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Abstract
Some geometric methods in chromatic homotopy theory
by
Kiran Luecke
Doctor of Philosophy in Mathematics
University of California, Berkeley

Professor Constantin Teleman, Chair

This thesis is a conglomerate of several results in algebraic topology united by the common
thread of taking seriously the idea that geometric considerations can be useful for proving
algebraic results in the field of chromatic homotopy theory. These results include a geometric
construction of equivariant elliptic cohomology at the Tate curve, abstract derivations of
the dual Steenrod algebras at all primes, and geometric presentations of higher algebraic
structures.
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Chapter 1

Introduction

1.1 An explanation of the title

This thesis is a conglomerate of several results in algebraic topology united by the common
thread of taking seriously the vague idea that “geometric” considerations are often useful.
The algebro-topological results fall more specifically within the area of chromatic homotopy
theoryE], a field which is notoriously algebraic/ Combinatoria]EI and un-“geometric.” At this
point I should probably explain what I mean by “geometric.” I don’t mean anything terribly
mathematically precise, but the following comes close: a mathematical object or technique
is geometric if it is presented by or involves a point-set construction referencing a manifold
in some way (e.g. a stably almost complex manifold—with—singularitiesE] or a Fredholm op-
erator on a vector bundle over a Lie groupoid). The central way in which these geometric
considerations find application to the homotopy theoretic results at hand is by taking the
philosophical stance that cohomology theoriesﬂffunctors from a suitable category of topo-
logical spaces to the category of graded abelian groups satisfying a suitable version of the
Eilenberg-Steenrod axioms—should be (when possible) conceptually viewed and handled in
practice as being the presheaf of isomorphism classes of a sheaf of groupoids of geometric
objects. A convenient formalism for capturing this idea is the subject of Section 2l The
reason for my advocation of this philosophical stance is (mostlyﬂ) practical - as this thesis
hopes to prove, the geometric viewpoint often leads to substantial insights into homotopy
theoretic questions. Before I make this claim more precise in Section[1.3] I would like to give

!The next subsection contains an introduction for those not familiar with the subject.

2The popular techniques in the field involve things like localizations and spectral sequence calculations,
not to mention the entire area has its foundations in co-category theory and is thus either combinatorial or
abstract-homotopy-theoretic.

3Manifold-with-singularities deserves further explanation but that further explanation deserves to be
omitted from the Introduction. See Definition

4And by extension, spectra.

5There is a small part of me that takes this stance dogmatically but I try to keep that part of me to
myself.
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a short overview of chromatic homotopy theory.

1.2 A chromatic introduction

One of the main branches of modern algebraic topology is chromatic homotopy theory.
Broadly, chromatic homotopy theory is the practice of studying the stable homotopy cate-
gory via its connection to the algebraic and arithmetic geometry of (1-dimensional, commu-
tative) formal groups. Conventionally, chromatic homotopy theory is an algebraic practice;
the methods of higher algebra [2I] (E.-rings, Bousfield localization, the Adams spectral
sequence, obstruction theory) are used to flesh out what this connection says about the
stable homotopy category. The first citation in any overview of chromatic homotopy the-
ory is Quillen’s paper [23], where the connection to formal groups is first solidified in what
is now simply known as “Quillen’s theoremﬁ:” that the complex cobordism spectrum MU
carries the universal formal group law on its homotopy groups. This leads to the fact that
the MU-based Adams spectral sequence has Es-page given by certain cohomology groups of
the moduli stack of formal groups Mjy,, and that the local behavior of the stable homotopy
category can be calculated by localizing at various geometric points of that moduli stack.
But this thesis takes a slightly different path. It still begins with Quillen’s [23], but instead
of building off the results of that paper, it builds off its methods. Briefly, those methods
can be outlined/highlighted as follows: first, Quillen gives a geometric presentation of the
cohomology theory associated to MU whose cocycles are manifolds-with-structure. Then
he defines two sets of cohomology operations using the geometry of these manifold cocycles.
In the modern language of higher algebra, one of these sets of operations is (a geometric
presentation of) the power operations associated to the E.-ring structure on MU. Using
a clean intersection formula Quillen then proves a certain relation between the two sets of
operations, and thereby deduces that the coefficients of the canonical formal group law on
MU, generate it as a ring, from which Quillen’s main theorem follows easily. Therefore,
Quillen’s theorem, the central/nodal result of chromatic homotopy theory is proved using
a fundamentally geometric viewpoint, in particular a geometric, manifold presentation of
MU not only as a spectrum, but also as an F,-ring spectrum. This thesis is guided by the
goal of taking this geometric perspective on chromatic homotopy seriously and exploring the
consequences.

1.3 Merits of the geometric viewpoint

As mentioned above, I hope that this thesis serves as evidence that a geometric viewpoint
on chromatic homotopy theory leads to practical merits. The applications in this thesis
that should be highlighted here are the construction of chromatically interesting objects

60f course, since Quillen was pretty prolific, there are probably 5 or 6 theorems that name might
reasonably refer to.
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(cf. Sections and calculational tools (Section [4.2)), conceptually clear alternates
for algebraic calculations (cf. Sections and , clean presentations of higher algebraic

structures (cf. Sections and [5.7)).



Chapter 2

Symmetric stable functors

Definition 2.0.1. Let Fin™ be the category of finite sets and isomorphisms.

Definition 2.0.2. For a finite set N write RY for the topological vector space of maps
N — R and C¥ for the topological vector space of maps N — C. Write SV for the 1-point
compactification of RV,

Definition 2.0.3. Let Set, be the category of pointed sets.

Definition 2.0.4. Let C' be a l-category. Define a monoidal structure on Fun(Fin™ x
C°P, Set,) as follows:

(FRG)(N,c) = @ F(M,c)®G(N — M,c).

McN

That is Day convolution in the Fin-variable and the pointwise tensor product of pointed sets
in the C variable. Let § : A — C be a cosimplicial object in C. Then §* induces a monoidal

functor
0% : Fun(Fin™ x C°? Set,) — Fun(Fin™ x AP Set,)

where the codomain is equipped with the same monoidal structure as the target (with C
replaced by A). Let o0 € Fun(Fin™ x C°P, Set,) be such that §*o is equivalen to the “sphere”
S given by (N, A*) — S(N); = Sing, SV as a monoidal object in Fun(Fin™ x A°P, Set,).
Then a symmetric stable functor is a o-module in Fun(Fin™ x C°P Set,), which form a
category o-mod, also called SstFun(C, o, ) to emphasize the input data. This is a monoidal
category with tensor product given by the following colimit in Fun(Fin™ x C°P, Set,)

F®,G:=cllim(FRoRGE 3 FRG).

Write §*o-mod for the category of 6*o-modules in Fun(Fin™ x A°P, Set, ) (with a relative
tensor product similar to the above). Since ¢*o is monoidally equivalent to the sphere S, §*o-
mod is equivalent to the category of S-modules, which is the category of symmetric spectra

'In the Kan-Quillen model structure on simplicial sets.
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in simplicial sets (as defined in e.g. [3]). Pullback along ¢ therefore defines a monoidal

functor .
SstFun(C, g,0) = o-mod 2, §*o-mod ~ SymSp(sSet. ),

which leads directly to the following lemma.

Lemma 2.0.5. Let E,(Sp) be the symmetric monoidal co-category of Ey-ring spectra and
let E1(Sp) be the category of Ei-ring spectra. Given a triple (C,0,9) as above there are
functors

CMon(SstFun(C,0,8)) — Ex(Sp).

AssMon(SstFun(C,0,0)) — F1(Sp)

and the first one is symmetric monoidal.

Proof. This is immediate from the well-known fact that commutative/associative symmetric
ring spectra model Fy/FE; ring spectra (c.f. [3]) and the fact that the functor ¢* preserves
colimits so that the relevant relative tensor products are preserved. O

Definition 2.0.6. For a symmetric spectrum 7" let ©7" denote the underlying spectrum.

Definition 2.0.7. Let cMan be the category of compact manifolds-with-corners (c.f. Def-
inition , and set C' = cMan x A°?. Let o € Fun(Fin* x C° Set,) be defined by
o(N, X, A*) = Homaan (X, SY) and let § : A — C be the cosimplicial object defined by
5(AF) = (A}, AF). Then 6*c (N, A*) = Homeygan (Af,,, S) is monoidally equivalent to the

sphere S as required in Definition [2.0.4} so that the category SstFun(C, o, ) is defined.



Chapter 3

K-theory

In this chapter I construct a completed version of twisted S'-equivariant K-theory, with an
eye towards its application in the next chapter. I will use the formalism of symmetric stable
functors to construct E,-ring structures in certain cases. In particular the construction
will specialize to the case of ordinary (untwisted an un-equivariant) K-theory and therefore
present KU as an Fq,-ring spectrum.

Some Definitions and Disclaimers: In this chapter, rings, abelian groups, and Hilbert
spaces are assumed to be Z/2Z-graded, unless it is stated otherwise. As is standard, the
loop group LG of a Lie group G is the group of smooth maps S! — G with the topology
of uniform convergence. Cs is the cyclic group of order 2. All groupoids considered in this
paper are topological groupoids (cf. Definition unless otherwise stated. The following
string of definitions sets the stage for the context in which these groupoids are considered.

Definition 3.0.1. The category Top is defined to be the category whose objects are topo-
logical spaces that are homotopy equivalent to a C'W-complex and whose morphisms are
continuous maps.

Definition 3.0.2. A topological groupoid X = (X; 33 Xj) is a groupoid object in the
category Top. A morphism of topological groupoids is a morphism of the corresponding
diagrams in Top.

Definition 3.0.3. Let X = (X; =3 Xj) be a topological groupoid. The coarse quotient [X]
is the quotient of X under the equivalence relation defined by x ~ y if there is a morphism
from x to y. In other words, it is the topological space of isomorphism classes of objects of

X.

Definition 3.0.4. A map of topological groupoids X — Y is a local equivalence ([13] Defini-
tion A.4) if the induced map of (discrete) groupoid-valued presheaves on Top Hom(—, X) —
Hom(—,Y) is an equivalence on stalks. Two topological groupoids X and Y are said to be
weakly equivalent if there is a diagram of local equivalences X «— Z — Y. Although it will



CHAPTER 3. K-THEORY 7

not be needed, some readers may take comfort in the fact that weakly equivalent topolog-
ical groupoids present the same underlying stack on the site of topological spaces (cf. [13]
Remark A.5).

Definition 3.0.5. A topological groupoid X = (X7 =3 X)) is called a local quotient groupoid
if there exists a countable open cover {U,} of the coarse quotient [X] such that the full
subgroupoid associated to each U, is weakly equivalent (cf. Definition to the quotient
groupoid of a Hausdorff space M by a compact Lie group K, denoted in this paper by M /K.

3.1 S'-completed twisted K-theory

The S'-equivariant theory is constructed for certain BZ-groupoids, which are defined as
follows.

Definition 3.1.1. A BZ-groupoid is a paitf] (X, o) consisting of a groupoid X = (X; =3 Xj)
and a BZ-action «, i.e. an automorphism of the identity functor o : 1x = 1x. A morphism
(“BZ-equivariant map”) of BZ-groupoids (X, ) — (X', ') is a morphism of topological
groupoids F': X — X’ such that for every x € Xy, F(a(zr)) = o/(F(x)). A BZ-subgroupoid
of a BZ-groupoid (X,«) is a BZ-groupoid (X’,a’) such that X’ is a subgroupoid of X
containing all components a(2’), ' € X € X and o agrees with the restriction of « to X'.
A BZ-groupoid (X, «) is called trivial if « is the trivial automorphism of the identity.

To model the ‘quotient’ of a BZ-groupoid by its BZ-action I make the following definition.

Definition 3.1.2. For a BZ-groupoid (X, a) define the BZ-quotient X/BZ to be groupoid
whose space of objects is Xy and whose space of morphisms is (X; x R)/Z, where Z acts as
follows: if s denotes the source morphism of X, then for n € Z, n-(p,r) := (pa(s(p)) ™", r+n).
This is functorial in the BZ-groupoid. The BZ-quotient of a local quotient groupoid is again
a local quotient groupoid.

Example 3.1.3. The motivating example of a BZ-groupoid is the loop groupoid L(M /G) of
a global quotient M /G, which is again a global quotient: its space of objects is the subspace
of M x G of pairs {(m,g) € M x G| gm = m} and G acts by translation on the first factor
and conjugation on the second. The BZ-action is the automorphism of the identity functor
whose component at the object (m, g) is g.

When M is a point this is the quotient groupoid associated to G acting on itself by
conjugation, and when G is connected the BZ-quotient admits a (possibly enlightening)
second description, up to equivalence: let A(G) be the space of connections on the trivial

1To streamline notation I reserve the right to refer to a BZ-groupoid (X, a) by the name of the groupoid
X and leave the BZ-action « as a mystery to be revealed as required.
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principal G-bundle over S! and LG the group of smooth bundle isomorphisms covering rigid
rotations of the base S*. Note that LG ~ LG x S*. Then

L(pt/G)/BZ ~ A(G)/LG.

The map inducing the equivalence goes from right to left and is given by taking the holonomy
of a connection (cf. [I5] Section 2.1).

