, and performance criteria. Param-
eterized feedback control laws allow for using the knowl-

edge of predicted uncertainties in computing 
the control law, while reducing the computa-

tions to poly nom ial  dependence on the 
state dimension [16].

RMPC approaches rely on bounded, deter-
ministic descriptions of system uncertainties. 
In real-world systems, however, uncertainties 

are often considered to be of probabilistic nature. 
When the stochastic system uncertainties can be 

adequately characterized, it is more natural to explicitly 
account for the probabilistic occurrence of uncertainties in a 
control design method. Hence, stochastic MPC (SMPC) has 
recently emerged with the aim of systematically incorpo-
rating the probabilistic descriptions of uncertainties into a 
stochastic OCP. In particular, SMPC exploits the probabi-
listic uncertainty descriptions to define chance constraints, 
which require the state/output constraints be satisfied 
with at least a priori specified probability level—or, alter-
natively, be satisfied in expectation (see, for example, [17]–

[20], and the references therein for 
various approaches to chance-con-

strained optimization). Chance 
constraints enable the system-
atic use of the stochastic char-
acterization of uncertainties 
to allow for an admissible level 
of closed-loop constraint vio-
lation in a probabilistic sense.

SMPC allows for systemati-
cally seeking tradeoffs between 

fulfilling the control objectives 
and guaranteeing a probabilistic con-

straint satisfaction due to uncertainty. The ability to effec-
tively handle constraints in a stochastic setting is 
particularly important for MPC of uncertain systems when 
high-performance operation is realized in the vicinity of 
constraints. In addition, the probabilistic framework of 
SMPC enables shaping the probability distribution of 
system states/outputs. The ability to regulate the probabil-
ity distribution of system states/outputs is important for 
the safe and economic operation of complex systems when 
the control cost function is asymmetric, that is, when the 
probability distributions have long tails [21].

Stochastic optimal control is rooted in stochastic pro-
gramming and chance-constrained optimization; see, for 
example, [22] and [23] for a historical perspective. The pio-
neering work on chance-constrained MPC includes [17], 
[18], [24], and [25]. In recent years, interest in SMPC has 
been growing from both the theoretical and application 
standpoints. SMPC has found applications in many differ-
ent areas, including building climate control, power 

the state dimension (known as curse of 
dimensionality) [9].

The past two decades have witnessed 
significant developments in the area of robust 

MPC (RMPC) with the aim to devise computationally 
affordable optimal control approaches that allow for the 
systematic handling of system uncertainties. RMPC 
approaches consider set-membership-type uncertain-
ties—uncertainties are assumed to be deterministic and 
lie in a bounded set. Early work on RMPC was primarily 
based on min–max OCP formulations, where the control 
actions are designed with respect to worst-case evalua-
tions of the cost function and the constraints of the OCP 
must be satisfied for all possible uncertainty realizations 
(see, for example, [10] and [11]). Min–max MPC approaches 
could not, however, contain the “spread” of state trajecto-
ries, rendering the optimal control actions overly conser-
vative or, possibly, infeasible [12]. To address the 
shortcomings of min–max OCPs, tube-based MPC has 
recently been developed [12]–[15]. Tube-based MPC 
approaches use a partially separable feedback control law 
parameterization to allow for the direct handling of 
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generation and distribution, chemical processes, operation 
research, networked controlled systems, and vehicle path 
planning. Table 1 provides an overview of various emerg-
ing application areas for SMPC; this table by no means pro-
vides an exhaustive list of SMPC applications reported in 
the literature. The majority of reported SMPC approaches 
have been developed for linear systems (for example, algo-
rithms based on the stochastic tube [26] or affine parame-
terization of control policy [27]). Several SMPC applications 
to linear and nonlinear systems have been reported based 
on stochastic programming-based approaches [28]–[30] 
and Monte Carlo sampling techniques [31], [32]. Stochastic 
nonlinear MPC (SNMPC) has received relatively little 
attention, with only a few applications reported mainly in 
the area of process control [33]–[35].

This article gives an overview of the main developments 
in the area of SMPC in the past decade and provides the 
reader with an impression of the different SMPC algorithms 
and the key theoretical challenges in stochastic predictive 
control without undue mathematical complexity. The gen-
eral formulation of a stochastic OCP is first presented, fol-
lowed by an overview of SMPC approaches for linear and 
nonlinear systems. Suggestions of  some avenues for future 
research in this rapidly evolving field concludes the article.

Notation
Rn  denotes the n-dimensional Euclidean space. : [ , ) .0R 3=+

{ , , }1 2N f=  is the set of natural numbers. : { } .0N N ,=+  
: { , , , }a a b1Z[ , ]a b f= +  is the set of integers from a to b . px  is 

the (multivariate) probability distribution of random 
variable(s) x. E denotes expectation and :[·]Ex = [·| ( ) ]x x0E =  
is the conditional expectation. Pr  denotes probability, and 

:[·] [·| ( ) ]Pr Pr x x0x = =  is the conditional probability. 
:x x AxA =

<  is the weighted two-norm of x , where A is a 
positive-definite matrix.

General Formulation of SMPC
Consider a stochastic, discrete-time system

	 ( , , ),x f x u wt t t t1 =+ � (1a)

	 ( , , ),y h x u vt t t t= � (1b)

where t N! + ; ,x uR RUt
n

t
nx u! ! 1 , and y Rt

ny!  are the 
system states, inputs, and outputs, respectively; U  is a non-
empty measurable set for the inputs; w Rt

nw!  and v Rt
nv!  

are disturbances and measurement noise that are unknown 
at the current and future time instants but have known 
probability distributions pw  and pv , respectively; and f  and 
h are (possibly nonlinear) Borel-measurable functions that 
describe the system dynamics and outputs, respectively.

For simplicity, the formulation of SMPC is presented for 
the case of full state-feedback control, in which the system 
states are known at each sampling time instant. Let N N!  
be the prediction horizon, and assume that the control hori-
zon is equal to the prediction horizon. Define an N -stage 
feedback control policy as

	 = { ( ), ( ), , ( )},N0 1 1$ $ $fr r r r -: � (2)

where the Borel-measurable function ( ) : ,R U( )
i

i n1 x "$r +  for 
all , ,i N0 1f= -  is a general (causal) state feedback con-
trol law. At the ith stage of the control policy, the control 
input ui  is selected as the feedback control law ( ),i $r  that is, 

Table 1  An overview of applications of stochastic model predictive control for linear (SMPC) and nonlinear systems (SNMPC).

