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Downlink Non-Orthogonal Multiple Access

with Limited Feedback

Xiaoyi (Leo) Liu, Student Member, IEEEHamid Jafarkhanifellow, IEEE

Abstract

In this paper, we analyze downlink non-orthogonal multipteess (NOMA) networks with lim-
ited feedback. Our goal is to derive appropriate transmissates for rate adaptation and minimize
outage probability of minimum rate for the constant-ratéadservice, based on distributed channel
feedback information from receivers. We propose an efftciprantizer with variable-length encoding
that approaches the best performance of the case wheretpehtnel state information is available
everywhere. We prove that in the typical application witlo tieceivers, the losses in the minimum rate
and outage probability decay at least exponentially with thinimum feedback rate. We analyze the
diversity gain and provide a sufficient condition for the gtizer to achieve the maximum diversity
order. For NOMA withK receivers wher& > 2, we solve the minimum rate maximization problem
within an accuracy of in time complexity ofO(KIog%), then, we apply the previously proposed
guantizers fork = 2 to the case oK > 2. Numerical simulations are presented to demonstrate the

efficiency of our proposed quantizers and the accuracy ofttadytical results.

Index Terms

NOMA, rate adaptation, outage probability, minimum ratmited feedback
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I. INTRODUCTION

Non-orthogonal multiple access (NOMA) has received sigaift attention recently for its
superior spectral efficiency [2]. It is a promising candel&dr mobile communication networks,
and has been included in LTE Release 13 for the scenario clusgo downlink transmission
under the name of multi-user superposition transmissign TBe key idea of NOMA is to
multiplex multiple users with superposition coding at eifnt power levels, and utilize successive
interference cancellation (SIC) at receivers with bettearmel conditions [4]. Specifically, for
NOMA with two receivers, the messages to be sent are supstpuish different power allocation
coefficients at the BS side. At the receivers’ side, the weakeeiver decodes its intended
message by treating the other’s as noise, while the straegeiver first decodes the message of
the weaker receiver, and then decodes its own by removingttiesr message from the received
signal. In this way, the weaker receiver benefits from lafg@wer, and the stronger receiver is
able to decode its own message with no interference. Heheaverall performance of NOMA
is enhanced, compared with traditional orthogonal mudtigtcess schemes. It is shown in [5]
that the rate region of NOMA is the same as the capacity regiddaussian broadcast channels
with two receivers, but with an additional constraint thia¢ stronger receiver is assigned less

power than the weaker one.

There has been a lot of work on NOMA. In [2] and [5], the authevaluated the benefits
of downlink NOMA from the system and information theoretiergpectives, respectively. The
performance of NOMA with randomly deployed users was irigaséd in [6]. A lot of effort
has been put into the power allocation design in NOMA. Fongpla, the authors in [7] and [8]
analyzed the necessary conditions for NOMA with two userbdat the performance of time-
division-multiple-access (TDMA), and derived closedAoexpressions for the expected data
rates and outage probabilities. In [9], power allocatiosdabon proportional fairness scheduling
was investigated for downlink NOMA. Transmit power minimiion subject to rate constraints
was discussed in [10]. A joint consideration of dynamic udlestering and power allocation

was studied in [11].



However, all the mentioned papers have assumed a perfeetlésige of the distributed
channel state information (CSI) at the BS and all the gedgcafly-distributed receivers, which
is difficult to realize in practice. Therefore, we considee fimited feedback scenario wherein
each receiver only has access to its own local CSI, from thédBi&elf, and then broadcasts
its feedback information to the BS and other receivers [12]der such settings, interesting
problems arise, for example: How to design simple but efficguantizers for NOMA? What
are the performance losses compared with the full-CSI céseRer-selection scheme based
on limited feedback was studied in [13]. In [14], the authdesived the outage probability
of NOMA based on one-bit feedback of channel quality fromheageceiver, and performed
power allocation to minimize the outage probability. Adulially, the problems of transmit
power minimization and user fairness maximization basedtatistical CSI subject to outage
constraints were studied in [15]. In [16], the authors dedlithe outage probability and sum
rate with fixed power allocation by assuming imperfect aradigtical CSI. In [17], the authors
solved the sum rate maximization problem for downlink NOMétwiorks using a minorization-
maximization algorithm in statistics. In [18], several @mbia selection schemes were proposed

for the NOMA systems, and the user fairness was evaluated) ke Jain’s fairness index.

In this paper, we focus on the limited feedback design fortyipécal scenario of downlink
NOMA, where a BS communicates with two receivers simultaisgo[3]. Based on distributed
feedback and in the interest of user fairness, we wish to tleveninimum rate of the receivers
be as large as possible. Like [19], we also use the minimurieeeth rate of all receivers as the
performance measure, but moreover, the main focus of ouk i8do design efficient quantizers
for downlink NOMA and analyze the achieved performance hwhis goal, to dynamically adjust
the transmission rates for better channel utilization, veppse a uniform quantizer which assigns
each value to its left boundary point and employs variabtegth encoding (VLE). Then, power
allocation is calculated based on the channel feedback.aldalate the transmission rates that
can be supported by the current channel states, and anakyzate loss compared with the full-

CSI scenario. The derived upper bound on rate loss showt tedtreases at least exponentially
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with the minimum of the feedback rates. The feedback ratdnis paper refers to the number
of feedback bits each receiver sends for each channel stagre the target data rate needs
to be supported and outage probability is the main conceenconversely propose a uniform
quantizer which quantizes each value to its right boundaigtg Through the developed upper
bound, we show the outage probability loss also decays stt ée@onentially with the minimum
of feedback rate. Additionally, we analyze the achieveckidiity gain and provide a sufficient
condition on the proposed quantizer in order to achieve tieCiSI diversity order. For the
general scenario witK receivers, we solve the minimum rate maximization probleiv an
accuracy ofe in time complexity ofO(KIog%), and apply the previously proposed quantizers
for the two-user case here by treating the quantized charasethe perfect ones. We perform
Monte Carlo numerical simulations to verify the superipf our proposed quantizers and the
accuracy of the theoretical analysis.

The primary goal of this paper is to study the impacts of gaatibn on the performance of
NOMA, and provide meaningful insights for practical lindtéeedback design. To summarize,

the main contributions of this paper are three-fold:

(1) We propose efficient quantizers to maximize the minimate in NOMA. The ideas of
our proposed quantizers and VLE as well as the designs feradaptation and outage
probability based on distributed feedback can be generhlia many other scenarios, e.g.,
NOMA with other performance measures, the more generatf@rence channels, and so
on.

(2) Our theoretical analysis serves as a general framewaakalyze the performances of such
guantizers in NOMA and other scenarios. For instance, itlmamasily applied to study
the performances of other power allocation schemes in NOlgigetl on limited feedback,
i.e., [7], [8].

(3) We solve the minimum rate maximization problem for anyniver of receivers with linear

1For example, in some real-time multimedia service appboat the minimum data rate needs to be supported as often as
possible, such that the chance of service outage can bdygredtced.
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Receiver 1

BS

Receiver 2

Fig. 1: Downlink NOMA networks. The solid and dashed linegresent the signal and feedback links, respectively.

time complexity.