3.1.1 Central extensions and twists

This subsection describes the model for twists used in this paper.

Definition 3.1.4. (cf. [13] Section 2.2) A groupoid is said to be graded if it is equipped
with a functor € to pt/Cy. A graded central extension pt/U(1) — L — X of a groupoid
X = (X7 3 Xp) is a graded groupoid L = (L =3 Xy, ¢€) and a functor P : L — X which is
the identity map on objects and is such that the induced map P; : L — X is a principal U(1)-
bundle. The category €rty is defined to have objects the graded central extensions of X, and
a morphism (Ly, €;) — (Lo, €2) is the following data: a pair (M, n) of an isomorphism class of
principal U(1)-bundle M — X, an isomorphism of U(1)-bundles t* M ® L; ® s*M ™! — Lo,

and a continuous function 7 : Xy — Cs such that ey = t*neys*n=!.

Example 3.1.5. Let T = U(1)*" be a torus. Consider the quotient groupoid T'/T =
(T'x T" =3 T) associated to the (trivial) conjugation action of 7" on itself. Let 7 be a
homomorphism 7 : m7T — A := Homg,,(7,U(1)). Define a mT-action on t x T' x U(1) by
the formula p- (X, ¢, %) = (X +p,t,e7(p)(t)) and let L™ be the quotient (¢txT xU(1))/mT.
Then L™ =3 T is a groupoid with source and target map both given by ([X,t,¢e%)] — e¥,
and the evident morphism to 7" x T' =3 T is a graded central extension once we equip both

groupoids with the trivial grading.

Remark 3.1.6. The category of graded central extensions is extremely sensitive to the groupoid
presentation X of the underlying stack. For example, suppose that the underlying stack is
equivalent to a finite CW-complex X. In the presentation of X as X =3 X, all objects of
Ertx are trivial as principal U(1)-bundles (the identity morphisms provide a section) and
are therefore determined by their grading, so that my€rty = H(X;Cy). On the other hand,
if X is presented as the groupoid [ [U;; =3 [ [ U; associated to a good Cech cover of X, then
any Cech 1-cocycle with values in line bundles defines a central extension. It follows that
moCrtx = H'(X;Cy) x HY(X; BU(1)) = H(X;Cy) x H*(X). This is in accordance with the
fact that there is a general homotopy theoretic framework for twisted cohomology theories
which foresees the possibility of twisting K*(X) by classes in H?(X).

Remark 3.1.7. The appearance of H? in the above is not a coincidence - for all groupoids X
considered in this paper, the set of isomorphism classes of graded central extension whose
grading is trivial is isomorphic to the kernel of H3X — H3Xj (cf. [I3] Proposition 2.13).
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Definition 3.1.8. In light of the above, define the category %toistx as follows. Its objects
are twists: a pair (V,L7) consisting of a local equivalence (cf. Definition V- X
and a graded central extension L™ of V. A morphism of twists from (V,L7) to (U,L?) is a
local equivalence ¢ : V. — U over X and a morphism in €rty, from L7 to ¢*L?. A map of
groupoids f : X — Y induces a pullback functor f* : Tristy — Troistx.

Definition 3.1.9. If X is a BZ-groupoid, then the category BZ-%toistx of equivariant
twists is defined to be the category Twistx, pz. Define the category BZ-Twist whose objects
are pairs consisting of a BZ-groupoid X and an equivariant twist (V,L7) € BZ-Twistx.
A morphism from (X, (V,L7)) to (Y, (U,L7?)) is a BZ-equivariant map ¢ : X — Y and
a morphism from (V,L") to (¢*U, ¢*L7) in BZ-Twistx. A homotopy between two such
morphisms is defined to be a BZ-equivariant map X x [0, 1] — Y restricting to each of the
BZ-equivariant maps X — Y at the endpoints.

Definition 3.1.10. Let BZ-%wist, be the category whose objects are triples (X, A, (V,L7))
consisting of a BZ-groupoid X, a full BZ-subgroupoid A, and an object (V, L") € BZ-Ttvistx.
Morphisms are the relative versions of those in BZ-%toist.

Define the product of two objects (X, A, (V,L")) and (X, A, (W,L7)) to be the object
(X, A, (Y,L™)) with Y being the pullback V xx W and L7*7 the graded central extension
of V. xx W given by the tensor product (cf. [I3] Definition 2.6) of the pullbacks of L™ and
L? along the two projections.

3.1.2 The cohomology theory

In this subsection a spectrum (in fact, a symmetric stable functor) is constructed for each
object (X, (V,L7)) of BZ-%wist. Let G, and G, denote the automorphism groups of an
object  in X and X/BZ. By Definition there is an exact sequence

1 -G, Gy=(Gy xR)/Z — S* — 1.

where Z sits inside G, x R as the subgroup {(a(z)™",n)}. Because G, is compact the
sequence admits a fractional right-splitting, i.e. a splitting after replacing S* by a finite
cover S} — S1. The construction of the K gi-theory spectrum will require a choice of
fractional splitting 1, : Gy <« S¥ but the final product will not depend on it. Note that
the space of choices of v, is a torsor for the group Hom (S, G,)*™ of conjugacy classes of
homomorphisms S' — G,, and that a global choice may not exist over all of X/BZ. An
example of this situation is the BZ-action on X = L(pt/U(1)) ~ U(1)/U(1) (cf. Example
[1.1.1). Then X/BZ is equivalent to a U(1)-gerbe over U(1) x (pt/BZ) whose Dixmier-Douady
invariant is a generator of H*(U(1) x BS'). Therefore a global fractional splitting—which
is equivalent to a trivialization of the gerbe classified by some (nonzero) multiple of the
generator—does not exist ]

2 A later section contains a treatment of this example in greater detail.
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Ordinary K-theory is concerned with equivalence classes of finite-dimensional vector
bundles. Morally, local Z((q))-completion corresponds to relaxing this condition to allow
for infinite-dimensional bundles, provided that the image of S! under v, acts on the fiber
with finite-dimensional isotypic subspaces and that the set of irreducible characters of S!
that appear is bounded below as a subset of Z. The failure of ¢, to extend over X, makes
this ill-defined: the same bundle can meet these requirements for one choice of v, and fail
them for another. Luckily the naive fix—restricting to those bundles whose fibers satisfy the
above property for all choices of 1,—turns out to work nicely.

I will follow the Freed-Hopkins-Teleman model of twisted K-theory for local quotient
groupoids but adapt it to the fit the machinery of symmetric stable functors. In particular
the geometric objects will be sections of bundles of Fredholm operators. For each finite set N
let Cly be the Clifford algebra on CV (cf. Definition . It is generated by the elements
7v(e,) corresponding to the standard basis elements e,,n € N, of CV. Recall that Cly, as
a graded module over itself, is the direct sum of all its irreducible graded moduleg’] For a
Hilbert space H let B(H) denote the spaces of bounded operators with the compact-open
topology and let IC(H) denote the space of compact operators with the norm topology. Let
Fred" (H) be the space of odd self-adjoint Fredholm operators A € B(Cly®H) that (graded)
commute with the Cly-action and such that A% + 1 is a compact operator. The topology is
defined via the inclusion

Fred"(H) — B(H) x K(H)

A (A, A2 +1).

Definition 3.1.11. Let (X,(V,L7)) be an object of BZ-Twist. Recall that there is an
implicit grading € : L™ — pt/Cy. A 7-twisted Hilbert bundle over X is a Hilbert bundle
H — L7 such that for any object = in L™ the central U(1) € Aut(z) acts on the fiber H,
by scalar multiplication, and for any morphism f :  — y the map of fibers H, — H, has

degree €(f).

Definition 3.1.12. Let (X, (V,L7)) be an object of BZ-Twist. A 7-twisted Hilbert bundle
H — X over a groupoid over X is said to be locally universal if for every open subgroupoid
U — X and every 7-twisted Hilbert bundle V over U, there exists a unitary embedding of
V into the restriction Hy of H to U. If X is a local quotient groupoid (cf. Definition
then a locally universal Hilbert bundle always exists and is unique up to unitary equivalence
(cf. [13] Lemma 3.12).

Definition 3.1.13. Let (X, (V,L7)) be an object of BZ-%Ttwist and let H — L7 be a locally
universal 7-twisted Hilbert bundle. For a natural number n write Fred"(H) for Fred" (H)
with N = {1,...,n}. Then the (uncompleted) S'-equivariant, T-twisted K-theory of X is
defined in [I3] (Section 3.4, A.5) to be

K% (X) := TK"(X/BZ) := mT(L7; Fred™ ™ (H)).

3There is one irreducible representation when |N| is odd, and two when |N]| is even.
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It is independent of the choice of H (cf. [13] Remark 3.17).

Over an object z the fiber H, is isomorphic to L?(G,) ® 2 ® Cly (cf. [13] Lemma A.32).
A choice of fractional splitting 1, : G, < S} gives an isomorphism H, ~ L*(G,)® L*(S") ®
?®Cl;. An irreducible representation of S* is labelled by an integer k € Z and has character
q — ¢*. For F € B(M,)%", let Fy, (k) denote the restriction of F' to the S'-isotypic component
of weight k, after splitting H, ~ V,,, ® L*(S') using ¢, as above.

Definition 3.1.14. For each finite set N define the set of ¥ ,-relative q-Fredholm operators
as
Gy, Fred™ (H,) := {F € B(H,)%'|F,, (k) € Fred®(V,,,)% invertible for k << 0}.

Note that in particular each F,, commutes with the G -action. As remarked earlier, this set
depends on v,. Define the set of ¢-Fredholm operators qFred™(H,) to be the intersection
of gy, Fred" (#,) for all choices of v, (recall that the set of such choices is a torsor for
Hom(S*, G, )¢°™). Finally, topologize this set via the inclusion

qFred" (H,) — H H Fred™ (V.. )

~yeHom(S1,G,) keZ
P H H Flyp, (K

Although the inclusion depends on ,, the induced topology does not, because for any other
splitting v/, Vi is unitarily equivalent to V;, , so changing the splitting amounts to shifting
the v index in the product.

Remark 3.1.15. This definition is capturing the more humanly comprehensible idea that a
gFredholm operator on H,, is an operator which, under every decomposition H, ~ V,, ® L2S?,
‘looks like’ a Laurent series (in the monomials ¢* that label S!-representations) of Fredholm
operators on V.

Example 3.1.16. (cf. Examples|4.1.1jand [3.1.5)) Let X be the action groupoid of the trivial
action of U(1) on itself U(1)/U(1) ~ L(pt/U(1)) which is a BZ-groupoid with BZ-action
given by the automorphism whose component at an object ¢ is the morphism determined by
t. It admits a BZ-equivariant twist for every 7€ Z ~ H3,(U(1)/U(1)). For each such 7 the
twist can be presented explicitly as the pair (V,L7) where V ~ X/BZ and L7 is described
as follows. Define an action of mU(1) = Z on iR x U(1) x U(1) x R by the formula (cf.
Definition [4.2.4])

D (z'X, eQm‘G’ e2m’¢>7 7") _ (Z(X + p), 627ri(97p7'X+Tp27“)7 e27ri(¢+pr)77,).
There is a commuting Z-action (cf. Definition[3.1.2)) defined by the formula n-(i X, 2™ €™ r) =
(iX, 20 e2m(¢=nX) 1 4 n) and write L™ for the quotient by m T x Z. Define the groupoid
L™ = (L™ =3 U(1)) by declaring the source and target map to both be [(X,0,t,7)] — >,
The set of fractional splittings at an object ¢ is isomorphic to the set of i.X such that e?™X = ¢
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(which is a torsor for Hom(S', U(1)) ~ Z) since each such lift induces an identification of
the automorphism group of ¢ with U(1) x U(1) x ST by translating with the U (1)-action
until 7.X is in the fundamental domain containing 0. Fixing such a fractional splitting v/,
a gy, Fredholm operator F is represented by a Laurent series Y, F(k)¢" where F(k) is a
U(1)-invariant Fredholm operator on L?U(1). In other words, F' can be represented by a
Laurent series Y. xx¢® € R(U(1))((q)) =~ Z[t*]((q))). Write R(U(1)) ~ Z[t£]. From the
explicit presentation of L™ in Example [3.1.5] changing the splitting ¢, by the generator
1 € Hom(SY, U(1)) = mU(1) sends > xx(t)g" to (gt)™ Y] xx(qt)q*. In order for the latter to
be a Laurent series, if mdegy(t) denotes the most negative degree in y(t), then it must be
that mdegy(t)/k — 0 as k — oo.

Letting x vary over the space of objects of L™ in the above construction defines, for
each N, a subspace gFred” (#) of the bundle B(H ® Cly) x K(H ® Cly) — L. In general
gFred” (H) — L™ may not be a bundle or even a fibration. Nevertheless, it is a continuous
surjection and therefore has an associated sheaf of continuous sections, denoted by ¢FN (H).
The following is an easy consequence of the methods developed in the Appendix of [13].

Lemma 3.1.17. For a finite set N let N +1:= N [[{s} denote the union of N with a sin-
gleton. Then the map defined by sending A to y(es)cos(mt) + Asin(nt) induces an equivalence
as : T(L7; qFNTYH)) = QUL qFN(H)). Write N+ M for the disjoint union. By iterating
one gets, for each finite M, an equivalence ay; : T'(L7; qFNTM(H)) = QMT(L7; g FN(H)).