SMPC (Stochastic-Tube and 
Affine-Parameterization 
Approaches)

Stochastic  
Programming-Based  
SMPC 

Sample-Based 
SNMPC SNMPC 

Air traffic control [31], [32] 

Automotive applications [133] [28], [29] [134] [135] 

Building climate control [27], [84] 

Microgrids [136] [105] 

Networked control systems [137], [138] [139] 

Operation research and  
finance 

[69], [140]–[142] [30], [143] 

Process control [17], [24], [54], [122], [138] [33]–[35], [55], [110]

Robot and vehicle path 
planning 

[89], [144], [145] [93] [64] 

Telecommunication network 
control

[146] 

Wind turbine control [26] 
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( ) .ui i $r=  In SMPC, the value function of a stochastic OCP 
is commonly defined as

	 =:( , ) ( , ) ( ) ,V x J x u J xEN t x c i i f N
i

N

0

1

tr +
=

-

t t= G/ � (3)

where :J UR Rc
nx "# +  and :J R Rf

nx " +  are the cost-per-
stage function and the final cost function, respectively, and xit  
denotes the predicted states at time i given the initial states 
x xt0 =t , control laws { } ,( )j j

i
0
1$r =
-  and disturbance realiza-

tions { } .wj j
i

0
1
=
-

The minimization of the value function (3) is commonly 
performed subject to chance constraints on system outputs 
(or states). Let yit  denote the predicted outputs at time i 
given the initial states x xt0 =t . In its most general form, a 
joint chance constraint over the prediction horizon is defined 
by [36], [37]

[ ( ) , , , ] , , , ,Pr g y j s i N0 1 1for all for allx j it f f# $ b= =t

� (4)

where :g R Rj
ny "  is a (possibly nonlinear) Borel-measur-

able function, s is the total number of inequality constraints, 
and ( , )0 1!b  denotes the lower bound for the probability 
that the inequality constraint ( )g y 0j i #t  must be satisfied. 
The conditional probability Prxt  in (4) indicates that the 
probability that ( ) ,g y 0j i #t  for all , , ,j s1 f=  for all 

, ,Ni 0 f=  holds is dependent on the initial states x xt0 =t ; 
note that the predicted outputs yit  depend on disturbances 
{ }wi i

i
0
1
=
- . A special case of (4) is a collection of individual 

chance constraints [38]

	 [ ( ) ] , , , , , , ,Pr g y j s i N0 1 1for allx j i jt f f# $ b = =t � (5)

where different probability levels jb  are assigned for dif-
ferent inequality constraints. Expressions (4) and (5) can be 
simplified to define chance constraints pointwise in time 
or in terms of the expectation of the inequality constraints 

( )g y 0j i #t  (see, for example, [39]). In addition, state chance 
constraints can be handled through appropriate choice of 
the function h in (1b).

Using the value function (3) and joint chance constraint 
(4), the stochastic OCP for (1) is formulated as follows. Given 
the current system states xt , the centerpiece of an SMPC 
algorithm with hard input constraint and joint chance con-
straint is the stochastic OCP

	 :( ) ( , )minV x V xN t N t r=)

r
� (6)

	

p

:
( , , ),
( , ),

( ) ,
[ ( ) , , , ] ,

,
,

,
,
,

,
,

Pr

x f x w
y h x

g y j s
w
x x

i
i
i
i
i

0 1

such that

for all

for all
for all
for all
for all
for all

U

Z
Z
Z
Z
Z

[ , ]

[ , ]

[ , ]

[ , ]

[ , ]

i i i i

i i i

i

x j i

i w

t

N

N

N

N

N

1

0

0 1

0

0 1

1

0 1

t

$

f

!

# $

+

!

!

!

!

!

r

r

r

b

=

=

=

=

+ -

-

-

t t

t t

t

t

where ( )V xN t
)  denotes the optimal value function under the 

optimal control policy *r . The receding-horizon implemen-
tation of the stochastic OCP (6) involves applying the first 
element of the sequence *r  to the true system at every time 
instant that the states xt  are measured, that is, ( ) .ut 0 $r= *

The key challenges in solving the stochastic OCP (6) 
include 1) the arbitrary form of the feedback control laws 
( ),i $r  2) the nonconvexity and general intractability of 

chance constraints [40], [41], and 3) the computational 
complexity associated with uncertainty propagation 
through complex system dynamics (for example, nonlin-
ear systems). In addition, establishing theoretical proper-
ties, such as recursive feasibility and stability, of the 
stochastic OCP (6) poses a major challenge. Numerous 
SMPC approaches have been developed to obtain tracta-
ble surrogates for the stochastic OCP (6). Table 2 summa-
rizes the key features based on which SMPC approaches 
can be broadly categorized. In subsequent sections, vari-
ous SMPC formulations will be analyzed in light of the 
distinguishing features given in Table 2. Broadly, SMPC 
approaches can be categorized in terms of the type of 
system dynamics, that is, linear or nonlinear dynamics. 
SMPC approaches for linear systems are further catego-
rized based on three main schools of thought: stochastic-
tube approaches [42]–[46], approaches using affine 
parameterization of the control policy [47]–[56], and sto-
chastic programming-based approaches [56]–[62]. There 
has been much less development in the area of SMPC for 
nonlinear systems. The main contributions in this area 
can be categorized in terms of their underlying uncer-
tainty propagation methods, namely sample-based 
approaches [31], [32], [63], Gaussian-mixture approxima-
tions [64], generalized polynomial chaos (gPC) [33], [34], 
[65], and the Fokker–Planck equation [35], [66], [67]. It is 
worth nothing, however, that a unique way to classify the 
numerous SMPC approaches reported in the literature 
does not exist. It has been attempted throughout the dis-
cussion to contrast the various SMPC approaches in 
terms of the key features listed in Table 2.

SMPC for Linear Systems
Much of the literature on SMPC deals with stochastic linear 
systems. For linear systems with additive uncertainties, the 
general stochastic system (1) takes the form

	 ,x Ax Bu Dwt t t t1 = + ++ � (7a)
	 ,y Cx Fvt t t= + � (7b)

where , , , ,A B C D  and F are the state-space system matri-
ces, and the disturbance w and measurement noise v  are 
often (but not always) assumed to be sequences of indepen-
dent, identically distributed (i.i.d.) random variables. For 
linear systems with multiplicative uncertainties, the system 
matrices in (7a) consist of time-varying uncertain elements 
with known probability distributions
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	 ( ) ,x Ax Bu A x B u w ,t t t j t j t
j

q

t j1
1

= + + ++

=

rr/ � (8)

where { }w ,t j j
q

1=  is a sequence of zero-mean i.i.d. random 
variables with known variance (see, for example, [68] and  
[69]). An overview of the main SMPC approaches for linear 
systems is given below.