The remainder of this paper is organized as follows: In $acli, we provide a brief
description of the system model and formulate the probledmutfed feedback. In Sections Il
and IV, we propose efficient quantizers for rate adaptatiwh @utage probability, and analyze
the performance loss. We extend our proposed quantizergetgeneral case with any number
of receivers in Section V. Numerical simulations are preddn Section VI. We draw the main
conclusions and summarize future work in Section VII. Tecainproofs are presented in the
appendices.

Notations: The sets of real and natural numbers are representeg bypd 9/, respectively.
For anyx € ®, |X] is the largest integer that is less than or equal to x, @aqds the smallest
integer that is larger than or equal*oPr{-} andE|-| represent the probability and expectation,
respectively. For a random variable (r.X) fx(-) is its probability density function (p.d.f.).
CN(u,A) represents a circularly symmetric complex Gaussian r.th wieanu and variance
A. For a logical statemersiT, we let sy = 1 whenST is true, andli; = O otherwise. Finally,

the expressiolX ~y Z means < Iimyﬁmé < 0,

Il. PROBLEM FORMULATION
A. System Model

Consider the downlink transmission in Fig. 1, where a BS igsansmit a superposition of two

symbols to two receivers over the same resource HldBkth BS and receivers are equipped

2We assume the two receivers have been pre-selected for thdANEnsmission based on user scheduling algorithms [2],
[8]. In this paper, we mainly focus on the physical-layerfpanance of NOMA with limited feedback, and the study of user
scheduling algorithms is beyond our scope of discussions.
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with only a single antenna. According to the multiuser sppsition transmission scheme [3],

the transmitted signal is formed as

X=+vPis1+VPs,

wheres is the information bearing symbol for Receiviewith E[s] = 0 andE [|s|2} =1 for
each channel state (the expectation is over all transm#tyetbols);R, is the average transmit
power associated with. Let P =P, + P, be the total transmit power, arad= % be the power

allocation coefficient, therfy = aP andP, = (1—a)P with 0< a <1.

Denote byh; ~ CN(O, A;) the channel coefficient from the BS to ReceiveWithout loss of

generality, assum&1, > A,. The received signals at Receivers 1 and 2 are respectineain gy

yi=MvVPisi+mvPs+m, Yo =h/Pisi+hevPos + 1y,

wheren; ~ CN(0,1) represents the background noise. kgt= |hi\2, then, the p.d.f. oH; is

fu, (X) = % for x> 03 We assume a quasi-static channel model, in which the chavaey
independently from one block to another, while remainingstant within each block. Either
receiver is assumed to perfectly estimate its local CSl, 1@, and send the associated quantized
local CSI to the other receiver and the BS in a broadcast nmanaeerror-free and delay-free
feedback links [20], [21]. In some scenario where the twenemrs are far away from each other
such that they cannot “talk” directly, the BS can play theerof relaying, i.e., forwarding the

feedback information received from one receiver to the othe

With SIC, the stronger receiver with better channel coodit{i.e., largerH;) first decodes
the message for the weaker receiver, and then decodes itsaftemremoving the message
of the weaker one from its received signal; the weaker recanith poorer channel condition
directly decodes its own message by treating the messade aftrionger one as noise [9], [22].

Specifically, wherH; > Hy, the rate for Receiver 2 (i.e., the weaker one) to despdwy treating

3The results in this paper can be trivially generalized tcepitistributions ofH; and Hy.
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S1 as hoise is

r2(a) =log, <1+ w) ,

aHP+1

which is not larger than the rate for Receiver 1 to decgdgiven as'1_,» =109, <1-|— T,ﬁ;?).
If s; is transmitted at the rate of(a), Receiver 1 can decodg successfully with an arbitrarily
small probability of error [23]. Afterwards, Receiver 1 camoveh,/P>s, from y;, and achieve

a data rate fos; as
ri(a)=1og, (14 aPHy).

On the other hand, wheH; < H,, Receiver 2 first decodes, removesh,/Pis; from y,, and

then decodesy, while Receiver 1 decodes directly by treatings, as noise.

B. Maximum Minimum Rate

Our goal is to maximize the minimum of(a) andr,(a) to ensure fairness between receivers
[12], [24]. When perfect CSI is available at the BS and reeesythe optimal power allocation
coefficienta* can be found by solving the optimization problefyy= 0r<na<xlmin{r1(a), ra(a)},

<a<

the solution of which is given in the following theorem.

Theorem 1. When H > H, the solution of0r<na<x1min{r1(a),r2(a)} is given by
<a<

2H;

a* = .
V/ (H1 4 Ho)? - 4HiH3P + (Hy + Hy)

(1)

Proof: Notice that witha increasing from 0 to 1r1(a) increases from O to lgg1+ PHj)
andry(a) decreases from lggl+ PHy) to 0. Since log(1+ PH;) > log, (1+PH,), the max-
imum minimum rate is reached when(a*) =r(a*), from whicha* in (1) is derived. m

The expression ofr* whenH; < Hy, can be obtained straightforwardly. It is found from (1)
that: (i) Both messages attain the same rate at optimabtyri (a*) =r,(a*) = rmax. Moreover,

it can be verified that the rate pairi(a*),r2(a*)) is on the rate region boundaries of both

Hy

NOMA and Gaussian broadcast channels with two receivergi[pWhenP — 0, a* — A,

in which case the power assigned to the stronger receivarpsoportion to the channel quality
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of the weaker one; wheR — o, a* — 0, then, BS should allocate almost all the power to the
weaker one? (i) a* > % Generally, NOMA steers more power towards the weaker vecei

to balance their transmissions.
With perfect CSI, the decoding order is determined based betlverH; > H, holds. The
maximum minimum rate is

|ng 1+ 2H, HoP ) Hl > H2a
/(L H2) 2 H4H HZP+ (Hy +Hy)

)

Imax =

log, { 1+ ZhILE , Hi<Hy,
/ (HLtH2) 2 8HZHoP+ (Hy +Hy)

and the outage probability of minimum rate is

oUtmin = Pr{rmax < rn}, (3)

wherery, is the data rate at which the BS will transrsitands, for every channel state.

C. Limited Feedback

In the limited-feedback scenario, for an arbitrary quatg: ® — ®, Receiveri mapsH; to
g(Hi), and feeds the index @f(H;) back to the BS and the other receiver, as shown in Fig.1. The
index ofq(H;) is decoded and the value qfH;) is recovered. The decoding order will be con-
tingent on whetheq(H1) > q(H>). For instance, wheq(H1) > q(H2), Receiver 1 is considered

“stronger”, while Receiver 2 is “weaker”. In this case, thenyer allocation coefficient is com-

puted based on (1) by treatimgH;) asHi, i.e., aq= \/(q(Hl)+q(H2))2+4§?$)2;2(H2)P+q(Hl)+q(H2).
For rate adaptation, we shall design appropriate retgsandr,q for the messages; and
s, based on limited feedback from the two receivers, such thatandr,q can be supported
and NOMA can be performed. The corresponding rate loss witid3s= rmax—min{r17q,r27q},
wherermax IS given in (2).
For a constant-rate service, we care more about whether utrent channels are strong

enough to support target data rate with the power allocatmefficient computed based on

“Note that ri(a*) = rp(a*) holds for any P. When P — o, o* — 0, and ry(a*) = ra(a*) =

2PH;H,
(H1+Hz)?+4H,HZP+(Hy+Hy)

log, 1+\/ will approach infinity.



qr(x1) X1 qar(x2) X2

0 A 2A 3A TA

Fig. 2: A uniform quantizer for minimum rate.

limited feedback. The achieved outage probabilitpisq = Pr{rq < ry}, where

_ PH(1-
min< log, (1+ P x aq x Hy) ,log, <1+ #qfi)) , q(H1) > a(Ha),

rq=min{ry (ag),r2(aq)} = PHy (1-dq)

min |ng <1+ W) ,|092 (l+ P x Qg X Hz) , q(Hl) < q(H2)7
The outage probability loss is given as
0ut|ossq — Outq - Outmin, (4)

where outmin IS given in (3). In the subsequent sections, we will propd$ieient quantizers

and investigate the performance losses brought by limieedidack.