Definition 3.1.18. Suppose M os of even cardinality. Then because of the classical peri-
odicity of complex Clifford algebras and their representations there is a homeomorphism

Bu : D(L75qFY M (M) « DL qF Y (H))
induced by sending A to A® I.

Definition 3.1.19. Define the twisted K, gi-theory symmetric stable sheaf on BZ-Ttoist as
follows. As a symmetric functor, define
K1 (N, X, (V,L7) := T(L7: ¢F (H))

To smoothen out the notation write ¢ for the object (X, (V,L7)). The S-module structure
is induced by the maps

P S(M,c)®Ks:(N — M, c) — K1 (N, )

McN

P SMT(L7; qFN"M(H)) — T(L7; ¢FN (H))

McN

which on each summand is the transpose of the composite

T(L7; qFN M (H)) 22 D(L7; g FN M (1)) 4 QMT(L7; ¢ FN (1))
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of the maps of Lemma([3.1.17]and Definition[3.1.18] Suppose A < X is a full BZ-subgroupoid
(cf. Definition [3.1.1). The pullback of (V,L7) to A defines a (BZ-equivariant) twist
(Va,Ljy) of A; and the pullback of H to L7 is 7-twisted and locally universal(cf. [13]
Corollary A.34). Therefore the restriction map ¢} : T'(L7; ¢F~(H)) — ['(Ly/BZ;qF" (H))
is well-defined. The relative K, gi-theory symmetric stable functor ESI(X, A) is defined to
be its pointwise homotopy fiber. Finally, define (cf. Definition

K% (X, A) = m_ud* K (X, A).

Of course, at this point it is not clear how much the definition depends on the twist
object (V,L7), but the following lemma settles the question: the homotopy type of the
underlying spectrum depends only on the isomorphism class of the twist, which is an element
in H'(X; Cy) ® H*X.

Proposition 3.1.20. For n € Z, the collection of assignments
(X> Av (V> LT)) =7 _;gl (X> A)
forms a twisted cohomology theory. More precisely,

i) this defines a contravariant functor from BZ-Twist,. to Z((q))-mod taking local equiv-
alences to isomorphisms and taking homotopi(ﬁ morphisms to equal ones;

ii) there is a natural long exact sequence
L= TEH(X,A) » TRH(X) » TRH(A) - TRET(XA) -

iii) (excision) if Z < A is a full BZ-subgroupoid whose closure is contained in the interior
of A, then the restriction map

RE(X,A) — "Ki(X\Z,A\Z)

18 an isomorphism;
i) if J is an index set and (X, A, (V,1)) = [[,(X;,A;,(V;,L7)) is a disjoint union,
then . .
TKH(X,A) — [ "Eu(X;.A)
J

s an isomorphism.

Proof. This is essentially the proof given in Section 3.5 of [I3] with minor changes. Func-
toriality is immediate from the construction of the spectrum. Write I = [0, 1] for the unit
interval. Homotopy invariance follows from the fact that if H — L7 is a locally universal

4Homotopy is defined by the standard interval object [0, 1].
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T-twisted Hilbert bundle and p : L™ x I — L7 is the projection then p*H — L7 x [ is
T-twisted?| locally universal ([I3] Lemma A.32), so

Kot (X,A) x I) ~ Ko (X, A)L,

making the two restriction maps homotopic.

The fact that local equivalences are taken to isomorphisms is a consequence of descent
(cf. [13] Lemma A.18), which states that the pullback f* along a local equivalence f :
X — Y induces an equivalence of categories, from groupoids over Y to groupoids over X,
with a natural adjoint inverse denoted f,. Hence for any P — Y the natural map from
I'(Y,P) - I'(X, f*P) is a homeomorphism whose inverse is the composition of the natural
map ['(X, f*P) — ['(Y, f.f*P) with the map on sections induced by counit f,f*P — P.

The long exact sequence in i) is obtained from the fiber sequence
> U Kgi(A)y » K1 (X,A), » Kg1(X) = "Kg1(A)y — ...

The claim iv) about disjoint unions is immediate from the definition. It remains to prove
excision. Despite some cumbersome notation, the proof use a few standard homotopy-
theoretic constructions to boil things down to the following fact ([I3] Lemma A.32): the
pullback of a 7-twisted locally universal Hilbert bundle over a local quotient groupoid to
a full subgroupoid is again locally universal. Amusingly, the use of this fact will make its
appearance in a footnote. Let M = X\Z u I x (A\Z) u (A\Z) x I U A be the double
mapping cylinder of X\Z <= A\Z < A. The point-set topological conditions on A and Z
imply that the collapse map ¢: M — X is an equivalence. Consider the following diagram,
in which each row is a fiber sequence.

"Kg1(X,A), — Kgi1(X), —— "Ks1(A),

J | |

TR (M, A), —— “Kgi (M), — "Kg1(A),

The vertical arrow on the right is a homeomorphism and the vertical arrow in the middle is
a homotopy equivalence, so the vertical arrow on the left is a weak homotopy equivalence.
Let N be the mapping cylinder of X\Z <« A\Z and h : N — X the obvious map. Since
(X\Z,A\Z) = (X\Z, A\Z) a similar argument shows that h induces a weak equivalence

"Kg1(X\Z,A\Z), — ""Kg (N, A\Z),.
Thus it suffices to show that the restriction map

r: e (M, A), — "Ka(N,A\Z),

5To be pedantic, p*T-twisted.
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is a weak equivalence[]

For a based topological sheaf F over a groupoid V with subgroupoid A\Z let I'(V, A\Z; F)
denote the space of global sections whose restriction to A\Z is the basepoint. Recall that
the relative K si-theory spectrum of a pair is by definition the homotopy fiber of a restric-
tion map on the space of sections of a based topological sheaf. Since the relative inclusions
A — M and A\Z — N are coﬁbration{] the corresponding restriction maps are fibrations.
Hence the mapg

I(M,A;qF") — “"Kg(M,A),
[(N,A\Z; ¢F") — ""Kq (N, A\Z),

are inclusions of fibers into homotopy fibers and are thus homotopy equivalences.
Finally, the relative inclusion (N, A\Z) — (M, A) induces induces a homeomorphism

[(M, A;qF") — I'(N, A\Z; ¢F"),

which—along with the previous two homotopy equivalences and the map of interest =—Hfits
into the following diagram.

(M, A; ¢F") —— I(N, A\Z; ¢F")

| |

TR (M, A), —— 'K (N,A\Z),

It follows that r is a weak equivalence.

3.2 FE_-structures

Definition 3.2.1. A multiplicatively closed set of twists (of K si-theory) for a BZ-groupoid
X is a subset S of the objects of BZ-%istx that is closed under the multiplication operation
of Definition B.1.10

Definition 3.2.2. Let T" be a set of twists for a BZ-groupoid X. Define the spectrum
TKg (X) as the direct sum (cf. Definition [3.1.19))

P KaX).

(V,.L7)eT

SNote that the twists h*7 and r*c*7 are canonically isomorphic.

"A cofibration of topological groupoids is defined in the same was as for topological spaces. Namely one
asks for the homotopy extension property for maps to topological spaces.

8Gince the pullback of the 7-twisted locally universal Hilbert bundle over 7 to any of the groupoids
mentioned above is again locally universal, in a final abuse of notation I use ¢F™ to denote the sheaf and
any of its pullbacks by maps in sight.
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Lemma 3.2.3. If T' is a multiplicatively closed set of twists for a BZ-groupoid X then
TK(X) has a natural Ey-ring structure.

Proof. The spectrum TKg (X) of Definition has an evident lift to a symmetric spectrum
TKg1(X) via the formula (in which the finite set N is a variable)

T’CS1(X)(N) = C_D ﬁsl(NaX7 (VvLT))
(V,L7)eT

It remains to proved the commutative ring structure, for then the results of Hovey-Shipley-
Smith (cf. [I7]) apply. The required maps

P "Ks:(X)(M)® "Ke1(X)(N — M)) - TKs1(X)(N)

McN

are defined summand-by-summand as follows. First, note that each summand of the domain
is of the form

T(L™; gFM (Hy)) @ D(L™; qFN M (1y)).

The external tensor product of operators (A4, B) — A®DB along with the pullback of Fredholm
sections then defines a map (cf. Definition [3.1.10))

D(L™; g FM (1)) @ T(L72; g F N M (Hy)) — (L7725 M (Hy @ Ha)).

Finally, H1 ® H, is locally universal over L™+ and so the codomain of that map is a
summand of T g1 (X)(N). T O
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Chapter 4

Elliptic Cohomology

Kitchloo and Morava ([19]) give a strikingly simple picture of elliptic cohomology at the
Tate curve by studying a completed version of S'-equivariant K-theory for spaces. Several
authors (cf. [5],[19],[21]) have suggested that an equivariant version ought to be related to
the work of Freed-Hopkins-Teleman ([13],[15],[14]). However, a first attempt at this runs
into apparent contradictions concerning twist, degree, and cup product. Several authors
(cf. [8],[16],[18]) have solved the problem over the complex numbers by interpreting the
Sl-equivariant parameter as a complex variable and using holomorphicity as a technique for
an analytic form of completion. This chapter gives a solution that works integrally, by using
the carefully (and of course geometrically) completed model of K-theory for S!-equivariant
stacks from the previous chapter.
This work is published in Advances in Mathematics [20)].

4.1 Introduction

In [19], Kitchloo and Morava construct an equivariant cohomology theory for CW-spaces with
an S'-action by taking ordinary S'-equivariant K-theory and completing the coefficient ring
K%, (pt) ~ Z[¢*] in positive g-powers. For a finite CW-complex M they define

T (M) == K5 (M) ®zgq+) Z((0)) Z((q)) := Z[q"llg]-

They extend this to a theory on infinite complexes by taking limits over finite skeleta. It
satisfies a strong localization theorem for finite complexes: the inclusion of the fixed point
set j: M §' < M induces an isomorphism

J* Ka (M) = Ko (MS).

Recall that S! acts on the free loop space LM by loop rotation. Kitchloo and Morava show

that the assignment
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defines a cohomology theory. The localization theory together with the formula LMS" = M
shows that as a cohomology theory the above is just K-theory with coefficients in Z((q)).
But their insight is that this construction naturally gives more than a cohomology theory.
Recall that a multiplicative cohomology theory E is called an elliptic cohomology theoryﬂ if
it is

1. weakly even: E?(pt) ®goq) E"(pt) — E"*2(pt) is a isomorphism for all n;

2. comes with the data of an elliptic curve £ over E°(pt);

3. comes with an isomorphism of formal groups SpfE®(CP*) — &, where the first object
carries the group structure induced by the map CP* x CP* — CP® classifying the
tensor product of line bundles, and the second object is the formal completion of £ at
the identity:.

The key to extracting an elliptic theory is the identification of a natural complex orientation
coming from the Atiyah-Bott-Shapiro spin orientation of the normal bundle of the fixed
point locus M < LM. The elliptic curve relevant to the Kitchloo-Morava construction is
the Tate curve, an elliptic curve over Z((q)). Thus

Bl (M) ~ K3 (LM).

The simplicity of this method of producing a K-theoretic picture of elliptic cohomology
at the Tate curve suggests that a similar approach might work in an equivariant setting.
However, a few subtleties arise.

Definition 4.1.1. For a topological groupoid X = (X; =3 Xj), define its loop groupoid
LX (sometimes called the inertia groupoid) the free loop space object in the (2,1)-category
of topological groupoids. i.e. the pullback of the diagonal A : X — X x X along itself..
Explicitly, £X has as its topological space of objects the set of functors pt/Z — X topologized
as a subspace of X; (the space of morphisms of X) and has as its space of morphisms the
natural transformations of such functors, again topologized as a subspace of X;.

Remark 4.1.2. Note that when X is the topological groupoid associated to a topological
space X (i.e. the groupoid (X =% X) with only identity morphisms) this definition does not
reduce to (the topological groupoid associated to) the free loop space LX; instead LX = X.

The next step in the Kitchloo-Morava construction would be to define an equivariant theory
like this
M/G — Ka(L(M/G)) = K5 (L(IM/G)) ®zq21 Z((q)).

However, that does not have the desired relationship with equivariant elliptic cohomology.
For example, suppose that M is a point and that G is simple and simply-connected. By the
work of Freed, Hopkins, and Teleman ([14], Theorem 5) this proposed elliptic group, suitably

!This definition is due to Mike Hopkins in his 1994 ICM address.
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twisted by an element k € H*BG ~ Z, is concentrated in degree dimG, where it is isomor-
phic to the positive energy level k — h (h is the dual Coxeter number of GG) representation
ring of the semidirect product LG x S of the loop group LG with S*, the latter acting on
the former by loop rotation. So if dimG is odd this trivially fails the first requirement of an
elliptic cohomology theory, and the cup product is zero. Even if dimG is even, the presence
of the dual Coxeter shift violates the expectation that k-twisted G-equivariant elliptic classes
of degree zero over the point are in bijective correspondence with equivalence classes of level
k positive energy representations of LG x S (cf. [26], [27]). Over the complex numbers
these issues have been resolved by several authors; the common theme among them is to
consider ¢ = €?™7 as a complex variable on a certain moduli space and use holomorphicity
as the method of completion (as opposed to the algebraic base-change proposed above). For
example, Grojnowski’s delocalized equivariant elliptic theory [16] assigns to a G-space X a
holomorphic sheaf on the moduli space of bundles over the elliptic curve, constructed by
patching together local sections defined using equivariant singular cohomology with complex
coefficients. The connection to positive energy representation theory is made by using the
Kac character formula to identify characters of those representations with sections of the
sheaf. Berwick-Evans and Tripathy [8] have constructed a de Rham model refining Gro-
jnowski’s theory to a holomorphic sheaf of commutative differential graded algebras. For
simple and simply-connected groups Kitchloo [18], in a method most similar to the one that
will be presented here, uses a version of LG-equivariant K-theory built out of positive en-
ergy representations to construct a holomorphic sheaf together with a character map from
positive energy representations to sections of this sheaf.