Stochastic Tube Approaches
Stochastic tube approaches to MPC of linear systems with 
additive, bounded disturbances are presented in [43] and 
[44] with the objective of minimizing the infinite-horizon 
value function

	 ( , ) ,V x x uEt x i Q
i

i R
2

0

2
tr = +3

3

=

t; E/ � (9)

subject to state chance constraints. Stochastic tubes are 
deployed to provide guarantees for recursive feasibility 
and, as a result, to ensure closed-loop stability and con-
straint satisfaction. Like in tube-based MPC [12], [13], [15], 

[70], the states xt  are expressed in terms of the sum of a 
deterministic component zt  and a random component et

: , , ,x z e z z B e e Dwt t t t t t t t t1 1oU U= + = + = ++ +

where :u Kxt t to= +  in (7a) with { , , }N0 1fo o -  is the decision 
variables in the stochastic OCP and K  is a constant feedback 
gain, and : A BKU = +  is assumed to be strictly stable. When 
the disturbances wt  are Gaussian, the representation 

:x z et t t= +  allows for replacing linear chance constraints of 
the form [ ]Pr cx di # $ b  with tightened  hard constraints 
cx d di # #l , so that cz di # l implies [ ] ,Pr cx di # $ b  for all 

, ,i N0 1f= -  [43]. Hence, stochastic tubes enable replac-
ing the state chance constraints with linear constraints 
defined in terms of the nominal predictions zi . This leads to 
a significant reduction in the number of decision variables 
in the online optimization. Tightened constraints can also 
be determined (with more complex offline computations) 
when wt  has an arbitrary, but known, distribution [44].

To obtain a computationally efficient algorithm, sto-
chastic tubes with fixed ellipsoidal cross sections are used 

Table 2  An overview of the key distinguishing features of stochastic model predictive control (SMPC) approaches (gPC: 
generalized polynomial chaos, FP: Fokker–Planck, GM: Gaussian mixture, QP: Quadratic programing, SOCP: Second-order cone 
programing, SDP: Semidefinite programing).

System dynamics 
Linear  

[42]–[59], [61], [62], [69], [73], [89], [91], [92], [147]
Nonlinear  

[31]–[35], [63]–[65], [110], [120]

Type of uncertainties Time-varying uncertainties Time invariant 
uncertainties  
[33], [34], [65]

Time-varying/invariant 
multiplicative 

uncertainties with 
additive disturbances 
[26], [42], [54], [59], 

[62], [89]

Additive  
[43]–[45], [47]–[53], [55], 
[56], [61], [73], [92], [147]

Multiplicative  
[57], [58], [69]

Uncertainty propagation Stochastic tube  
[26], [42]–[46]

Scenario/sample based  
[31], [32], [56],  

[59]–[63], [92], [93]

gPC/FP/GM  
[33]–[35], [54], [64], [65], [89]

Control input 
parameterization 

Open-loop control 
actions  

[31]–[35], [57]–[59], 
[61]–[65], [89], [92],  

[93], [120]

Prestabilizing feedback 
control 

[26], [42]–[44]

Affine parameterization of control policy 
[46]–[56]

Input constraint Hard input constraints  
[33]–[35], [47], [65]

Probabilistic input 
constraints  

[48], [69], [73]

Saturated input 
constraints  

[50], [52], [55]

Chance constraint Individual  
[26], [33], [42]–[45], [47], [58], [110]

Joint  
[34], [35], [55], [56], 
[61], [73], [89], [93]

Expectation type  
[52], [62], [65], [69]

Receding-horizon 
implementation

Full-state feedback  
(The majority of the reported work)

Output feedback  
[45], [52], [73], [77]

Optimization algorithm Convex QP/SOCP  
[43], [44], [47], [50]–[53], 

[55], [89], [147]

SDP  
[69]

Stochastic programing  
[57], [58], [91]

Nonconvex 
optimization  

[31]–[35], [63]–[65], 
[120]
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in [43] such that the centers and scalings of the cross sec-
tions could vary with time [13], [15]. These stochastic tubes 
can be computed offline with respect to the states that 
guarantee satisfaction of chance constraints and recursive 
feasibility. The offline computation of stochastic tubes sig-
nificantly improves the computational efficiency of the 
algorithm compared to stochastic tube approaches that use 
nested ellipsoidal sets [26] or nested layered tubes with vari-
able polytopic cross sections [42] where the probability of 
transition between tubes and the probability of constraint 
violation within each tube are constrained. The use of vari-
able polytopic cross sections as well as several tube layers in 
[26] and [42] leads to a large number of variables and linear 
inequalities that could restrict the application of the SMPC 
algorithm to low-dimensional systems with short predic-
tion horizons. Offline computation of the stochastic tubes in 
[43] enables using many layered tubes and, therefore, con-
siderably reduces the performance conservatism of [26] and 
[42]. However, the ellipsoidal nature of the tube cross sec-
tions in [43] precludes the possibility of using information 
on the direction of disturbances, leading to some degree of 
conservatism. The latter shortcoming is addressed in [44] by 
constructing recursively feasible stochastic tubes directly 
using the probabilistically constrained states.

In stochastic tube approaches, the dual mode prediction 
paradigm [3] is often used to minimize the value function 
(9). The dual mode prediction scheme involves the control 
parameterization u Kxt t to= +  over the first N steps of the 
prediction horizon ({ , , }N0 1fo o -  being the decision variables 
in the online optimization problem) and the prestabilizing 
state feedback control law u Kxt t=  over the subsequent infi-
nite prediction horizon. The prestabilizing feedback control 
law u Kxt t=  provides mean-square stability for the system 
x x Dwt t t1 U= ++  in the absence of constraints, that is, the 
limit of x xi i

<  remains finite as .i " 3  The control law u Kxt t=  
is used to define a finite-horizon value function. The mono-
tonically nonincreasing property of the value function guar-
antees that { , , }N0 1fo o -  will tend to zero so that the control 
law reduces to u Kxt t=  at some time instant in the prediction 
horizon. The control law u Kxt t=  will steer the system to a 
terminal invariant set that is constructed based on the sto-
chastic tubes to ensure satisfaction of constraints over all 
future prediction instants [71].