[Il. LIMITED FEEDBACK FORMINIMUM RATE

In this section, we first describe the proposed quantizenvihhe minimum rate is the concern,

then, we show the relationship between the rate loss andettbéck rates.

A. Proposed Quantizer

We consider a uniform quantizef : & — %, given by

| ] x B, x<TA,

TA, x> TA,

0 (X) =

wherex can be any non-negative real number, and the bin&iaad the maximum number of
binsT € A( are adjustable parameters. As shown in Figy2X) quantizes to the left boundary
of the interval wherex is. For anyx € [nA, (n+1)A) when 0<n<T —1, we haveg(x) = nA

andx—A < g (x) <x; for anyx € [TA, ), g(X) = TA and g (X) < X.

5In g, “q” stands for quantizer, and the subscript fepresents rate.
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B. Rate Adaptation and Loss

Whenq; (-) is employed, Receiver 2 is viewed as the “weak” receivey, ifH1) > g, (H2).

Then, according to (1), the power allocation coefficiegt is calculated as

20 (Ha) Hqy) > 0,0 (Hp) >0
Qg = { V1o (H)-+ar (Ho) 40 (H1) 6 (Ho)P-+ (o (Ho) -+ (H)] % (Hu) > 0,6 (Hz) > 0,
07 ql’ (H].) = O or ql’ (H2> = 07

ar (Hz2) x (1*GQr )
aqr Xq|' (H2)+%

the channels as much as possible, we let the BS send messaaess, at rates of

Pxor(Hz) (1—aq)
P o (Hz)lg, + 1 ) ®)

which satisfies log(1+ P x aq, x o (H1)) =log, (l-l— ) whenag, # 0. To exploit

g = log, (1+ Pxag x 0o (Hl)) F2q =100, <1+
Lemma 1. When ¢(H1) > or (H2), the rates {4 and o4 in (5) can be achieved.

Proof: Based on the channel coding theorem [23], if we can show theral capacities
for s; ands, under the settings of NOMA are no smaller thar, andr, g, the rates; o, and

roq can be achieved with a probability of error that can be mabérarily small.

Whenq (H1) =0 orgr (Hz) =0, it is trivial to verify thatry g andrpq can be supported.

When gr (H1) > or (H2) > 0, the channel capacity for Receiver 2 by treat®gas noise is
r, = log, <1+ M) > log, <1+ M) =Tr2q, Since log <1+ X(l_o{)) is an

g xHo+ 2 g %G (Ho)+3 xa+3
increasing function ofk and g,(Hz2) < Ha. At the side of Receiver 1, the channel capacity
i H i H _ Hl(l_GQr) qr(Hl)X(l_GQr)
of s, with treatings; as noise isri_,» = log, (1+aq,x—Hl+§> > log, <1+m%—) >
GQrer(HZ)Jﬂ%
Receiver 1 with an arbitrarily small error and removed frgmAfter that, the channel capacity

log, <1+ M) =r2q, becauseH; > gr(H;) > qr(Hz). Hence,s, can be decoded at

of s is r1 =log, (1+Px ag x H1) > log, (1+P x ag x o (H1)) =r14. Therefore, the rates

rig andrpq can be achieved for both ands,. [ |

To sum up, it is the key fact of(x) > x that ensures the rategg andrq in (5) can be

supported. Whem; (Hy) > gr(H2), the rate 10SS i$i0ss= 'max— Min{r1q,r2q }-
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Lemma 2. The average rate loss of the quantize(-¢jis upper-bounded by:

Elrosd < log, <1+Co x P x max{e_Kf,A}) , (6)

where @ is a positive constant that is independent of Rand A.

Proof: See Appendix A. [ |
We mainly focus on showing how the average rate loss changestie bin sizeA. It is
beyond the scope of this paper to find the tightest bounds,the smallest value fo€y. A
value forCq which is derived from the proof in Appendix A Sy = max{4-|— %,)\2}.
It is observed from (6) that Wheef% > A, the maximum number of bing;, can degrade
the rate. To eliminate this effect, we chooBesuch thate_% = A, which yieldsT = il Iog%.6

With an appropriate value foF, we can make the rate loss decrease at least linearlyAwith

Corollary 1. When T= %Iog%, the average rate loss of the quantize(- is upper-bounded
by:

Elrosd <100, (1+Cox P xA) <Cp x PxA, (7)

where g and G are positive constants that are independent of P And

C. Feedback Rate

Rather than the naive fixed-length encoding (FLE) for feelhaformation which requires
[10g,(T +1)] bits per receiver per channel state, we consider the mogeeffivariable-length
encoding (VLE) [21], [25]) An example of VLE that can be applied herebjs= {0}, by = {1},
b, = {00}, b3 = {01} and so on, sequentially for all codewords in the{$etl,00,01,10,11,...},
whereby, is the binary string to be fed back whepn(x) = nA. The length ofb, is |log,(n+2) .

6Approaching the performance in the full-CSI case generalfjuires a small value fak. We mainly consider the case where
A <1 in this paper.

"For example, wheh = 0.01 andA; =1, T = A Iog% ~ 4605. When FLE is adopted, the feedback rate per receiver will be
[log,(T +1)] = 9 bits per channel state. As shown by the theoretical aisaysd numerical simulations later, VLE will cost
far fewer bits.
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The following theorem derives an upper bound on the ratevasgsrespect to the feedback rate

of Receiveri (denoted byR vLE ).

Theorem 2. When variable-length encoding is applied to the quantizérn gthe rate loss decays

at least exponentially as:
E [rIOSQ < |ng <1+C2 «Px 2" min{Rr,VLE,17Rr7VLE72}> <CagxPx2 min{Rr7VLE717Rr7VLE72}, (8)
where G and G are positive constants independent of P ang/R ;.