The purpose of the present paper is to construct a new geometric model E¢ of equivariant
elliptic cohomology at the Tate curve that satisfies the following conditions:

1. for an arbitrary compact Lie group G the theory E¢ is defined integrally, i.e. no prime
p is invertible in the coefficient ring E,

2. it admits twists "F¢ by elements 7 € H*BG,

3. when the group G is trivial Eg recovers the Kitchloo-Morava theory described at the
beginning of this section,

4. the construction of Eg does not reference the positive energy representation theory of
loop groups in any way,

5. there is, a fortiori, a natural map from the category Rep] (LG S1) of level 7 > 0
positive energy representations to "Eg&(pt) which for connected groups becomes an
isomorphism of Z((¢q))-modules after factoring through the Grothendieck group,

6. and after tensoring with C it recovers, in a suitable sense, the previously defined
theories of Grojnowski and Kitchloo.

As an added bonus, the construction will naturally extend to negative twists and exhibit a
duality between positive and negative twist that the more imaginative reader might like to
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interpret as a manifestation of Serre duality on the moduli space of G-bundles over the Tate
curve.

Some Definitions and Disclaimers: Just as in the previous chapter, rings, abelian groups,
and Hilbert spaces are assumed to be Z/2Z-graded, unless it is stated otherwise. As is
standard, the loop group LG of a Lie group G is the group of smooth maps S' — G with the
topology of uniform convergence. Cj is the cyclic group of order 2. All groupoids considered
are topological groupoids (cf. Definition unless otherwise stated.

4.2 Calculations

The geometric construction of a completed S'-equivariant K-theory (along with some -
structures) in the previous chapter is all well and good, but it doesn’t amount to much
if I can’t calculate anything. In this section I show that the manifold geometry provides
powerful calculational techniques: once things have been phrased in terms of geometric
cocycles, things like integration, the Becker-Gottlieb transfer, and Segal induction, all mix
together to provide results such as[1.2.7] [1.2.9] and which are pivotal in establishing
the main calculational results, [£.2.17] and [£.2.24]

Definition 4.2.1. An element 7 € H3,(G/G) is called a strongly topologically regulmﬂ twist
if the restriction of 7 to H*(T/T) ~ HY(T)®?@® H3(T) is concentrated in the first summand
(cf. Remark[3.1.7) and defines a symmetric, non-degenerate, definite bilinear form on H; (7).
The twist is called positive (negative) if that bilinear form is positive (negative) definite.

Let G(1) denote the identity component of a compact Lie group G. In this section the
groups 7 H;’il(G(l) /G) will be calculated. The calculation will eventually break into two
subsections—according to whether the twist 7 is positive or negative definite—which have
different flavors. The asymmetry not mysterious: it comes precisely from the asymmetry in
completing Z[q*] to Z((q)) rather than Z[[q, ¢ ']]. Morally, relaxing finite-dimensionality
of vector bundles in positive powers of ¢ doesn’t amount to much at negative level, since the
cocycles (are expected to) correspond to loop group representations, which at negative level
are of negative energy and have bounded above S!-cigenspaces. Thus the representations
themselves do not produce K gi-cocycles without being ‘finitized” by a Fredholm operato
and the story collapses to match classical twisted K-theory.

Let T denote a maximal torus of G and let N be the normalizer of T'. The plan is to
make a preliminary calculation over 7'/N and then transport that to G(1)/G via the natural
faithful map w : T/N — G/G. A few key technical lemmas can be stated and proved
uniformly for positive and negative twists.

2The adverb “strongly” is there to distinguish this from the condition of topological regularity (cf. [14]
2.1), which does not require the bilinear form to be definite.
3This is the (rather involved) FHT-Dirac construction (cf. [14] Section V).
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4.2.1 Technical setup

Lemma 4.2.2. (The stalks of [?;1) Let G be a compact Lie group and z € Z(G) a central
element. Then z defines a BZ-action on pt/G, and the BZ-quotient (cf. Deﬁnition 18
of the form pt/G where G — G — S' is a group extension. Any twist T € H, (BG) deﬁnes
a U(1)-central extension G™ — G. Let G™ be the pullback of G™ to G, so that G /G =

Let A™ and AT be the set of T-affine (cf. Footnote @ weights of G™ and G, and let W be
the Weyl grou Let Agl c A" and AT, < A7 be the subsets of dommamﬁ integral weights.
Let 7 AQZ/W — pt/G and 7w : A,/W — pt/G be the projections. Any choice of fractional
splitting v : GT «— S} (cf. Sectwn 2.1) induces an isomorphism ¥ : AT «— A" x Z. Let
K?* denote K-theory with compact supportﬂ and let T TKO(AT /W) < TTKO(AL /W) be
the subgroup of classes whose image under W* : T TKO(AT /W) — TTKOY(AL/W x Z) =
T KO(AT/W)[[q, ¢ ]] is contained in ™ T KO(AT,/W)((q)) for all fractional splittings 1. Let
V > Agi/W be the canonical vector bundle whose fiber at a point is a copy of the G-
representation labelled by that point. If M is an R-module and r € R, write rM for the
subgroup {rm|m € M}. Then Tl?él (pt/G) = 0 and ‘summation along the fiber’ defines an
isomorphism

o [V FTRYAL/W)) — TK% (pt/G).

Finally, for M € R7(G) write xar for its character. For v € Hom(S',G) and & = >, Myq* €
R™(G)((q)) define v-& = Myxar, (7(q))g*. Then any choice of local splitting ¢ induces an
injection Tﬁgl (pt/G) — R7(G)((q)) which is an isomorphism onto the subgroup RL(G)((q))
of elements & for which ~y - € is in R™((q)) for all v € Hom(S', G).

Proof. The first claim that is not immediate from the definitions and the standard rep-
resentation theory of compact Lie groups is the implicit well-definedness (and the precise
definition!) of the displayed map. Let R7(G) be the group of T—projectiveﬂ representations of
(G. As a warmup to the precise definition, the uncompleted analog of this map is the isomor-
phism 7 : [V]( " 7K2(A3/W)) — "K%(pt/G) = R™(G) defined as follows: for A e A5,/W
let Vy denote a copy of the corresponding irreducible representation G”. Then a compactly
supported virtual vector bundle F — A%, /W is sent to the direct sum @5z /Wf/,\ ® E.

It is immediate from the definition (cf. Deﬁnitionand ?77) that classes in "K 0. (pt/G)
are represented by certain possibly infinite dimensional representations of G7. To de-
scribe them, choose a fractional splitting v : GT «— SY. From Definition it fol-
lows that there is an injective map i, : Tl?gl(pt/G) — R7(G)((¢)). For an element
M € R7(G) let xp denote its virtual character. Any other choice of fractional splitting
@' is of the form ¢/(q) = ¥(q)y(q) for some v : S* — G. Therefore, if € € "K% (pt/G)

4The Weyl groups of all extensions in sight are canonically isomorphic.

51 take this to mean dominant with respect to any choice of positive Weyl chamber.

5This is the reduced K-theory of the one-point compactification.

"That is, the subgroup of the representation ring R(G7) where the central U(1) acts by scalar multipli-
cation.
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and iy€ = 3 Myg* € R7(G)((q)) then i€ = ¥ Mixar,(1(a))g* € R7(G)((q)). So again
it follows directly from Definition again that 4, is an isomorphism onto the sub-
group RI(G)((q)) = R™(G)((q)) of elements Y Myq* for which > Myxar, (v(q))q" is also in
RY(G)((q))-

Now the image m([V]¢) under the displayed map in the lemma (defined by the same
formula that ends the first paragraph of this proof) certainly defines a possibly infinite
dimensional representation of G7. By assumption U*¢ € ™ 7TKO(AL/W)((q)), so write
U*¢ = 3 Epq®. Moreover, for another splitting ¢’ = 17 (see the previous paragraph) we
also have (¥)*¢ € ™ 7K9(A%/W)((q)). In analogy with V let V — A7 /W be the canonical
vector bundle whose fiber at a point is a copy of the G representation labeled by that point.
But it is clear that 7{([V]U*¢) = iy(@[V]€), so the conditions defining **7K?(AZ,/W) are
tautologically the conditions for 7 to be well-defined. Since 7 is an isomorphism (see the
first paragraph of this proof), the same equation shows that 1, o 7 is an isomorphism onto
its image, which finishes the proof. m

Lemma 4.2.3. Let N be the normalizer of a mazimal torus T < G and write W = N/T.
Let 7 be a twist in H3, (T/N). For each t € T with stabilizer Ny < N, T defines a group Ny ©
which is a U(1)-central extension of an N;-extension N, of S, and also an extension of S*
by a U(1)-extension N™® of N,. This is more lucidly indicated in the commutative diagram
below:

U(l) — NJO — 5 N,

L]

U(l) — NJO — 5 N,

L

St St

Restriction to the mazimal torus T < N, defines a group T which is a U(1)-central
extension of a T-extension of S', and as t varies these T™") assemble into a bundle of
groups over T whose fiber over 1 is equal to U(1) x T' x S*.

Proof. First note that the explicit model of the BZ-quotient T/N/BZ given in Definition
produces a bundle of groups 7' x N xz R — T whose fiber at t € T is an extension
N - N, — R/Z = S'. For each point t € T with stabilizer N; = N, pullback along the
inclusion i, : {t}/N; — T/N produces a class 7(t) := ij7 € H*({t}/N;) := H3BN,, i.e a
central extension U(1) — N, N, Pulling back along 7" — N, produces the desired
central extension of T, denoted T7® — T. The ability to trivialize the extensions at the
fiber over 1 € T is a direct consequence of the fact that all extensions of S* by a torus are

trivializable, and all extensions of a torus by U(1) are trivializable. The bundle of groups
over T is presented explicitly in Definition below. O]
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Definition 4.2.4. Let 7 € H3, (T/T) be a strongly topologically regular twist and let 7 also
denote the corresponding bilinear form on H,T = mT (cf. Definition . Let A be the
character lattice of T'. Contraction with the bilinear form on H'T defined by 7 gives a map
kT . HiT — H'T = A. Define an action of mT on t x U(1) x T x R by the formula (cf.

Example [3.1.5])
D (X, 627ri0, t, T) _ (X +p, 627r7§(9+7‘(p,p)7‘)’€7'p(€X>717 tp(e27rir)7 T‘).

There is a commuting Z-action (cf. Definition[3.1.2)) defined by the formula n-(X, 2™ ¢,r) =
(X,e?™ te="X r + n) and write L” for the quotient by 7,7 x Z. Define the groupoid L™ =
(L™ = T) by declaring the source and target map to both be [(X,0,t,7)] — eX. This defines
the bundle of groups over T" alluded to in Lemma . The map [(X, e*™? t,r)] — [(X,t,7)]
defines a morphism L™ — T'/T/BZ which presents the BZ-equivariant twist associated to 7.

Lemma 4.2.5. There is a W -equivariant covering space w : P, — T" which is the bundle of
affine weigassocmted to the bundle of central extensions defined by the groupoid L7 of
Definition |4.2.4. In particular, for each t € T, if T™® denotes the automorphism group of
t in the groupoid L™ and A™® is the set of affine weights of T™®, then there is a canonical
isomorphism w1 (t) ~ A7®,

Proof. The proof is an explicit construction of P,.. Define an action of m{T on t x A x Z by
(cf. [1] 4.9.5)

mTap: (X, \n)— (X+p,A—k"p,n+71(Kp,"p)+ Ap)).
The desired covering map is
TP i=tXx,r (AXZ)—>T

(X, A )] — [X].