Stochastic tube approaches typically consist of two steps 
[43], [44]: 1) computing the tube scalings and terminal invari-
ant sets offline and 2) solving a convex quadratic program-
ming problem online to minimize the function ( , )V x Issr -3  
subject to the deterministic surrogates for chance constraints 
and the terminal invariant set. Iss  is the finite nonzero 
limit of the cost-per-stage function [ ] .x uEx i Q i R

2 2
t +t  The 

approaches presented in [43] and [44] are based on full state- 
feedback control, assuming that the states are measurable. 
The stochastic tube algorithm in [44] is extended in [45] to 
consider probabilistic information on bounded measure-
ment noise and uncertain state estimates, where recursive 

feasibility and (a form of) quadratic stability of the output 
feedback control scheme are also established.

Stochastic tube approaches have been used for the con-
trol of systems with multiplicative bounded disturbances 
[see (8)] [71], [72]. Unlike the case of additive disturbances, 
however, a closed-form expression does not exist for the 
deterministic surrogates of the chance constraints. The use 
of stochastic tubes has been extended for the affine-distur-
bance parameterization of feedback control laws with a 
striped structure [46]. The latter approach can potentially 
lead to domains of attraction that are larger than those 
obtained in [43] and [44]. The larger domains of attraction, 
however, come at the cost of a weaker notion of stability 
(input-to-state stability) as opposed to guaranteeing con-
vergence using a prestabilizing feedback control law.

In summary, stochastic tube approaches consider additive 
and/or multiplicative bounded disturbances. They com-
monly use a state-feedback control law with a constant feed-
back gain to minimize an infinite-horizon value function 
subject to individual chance constraints. The prestabilizing 
state-feedback control law allows for guaranteeing recursive 
feasibility as well as closed-loop stability in a mean-square 
sense. However, stochastic tube approaches cannot handle 
hard input constraints since the prestabilizing state-feedback 
controller is computed offline. The computational efficiency 
of stochastic tube approaches largely depends on how the 
cross sections of stochastic tubes are defined.

Approaches Based on Affine  
Parameterization of the Control Policy
Solving the stochastic OCP (6) using arbitrary feedback 
control laws ( )i $r  is intractable. To achieve a computation-
ally tractable formulation, the stochastic tube approaches 
use a feedback control law with a prestabilizing feedback 
gain. Hence, the online optimization would become lim-
ited to only a sequence of open-loop control actions 
{ , , }N0 1fo o - , which are offsets to the prestabilizing feed-
back controller. Alternatively, the stochastic OCP (6) can be 
solved over the feedback control gains { , , }K KN0 1f -  as well 
as the open-loop control actions { , , }N0 1fo o -  to have a 
larger set of decision variables. Using feedback gains and 
control actions as decision variables will, however, result in 
a nonconvex SMPC algorithm (see, for example, [73]).

Inspired by [16], [74], and [75], an SMPC approach is pre-
sented in [47] for linear systems with Gaussian additive dis-
turbances [see (7a)], where the feedback control law ( )i $r  is 
defined in terms of an affine function of past disturbances

( , ) ,wx M w,i t i i j
j

i

j
1

1

r h= +
=

-

/

with , MR R,i
n

i j
n nu u w! !h #  and : { , , }w ww i1 1f= - . The no

tion of affine-disturbance parameterization of feedback 
control laws originates from the fact that disturbance real-
izations and system states will be known at the future time 
instants. Therefore, the controller will have the disturbance 
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information when determining the future control inputs 
over the control horizon. There exists a one-to-one (nonlin-
ear) mapping between affine-disturbance feedback control 
policies and affine-state feedback control policies since 
both parameterizations would lead to the same control 
inputs [16]. An affine parameterization of the feedback con-
trol law ( )i $r  allows for obtaining a stochastic OCP that is 
convex in decision variables ih  and .M ,i j

In [47], the value function is defined in terms of a linear 
function in disturbance-free states and control inputs, 
while polytopic constraints on inputs and state chance con-
straints are included in the stochastic OCP. The Gaussian 
disturbances are assumed to be bounded in a polytopic set, 
which enables handling hard input bounds and establish-
ing input-to-state stability for the closed-loop system. In 
the presence of unbounded additive disturbances, it is 
impractical to guarantee any bounds on the control inputs 
using a linear state feedback controller; the additive nature 
of disturbances will surely drive the states outside any 
bounded set at some time. To enable dealing with 
unbounded disturbances, the hard input bounds consid-
ered in [47] are relaxed in [48] so that the inputs are 
restricted to lie in a subset with a prescribed probability 
level. For the case of bounded disturbances, the recursive 
feasibility of an SMPC algorithm under an affine-distur-
bance feedback policy is established in [49] by using the 
concept of robust invariant sets (see [76]). Similar SMPC 
algorithms have also been proposed for output feedback 
control of linear systems with Gaussian additive distur-
bances and measurement noise [77], and for a stochastic 
linear setup in the absence of input bounds [78]. The SMPC 
algorithms [77], [78], however, do not provide guarantees 
on recursive feasibility and closed-loop stability.

MPC of stochastic linear systems has been investigated 
in a series of articles [50]–[53]. A discrete-time system sub-
ject to unbounded disturbances with bounded variance is 
considered in [50]. An affine-disturbance feedback control 
policy is used to minimize a finite-horizon value function 
that is defined in terms of expectation of the sum of cost-
per-stage functions (quadratic in the state and control 
inputs). The algorithm considers hard input bounds but not 
state chance constraints. To enable handling hard input 
bounds in the presence of unbounded disturbances, the 
disturbance measurements are saturated before being used 
for computing the control inputs. Thus, the affine-distur-
bance feedback control policy is defined by

( , ) ( ), ( ) { ( ), , ( )},x M w z z zw , , ,i t i i j
j

i

j j j j j p p
1

1

1 1 fr h W W W W= + =
=
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where :R R,j i "W  is a measurable (nonlinear) function 
such that | |sup , maxs j iR 31#W W!  for some 0max 2W . The 
use of a saturation function renders the feedback control 
law nonlinear. The nonlinear feedback control law circum-
vents the need for relaxing the hard input bounds to soft 

constraints when the additive disturbances are unbounded. 
In addition, the above nonlinear feedback control law facil-
itates establishing recursive feasibility in an unbounded 
disturbance setting. In [50], the mean-square boundedness 
of the closed-loop states is guaranteed by using the classi-
cal Foster–Lyapunov conditions [79] under the assumption 
that the unexcited (zero-input and zero-noise) system is 
asymptotically stable. The latter assumption implies that 
the system matrix A is Schur stable, that is, all eigenvalues 
of A are contained in the interior of the unit disc. In [50], the 
notion of closed-loop stability is relaxed to the mean-square 
boundedness of states, and additional conditions are 
imposed on the system matrix A since it is impossible to 
globally asymptotically stabilize the closed-loop system 
with bounded inputs when A has unstable eigenvalues.