Proof: The feedback rate of Receiveis derived as

— (n+1)A ~00
Rviei = zo llog,(n+2)] / fiy, (H))dH; + [log, (T + 2)| /m fir, (Hi)dH;

o (N+1)A (n+1)a g~ Tl
llogs(n+2)] [ " iy (i) < zologz n+2) [ o
n= nA ) ——— Ai
<log,(n+1)+1
X _m _A ® (n+1)A e’%i
<Seh (1—e Ai) xlogz(n+1)+21></ dH;
n= n=0 JnA i

=1

A\ 2 m AL ,m
=1+ (1—e Ai) ZJ Aioxlogy(n+1) <1+ — % xlogy(n+1).
& Ai

I'n=

With the help of [21, Eq.(22)]5%_, e "log(n) < & [2+|og (1+ )] by letting 8 = e ¥,

we have
— + log 1
I 092 2 /\_i

2 1
RrVLEl_E‘i‘l‘HOgZ( A.>, 9)

00

nA
e % xlogy(n+1)=Y e A xlogy(n+1) = 5 x log(n) < =
2 3 02 ZZ :

Then,R.yvLg i is upper-bounded By

or equivalently (wherRyv_g ; is sufficiently large),
Aj Aj

<
. 2 = . 2
2Rr,VLE,|*1* 692 _ 1 2Rr,VLE,|*2* 1652

A< — Cy x 2 Rewiei, (10)

8Although it is intractable to derive a closed-form expressfor RrvLE i, the upper bound in (9) provides a good estimate
on how many feedback bits will be consumed.
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Fig. 3: A uniform quantizer for outage probability.

Substituting (10) into (7) proves the theorem. [ ]
Therefore, we can see that appropriate valuesTf@and the use of VLE enable the rate loss

to decrease at least exponentially with the feedback rate.

IV. LIMITED FEEDBACK FOROUTAGE PROBABILITY

Outage probability is an important performance metric tbadluates the chance that the
channels are not strong enough to support the constantlagdeservice [26]. An ideal quantizer
for outage probability should have at least the followinggarties: (i) The outage probability
loss should decrease toward zero when the feedback ratases toward infinity. (i) The outage
probability loss should approach zero wheneRers O or P — co. The intuition of (i) comes
from the fact that wher is adequately small, the outage probabilities of both theG&I case
and the quantizer should be close to one; wRas significantly large, both outage probabilities

should be almost zero. Then, the outage probability logsé®ih scenarios go to zero.

A. Proposed Quantizer
As portrayed in Fig. 3, the uniform quantizer proposed fotage probability is given by

[X]xD, x<TA,
(T+1A, x>TA.

do(X) = (11)

The only difference betweegy(-) andq,(-) lies in whether the left or right boundary of the
interval is used as the reconstruction point. The quanpizeposed for rate adaptation cannot be
directly inherited because when the channel is very weak H; < 4), it will be quantized as
zero (i.e.,gr(Hj) = 0), which will result in a zero-value power allocation coeifint, i.e.qq =0,
and a minimum rate of zero, i.ety (ag) =0 orra(ag, ). In this case, the transmission will

surely encounter an outage. However, even a weak chaneeVesshe possibility of non-outage,
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so long as the transmit powexis large enough. Therefore, an appropriate quantizer ftagsu

probability should not quantize any value to zero. The gaanin (11) fulfills this requirement.

B. Outage Probability Loss

Lemma 3. The outage probability loss of the quantizey(q is upper-bounded by:

1+VP
P

_Ce
0ut|ossqo S C5 xe P X

1 3 _TIA
X max{AZ,AZ,e M }, (12)
where @ and G are positive constants that are independent of P And

Proof: See Appendix B. [ ]
Different from the rate loss which increases linearly inmsrof P, because of the term
e*C_P6 X 1+—Pﬁ, the upper bound owput|essq, in (12) converges to zero either whéh— 0 or
P — .
To have good performance, we mainly focus on the quantizéhssmall granularities. When

_Ta
A<1, we haveA3 < A%, and the upper bound in (12) is restricted by n{@( Al,A%}. For

_Ta
fixed A, the optimal choice fofl should satisfye "1 = A%, given by T = Q—élog%.

Corollary 2. When0O<A<1land T= %Iog%, the average rate loss of the quantizex - is

upper-bounded by:
% 1++P

Out|ossqo S CS xe P X P

¥ AZ, (13)

where G and G are positive constants independent of P and

C. Feedback Rate

The same VLQ for rate adaptation can be appliegyto) for a better utilization of the feedback

resource. From (9) and (10), we obt&vie i < o3 +1+10g, <1+ %) andA < Cy x 2 Roviei,

Ai

RoVLE.i min{ Ro VLE 1-Ro.VLE, ,
Thus,A% < 4/Cyx 2 Roviei =Cyx 2~ T <Cyx2~ { T 2} . The following theorem

states the relationship between the outage probability dds|(-) and the feedback rates.
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Theorem 3. When variable-length encoding is applied to the quantizér)gthe rate loss decays
at least exponentially as:

s 1++P - min{RovLE 1RoVLE 2}
X 2 2

Out|ossqo S C8 Xe P X P ,

(14)

where G and G are positive constants independent of P ang/R ;.

D. Diversity Order

With an outage probabilitgut, the achieved diversity order is given@s- limp_,o '?gé";t [26,

Section 2.3]. The following lemma shows the achievablerdity order ofgy(-) and a sufficient

condition to achieve the maximum diversity order in the-f0$l scenario.

Lemma 4. (1) With o(-) and fixed4, the diversity orders of% and 1 are achievable for
Receivers 1 and 2, respectively.
(2) A sufficient condition for both receivers to achieve the mmaxn diversity order of 1 is

A ~p P73,

Proof: See Appendix C. [ ]

In the full-CSI case, both receivers can achieve the sanergsity order of 1 as in the case
when no interference exists. In the limited feedback casean be found from the proofs in
Appendices B and C that the cause of this insufficient dityesider for Receiver 1 comes from
the marginal region when €@ Hy,H, < A. Therefore, an adequately smallthat scales at least
in proportion toP~3 in the highP region is desired to diminish the probability thdt falls into

that region so as to obtain the maximum diversity gain.

V. EXTENSION TO MORE THAN TWO RECEIVERS
A. Full-CSI Performance

In this section, we consider NOMA with more than two downlnelceivers. Assuming perfect

CSI universally available and; > H, > - -- > Hgk, the maximum minimum rate can be obtained

15



by solving the optimization problem:

K

Fmax=  Max min ry(a), subject to O< ax <1, Z o =1, (15)
a:[aly GK] _1 K —

whereK is the number of receivers, amg(a) = log, (1+ W) is the achieved rate for
i=1 ai PH

Receiverk under superposition coding and SIC. To the best of our kndgdeno closed-form

solution forryay is available in the literature. We present the following teenthat helps solving

the above optimization problem numerically.

Lemma 5. There existor* = [a7,a3,...,ak], such that all receivers achieve the same rate at

optimality, i.e., max=r1(a@*) =rz2(a*) =--- =rg (a*).

The proof of Lemma 5 is given in Appendix D. Singgax= ry (a*) =log, (1-1— —%)

St o+ i,
for k=1,...,K, we haveaj = (2 — 1) x (z!‘;ll o + ﬁ) which leads t&

1 k-1 2(k—1—i)rmaX]

ay = (2max— 1) (16)

_ max __
PHy + (2 =1) i; PH;

To find ap, we need to solve formax first. Summing both sides frork=1,...,K and after

trivial calculations, we obtain

i)l max

K
af =1 = (2Mmax— 2_ . (17)
2 PH

7

0 (fma)
In other words f max satisfiesw (rmay) = 1.1
Let ryp = log, (1+ Mink=1,__ K PHk) =log,(1+ PHk). Sincew(x) is an increasing function
of x as well asw(0) < 1 andw(ry,) > 1, we could use the bisection method to find the root of
@(X) =1 in the interval(0,ryp]. The calculation ofw(x) costsO(K), thus, the time complexity

of finding rmax Within an accuracy o€ is O (Klog1).