To identify 7~ (¢) with A™® view L7 as the m T-quotient of (tx U(1) x T x R)/Z. For (t,r) €
T xR write [r] for the corresponding element of S! = R/Z, and t,(X) = te™™X where n, € Z
is such that r+n, € [0,1). Then (txU(1)xU(1)T xR)/Z can be identified with tx U (1) x T x
St via the map [(X, ¥ t,r)] — (z,e*™ ty,[r]), and under this identification the m T ac-
tion on tx U (1) xT x S* becomes p-(X, 2™ t, ¢) = (X +p, e2"0+7@LILT1 (X)L tp(2™?), ¢).
The associated action on the subset of t x Hom(U (1) x T'x S*, U(1)) consisting of pairs (X, f)
such that f restricts to the identity character of the U(1) factor is precisely the action defining
P.. [

Definition 4.2.6. Define a partial compactification ﬁT of P.. Let T, denote a copy of T'
with the trivial W-action. As a set, the partial compactification of P is P, = P, [ [ T.. Let

8 Recall that an affine weight of a central extension U(1) — G — H is a weight of G which restricts to
the identity character of U(1), which is contained in any maximal torus.
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7= 7] [idy : P. — T be the natural projection. The topology of P. is generated by the
open sets of P;, the sets #1(U) for U < T open, and the collection of sets {PT\C]_[TOO}
such that

1. (a ‘niceness’ condition) C' < P; is closed and its preimage in t x A x Z has convex
intersection with t x {\} x {n} for all A and n and

2. (a condition directly related to the definition of K &1, c.f Lemma for any t € T
and any lift X € t (i.e. ¢ = t), the preimage of C' n 7~1(¢) under the isomorphism
77 1(t) < A™® x Z defined by X is a subset whose intersection with A x n is finite for
all n and empty for sufficiently negative n.

Lemma 4.2.7. (Key Lemmﬂ/ Let N G be the normalizer of T and W = N /T the Weyl
group. Note that T/N is a full BZ-subgroupoid of L(pt/N) ~ N/N. Let T be a strongly
topologically regular (cf. Definition twist in Hy, (T/N). There is a W-equivariant
map 7 : P. — T, a subspace Ty, = P. and an isomorphism of Z((q))-modules

a: TTKHP W, Ty /W) = TKE(T/N).

Remark 4.2.8. Note that the domain of the display is an ordinary twisted K-theory (not

—

Kgi!) group. Its Z((g))-module structure is described in the proof.

Proof. To prove the lemma the first order of business is to define a Z((g))-module structure
on the domain of the displayed map. To do that it suffices to specify the action of g,
which is defined to act via the map on twisted K-theory induced by pullback along the shift
isomorphism ‘sh’ defined by sh([(X, \,n)]) = [(X,\,n — 1)].

The next order of business is to define the map a. Recall that P is the bundle of (affine)
characters corresponding to a bundle of groups over T (cf. Lemma. In particular, any
point in s € P, defines a 1-dimensional representation: namely if 7(s) = ¢ then the character
labeled by s defines a representation of the group 77 (cf. Lemma on C, and these
assemble into a vector bundle V' — P.. Extending by a trivial rank 1 vector bundle over T},
defines a vector bundle V — P.. The proposed definition of «/ is the composite

TET 1% D ®[V TR 1% (D T T %
K*(B /W, T /W) 2 77 1c(B /W, T, W) B 7R (T/N),

but some proof is required to show that this is well defined. Namely we need to show that
for any £ in the image of the first map, the possibly infinite dimensional vector bundle 7¢
given by ‘summation along the fibers’ satisfies the conditions to define a class in the target.
Since 7 is a fiber bundle over an equivariantly locally contractible base, it suffices to check
this pointwise in the base. So choose a point ¢t € T', with stabilizer N, and ‘local Weyl group’

9This is the analog of the ‘Key Lemma’ of [I4] (Lemma 5.2).
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W, = N,/T. Write V; for the restriction of V to 7#~!(t). We must show that ‘summation
along the fibers’ produces a well-defined map

o V(TR G0/ W, {the/ W) ) — TORE({8)/N).

Let A™® and A™® denote the set of 7(t)-affine weights of N, and N;. Note that #'(t) =
AOT[{t}e (cf. Lemma , and any choice of fractional splitting 1 : N, < S} induces
an isomorphism ¥, : AT «— A™® x 7Z_ Given the results of Lemma (note that
AT = /NX;(t) and A7) = Agi(t)), the map is zero in degree 1 and so it suffices to show
that the degree 0 part of the domain of the previously displayed map is isomorphic to
V(O KA /W,)) as a subgroup of ©* 7 KO(A™®) /). But this is straightforward
(the topology pf P. was concocted for this purpose): any relative class in the domain of the
previously displayed may must have support contained in a set C' satisfying the two condition
listed in the definition of the topology of 157. I claim that this support condition on classes in
() KO(A® /W) is equivalent the definition of 77 KO(A™® /W,). This follows immediately
from a few observations: by Lemma there is a canonical isomorphism 7~ !(t) = A™®.
Thus, the set of induced isomorphisms ¥ : A™® «— AT™® induced by choices of fractional
splitting ¢ : N7 « S1 is equal to the set of isomorphisms 7~1(t) — A™® induced by
choices of lifts X e t, eX = ¢.

Not only have I shown that « is well-defined, but also that it is an isomorphism at each
point. By equivariant local contractibility of T'/N it follows that « is locally an isomorphism,
and by the excision axiom (or equivalently, the Mayer-Vietoris axiom) it follows that « is an
isomorphism.

It remains to show that « is a Z((q))-module map. That follows immediately form the
definition of the g-action in the first paragraph of this proof together with the fact that the
‘shift’ isomorphism defined there coincides on each fiber 771(t) = A™® with the action of
the generator of Hom(S*, U(1)) (recall that A™® is a subgroup of Hom(T™®, U(1))). O

Consider the natural inclusion w : T/N — G/G. Recall that the BZ-actions on both
groupoids are the automorphisms of the identity defined by ¢ +— ¢ and g — g (cf. Example
4.1.1). Hence the map is BZ-equivariant (cf. Definition|3.1.1]) and so there is a corresponding
map in Kgi-theory

TK5(G/G) = “TKL(T/N).

I would like to define a pushforward. Let N act on G x T and G x G by the formula
n(g,k) = (gn~',nkn="'). Let G act on the quotients G x y T and G x y G by left translation
on the left factor. The natural inclusion G xy T — G xy G induces a fully faithful map
i: (GxyT)/G — (G xy G)/G. Moreover, the inclusion N — G and the natural map
T = {1} xT — G xy T define an equivlanece T/N — (G xy T)/G. Finally, the map
G xny G — G defined by [(g,k)] — gkg™! defines a map j : (G xy G)/G — G/G.

Definition 4.2.9. Let ¢+ : N — G be a map of compact Lie groups whose kernel is finite
and whose image is a closed Lie subgroup. Define Segal induction (cf. [25] Section 2) as
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follows: first suppose that ¢ is injective. Then Segal induction is the map ¢ : R(N) — R(G)
which sends M € R(N) to the analytic index of d + d* acting on the de Rham complex of
the associated virtual vector bundle G xy M — G/N, in a chosen equivariant orthogonal
structure. If ¢ has finite kernel K, define Segal induction to be the composite of the ‘take
K-invariants’ map R(N) — R(N/K) and the previously defined Segal induction along the
injective map N/K — G.

Lemma 4.2.10. Let « : N — G be the inclusion of a closed subgroup into a compact Lie
group. Let vy : R(N) — R(G) denote Segal induction (cf. Definition . If M is a virtual
representation let x s denote its character. For a reqular element t € G let F, denote the set
of cosets gN € G/N such that g~'tge N. Then F} is finite and for any M € R(N)

Xum(t) = Z xu (g~ 'tg)-
gNeF

Since reqular elements are dense in G this determines X, completely. Finally, suppose that
N is the normalizer of a mazximal torus T < G. Then for reqular t € T the set F; is the
singleton {1N}, so x,m and xpr agree on T.

Proof. Note that g'tg € N is equivalent to tgN = gN, i.e. the condition for gN € G/N
to be a fixed point of the action of t € G. The finiteness of F; is then [25] Proposition 1.9.
The character formula is a direct consequence of the Atiyah-Bott fixed point formula (cf.
[25], end of Section 2). To prove the last statement, note that if ¢t € T, then g~ 'tg € N
implies that g7'tg = ' € T, and for any s € T g~'sg € Z(t'); (the identity component of the
centralizer of ¢'). So if ¢ is regular, g"'Tg = T, so g € N. Since regular elements are dense
in T the character formula gives the desired equality of characters on T

O

Lemma 4.2.11. The map w : T/N — G/G factors into two maps that admit pushforwards
in classical twisted K -theory

T/N —— (G xyT)/G —— (G xy G)/G —— G/G.
For any twist T € H3(G/G) and any point t € T with stabilizers N; and Gy in N and G, the
composite pushforward j,i, coincides with Segal induction (7(t) is defined in the proof):
Jais : TOKH({t}/N) = RTO(N,) — RTO(Gy) = TOR*({t}/Ny).

Warning 4.2.12. This is not a BZ-equivariant factorization. The groupoid G x y G/G admits
no obvious BZ-action for which j is BZ equivariant.

Proof. The map ¢ is an embedding and so it has a normal bundle. The map j is a fiber
bundle with fiber G/N and so it has a relative normal bundle. Since every vector bundle
admits a (possibly twisted) Thom isomorphism in twisted K-theory (cf. [13] 3.6), both ¢ and
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7 admit pushforwards i, and j,. It remains to identify the local behavior of the pushforward
with Segal induction.

Consider a point t € T with stabilizer G; < G. Write T; for a maximal torus of G; and
let N; © N be the normalizer of T; in G;. Write 7(¢) for the restriction of 7 to {t}/G;. A
local (i.e. in an infinitesimal neighborhood of {t}) presentation of w is the Gi-equivariant
composite

it Jt
we Gy xy b —— Gy XN, ¢ — Ot

defined by [(g, X)] — [(9,X)] — Ady(X). Write o(v;,) for the twist of the Thom isomor-
phism along the normal bundle v;, of i;, which is the vector bundle v;, : Gy x n, (t; D g:/t;) —
Gy x N, t. Linearly contracting t, and g, (which is Gi-equivariant) induces the vertical iso-
morphisms in the following diagram (to ease the notational burden I have left various twists
syntactically unspecified, they will not be referred to again)

37e ()%, o 724 U)x o s
K&, (Gy <y, t) — K§,(Gy %, 9¢) " K&, (9t)

] ] |
TR ({t) — > TRE (G N)) s TR (GNP 7R (p) — TG, ({t))
Since the inverse of the equivariant contraction of t; is the inclusion Gy x n, {0} — G; xn, t;
the vector bundle v;, restricts to the vector bundle Gy X y, g/t — G/ Ny, which is the tangent
bundle T(G;/N;). Hence the horizontal map (i), is multiplication by the euler clas{"| of
T(Gy/Ny).

Now (j;)« is the pushforward along the G-equivariant map G;/N; — pt. So the composite
of of the bottom row is “multiply by the euler class of G;/N; and pushforward along G;/N; —
pt.” This coincides with the Becker-Gottlieb transfer along G;/N; — pﬂ. This extends to
the twisted setting: if GT — G is a central extension of G inducing a central extension
HY™ — H of H then Segal induction along (™ : H""™ <> G7 produces a map (] : R(H"") —
R(G™) which I claim restricts to a map R*7(H) — R7(G) (cf. Footnote . Indeed this
follows from the last statement in Lemma since U(1) is by definition central in H**"
and G7 and hence contained in any maximal torus. O

Lemma 4.2.13. The inclusion w : T/N — G/G admits a pushforward in X;l—theory.

Proof. The proof is an explicit construction of the map, leveraging the existence of the non-
BZ-equivariant pushforward in classical twisted K-theory provided by Lemma [£.2.11} The
plan is to define w, on very small open sets and prove that these patch together to a globally
defined map. Fix t € T" with N-stabilizer N; and G-stabilizer G;. Fix a sufficiently small
neighborhood iy : U < G such that U and w™'(U) = U n T are locally contractible, so
that U/G ~ {t}/Gr and w ' (U)/N =~ {t}/N;. Every choice of fractional splitting ¢y of

10The euler class depends on a choice of complex orientation of K-theory, I am not specifying one because
shortly it will not matter.

1 This follows directly from the definitions of the Becker-Gottlieb transfer and of the pushforward, cf.
[22] for a detailed construction of the Becker-Gottlieb transfer in equivariant cohomology theories.
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N, — Nt — S! (cf. Lemma induces a fractional splitting ¢¢ of G} — ét — St
By Lemma these splittings provide an identification of ©«*7 K 2w U)/N) with a
subgroup RS TY(N,)((q)) of T K* (w1 (U)/N)((g)) and an identification of ©™ K%, (U/G)
with a subgroup Rf(t)(Gt)((q)) of TK*(U/G)((¢)). Applying the non-equivariant pushfor-
ward j.1, power-by-power in ¢ defines the right most vertical map in the following diagram,
whose dashed arrows indicate maps that would make the diagram commute but are yet to
be proven well-defined

B (W (U)/N) =25 RETON) ((g) —— B K* (w1 (U)/N)((9)) = RO (N)((9))
o (1) s (U) lj*i* )

~ ~

TR (U/G) —2— RI(G)((q) ——— K (U/G)((q)) = BD(G))((q)).

To show that w}(U) is well defined I must show that if £ € RZJ*T(t)(Nt)((q)) then j,i.(U)¢ €
R:(t)(Gt)((q)). By lemma J«1x(U) is, power-by-power in ¢, Segal induction. So an
element & = >, Myq* is sent to j.i.(U)¢ = X, uMig®. By Lemma , ¢ defines an
clement of R ™(N,)((¢)) if and only if vy - € = 3, Mixas, (v (9))d* € R TO(N)((q))
for every vy € Hom(S', N;). Now consider vg - (3, uMiq®) = > tMixun, (va(q))q" for
v¢ € Hom(S',G;). By the last statement of Lemma [4.2.10) x,u1, (v¢(9)) = xar, (e (q))
because v¢(q) is conjugate to the maximal torus 7' G;. Hence w}(U) is well-defined.