The stability results of [50] are extended in [51] to the 
case where the system matrix A is Lyapunov stable, the pair 
(A, B) is stabilizable, and the stochastic disturbances have a 
bounded fourth moment. Lyapunov stability of the matrix 
A implies that all eigenvalues of A lie in the closed unit 
disc, and those with magnitude one have equal algebraic 
and geometric multiplicities (see [80] for a detailed analysis 
on mean-square boundedness of stochastic linear systems). 
In [51], the stochastic OCP is augmented with a negative 
drift condition defined in terms of a stability constraint to 
render the states of the closed-loop system mean-square 
bounded. The same stochastic OCP is addressed in [53] 
using a vector-space approach. As in [50] and [51], feedback 
policies are defined to be affine in bounded functions of 
the past disturbances. The stochastic OCP is lifted onto 
general vector spaces of candidate control functions, from 
which the controller can be selected algorithmically by 
solving a convex optimization problem. The most general 
treatment of the SMPC problem for linear systems with 
(additive) unbounded stochastic disturbances, imperfect 
state information, and hard input bounds is provided in 
[52] where the SMPC algorithm of [51] is generalized to the 
case of output feedback control, while providing guaran-
tees on recursive feasibility and stability. In [52], the sto-
chastic OCP is approximated by a globally feasible 
second-order cone program. Inspired by stability proper-
ties of Markov processes, an alternative approach for estab-
lishing closed-loop stability via appropriate selection of the 
value function in the stochastic OCP is presented in [81]. 
However, numerical tractability of this approach in terms 
of convexity of the value function has not been explored.

A stochastic linear setup similar to [52] is adopted in 
[73]. Hard input bounds, however, are relaxed to input 
chance constraints. The input and state chance constraints 
are reformulated as deterministic, convex constraints using 
the Chebyshev–Cantelli inequality [82]. This SMPC algo-
rithm does not use an affine parameterization of the con-
trol policy. Hence, the feedback control gains { , , }K KN0 1f -  
and the control actions { , , }N0 1fo o -  are the decision vari-
ables in the online optimization problem. In [73], the cost 



DECEMBER 2016 «  IEEE CONTROL SYSTEMS MAGAZINE  37

per stage and the final cost functions are defined in terms 
of the expected values of future nominal states and the 
variances of future errors in the estimated states. The con-
trol actions { , , }N0 1fo o -  and the feedback gains 
{ , , }K KN0 1f -  are used to drive the mean of the states to 
zero and minimize the variance of states, respectively. Ter-
minal constraints are included in the stochastic OCP to 
guarantee recursive feasibility [3]. To handle unbounded 
disturbances that can lead to infeasibility of the problem, 
an initialization constraint is included in the OCP to allow 
the optimizer to select the initial conditions based on the 
feasibility and optimality requirements of the control algo-
rithm. The main shortcomings of the SMPC algorithm pre-
sented in [73] are 1) an inability to consider saturation 
functions in the control policy to enable handling hard 
input bounds (as in [52]), 2) the conservatism associated 
with the Chebyshev–Cantelli inequality used for chance 
constraint approximation, and 3) nonconvexity of the algo-
rithm. Using a problem setup similar to that in [52] and [73], 
an SMPC approach is presented in [55] that can handle joint 
state chance constraints and hard input constraints under 
closed-loop prediction in the presence of arbitrary (possi-
bly unbounded) additive disturbances. The SMPC approach 
uses risk allocation [83], [84] in combination with the Can-
telli–Chebyshev inequality to obtain computationally trac-
table surrogates for the joint state-chance constraints when 
the first two moments of the arbitrary disturbance distribu-
tions are known. An algorithm is then presented for solv-
ing two convex optimization problems iteratively to 
determine the best feedback gain and optimal risk alloca-
tion. Simulation studies show that optimizing the risk allo-
cation in [55] can lead to improved control performance as 
compared to an MPC algorithm with fixed risk allocation.

Reference [54] addresses the problem of predictive con-
trol of linear systems with arbitrary time-invariant proba-
bilistic uncertainties and additive Gaussian disturbances

	 ( ) ( ) ,x A x B u Dwt t t t1 d d= + ++ � (10)

with d  denoting the time-invariant uncertain system 
parameters with known (finite-variance) probability dis-
tributions and wt  being zero-mean Gaussian disturbance. 
In contrast to the above SMPC approaches (see, for exam-
ple, [47] and [52]), the algorithm in [54] handles system 
descriptions in which the system matrices are nonlinear
ly dependent on stochastic uncertainties. To obtain a 

computationally tractable algorithm, the gPC framework 
[85], [86] with Galerkin projection [87] is used for propagat-
ing the time-invariant uncertainties through the system 
dynamics (the gPC framework was first adopted in [88] to 
address the problem of linear-quadratic regulator design). 
An affine-state parameterization is used to minimize the 
expectation of a quadratic cost-per-stage function over a 
finite prediction horizon. Under the assumptions of per-
fect state information and stabilizability of the pair (A, B) 
for all uncertainty realizations, the closed-loop stability of 
the SMPC algorithm is established for the unconstrained 
case by bounding the value function. For a linear system 
with a similar setup, a polynomial chaos-based SMPC 
algorithm is also reported in [89]. This SMPC algorithm, 
however, solves the stochastic OCP merely over the control 
actions y  (without considering any feedback control 
parameterization) and does not provide guarantees on 
closed-loop stability. An SMPC algorithm for linear sys-
tems where the matrices A and B consist of multiplicative, 
unbounded disturbances [see (8)] is presented in [69]. The 
algorithm in [69] considers expectation-type constraints on 
inputs and states and establishes the closed-loop stability 
and constraint satisfaction properties of the control algo-
rithm by defining a terminal constraint. This algorithm 
uses the feedback control law u K xt t t to= +  to transform 
the stochastic OCP into a semidefinite programming (SDP) 
problem, in which the feedback gains kt  and control 
actions ty  are computed online. The SDP formulation can 
render the SMPC algorithm computationally involved for 
high-dimensional systems.