9Note that [19] also derives (16), but using the tools of canwptimization.

10Note that [27] has solved a different optimization problém, maximizing the sum rate subject to a minimum rate cairstr
which satisfiesy|_; a =1 but results in differentys.
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B. Limited Feedback

Under limited feedback, the previously proposed quargige(-) andq, () in Figs. 2 and 3
can still be applied here for rate adaptation and outageghibty, respectively. The maximum
minimum rate can be calculated using the bisection methotkdatingq, (Hk) or do(Hk) as
Hy, and the corresponding power allocation coefficients caedmputed. Although it is non-
trivial to derive upper bounds on the losses in rate or oufagbability for K > 2 theoretically,
numerical simulations in Section VI show that the relatlips between the performance loss

and the feedback rate are similar to the cas& ef 2.

VI. NUMERICAL SIMULATIONS AND DISCUSSIONS

In this section, we perform numerical simulations to vakdthe effectiveness of our pro-
posed quantizers for rate adaptation and outage probaliiall subsequent simulations fér
receivers, we use the channel variances in Table I.

TABLE I: Channel variances for numerical simulations.

K=2] A1=1,1,=05
K>2| k=%k=1...K

Results for other values of channel variances will exhibhilsr observations. For outage
probability, sufficiently large number of channel realiaas are generated to observe at least
10000 outage events.

In Fig. 4, we simulated the minimum rates of the full-CSI ¢ag¢-) and the TDMA scheme
(where each receiver occupies half of the time to transmii@. observe that the proposed
quantizer with NOMA outperforms the TDMA scheme wh&nr= 0.01 and 005. The rate loss
between the full-CSI case amgl(-) with A =0.01 is almost negligible. The corresponding values
for T = %Iog% and the feedback rates for both receivers (bits/per chastagd) are listed in
Table 1l. Compared with FLE which cosi{$g,(T +1)] bits per receiver per channel state, VLE
can save almost half of the feedback bits.

In Fig. 5, we plot the rate losses gf(-) for different values ofA and the feedback rates

Revie,1 andRr v g 2. It shows that the rate loss of(-) decreases at least linearly with respect
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7 0.4
——Full-CSI ”
l|-e-4,A=0.01 A 80.3
8l g, A = 0.05 o2l
——TDMA f s ||
5f R @ g} 2xA
° —TDMA
s 0 : : :
o a4t 0.2 0.15 0.1 0.05 0
g @ A
E,l 0.6 .
s ©-aqr
20.4 % 0.95 % 27 min{Rrvies By} |
2r o
% X %ese.
n x 0.2 x*"‘~,(__
0 =X
0 1 15 2 25 3 35 4 45 5
-10 0 10 b (dB) 20 30 40 (b) min{R,vie1, Rrvie2}
Fig. 4: Simulated minimum rates of NOMA fdt = Fig. 5: Simulated rate losses versus (apand (b)
2. mm{Rr’VLE,l, Rr,VLE,Z} for K=2 andP =10 dB.

TABLE II: Feedback rate for either receiver.

A | T |[logy(T+1)] | Receiver 1| Receiver 2
0.01| 461 9 5.3 4.6
0.05| 60 6 3.6 2.7

to A and exponentially with milﬁRLVLEJ, Rr7VLE72}, which validates the accuracy of our derived
upper bounds in (7) and (8). In addition, Fig. 5(a) shows thateds to be less thanl® such
thatg,(-) can obtain a higher rate compared with the TDMA scheme.

In Fig. 6, we compare the outage probabilities of the full€&se,qo(-) under various values
of A and the TDMA scheme. It can be seen that: (i) The curvegfgr) with A =0.01 almost
coincides with that of the full-CSI case. (ii) Whéhis large,qo(-) with A = 0.2 suffers from an

1
9
—-FLE, A = 0.01
¢ = VLE, A = 0.01, Receiver 1 P,
-% VLE, A = 0.01, Receiver 2
7L —-FLE, A = min{0.2, P~5} 1
25 =% VLE, A = min{0.2, P~%}, Receiver 1
E @6t -% VLE, A = min{0.2, P~$}, Receiver 2|{
Q2 ol
<] 24
a %57 ]
o ISR R R EEEE RS EEEE EEEE SRR
[=2] o
S Byt
2 | |——Full-CSI 3
O 10%F _ fing
-6-q, A =0.01 el 1
——qo, A = min{0.2, P’ls} f
B, A=Ph 2L *
-0, A =02 * -
__ TDMA L L EEES TEESE 3
1073 I I 1 L L
5 0 5 10 15 20 25 30 0
P (dB) 5 0 5 10 15 20 25 30
P (dB)

Fig. 6: Simulated outage probabilities of NOMA for

K— 2 Fig. 7: Simulated feedback rates vergutor K = 2.
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Fig. 8: Simulated outage probability losses versus Fig. 9: Simulated outage probability losses versus

VA andP for K = 2. min{RovLe 1, RoviE 2} for K =2.
insufficient diversity gain in the higR-region. According to our analysis in Lemma&= 0.2
is large enough not to scale wig 3,11 (i) Although the maximum diversity order is achieved
whenA = P—%, much less array gain is obtained in the lower and mediuragions (whereA
is large). AlternativelyA = min{0.2, P*%} will reserve both benefits of the maximum diversity
order brought b)P—% and the higher array gain @ = 0.2.12 The comparison of feedback rates
for VLE and FLE (which requireslog,(T +2)]| = [Iog2 (A—Zglog% +2ﬂ bits per channel state)
under different values oA andP is shown in Fig. 7, which verifies the superiority of VLE. It
can be seen that the feedback rates/fet min{O.Z, P—%} stay flat in the low and mediur-
regions (since @ < P*%). When P~3 < 0.2 whereP > 20.9 dB, the feedback rates start to
increase a4\ gets smaller.

In Fig. 8(a), the outage probability loss decays at leasilily with respect td; in Fig. 8(b),
the outage probability loss approaches zero whenBver 0 or P — o; in Fig. 9, the outage

probability loss decays at least exponentially WE?.*?{RO’VLE;’RO"VLE’Z}. All these observations

validate our theoretical analysis.
In Figs. 10 and 11, we simulated the rate and outage prohalbkses for more than two
receivers. For Receivdl, the channel variance is set to g = % the maximum number of

11The value 1 for A will also exhibit an insufficient diversity order as long Bss large enough, although we might not
be able to observe this in the region K 30 dB in Fig. 6.

12\e also observe a similar effect Afon the achieved minimum rates, but we mainly elaborate it utage probability.
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k=1,...K R VLE k P =10 dB.

bins T for gr(-) and go(+) is T = %Iog%, and the accuracy used by the bisection method is
£ =10"%. We simply treat the result of bisection method based orepe€Sl as the “full-CSI”
performance. Compared with Figs. 5, 8 and 9 Ko 2, Figs. 10 and 11 exhibit very similar

relationships between the losses andr the feedback rates.