Now w,(U) = ¢5'wi(U)wy is well-defined and I claim it is actually independent of
Yy and g, as the notation suggests. Indeed, any other choice of fractional splitting of
N; — S'is of the form ¢/ (¢q) = 1(q)yn(q) for some vy € Hom(S*, N;), and the induced
splitting v, satisfies the same formula where vy is replaced by i;yy, its composite with
the inclusion 7; : N; — G;. The claim follows by another application of the the formula
Xunr, (76(9)) = X, (76(q)), which implies that wi(U)(yn - &) = éryn - wi(U)(§).

It remains to show that the w,(U) patch together into a globally defined map, i.e. that it
commutes with the restriction maps in K &i-theory. Since locally contractible neighborhoods
form a basis for the topology of T/N, G/G, their central extensions, and their BZ-quotients,
and all these groupoids have compact spaces of objects, it suffices to show that for an inclusion
j 'V — U of sufficiently small equivariantly locally contractible open neighborhoods the
following diagram commutes

TR (W (U)/N) —Ls @K (0 (V)/N)

lw* () lw* V)

RITG)((q) = TTRL(U)G) —L— BTR(V/G)

This is true power-by-power in ¢, since j.i, is a globally defined map. O

Lemma 4.2.14. Let G be a compact Lie group, T < G a mazimal torus with normalizer N .
Suppose W = N/T contains a Weyl reflection r, defined by a root a of G. Then any M €
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R(N) of virtual dimension 0 is in the kernel of the Segal induction map v, : R(N) — R(G)
(cf. Definition[§.2.9).

Proof. Recall that the normalizer of the standard maximal torus of SU(2) is Pin_(2). Recall
that the root « induces maps d, : Pin_(2) — N and A, : SU(2) — G with finite kernel.
Hence, if r denotes the rank of GG, there is a commutative diagram

-1 x Pin_(2) -2 N

Fo

=1 x SU(2) —22 G

Write € € R(Pin_(2)) for the sign representation e of Cy pulled back along the quotient
Pin_(2) — Cy. Since M is in the augmentation ideal of R(N) by hypothesis, and [1 — €]
generates the augmentation ideal of 77! x Pin_(2), §*M is of the form M’ ® [1 —¢€]. I
claim that such an element is sent to zero under Segal induction along ¢,. Indeed, it suffices
to show that for any V € R(Pin_(2)), V ® [1 — €] is sent to zero by Segal induction along
Pin_(2) < SU(2). This follows immediately from the last sentence of Lemma since
V ® [1 — €] has trivial T-character and SU(2) is connected.

Now by [22] Lemma 4.3, (d, )17 is multiplication by the N-equivariant Euler characteristic
of the finite set cokerd, = W /{r,). Since Segal induction is transitive, (Ay)i(ta0XM =
u(0a)i105 M. The left hand side is zero, and the right hand side is |W /{ry)|u M. Since
|W /{rs)| is nonzero and R(G) is torsion free, ;M = 0.

[

4.2.2 Calculation of ~ ﬂgl(G/G) at negative twist

Lemma 4.2.15. Let 7 € H3,(T/N) be a negative twist. Equip (A/mT)/W with the trivial
BZ-action (cf. Definition . There is a twist 7' € Ha, (A/mT)/W) (described in the
proof) and an isomorphism of 7Z((q))-modules

TR (T/N) = "KL ((A/mT)/W).

Proof. The plan is to invoke Lemma , recognize the homotopy type of P. as a Thom
space, and apply the Thom isomorphism.

I claim that because 7 is negative, if the complement of a set C' = P, contributes to the
topology of P, (cf. Deﬁnition then the intersection of C' with any connected component
of PE has compact connected components. Indeed, by Condition 1 on the sets C' listed in
Definition if such a component were not compact, its image in 7" would contain a point ¢
such that C'n7~!(¢) contains points of the form {([X —p, A\, n)]} for an infinite set of p € mT
and some fixed A and n. But now consider the isomorphism 771(¢) < A7) x Z induced by the

?Recall that these connected components are all homeomorphic to t (cf. Lemma [4.2.5)).
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lift X of ¢. The inverse of that map sends [(X —p, A\,n)] to (A—«&"p,n+7(K"p, K"p) + A(p)).
Because 7 is negative and there are infinitely many choices of p, that set certainly fails (the
last part of) Condition 2 listed in Definition [4.2.6]

That leads to the following: define an action of m7 on t x A by p(X, \) = (X +p, A\—K"p).
Let (=), denote the one-point compactification and consider the spaces ((t X1 N) X Z<0)+

and \/;__ (tXry 1 A)+. Fix and [ € A. For any (X, \) € t x A let (X;, \;) be the m; T-translate
such that A; that lies the fundamental domain containing [. Then the pointed map

By : ((ExmrA) xZeo), v \/ ((txmrA) x {n}), = P/Ty

n€Z>0
([Xv >‘]7 n) = [(Xh )‘lv n)]
is a W-equivariant homeomorphism. Hence the group ™ 7K*(P./W, T, /W) can be com-
puted as the ®f7*7-twisted, reduced W-equivariant K-theory of the domain of ®;. As an
abelian group, that can be written suggestively in terms of %77 K *((t Xmr N4/ W) and a

bookkeeping parameter presciently called g:

e - oF P Eok
TR (P W, T /W) — &7 TK*(((t X1 N) X Zg0)+/W) DD, " TK*(({; X1 N) % {n})+/W)

~ MR ((Exmr A /W) [[a] @ D TR ((txar A)r/W)g "

~ TR (€ A) /W) (@),

Given that the Z((g))-module structure of =7 K*(P,/W,T.,,/W) comes via pullback along
the shift map sh, it is clear that the Z((¢))-module structure suggested by the last displayed
abelian group is actually the correct one.

It now remains to define 7" and prove that there is a Z((¢g))-module isomorphism

TR (i A) /W) (@) = 7RG (A/mT) /W),

Recall that a vector bundle induces a twist of the K-theory of the base of that vector bundle
(cf. [13] 3.6). Note that (tx,,7A)4 is the Thom space of the vector bundle tx,, rA — A/m T,
and call the corresponding twist o(t). Then applying the Thom isomorphism (cf. [13] 3.6)
in W-equivariant twisted K-theory gives

TR (i A)4) (@) > TR (A T (0)).

Finally, write 7/ = ®7*7 — o(t). Since (A/mT)/W is a trivial BZ-groupoid (cf. Definition
3.1.1))
TEH(A/mT)/W) ~ TEH((A/mT)/W) @z Z((a)).
[l

Corollary 4.2.16. At negative level T[?;’il (T'/N) is spanned by classes supported at single
conjugacy classes.
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Proof. This is immediate from the proof of Lemma [4.2.15| since the classes in ™ f(él (T/N)
are all images of degree zero classes under a Thom isomorphism from a vector bundle whose
dimension is equal to the dimension of T O

Lemma 4.2.17. Let G be a compact Lie group with identity component G(1). Let A, be the
reqular weights of G, i.e. those on which are not fived by a Weyl reflection r € W = N/T.
For negative twists T € H3 (G/Q), there is a twist 7/ € Hay(Areg/mT /W) (described in the
proof) such that w* induces an isomorphism

W TKE(G))G) S TEKE (Arey/mT/W) € 7K (A/mT)/W).

Proof. As usual, consider a point ¢ € T with stabilizer G; = G. Write T;(= T) for a maximal
torus of G; and let Ny € N be the normalizer of 7} in G;. Write 7(¢) for the restriction
of 7 to {t}/G;. Note that w : T/N — G(1)/G is essentially surjective. By the definition
of w (cf. Lemma it suffices to work at a fixed g-power. By the same Lemma,
the local behavior of w, denoted (w;), is the Gy-equivariant Becker-Gottlieb transfer along
Gi/N; — pt. By [22] Lemma 4.3 the composition (w).w; is multiplication by the G-
equivariant Euler characteristic x(G:/N;) = |N¢|/|N¢| = 1. So the map w,w* is locally the
identity. By the Mayer-Vietoris axiom (and equivariant local contractibility of all groupoids
involved) it follows that it is a global isomorphism. Then, in light of Corollary , the
image of any class under w, is fixed by w,w®*, so w,w* is a projection, and so must be the
identity. Therefore TI?E‘I(G/G) is split inside W*Tﬁgl (T/N).

It remains to identify the summand. For that it suffices to identify the kernel of w, with
the classes supported away from regular conjugacy classes. Recall from Corollary
that “*Tﬁgl (T'/N) is spanned by classes supported at single conjugacy classes. Moreover,
for any ¢ € T all classes supported at {t}/N, < T/N are of the form [V ® ©,] where
V e R*"(N,) and ©, represents the euler class of the normal bundle of {t}/N, < T/N,
which depends on a choice of complex orientation but is always a class of virtual dimension
zero in R(Ny). Finally, under the identification of “*Tﬁgl(T/N) with T/I?§1(A/W1T/W, the
subgroup T,f?gl(Areg/WlT/ W) corresponds to classes supported at ¢ € T' that define regular
conjugacy class in G (i.e. Gy = N;). Recall that (w;), is given by Segal induction, power-by-
power in ¢ (cf. the proof of Lemma. Clearly if G; = N; then (w;), is the identity. If ¢
does not define a regular conjugacy class in G, Then W, = N;/T; contains a Weyl reflection,
and the proof is reduced to Lemma [4.2.14 O

4.2.3 Calculation of 7 H;(G/G) at positive twist

Lemma 4.2.18. Let 7 € H3, (T/N) be a positive twist. Equip (A/mT)/W with the trivial
BZ-action (cf. Definition . There is a twist 7" € H3,(A/mT)/W) (described in the
proof) and an isomorphism of Z((q))-modules

TKE(T/N) S 7K (AmT)/W).
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Proof. The proof is similar to that of Lemma [£.2.15] The plan is to invoke Lemma [4.2.7]
recognize the homotopy type of P. as the disjointly base-pointed total space of a vector
bundle over (A/mT)/W, and then equivariantly contract the fibers of that vector bundle
and discard the disjoint base-point.

I claim that because 7 is positive, the complement of any closed, connected, convex set
C < P, contributes to the topology of P, (cf. Definition . It suffices to consider the
case that C' is the image of t x {A\} x {n} for some (A,n). This certainly satisfies Condition
1 listed in Definition |4.2.6] For any ¢ € T', and lift X of ¢, the inverse of the induced map
7 (t) <« AT x Z sends [(X —p, \,n)] to (A — k™p,n + 7(K7p, k™) + A(p)), whose second
coordinate is a positive quadratic function of p and so certainly satisfies Condition 2.

It follows that for any bounded below S < Z, the image of t x {A\} x S in P, satisfies
Conditions 1 and 2. This leads to the following.

Let Z denote the following partial compactification of Z: as a set 7 = Z]]{oo,} and
the open neighborhoods of {0, } are defined to be the complements of sets C' € Z which
are bounded below. As in the proof of Lemma [4.2.15, define an action of 77T on t x A
by p(X,A) = (X + p,A — k7p). Let (t xz7 A][{*}) be the evident addition of a disjoint
basepoint with trivial W-action. For any (X, \) € t x A let (X, \; be the 7 T-translate such
that \; that lies the fundamental domain containing /. Then the pointed map

O (txmr A [{#}) AZ - BT

([X7 )‘]an) = [VI(X)vAhn]

is a W-equivariant homeomorphism. Hence ™7 K*(P./W) ~ *I77 [* ((t xmr AT)/W) @2
Z((q)). The proof of the isomorphism displayed in the lemma is completed by defining
7' = ®F7*7, noting that t x,,7 A7 equivariantly deformation retracts onto A/m T, and that
(as in the proof of Lemma [4.2.15))

" K5 (A T)/W) ~ 7 K*(A/mT)/W) &z Z((q)).
0

Definition 4.2.19. ([1] Chapter 9) For a compact Lie group G and an element 7 € Hz, (LBG)

write LG™ xSt — LG x S! for the associated central U(1)-extension, and write RgOS(LG xS1)
for the free Z((q))-module consisting of positive energy, T-projective (also know as ‘level 77)
representations of LG x S?.

Lemma 4.2.20. For positive twists T there is an injection of Z((q))-modules }A%;OS(LG p
SY — TK%(G(1)/G).