To summarize, affine-disturbance and affine-state 
parameterizations of a feedback control policy have been 
widely used to obtain convex SMPC algorithms. In the pres-
ence of unbounded disturbances, dealing with hard input 
bounds and establishing closed-loop stability pose key 
challenges for these algorithms. An effective approach to 
address these challenges is to introduce a (nonlinear) satu-
ration function to the affine parameterization of a feedback 
control policy. The saturated feedback control laws not only 
enable handling of hard input bounds for systems with 
unbounded disturbances but also facilitate ensuring mean-
square boundedness of states when the system is Lyapunov 
stable. Closed-loop stability of these SMPC algorithms is 
commonly guaranteed by defining a negative drift condi-
tion via either a stability constraint or appropriate selection 
of the value function. Affine control policies have also been 

SMPC allows for systematically seeking tradeoffs between fulfilling  

the control objectives and guaranteeing a probabilistic constraint  

satisfaction due to uncertainty.
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used for deriving convex SMPC algorithms for linear sys-
tems that are nonlinearly dependent on time-invariant sto-
chastic uncertainties.

Stochastic Programming-Based Approaches
A natural approach to solving the stochastic OCP (6) is to 
consider stochastic programming techniques [38], [90] as, 
for example, reported in [57] and [91]. Ideas from multi-
stage stochastic optimization are adopted in [57] to develop 
an SMPC algorithm for a linear system with multiplicative 
uncertainties. In this algorithm, an optimization tree is 
designed by using a maximum-likelihood approach for 
scenario generation. The algorithm consists of two sepa-
rate steps: 1) the offline step, where a stochastic Lyapunov 
function is derived to ensure recursive feasibility and 
exponential stability of the control algorithm in a mean-
square sense, and 2) the online step in which a time-vary-
ing optimization tree is constructed based on the most 
recent system information and a quadratically constrained 
quadratic problem is solved to obtain the control actions. 
This SMPC approach is extended in [58] to handle chance 
constraints. However, imposing state constraints on every 
node of the optimization tree may become computation-
ally intractable.

To obtain tractable solutions for stochastic programing 
problems, various sample-based approaches have been con-
sidered for approximating a stochastic optimization prob-
lem. The fundamental idea in sample-based MPC is to 
characterize the stochastic system dynamics using a finite 
set of random realizations of uncertainties, which are used 
to solve the OCP. Sample-based MPC algorithms readily 
consider the stochastic nature of the OCP (6). Unlike the 
SMPC approaches discussed in the previous sections 
(except [54] and [89]), the sample-based approaches typi-
cally do not require convexity assumptions with respect to 
uncertainties. An MPC algorithm based on Monte Carlo 
sampling is presented in [92] for unconstrained linear sys-
tems with stochastic disturbances. Chance-constrained pre-
dictive control of linear and jump-Markov linear systems 
with arbitrary (nonconvex or multimodal) disturbance dis-
tributions is considered in [93]. In [93], samples are gener-
ated using importance sampling techniques. Samples allow 
for approximating the chance-constrained stochastic OCP 
as a deterministic OCP with the property that the approxi-
mation becomes exact as the number of samples approaches 
infinity. The approximated control problem is then solved 
to global optimality using mixed-integer linear program-
ming. This algorithm, however, provides no guidance for 
choosing the number of samples required for adequate 
approximation of chance constraints. The algorithm in [93] 
is also applicable to systems with Markovian-jump linear 
dynamics. The problem of stochastic optimal control of 
Markovian-jump linear systems as well as the more general 
case of Markovian-switching systems has been addressed 
in [58], [94], and [95].

A potential drawback of sample-based approaches to 
MPC is their computational cost due to the large sample size 
often required. The high computational cost can render 
sample-based MPC approaches prohibitive for practical 
applications. A significant development in the area of sto-
chastic optimization is the scenario approach [96]–[98]; see 
also [99] for a tutorial overview of this approach. Appropri-
ate sampling of constraints enables a stochastic optimiza-
tion problem to be approximated by a standard convex 
optimization problem, whose solution is approximately feasi-
ble for the original problem [96]. An explicit bound is derived 
for the number of scenarios required to obtain a solution to 
the convex optimization problem that guarantees constraint 
satisfaction with a prespecified probability level. The main 
feature of this result is that the probability of constraint vio-
lation rapidly decreases to zero as the number of scenarios 
grows. Similar results on explicit bounds for the required 
number of scenarios/samples have also been developed 
using randomized algorithms [100]–[103].

The scenario approach is adopted in [59] to develop an 
MPC algorithm for (10) with stochastic multiplicative uncer-
tainties td  and disturbances wt ; the uncertainties td  and wt  
are considered to be bounded. In [59], the cost-per-stage 
function is defined in terms of the maximum distance 
between the states xt  and a terminal constraint set that is 
derived based on a prestabilizing feedback controller 
u Kxt t= . The cost-per-stage function is computed over all 
independent scenarios. The online convex optimization 
problem then uses the control actions to minimize the eval-
uated cost-per-stage functions subject to input bounds and 
state constraints (evaluated for all scenarios) as well as a ter-
minal constraint that is robustly positively invariant under 
u Kxt t= . The number of scenarios is chosen according to 
the scheme given in [96], so that probabilistic guarantees on 
constraint satisfaction can be achieved. The hard input and 
state constraints are transformed to soft constraints by 
introducing a slack variable that quantifies the extent of 
(possible) constraint violations. The scenario-based MPC 
approach ensures that either the states converge asymptoti-
cally to the terminal set or reach the terminal set in finite 
time with a prespecified probability level.

In the scenario approach, the theoretical bound for the 
number of scenarios may lead to a larger sample size than 
what is actually required [60]; this is commonly referred to 
as the conservatism of the scenario approach. In addition, the 
scenario-based MPC approach essentially treats a RMPC 
problem, rather than a chance-constrained stochastic OCP. 
Scenario-based approximation of the stochastic OCP has 
been addressed by replacing chance constraints with several 
hard constraints computed on the basis of the chosen sce-
narios [56], [61]. In these approaches, scenario-reduction 
methods can be used to significantly reduce the number of 
scenarios [104]. To obtain an adequate representation of the 
probability distributions, most scenario-based stochastic 
control approaches use branches of forecast scenarios, called 
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scenario fans, which consist of bunches of independent and 
equiprobable scenarios. However, scenario trees, in which sce-
narios are not equiprobable, provide a causal representation 
of the uncertainties acting on the system, leading to more 
compact scenario representations [105].

A technique for fast scenario removal based on mixed-
integer quadratic optimization is proposed in [61]. On the 
other hand, a scenario-based SMPC algorithm is intro-
duced in [62] in which chance constraints are replaced with 
time-averaged, instead of pointwise-in-time, constraints to 
reduce the theoretically required number of scenarios. It is 
shown in [62] that the sample size is independent of the 
state dimension and, in fact, the sample size is dictated by 
the support rank of state constraints. This implies that a 
small sample size would be sufficient even for a system 
with high state dimension as long as the support rank of 
state constraints is low. The algorithm in [62] also allows for 
handling multiple state-chance constraints (see [106]).