VII. CONCLUSIONS ANDFUTURE WORK

We have introduced efficient quantizers for rate adaptatimhoutage probability of minimum
rate in NOMA with two receivers. We have proved that the Iggserate and outage probability
both decrease at least exponentially with the minimum offdeelback rates. Furthermore, we
generalized the proposed quantizers to NOMA with any nunolbeeceivers. The performance
of NOMA with noisy quantized feedback and the user schedulinder limited feedback will

be interesting future research directions.

APPENDIX A: PROOF OFLEMMA 2

To clarify, the notatiorD; for i € IN represents a positive constant independer®, dfandA.

The average rate loss gf(-) can be expressed as

2 2
E[llosd :/ rIossl_! fu, (Hi)dH; ‘|‘/ rIossl_l f, (Hi)dHi,
fhz i= J ¥5‘[07< i= B

=E> [rloss} =E< [rloss]
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where 7o > = {(H1,H2) : or(H1) > or(H2)} and #p - = {(H1,H2) : gr(H1) < gr(Hz2)}. We will
_TA

only ShowE: [rjosd < l0g, <1+ Dg x P x max{e M ,A}), and skip the proof foE. [rjosd due

to similarity. Note thaty, (H1) > g, (H2) does not necessarily me&h > H,, since it is possible

that g, (H1) = gr(H2) andH; < Hy. Whena,(H1) > or(H2), define

a*Hy = g>(H1,Hp), if Hy > Ho,
G*Hz = g<(H1, Hz), if H1 < H2, (18)

SNmax =

snrg, = Og, X Or(H1) = > (Or(H1),0r(H2)) ,Snrioss = SNrmax—snrg, .
2xy _ 2xy
V (X+Y)2+-4xy2Pxt+y and g<(x,y) = V (X+Y)2+-4x2yPixty

logy (1+ P x snrmax) —logy (1+P x snrq, ) =log, (1-1— PljFr,‘ngfrqr ) <log, (1+ P X snrpss). Ground-

where g> (x,y) = . Then, we have|oss =

ed on this, the main steps of the proof are listed as follows:

(1) Partition#g > into the following mutually disjoint sub-regionsy, ..., Ha:

Hi = {(Hl,Hz) : qr(Hl) > qr(Hz),Hl <TAH <TAHi <A orHs < A},
Ho = {(H1,H2) 1 qr(H1) > or (H2),H1 > Ho,A<H; < TAL A< Hp < TA}
Hz = {(H1,H2) : qr(H1) = qr(H2),H1 < H2, A<H1 < TA/A<H; < TA}

Hy = {(H1,H2) : or(H1) > ar(H2),H1 > TA or Hy > TA}.
Here, 74 and 7 are edge regions wheig < A or Hj > TA; 76 and 73 are the dominant
regions wheré < H; < TA. It can be verified thatf N #j =0 fori # j, and#g > = Uf‘zlﬂﬂ.
(2) Let& = [y snrioss[12q fr (Hi)dHi. Then Ex [snriosd = 31 &. Proved; < D; x max{e}_f,A}
fori=1,...,4.
(3) After Steps (1) and (2), we obtaf} [snrjesd < Do X max{e%,A}. Based on Jensen’s
inequality, we have

_Ta
E- [fiosd < E= (1005 (1+ P x snripss)] < 10g, (1 P x Ex [snriosd) < 0 (1+ Do x Px max{e i A}) |

Now, we only need to show the upper bound&rin Step (2).

For &1, since#; C {(H1,Hp) : Ho <A} andsnripss < snrmax < Hi, we obtain
_H _H
(o] e )‘l A e )\2 _4A A
é"lg/ Hq dH, —dHy=A1({1—e %2 | <A1 x — =D1 xA,
0 )\1 0 )\2 )\2

where the last inequality follows since-1e * < x for x> 0.
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For &, sinceH1 > Hy andq, (H;) < H;i < gy (Hj)+A for H; <TA, we upper-boundnripss by
2H1H,
V/ (Hy + Ha)? + 8HIHZP+ (H + Hy)

=Y

SNfloss=

20r (H1) ar (Hz)
/T (Ho) + 0 (H2)P+ 4g; (Hy) 6@ (Hz) P+ [ar (Ha) + G (Hy)]

<Y+H;+Hp
< 2H1H2— Or (Hl)qr (Hz) < 2H1H2— (Hl—A) (Hz—A) _ 2AH1—|— Hy — A
- Y+Hi1+Hy - Y+Hi1+Hy Y+Hi+H>

< 2A. (19)
Then, an upper bound afy can beé&, < 2Af%p2 |‘|i2:1 fu, (Hi)dH; < 2A =Dy x A.

For &3, we havegr (H1) = gr(H2) <Hj; < Hz andgr (Hi) <Hi <qr (Hi)+A hold for (H1,Hy) €
3. Similar to (19), we can also obta#nr|gss < 2A and 83 < D3 x A.

For &4, sinceffy C {(Hy,H2) : Hy > TA} andsnr|oss< SNrmax < H2, the upper—bound o, can
be &y < [ fu, (H1)dHy [ Ha fy, (Ho)dHo = [55 AM dHy [ Ha 52 s dHy = A6 1 = Dyxe 1.
We have accomplished Step (2) and the proof of (6) is complete [ |

APPENDIX B: PROOF OFLEMMA 3

When the uniform quantizeg,(-) is applied, the outage probability loss in (4) is rewritten a

2 2
Outiossg, = /10.> 1min{r1(aq0),rz(aqo)}<rth il:l fy, (Hi)dH; +/10‘< 1min{r1(aq0),rz(aqo)}<rth il:l f, (Hi)dH; .

=out> lossdo =out< lossdo

where
Io> = {(H1,H2) 1 ar(H1) > ar (Hz2), 'max= 100G (1 + P X snfmax) > r'tn}
= {(H17H2> O (H1) > Gr (Ho), snrmax > B = 2% 1},
Io.« = { (H1.Hz) : 6 (H) < 0 (Ha). snrmaxc< B

_Ta
andsnrmax is defined in (18). We showut jossq, < D5 x €~ w X ”Pf X max{ M ,A%,A%}

and skip the proof fobut . ossq, due to similarity. The main steps of the proof are:
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(1) PartitionIp > into the following mutually disjoint sub-regions:

{(Hl,Hz) G (H1) > 0 (Ha), snrmax > &, Hy <A H, <A}
- {(Hl,Hz) G (H1) > G (Ha), snrmax = 0> (H1,Hz) > B A < Hy < TA H, < A},
= {(Hl,Hz) :0r(H1) > ar (H2),H1 > Hp, 0> (H1,H2) > B LA <H < TA A< Hp < TA},
= {(Hl,HZ) 10 (H1) = or (H2),H1 < Hz,0- (H1,H2) > B A < H < TA A< Hp < TA},
Is = {(Hl,Hz) 10 (H1) > 0 (H2), snrmax > &, H1 > TA or Hy > TA}.

Here, 11, L and Is are the marginal regions whetd < A or H; > TA; I3 and I are
the main regions wheré < H; < TA. It can be verified that; N 7; = 0 for i # j, and
Io> = Uy b

(2) Let 7 = |, 1min{r1(aq0),r2(aqo)}<rth M2 1 fu, (Hi)dHi. Then, outs jossq, = S1q i Prove

Doit6

_TA 1 3 .
Fi < Dpiygx€ P x”Tﬁxmax{e "l,A?,A?}forlzl,...,5.