Proof. Let H € R;OS(LG x S1) be an irreducible level 7 positive energy representation. Let
S < A xZ be the weights of T'x S « LG'xS* appearing in H. By [I] Theorem 9.3.5 this has a
unique lowest weight (A, n) € S. The affine Weyl group W x m T acts on S, and the subgroup
mT acts by the first displayed formula in the proof of Lemma [4.2.5] (cf. formula (9.3.3) in
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[1]). Hence, since 7 is positive, for any ¢t € G with stabilizer G; the infinite dimensional

(projective) representation H produces a well-defined element of 7® K 51 ({t}/Gy) (cf. Lemma
[{4.2.2). Then since (G(1)/G)/BZ ~ A(G)/(LG x S*) ([15], Section 2.1), the construction

A(G) X (LGxS1) H)\

defines the required map. It is injective since the pullback %long the inclusion 1 — G detects
the character of H, as an element of R"W(G)((q)) ~ "WKY, (pt/G) (cf. Lemma . O

Definition 4.2.21. Let X be a BZ-groupoid let 7 € Hgl (X) be a twist. A class £ € Tﬁng
is said to have wirtual g-dimension 0 if for any point x € X, with stabilizer G, pullback
along i, : {z}/G, — X produces a class i*{ € Z:Tﬁg‘l({x}/Gx) which maps to zero under
the restriction map ZiTl?;l({x}/Gx) — l?;l({x}) = Z((q)) induced by 1 — G, (cf. Lemma
12.9).

Lemma 4.2.22. Let 7 be a positive twist. Identify Tﬁgl(T/N) with T’I?gl((A/wlT)/W) as
in Lemma[{.2.18. Then the kernel of the map

wy: TKL((A/mT)/W) — TK%H(G/G)
consists of the classes of virtual q-dimension 0 (cf. Definition |4.2.21)).

Proof. For t € N write N, for its stabilizer in N, G, for its stabilizer in G, and T; for a
maximal torus of G;. Recall from the proof of Lemma that w, is defined power-by-
power in ¢, and the local model at a point ¢ € G with stabilizer G; € G and coincides with
Segal induction ¢ : R(N;) — R(G}).

Now let [V] € Tlg";l((A/mT) /W) be a class of virtual g-dimension 0. Then its support
must be contained in the set of [A\] € A/mT with nontrivial W-stabilizer. Over each such
point its fiber is a representation of the stabilizer of virtual g-dimension 0. It suffices to
assume that [V] is supported at a single such point [A| with stabilizer Wy. Tracing [V]
backwards through the construction of Lemma [£.2.18] there is a point ¢ € T with stabilizer
N, such that the class in "K % (T/N) corresponding to [V] is represented by a Hilbert bundle
V whose fiber at ¢ can be identified (by a choice of fractional splitting ¥ : N; « S}) with
a Laurent series in ¢ with coefficients in (7-projective) virtual representations of virtual
dimension 0. Since (w;)s is defined power-by-power, Lemma implies that (w;)4V; has
g-dimension zero at t. Hence w,[V] and w*w,[V] have g-dimension zero. But from the free
Z((q))-basis of "K % (T/N) established in Lemma , it is evident that the only class
which is of g-dimension 0 at any point is the zero class, So w*w.[V] = 0. Injectivity of
w* implies that w,[V] = 0. It remains to prove that the classes of virtual dimension zero

span the kernel of w,. By Lemma[4.2.20] the image of w* contains a subspace isomorphic to
RT (LG x S'). Since w,w* is an isomorphism (cf. the proof of Lemma [4.2.17)), the proof is
O

pos
completed by a counting argument using the following result.
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Theorem 4.2.23. (cf. [1] Theorem 9.3.5, [1§|] Theorem 10.2) A free Z((q))-basis of
R, (LG~ S1) consisting of irreducibles is in one-to-one correspondence with the set of orbits

of the action of the affine Weyl group W x mT on A defined by T (cf. Lemma , i.e.
the coarse quotient [(A/mT)/W].

The preceding two results immediately imply the following.

Corollary 4.2.24. For positive T, TI?;(G/G) ~ }A%;OS(LG x S1), where the right hand side
is viewed as a graded Z((q))-module concentrated in degree zero.

4.2.4 Reconciliation of bases

Definition 4.2.25. Let G be a compact Lie group. Let Cliff(g*) denote the Clifford algebra
of the vector space g* equipped with the bilinear Killing form. By integrating over S!,
the Killing form induces a bilinear form on Lg* = C®(S? g*). Let Cliff(Lg*) denote the
associated Clifford algebra, and let S*(Lg*) be an irreducible Z/2-graded representation of
Cliff(Lg*). If S*(0) is an irreducible Z/2-graded representation of Cliff(g*) then S*(Lg*)
may be presented as S*(0) ® A®/°*(zgc[2]) (cf. [14] 8.6). It admits a projective, positive
energy action of LG, and the corresponding level is denoted by o (cf. [14] 1.6, 8.8).

While it is not curious that the calculation at positive and negative twist diffe™] it is

curious how they differ. At positive level the representation ring R;OS(LG x S1) makes an

appearance as Tﬁgl(G /G) ~ Tl?gﬁmG(AT/ W), while at negative level, the isomorphic ring

~

R, (LG x S') makes its appearance as T RING (GG ~ T*”ﬁgﬁmG(AfeE"/W). Thus at
positive level there is no shift in twist and all W-orbits contribute a basis element, while at
negative level there is a shift by ¢ in the twist and only the regular orbits contribute basis
elements. The correspondence becomes even more curious when related to the correspon-
dence for the maximal torus, where there is no o-discrepancy between positive and negative
twists.

This is made precise in the following lemma.

Lemma 4.2.26. Let G be a simple and simply-connected Lie group. Fix a positive twist
7€ H3,(G/G). There are dualities of finitely-generated free (ungraded) Z((q))-modules

Dy : TOKL(T/N)® K% (T/N) — Z((q)),
Do: "OKL(G/G)® TKL(G/G) — Z((q)).

Proof. By Corollary [4.2.24] the map R7 (LG x S') — Tf?gl(G/G) in Lemma [4.2.20] is

pos

an isomorphism. The content of Section 12 and 13 of [14] (cf. 12.9, Proposition 13.6)
is that for each [H)] € R7 (LG x S') there is a G-parametrized family F\ of Fredholm

pos

operators on H\®S* such that the assignment [H,] — (HA®S*, F)\) defines an isomorphism

13See the discussion at the beginning of Section 3.
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RT (LG x SY) — 7KL (G/G). By Lemmathe natural map 7KL (G/G) —

pos
“T7K(G/G) is an isomorphism. Therefore the span of isomorphisms of finite rank, free
Z((q))-modules

KRG (G/G) < R (LG % SY) — K (G/G)

exhibits a duality Dg between the left and right terms, since the middle is canonically self-

dual (it has a canonical basis of irreducibles).

Let R7 (LT » S')"W be the Z((¢))-module of isomorphism classes of 1V- equz’vam’an
T-twisted positive energy LT representations. The same recipe as in the previous paragraph
produces a span of isomorphisms of finite rank, free Z((q))-modules

TG (T/N) = R (LT % 81)™ — TR (T/N)
exhibits a duality Dy between the left and right terms, since the middle is again canonically
self-dual. O

The reconciliation comes in the form of the following lemma.

Lemma 4.2.27. Let G be a simple and simply-connected Lie group. Fix a positive twist
T € H3,(G/G). The dualities of the previous lemma are intertwined by maps

we: TOKL(T/N) —» 7KL (G/G),

W' TK%(G/G) — TTKY(T/N).

The first map is the pullback along w : T/N — G/G followed by tensoring with the spinor
representation S*(Lg*) (cf. Definition . The second is the Becker-Gottlieb transfer

along w.

Proof. The claim is that for any a € _T_"[?gl (T/N) and b € T[?gl(G/G), Dg(wyea ®b) =
Dr(a ® w'b). Since wyw* is the identity at negative level (cf. the proof of Lemma [4.2.17),
it suffices to show that for any ¢ € _T_”I?gl(G/G) and b € T[?gl(G/G), De(c®b) =
Dr(w*c @ w'd).
Under the identifications of the previous lemma the restriction maps

w* *T*"f('gl(G/G) — *T*"l%gl (T/Nz and w* : Tﬁgl(Gj/G) — Tﬁgl (T'/N) both agree
with the restriction of representations R7 (LG x S') — RT (LT x S*)"". The equation
De(c®b) = Dy(w*c®w'b) now follows since the discrepancy between w' and w* is precisely
the tensor product with S* that is missing on the positive level side. O

4 That is, one has the data of an intertwiner for each w e W.
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4.3 Constructions

In this section the completed K si-theory defined above is used to give a K-theoretic picture
of equivariant elliptic cohomology at the Tate curve. Despite being the shortest section,
it is in some sense the paper’s centerpiece. In fact, its shortness speaks to the wonderful
simplicity of the Kitchloo-Morava picture of elliptic cohomology at the Tate curve. Fix a
compact Lie group G. A G-equivariant elliptic cohomology theory is defined to be:

—_

. a weakly even G-equivariant cohomology theory Eg,
2. an elliptic curve £ over E°(pt) = E&(G),

3. a twist 7 € H*(BG) for Eg with associated transgressed class tr(7) € H3,(LBG) and
central extension LG™ x ST — LG x S*

4. an isomorphism of Z((q))-modules "E%(pt) — R (LG x S') (cf. Definition 4.2.19)

pos

5. and an isomorphism of formal groups SpfE®(CP*) = E%(G x CP®) — &,

4.3.1 The equivariant Kitchloo-Morava construction

Let G-Spaces,, be the category of pairs (M, A) where M is a G-space and A < M is G-
invariant. A class 7 € H*BG transgresses to a class tr(7) € Hg LBG(= Hz. (L(pt/G))
that restricts to zero in H3*QBG = H3G and hence defines a graded central extension
(with trivial grading) L™ — L(pt/G)/BZ (cf. Remark [3.1.7). Write pjs for the projection
M — pt. Recall that £(M/G) has a natural BZ-action (cf. Example[.1.1]). Define a functor
J- : G-Spaces,, — BZ-%wist, by the formula

J- (M, A) := (L(M/G)/BZ, L(A/G)/BL, L(pa)*L7).

Proposition 4.3.1. For any compact connected Lie group G and 7 € H*BG whose trans-
gression to Hgl (LBQG) defines a strongly topologically reqular positive twist the composite
functor

TEL = K& o J, : G-Spaces,,, — Z((q))-mod

(M, A) — TEg(M, A)
defines a G-equivariant elliptic cohomology theory at the Tate curve.

Proof. Given that L((M\A)/G) ~ L(M/G)\L(A/G), the cohomology axioms follow imme-

—

diately from their holding for Kq:i. It remains to establish ellipticity as defined above. Take
& to be the Tate curve over Z. By hypothesis 7 defines a strongly topologically regular
positive twist, so Corollary 3.2.5 says precisely that "Eg(pt) ~ R} (LGy x S*). O

Remark 4.3.2. When G is disconnected all the definitions still make sense; instead the re-
striction to connected groups is to preserve the maximum amount of correlation between
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K s1(G/G) and the positive energy representation theory of LG. Indeed, when G is dis-
connected one has to introduce twisted loop gmups{f] (cf. [14] 1.5) and their representation
theory, which results in an explosion of notational complexity and bookkeeping that obscures
a major virtue of the Kitchloo-Morava construction, namely its simplicity.

Remark 4.3.3. Some readers might prefer if item 4 were replaced with something like the fol-
lowing condition: a twist 7 € H4(BG) for Eg with its associated line bundle £, — Bung(€)
over the moduli space of principal G-bundles over £. If GG is simple and simply-connected
then by [4] Theorem D, the Kac character map gives an isomorphism of R;OS(LGl x S1) with
['(Bung(€); £;). 1 have chosen to require only a relation to positive energy representation
theory so as not to have to invoke the Kac character theory to prove ellipticity and to treat

all connected Lie groups uniformly.

Remark 4.3.4. At negative level the construction is still plagued by the problems mentioned
in the introduction of this paper and so does not produce an elliptic cohomology theory. That
is no surprise, since the completion that defines K g1 favors positive g-powers. On the other
hand, the functor " E, makes perfect sense for negative 7 and still produces a G-equivariant
cohomology theory, just not an elliptic one (at least as per the 5 specifications listed above).
This motivates the following section.

4.3.2 Duality in Eq
When G is simple and simply-connected, Lemma [4.2.26| immediately implies the following.

Lemma 4.3.5. Let G be a simple and simply-connected Lie group of dimension d and let o
be the twist associated to the positive energy spin representation of the adjoint representation

of LG (cf. Definition . There is a natural duality pairing

77’*0’Eé(pt> ® TEg(pt) — *"Eé(pt) =~ Z((Q))

4.3.3 Comparisons

When G is connected, Grojnowski [16] has constructed the seminal “delocalised equivariant
elliptic cohomology” over the complex numbers as follows (cf. also [8] 4.1). The theory takes
values in holomorphic sheaves over H x tc/(W x m;T?). Recall that every 7 € H defines an
isomorphism C ~ R x R. Write ¢ for the composite (cf. [§] Display (16))

Hx%athxtMHxTngTxT,

where the first map is the one induced by viewing H as a subspace of the space of R-bases
of C via 7 +— (1, 7). For a G-space X and a point a € H x t¢c write X for the common fixed
point set of the two components of ¢(a), Z(a) = G for their common centralizer, and W,

15The ‘twisted’ here is unrelated to the ‘twisted’ in ‘twisted K-theory.’