Despite the extensive work done in the area of scenario-
based MPC, the primary challenge still lies in identifying the 
appropriate number of scenarios that not only guarantees an 
admissible level of constraint satisfaction but also makes the 
computational requirements of the algorithm manageable for 
practical control applications. Hence, recent work on sce-
nario-based MPC has mainly attempted to reduce the com-
putational complexity of these algorithms [107]–[109]. Further 
development in this area is crucial to facilitate more practical 
applications of scenario-based control approaches. Another 
challenging problem in scenario-based MPC arises from 
establishing the theoretical properties such as recursive feasi-
bility and closed-loop stability, in particular for the case of 
unbounded uncertainties.

Stochastic Model Predictive  
Control for Nonlinear Systems
MPC of stochastic nonlinear systems has received relatively 
little attention. A pioneering work in this area is the SNMPC 
approach presented in [110]. The algorithm relies on the 
notion of optimizing a deterministic feedforward trajectory 
for constraint handling and optimizing a linear time-varying 
feedback controller for minimizing the closed-loop variance 
around the reference trajectory (u K xt t t to= + ). To explicitly 
account for back-off with respect to the reference trajectory, 
the nonlinear system dynamics are linearized around the ref-
erence trajectory. The control algorithm is rendered convex 
through the Youla–Kuc˘era parameterization, and the chance 
constraints are reduced to second-order cone constraints 
using an ellipsoidal relaxation. The cone constraints lead to a 

sequential conic-programming algorithm that is computa-
tionally expensive for high-dimensional systems with 
many state constraints and long prediction horizons. To 
tackle the computational complexity of the algorithm, the 
problem is decomposed using the linear-quadratic Gaussian 
decomposition, where the feedback and feedforward control 
problems are solved separately.

In [31] and [63], the use of a Markov-chain Monte Carlo 
(MCMC) technique [111] is proposed for solving constrained 
nonlinear stochastic optimization problems. A well-estab-
lished theoretical framework (including general convergence 
results and central limit theorems) exists for MCMC approach-
es as well as sequential Monte Carlo approaches under weak 
assumptions (see, for example, [112]). The algorithms in [31] 
and [63] do not rely on convexity assumptions. In addition, 
they guarantee convergence (in probability) to a near-optimal 
solution under mild conditions related to the convergence of a 
homogeneous Markov chain. However, the effectiveness of 
these stochastic optimal control algorithms has not been dem-
onstrated when implemented in a receding-horizon manner. A 
sequential Monte Carlo technique is adopted in [32] to reduce 
the computational complexity associated with MCMC ap-
proaches in [31] and [63].

A key challenge in SMPC of nonlinear systems is the 
efficient propagation of stochastic uncertainties through 
the system dynamics. For discrete-time nonlinear systems 
with additive disturbances, the Gaussian-mixture approxi-
mation [113] is used in [64] to describe the transition prob-
ability distributions of states in terms of weighted sums of 
a predetermined number of Gaussian distributions. Due to 
its universal approximation property, the method of Gauss-
ian-mixture approximation provides a flexible framework 
for constructing the probability distributions of stochastic 
variables and, therefore, for uncertainty propagation. The 
knowledge of complete probability distributions allows for 
defining the value function of the stochastic OCP in terms 
of the complete distributions of stochastic states, instead of 
merely some moments of the probability distributions. 
However, online adaptation of the weights of the Gaussian 
distributions, which is essential for describing the time 
evolution of the probability distributions, poses a computa-
tional challenge in Gaussian-mixture approximations.

The gPC framework [85], [86] is used in [33] to develop an 
SNMPC approach for a general class of nonlinear systems 
that are subject to arbitrary time-invariant stochastic uncer-
tainties in system parameters and initial conditions. The 
gPC framework replaces the implicit mappings between 
uncertain variables/parameters and states (defined in terms 

A key challenge in SMPC of nonlinear systems is the efficient propagation  

of stochastic uncertainties through the system dynamics.
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of nonlinear differential equations) with expansions of 
orthogonal polynomial basis functions; see [114] for a recent 
review on polynomial chaos. The orthogonality property of 
the basis functions allows for readily computing the statisti-
cal moments of stochastic variables from the expansion 
coefficients. Thus, polynomial chaos expansions provide an 
efficient machinery for predicting the time evolution of the 
moments of probability distributions of stochastic states. 
Alternatively, polynomial chaos expansions can also be 
used as a surrogate for the nonlinear system model to sig-
nificantly accelerate sample-based construction of probabil-
ity distributions using Monte Carlo techniques (see [115]). In 
[33], the value function of the stochastic OCP is defined in 
terms of the moments of stochastic states. The statistical 
moments of states are also used for converting individual 
state chance constraints into convex second-order cone 
expressions. To facilitate receding-horizon implementation 
of the control algorithm, a sample-based collocation method 
[21], [116] is adopted in [33] to recursively adapt the coeffi-
cients of polynomial chaos expansions based on the most 
recent state information. A similar SNMPC algorithm (with 
expectation-type constraints) is proposed in [65], where the 
coefficients of polynomial chaos expansions are determined 
via weighted l2-norm regularization in the collocation 
method. A polynomial chaos-based SNMPC algorithm is 
presented in [34] that uses Galerkin projection [87] for deter-
mining the coefficients of polynomial chaos expansions. 
The Galerkin projection method yields a set of closed-form 
ordinary differential equations for the coefficients. How-
ever, Galerkin projection can only be employed for nonlin-
ear, polynomial-type systems. In [34], the polynomial chaos 
expansions are used to efficiently construct the probability 
distributions of states through Monte Carlo simulations to 
approximate the chance constraints.

The above generalized polynomial chaos-based SNMPC 
approaches have two shortcomings: 1) the algorithms may 
not efficiently handle time-varying disturbances since the 
gPC framework requires a large number of expansion terms 
to describe time-varying uncertainties, and 2) reconstructing a 
complete probability distribution from its statistical moments 
can be a computationally formidable task. A gPC-based 
SNMPC approach that can handle additive stochastic distur-
bances is presented in [117]. The stochastic disturbances are 
mapped to the space of coefficients of polynomial chaos 
expansions. The probability distribution of states is then com-
puted by integrating the conditional probability distribution 
of the polynomial-chaos-approximated states over the 
probability distribution of disturbances. A gPC-based histo-
gram filter [118] is also used to recursively update the 
uncertainty description of parameters when the system 
states are measured. For continuous-time stochastic nonlin-
ear systems, a Lyapunov-based SNMPC approach is pro-
posed in [35] for shaping the probability distribution of 
states. The Fokker–Planck equation [119] is used to describe 
the dynamic evolution of the probability distributions. 