Now, we need to show the upper bound .&h in Step (2).

For .71, we haveqe(H1) = go(H2) = A > Hy, and thusag, = VPALH < \/PH21+1+1' For any

(H1,H2) € 1, sincegs(x,y) < min{x,y} and g-(x,y) < min{x,y}, it must haveg < SNrmax <

min{Hy,H»>}. Moreover, we obtair].r;lﬁn{rl <1

(a0 2(a0) Y <rn = +1

and

r1(0go)<fin ' ~r2(0go ) <rtn’

L1 (ago)<rn = Ly xagy<f = Lny<pvenias

1r2(aqo)<rth = 1H2(1*GQO) B <1 1 - 1H2<l32ﬂ‘
PHyago+1 ~P H2 V/PH+1+1 _B P
. I <P
PHyx \/m+1+1
Thus, an upper bound of; is
F1< 111 pBE r!fH, dH; + / L, s |‘|fH, dH;
pYPEITEL . Ao B T2
< / € deldH2+ / e € " GydHy
? M ? A2
g g
e M VPATI+1 Bl 1 Bl 1 B 2 [B2+28 B
< _F - _= _ _=
—Alx[ﬁ 3 P}X)\ZX[A Pl A |8 PX/\2 P P
5 <VPA+1 8
= PA+1 1 1 % e
e 1 e "2
< X A4 = x A
SR x B X 5 x/\ + A x A X e X S
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Fig. 12: The integration regiovﬁ.

<Dj7x€ P x

big VPA+1
5)

o A bg 1 P _Ia
><A+D19><e*‘P2Q><E§D7><e*7§>< xmax{e Al,A%,A%}. (20)

For 77, let F; = f121ri(aqo)<rth 2.1 fr, (Hi)dH; for i = 1,2. Then, 7, < %4 + F2,. For

F21, sinceH; > Hy for (H1,Hy) € L andg>(x,y) is increasing orx andy, we have

r1(age)<rin — 1 2H1 xdo(Hp) B
Voo (He) +a0(H2) P + 400 (1 )0B(Ha)P + (a0 (He ) +ao(H)]
S 1 2(0]0<H1)7A)><QO(H2) <g - 192 (qo(H1)7QO(H2))<€X . lA (21)
V/[a0(Hy)-+ao(H2) | *+490 (1) (Ho) P+ [do(Hy ) +do(Hy)] ~Go(HD)
<
<1y (o) o) <& «(Lrgs) = =1y, (qor) ol < (1+52) (22)
< <
Sy, (i i) <Bx (142) = Lo (raa <Bx (142) (23)
where (21) follows fronge(H1) < Hi+A, (22) follows from (1— ﬁ) (1-1— A )> > 1 be-

causego(H1) > 2A > go(H2) = A, and (23) follows fromge(H2) > Ho andgs (go(H1),00(H2)) >

2 NdH:
0> (H]_, Hz) Then, we Obt&lﬂ/z 1< flz—lgﬁ{(Hl,Hg):gZ(Hl,H2)<g><<1+H%>} |_|i:1 in(HI)dH|.
We change the integration variables frc(ﬂﬁl,Hg) to (@,H2) where ¢ = g>(H1,H2). Then,

P+o _ 2¢PHy+Hy—¢?P 2q0PH2+H2
Hy = PPy x Hp, and the Jacobian matrix i S22 v xHy < S22 X Hy
1= e 7 72 d<" (Ho—)? (Ho—0)?

% x Hy = (S"P;)l) X H2 For any(H1,Hp) € 12, we have: (|)P <@p= g>(H1, Hz) <H, and

2~ 2

Q< E X <1+ %) (i) sinceHy > Hp, Hy = %" x Hy > Hy, then,H, < ¢?P+ 2¢. Therefore,
2 N AH:

Hi,Hy): ’3<H2<(p2P+2(p €<(p<m|n{H2,g <l+ )}} NI=I in (Hl)dHl' The

integration reglonl2 is demonstrated in Fig. 12 as the shaded area surroundedelyothts

1 is derived as%, 1 < f " {

A E,D andC. It can be strictly proven than;g is within the region surrounded the poi#sB, D
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(S”pr)l) x HZ. Then, we have
2

andC. Recall thatH; = ‘pZP“” x Hy and )dHl

H 2
TS B = 2(pP+1) .,
F21 S/ / X X x HydgdH,
e ¢ A2 M (H2— @)
B \/32 8B
=ep / e v el B x e7%X¢2P <(zo) QP+ x (z+ @)?dedz
- 21 1135 0 —— _\/—/ Z ?
., £ _92(oP+1)
<e A2 e A2 Se Az
B B+s/B +8AB PPro 7 @RePi) 2(,0 (02
<Dy xe »P 5 e 2e M2 x(pP+1)x [14—74—?] dodz. (24)
g Jo

Using the inequalities: (i)ffx"fle_é_yxdx: 2<§y>§j£(, <2\/[3y [28, Eq. (3.471.9)] with

“(z) being the modified bessel function of the second kind, .49(x) < )—2( and .#_1(X) =

JA(x) < % for x>0 [29, EQq. (27)], after lengthy but basic calculations, weaib.7,1 <

Dy x € + % A+f Detailed calculations for (24) can be found in Appendix B[20].

For .72, becauseH; > Hp andqgo(H1) > go(H2) = A > Ha, we have

200(H2)
ag, <
\/ [Go(H2) +qo(Hz)] +4do(H2)g5(H2) P+ do(H2) + do(H2)

_ S — (25)

«/qo(Hz)P+1+1 VPA+1+1
Since ry (ag,) is decreasing org,, we obtainry (ag,) > r2<m+l> and I yory <
1 1 =1 1 =1 Ho/PATT <1 =1 . Sim-

1 3 B = HpvPATL B — B(vPA+I+1)
r2<\/_PA+_1+1><rth Hz(l \/PA+1+1> <8 P - vPATl <P PR VPATL < P Ha<

1
PH2 Vparira t

iIar to (20)’ we Wi” have%,Z S f[z 1H2<B PA+1+1 |_|i2:1 in(Hi>dHi S D24 X e T5 +1 x .
NS5 VP
Dog3
Together with the upper bound a#i, 1, we obtain.7, < .7, 1+ .72, <Dy x €~ g2 A+\/_ +

P X
D25 JPAL1 P 14P o AL A3
Dosxe 7 x ¥5=xA<Dgxe 7 x=g=xmaxse * ,A2,Az ;.

For #3, sinceqo(H1) > go(H2) andgo(Hi) — A < H; < go(Hi) for i = 1,2, we obtain

r1(ag,) =109, (14 PHy x dg,) > 10g, (1+ P x (do(H1) —A) x ag,)

=109, (14 P x go(H1) x g, — P x A x dg,)

~log, <1+Px 0= (Go(H1) Go(H2)) — P x G (Go(Ha). Go(Hz)) x —2 )

Oo(H1)
= log, (1+ P g>(go(H1),0o(H2)) X (1_ QO(AHl))>
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1+ Pxg>(90(H1),00(H2)) x <1

A
14+ Pxgs(H,Hy) x (1
% 0> (a1, Hz) x ( %(H2) )

2(0q,) =100, <1+ Hz(1- 0q,) ) =log, <1+ (?O(HZ) —A)x(1- 0’%)) (26)

qO(HZ) - A) X GQO + %

> log,

1+ qO H2 (1_ GQO) _ |ng 1+ qO(HZ) X (1_ aq;) . A x (1_ GQO) .
Oo(H2) x Ago+5  do(H2) X Og, + 5
A

b | 1+Pxg>(go(H1),00(H2)) x <1_quﬂ>)

> log, <1+P><92(H1,H2) X (1_ﬁ)) ’

Therefore, we have

. < —
Lminrs (o) r2(a00) <1 = og (1+Pxg (o) x (1- ) )<t ) )
~ do(Hp)

(27)

<p <1+ qo(z‘lilz)> S 192(H17H2)<g <1+%) 9

2
: A 20 ) _ A A :
where (27) is becausél— W) X <1+ W) =1+ % (HD) -2 (CIO(HZ)) > 1 sinceqo(H2) >
2A for (Hy,H2) € I3, andgo(H2) > H». Similar to (23) and (24), we can obtain an upper bound
on %3 (the detailed derivation is omitted due to similarity). F&u, its upper bound can be

developed in the same way as the upper boundan

For .%5, whenH; > Hy > A, sincegs (Hq,Hp) > 2H1Hp Ho e
5 t="2= 9>(Ha,Ha) > V(Hi+H) 2 4H2 P HyHy VPRI

obtain from (27) that

<1

1. <1 <1l + =1 o
min{r1(ag).r2(dgo) } <rn = gz(H1,H2)<g<1+H%> 9> (HiH)< B (142)=% = \/ﬁ+1<¥ Hp< =38’
(28)
. 2 .
whereDog = (33 +1)°—1. Slmllar.ly, whenH; < H, we have.’l.}mn{rl(aqo)7r2(aqo)}<rth < 1H1<%'
Therefore, an upper bound o#;s is
Fs < / iy, (Hi ) dH; + fi, (Hi ) dH;
5= I;N{(H1,Ho):H1>Ho} H2< e rl Hl I 13N{(Hg,Hz2):H <Hz} H1< e rl HI |
D
1 1 e 1 B .
< [P L itam, 1 e dHp+ [ —e hde/T_——eAldHl (29)
Ta A g A2 ;\r-’ 5 JTa A2 g AL~~~ ;
_\,_/ B B
_Ta <e Pha<e PXg _TA 1A <e P1
—e M - - —e 2<e M -
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1A 1 _ B Do— A 1 _B  Do—
geAlx—xeF’MxLﬁ+e Mx)\—xe%xﬂ

1

2
D 1+vP _Ta
< Di5x e P x +P\/— X max{e M ,A%,Ag},

_ Dog 3
<Dy7xe TxExe 1

where (29) is based on the assumption that A,. This completes the proof of the upper bound

APPENDIX C: PROOF OFLEMMA 4

It is trivial to obtain the maximum diversity order for botbaeivers is 1 in the full-CSI casé.

Whenqy(-) is employed, the outage probability of Receivirout, j = flri< 2.1 fr, (Hi)dH;

0go ) <I'th
for i = 1,2. Following the derivations of%; for i =1,...,5 in Appendix B, we will ob-
TA
. D3o T 3 D3p
tain outq, 1 < outmin+Dogx € P X % + % and outq, » < outmin+ D3y x € P x

TA

x , . : : .
'D%M%l.“ Therefore, for fixed\, the diversity orders o% and 1 are achievable for Receivers

1 and 2, respectively.

3
For Receiver 1,% in the upper bound onutg, 1 is the bottleneck for diversity gains. If we
scaleA asA? ~p %, i.e.,A~p P*%, the diversity order of 1 is also achievable for Receiver 1.
[ |

APPENDIX D: PROOF OFLEMMA 5

GivenK and 3 > 0, define the following two optimization problems:

(PL) riaK,B)= max  min rg(a), subject to O< oy < B and TK ; ax = B.
a=ay,...,ax k=1,....K
(P2 rﬂ;ax(K,B) = max min r(a), subject tori(a) =---=rg(a), 0< ax < B, and
a:[al7"'7aK] k:17"'7K
ZI}(<:1 ak - B’

where P1) is the original optimization problem in (15) whgh = 1. We will show that the
maximum minimum rates ofRl) and P2) are the same, i.erj«(K,B) = rﬂ;ax(K,B), which

proves the lemma.

3Detailed derivations for the maximum diversity order canfdiend in Appendix C of [30].

Note that when we derive the diversity order fef, 5, we will not use its upper bound here. From (25), we obtain

D3s
_ it i trivi ; e P
=1 , then, it is trivial to obtain that?; , <Dzgx =p—.

1 1
A0 = Uprrir1 = Ve it ANTka(ag) < = Hp 8222

1 1
2 ( W“) <fn
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Denote the optimal power allocations fd?1) and P2) by ag (B) = |a7k(B),---,ag k(B)
anda&(B) = [GIK(B),~-~70;7K(B) , respectively. Sinces, . (K, ) > rrTnaX(K,B), it is sufficient
to prove thatr,,,(K,B) < rrTnaX(K,B).

The proof forK = 2 is provided in the proof of Theorem 1. By induction, assuthg(K, 3) =
r%aX(K,B) holds forK = K;. WhenK = Kj + 1, there are two possibilities:

(i) If reyea (a*Klﬂ(B)) > TKy+1 (a&ﬁl(ﬁ)), sincerk,+1(a) = log, <1+ %) =

2ic1%it PR 7

log, <1+ Tt ) for anya satisfyingy{*; * aj = B, it must havesg ;¢ .1(B) >

ﬁfaKlJrlJF PHK1+1
T t
aK1+1 K1+1<B) then, B1 = 3, Ok, 1(B) = B— 0% 11k, 11(B) < B— 0 g ,41(B) =

iy kK1+1(B) = B,. Next, we obtain

.....

< min{rmax(K1, B1) Tk, 11 (A, 41(B)) } (30)
= min {1 (K1, 1) Ty 1 (AR, 2(B)) ) (D)
< min{rhax (K1, B2) Ty +1 (A, 41(B)) } (32)
=min{rfax(Ki+1.8) .k, +1 (@, 11(B)) } (33)

= min{fK1+1 (aL1+l(B)) MKy +1 (a*K1+1(B))}

=i (0, 12(B)) = Mhax(Ka + 1,B).
Thus, ri(Ki+1,8) < r?nax(KlJrl,B). The inequality (30) is due to the optimality of
rmax(K1, B1); (31) arises from the assumption thett, (K, B1) = rrTnaX(K,Bl) when K =
K1; (32) is becausefmax(K,B) is non-decreasing of; (33) holds sincer;rnax(Kl,Bz) =
rmax(K1+1,B).

(i) 1f i (@, 2(B)) < Tira (@ 12(B)), we haverfa(Ka+1,8) < iy (@, 42(B)) <
'Ky+1 (aKlJrl ) = rmax (K1+1,p3), which completes the proof of Lemma 5. [ |
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