Complete characterization of probability distributions allows 
for shaping the distributions of states, as well as direct com-
putation of joint chance constraints without conservative 
approximations. In [35], closed-loop stability is ensured by 
designing a stability constraint in terms of a stochastic-control 
Lyapunov function that explicitly characterizes stability in a 
probabilistic sense.

In summary, the developments in the area of MPC of 
stochastic nonlinear systems are limited due to the compu-
tational complexities associated with uncertainty propaga-
tion in nonlinear systems. The algorithms discussed above 
that use efficient uncertainty propagation approaches have 
shown promise for SNMPC. Establishing the theoretical 
properties of SNMPC algorithms such as closed-loop sta-
bility and constraint satisfaction in the closed-loop sense 
poses a great challenge. Preliminary results on stability of 
MPC of stochastic nonlinear systems have recently been 
reported in [120] and [121].

Future Research Directions
In recent years, the field of SMPC has significantly matured, 
particularly for linear systems. A key feature of SMPC is the 
ability to incorporate chance constraints into the stochastic 
OCP. The probabilistic framework of SMPC facilitates seek-
ing tradeoffs between the attainable control performance 
and robustness to stochastic uncertainties. However, vari-
ous approximations are commonly made in most SMPC 
approaches (for example, approximations in uncertainty 
descriptions or the handling of chance constraints) to obtain 
tractable algorithms. It is paramount to critically assess 
whether such approximations would degrade the effective-
ness of SMPC.

In light of real-world systems with complex dynamics, 
some open research challenges in the area of SMPC are 
presented below. Theoretical advances in these research 
directions will likely further the development of more com-
prehensive frameworks for stochastic predictive control of 
practical applications.

»» Efficient uncertainty propagation approaches: Stochastic 
predictive control of nonlinear systems hinges on the 
tractability of probabilistic uncertainty analysis in 
online computations. The development of efficient 
uncertainty propagation approaches that can deal 
with general probabilistic uncertainty descriptions 
would facilitate advances in SNMPC. In addition, 
uncertainty propagation approaches that character-
ize the complete probability distribution would allow 
for direct evaluation of chance constraints without 
the need for conservative approximations [35].

»» Chance-constraint evaluation: Most SMPC algorithms 
use tractable convex expressions or, alternatively, sam-
ple-based approaches to approximate chance con-
straints. However, such approximations tend to be 
conservative, which may, in turn, reduce the effective-
ness of SMPC. Quantifying the conservatism associated 
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with chance-constraint approximations and develop-
ing less conservative, but tractable, approaches for 
chance-constraint handling are essential for effectively 
using the probabilistic framework of SMPC.

»» Tailored algorithms for high-dimensional systems: Many 
complex dynamical systems are distributed, the dy
namics of which are described by partial differential 
equations. The finite-dimensional approximation of 
partial differential equations typically results in 
high-dimensional state-space models with large state 
dimension. SMPC of high-dimensional systems re
quires the development of tailored algorithms that 
can exploit the special characteristics of such systems 
(for example, typically having a limited number of 
inputs and outputs [122]) to achieve tractable stochas-
tic control formulations.

»» Output-feedback control: Most SMPC approaches are 
developed for the case of full state feedback, whereas 
full states cannot be measured in many practical 
applications. A few SMPC algorithms that include 
state estimation are presented in [45], [52], and [73]. 
Moving-horizon estimation (MHE) [123], which is 
particularly attractive for use with MPC, remains an 
open problem for stochastic systems. Establishing 
the stability of output-feedback control based on 
SMPC and MHE poses a major challenge (see [124] 
for recent results on this problem on the basis of 
worst-case uncertainty analysis).

»» Distributed predictive control: Complex systems are 
increasingly becoming highly integrated. Stochastic 
predictive control of interacting systems gives rise to 
several open theoretical issues related to system-wide 
stability and control performance in the presence of 
probabilistic uncertainties. In addition, there is a need 
for systematic approaches for efficient and reliable 
uncertainty propagation through networked systems 
to address challenges associated with computational 
complexity of SMPC of integrated systems.

»» Adaptive (dual) control: MPC integrated with persis-
tent excitation has recently gained interest with the 
aim of ensuring uniform quality of system models in 
MPC applications [125], [126]. Combining SMPC with 
input design to consistently adapt model structure 
and/or parameters in the face of stochastic system 
uncertainties remains an open research challenge 
that lends itself to several theoretical issues (see [127] 
and [148]for recent results on SMPC integrated with 
input design).

»» Explicit stochastic predictive control: The benefits of 
explicit MPC include efficient online computations 
and verifiability of the control policy. In a stochastic 
setting, explicit predictive control is likely to be even 
more beneficial since the verifiability becomes more 
critical. Stochastic extensions of explicit MPC can 
potentially find many practical applications, in 

particular in safety-critical applications [128], [129]. A 
key challenge in explicit SMPC lies in addressing the 
problem of deriving an explicit control law when the 
disturbances are not normally distributed, and the 
inverse cumulative distribution is not known in an 
explicit form.

»» Risk-averse predictive control: The discussed stochastic 
formulations of the OCP are based on risk-neutral 
expected values of performance measures. However, 
the assessment of future stochastic outcomes of a 
system through a risk-neutral expectation may not be 
suitable when the system must be protected from 
large deviations. Inclusion of risk aversion, originally 
considered in operations research, into MPC has 
shown promise to balance conservatism in “decision 
making” with robustness to uncertainties [130]. The-
oretical properties of risk-averse MPC (for example, 
stability when states and inputs are constrained) are, 
however, poorly understood.

»» Stochastic economic MPC: Despite developments in 
economic MPC, probabilistic approaches to robust 
economic MPC have received little attention [131]. 
Controlling periodic state trajectories typically 
observed in these control algorithms as well as estab-
lishing the closed-loop stability properties of sto-
chastic economic MPC algorithms remain interesting 
open research problems.

»» GPU-based computing: Graphics processing units 
(GPUs) are widely used for performing Monte Carlo 
simulations. Tailoring GPU-based computing algo-
rithms for solving stochastic OCPs can create 
opportunists for SMPC (for example, sample-based 
SMPC approaches) to be used in new application 
areas [132].

»» Applications: Several promising application areas 
have emerged for SMPC. However, further research 
in the field of stochastic predictive control will bene-
fit greatly from close interaction between theory and 
practice. Close collaboration between researchers 
and MPC practitioners is crucial to avoid the risk of 
developing elegant SMPC algorithms with limited 
applicability to practical problems.
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