CHAPTER 4. ELLIPTIC COHOMOLOGY 38

for the Weyl group of Z(a) (which is a subgroup of the Weyl group of G). Write H}(—; C)
for equivariant singular cohomology with complex coefficients and mod 2 grading and O for
the sheaf of holomorphic functions on both t¢ and H x tc. Let U be a small neighborhood
of 0 € t¢. Since Hj(pt; C) is canonically isomorphic to Sym(t%[—2]) it acts on O(U). Since
H (0t C) ~ Hi(pt; C)"e the latter acts on O(U,)". Note that the second component of
a acts on the second factor of H x t¢ by translation. The action of W and 77" on t combine
to give a W x mT? action on H x t x t that is trivial on the first factor. Pulling back along
the map ‘canonical’ gives an action of W x m7? on H x t¢. Let U, be a sufficiently small
W x mT?invariant neighborhood of a. For 7 € H3, (G/G), the associated quadratic form
on Hy(T) (cf. Definition defines an element of H*(T x T), and let £7 denote the
associated ‘Looijenga’ line bundle. Define the sheaf ™(EIE™)*X at U, to be

(BUE™) X (Ua) = (07)* (Hp (X5 €) ®pp ey a*(O(U) @ £(U)"*)
The evident restriction maps for W x 7 T%-invariant subsets U, < U, centered around &’ € U,
are isomorphisms by the localization theorem in equivariant cohomology and the fact that
fixed point sets can only shrink locally (i.e. if ¢ does not stabilize x then it does not stabilize
a neighborhood of z).

Lemma 4.3.6. Let G be a connected Lie group, k € H*BG such that tr(k) € Hz\ (G/G) is
a strongly topologically regular, positive twist, and let X be a G-space. Then Grojnowski’s
sheaves k(Ellgm])*X can be recovered from the presheaf of groups on L(X/G) defined by

U— "ME%LU)®C.

Proof. 1t suffices to show that the groups H ;(a) (X%, C) and the Looijenga line bundle £*

can be recovered from the I?;l (—)®C presheaf. For a € H x t¢c write ¢;(a) and ¢o(a) for the
two components of ¢(a), Z(a1) and Z(as) for their centralizers in G, and X and X* for
their fixed point sets in X. Regard ordinary cohomology as Z/2-graded. By the completion
theorem in twisted K-theory ([? ] Theorem 3.9)

H7) (X% C) =~ K, (X™),,-

Recall that £(X/G) is a full subgroupoid of (X x G)/G (where G acts diagonally by the
given action on X and by conjugation on GG) on those objects (x, g) such that gx = z. Note
that X /Z(a1) ~ (X" x {a1})/Z(a1) is a subgroupoid of L£(X/G). Fractional splittings
Vp g Gpy < Sj can always be extended in the X-direction since the BZ-action only depends
on the second factor. Hence there is a fractional splitting 1,, that gives an isomorphism

PPRG (X Z(a0) = "PE* (X Z(@))((q)).

The twist tr(k), which is pulled back from L£(pt/G) defines a trivial X *-parametrized family
of U(1)-central extensions of Z(a) (cf. Lemma[4.2.3). Restricting to the fiber over as € Z(a)
defines a trivial U(1)-principle bundle over X* whose associated trivial line bundle is denoted
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L7 ®a and whose fiber will be denoted by C(a). Extract a single g-power from the right side
of the previous display, complexify, and and apply the completion theorem in twisted K-
theory ([? | Theorem 3.9) to obtain

TWRH (X ) Z(a1)) @ C,y = Hiyo (X% L50) ~ Hy ) (X% C(a)).

To finish the proof it suffices to show that the vector spaces C(a) assemble into the (W-
equivariant) Looijenga line bundle £* over T x T as a (or really ¢(a)) varies. First, since
k is a class in H*BG@, it produces a Weyl-equivariant class on T x T', and its transgression
tr(k) produces a Weyl-equivariant twist. Furthermore, C(a) is the fiber over the morphism
¢(a) € T x T < (G/G/BZ);, of the line bundle associated to the U(1)-extension defined
by the twist tr(k). That is, the U(1)-central extension defined by tr(k) coincides with the
U(1)-bundle associated to the Looijenga line bundle £* defined by k. O

When G is a torus or simple and simply-connected, Kitchloo [I8] has constructed an
equivariant elliptic cohomology theory over the complex numbers by defining certain W x
7 T?-equivariant holomorphic sheaves leicx g1 LX on H x tc as follows. Let 7€ H ‘BG ~ 7
be an element whose transgression in Hz, (G/G) defines a strongly topologically regular,
positive twist. Let F¢ be the space of Fredholm operators on a Hilbert space H.. which is the
direct sum of countably many copies of each irreducible level 7 positive energy representation
of LG. Let H be the upper half plane. For a finite G-CW space X, define the sheaves
K%, LX on H x tc by sheafifying the presheaves

U — Tymoa2Maps(U x LX, F)T.

Then the "K7 ., 1 LX are defined to be the sheaves of O(H x tc)-modules whose stalks at a
point (h,a) are the following inverse limits over finite S* x T-CW subspaces of LX:

Hm ("5, 0Y) (ha) @restxr) OH X te) (h,a)-

YcLX

Lemma 4.3.7. Let G be a torus or simple and simply-connected Lie group, 0 < 7 € H*BG
and X a G-space. Then Kitchloo’s sheaves kICZstl LX can be recovered from the the presheaf

of groups on L(X/G) defined by U — tT(k)E;l(U) ®C

Proof. Similarly to the above, let Y < Y denote the common fixed point set for ¢;(a),
¢2(a), and S* in S* x T. By Theorem 3.3 of [I8], the stalks defined above are isomorphic to
the groups

im ("K§1,7Y") ®r(srxr) O(H X tc) (h,a)-

YCLX

The proof is now complete since the classical twisted K-theory groups (TK¥, ,Y*) =~

TKA%(Y*)[q*] can certainly be recovered from the indicated X;l—theory presheaf as in the

proof of Lemma [4.3.6] O
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4.4 Example: U(1)

The groups Tf?;l (U(1)/U(1)) can be calculated directly. Note that the twist 7 is an element
of Hf}(l)U(l) ~ 7. For twists transgressed from H*BU (1), i.e. classes in 2Z, the calculation
is due to Constantin Teleman (unpublished notes). Here is an approach that covers all
strongly topologically regular twists 7 # 0.

The general idea us to apply Mayer-Vietoris to the usual decomposition of U(1) into two
overlapping arcs U and V' which are equivariantly contractible and whose intersection has
equivariantly contractible connected components. The automorphism group of each of these
four components is a U(1)-central extension of a U(1)-extension of S' (cf. Example [3.1.5]
Lemma , which is non-canonically isomorphic to U(1) x U(1) x S*. Applying Lemma
and Bott periodicity the Mayer-Vietoris sequence is a 6-term hexagon

R.(U(1)((9)®* =5 R.(U(1))(()®?

_— T

TR, (U(1)/U(1) "KL (U1)/U(1)

\m 0/

exhibiting the desired groups as the kernel and cokernel of the top horizontal map. Write
R(U(1)) ~ Z[t*]. From the explicit presentation of the twist £™ in Example the
identifications of the four Kgi-theory stalks with R,(U(1))((¢)) can be chosen such that
3 of the restriction maps are the identity and the fourth sends an element >y (t)¢* to
(qt)" > xx(qt)q". Hence the map in question is

. o [ fEa| | fte) —g(tq) R
"= 0) [g(t,Q)} h lg(t,q) — (tq)"g(qt,q) | € End(Z[t*]((q)))

When 7 > 0 there is no cokernel, and the kernel has a basis
ik pRGE=D gL
flt.q) =glt.q) =Y 0 g = j=0,..n—1
keZ

Some readers may notice that at 7 = 1 this is the character of the basic level 1 positive energy
representation of LU(1) up to a factor of the (shifted) partition function [],_,(1—¢")™* (cf.
[1] Chapter 14 Section 1).
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Chapter 5

Bordism theories

5.1 Introduction and technical setup

In this chapter I will use Bullett’s manifolds-with-singularities ([10]) to prove a number of
results in cobordism theory. The most basic application is the exhibition of E-structures on
various spectra via, of course, the formalism of symmetric stable functors. More advanced
is the result that certain bordism spectra of manifolds-with-singularities together with their
associated filtrations based on the “depth” of singularities coincide as filtered spectra with
certain higher algebraic pushouts (which come with their own algebraically defined filtra-
tion). Applications of these considerations include a short and conceptua]ﬂ calculation of
the dual Steenrod algebras (HF,).HF, at all primes, a solution to Bullett’s conjecture, a
non-existence result on E, complex orientations, some identifications of framed bordism
classes, and an approach to the nilpotence theorem.

Definition 5.1.1. (cf. [9] Def. 1.4) A manifold-with-(unlabelled)-n-corners M of dimension
d is a “manifold” modeled on the spaces R? and U; = {z € R%|xy,...,z; = 0} for j = 1,...,n.
The strata of each of the model spaces induce strata in M. The stratum of codimension j is
called the j-corners. The complement of the j + 1-corners inside the j-corners is called the
smooth j-corners of M. As the name suggests, it is a smooth manifold. If the only nonempty
strata are of codimension 0 and 1 then M is a classical manifold-with-boundary. For j > 1,
the j-corners is a subset of a j-fold self intersection of the 1-corners. More precisely, at each
point p in the smooth j-corners there is a neighborhood U such that the intersection of the
1-corners with U can be written as the union of j hyperplanes whose j-fold intersection is the
intersection of U with the j-corners. Thus, locally along a j-fold self intersection there are
7 well-defined components of the 1-corners which meet there, but this may not be possible
globally. However this defines a 3;-bundle over the smooth j-corners which is called the
face-labelling bundle, and whose fiber over p is the set of hyperplanes in U mentioned above.

'In particular the calculation does not make use of any particular presentation of that Hopf algebra nor
any reference to the Steenrod operations.
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A manifold-with-labelled-corners is a manifold-with-corners @) together with a labelling of
the smooth 1-corners, which is a decomposition into disjoint smooth open subsets d, @, ..., d,Q
such that the following holds: for each point p in the smooth j-corners, the fiber of the face-
labelling bundle acquires a possibly-multivalued map to {1,2, ..., ¢} and this map is required
to be an isomorphism (and therefore singly-valued). Note that if () admits a valid labelling
then ¢ = r’ where 7’ is the maximal r for which the smooth r-corners of () are nonempty.

Remark 5.1.2. Consider the solid square. Its interior is the smooth 0-corners, its boundary
is the 1-corners. The complement of the 4 colloquial-corners in the boundary is the smooth
1-corners—it is a union of 4 lines. The 2-corners coincides with the smooth 2-corners, and
is the union of the 4 corner points. Labelling the 4 components of the smooth 1-corners
1-through-4 exhibits the solid square as a manifold-with-labelled-corners.

Consider the usual drawing of a teardrop. Its interior is the smooth 0-corners, diffeomor-
phic to an open disk. Its boundary is the 1-corners, its smooth 1-corners are the complement
of the tip point in the 1-corners and is diffeomorphic to a line, and the 2-corners is that tip
point. It admits no valid labelling since the 2-corners is a self intersection of the smooth
1-corners and so no labelling can distinguish the two local parts of the 1-corners intersecting
there.

Note that the teardrop is the gluing of a solid triangle and a solid semicircle along their
intersection in a line segment, all three of of which are manifolds-with-labelled-singularities,
but the gluing does not respect the labelling.

5.2 The dual Steenrod algebra

All discrete rings, modules, etc are implicitly graded and are also coconnective in cohomo-
logical grading. All rings are Fy-algebras and are commutative.

5.2.1 Real orientations

Definition 5.2.1. Let E be a complex oriented homotopy ring spectrum. A real orientation
of F consists of the data of

1. a class x € E'*BC, such that z restricts to a generator of E1S! along the inclusion of
the bottom cell of BCj.

Remark 5.2.2. The prime examples of a real orientable spectrum are the Eilenberg-Maclane
spectrum HIF5 and unoriented bordism MO.

Remark 5.2.3. Note that data of the class = is equivalent to a factorization of the unit map
through the bottom cell S — X1 BC,.

Remark 5.2.4. Just as a complex oriented homotopy ring spectrum E exhibits a formal group
law E*BCy = E*[[c]] on a generator ¢ of degree 2, a real oriented homotopy ring spectrum
exhibits a formal group law E*BCy = E*[[z]] on a generator x of degree 1 (the same x as in
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Definition [5.2.1). In what follows, all formal group laws will be implicitly of the latter kind.
Moreover an FGL F(z,y) over a ring R will often be considered implicitly as the R-algebra
map

F: R[[z]] — R[[,]]
determined by x — F(z,y)

5.2.2 FGL automorphisms

Definition 5.2.5. Let CRings_, denote the category of graded commutative coconnective
rings.

Definition 5.2.6. Recall that a morphism between two formal group laws Fy4(z,y) and

Fp(x,y) over aring R if?|a power series ¢(x) € R[[z]] such that F(é(z), d(y)) = ¢(Fa(x,y)).
This already implies that the constant term of ¢ is zero.

Remark 5.2.7. As one might expect, the FGL associated to any real orientation of HIF, is
the additive FGL F(z,y) = = + y.

Definition 5.2.8. Let F,-Alg_, denote the category of (graded commutative coconnective)
Fy-algebras.

Definition 5.2.9. Let F' be an FGL over a ring R. The automorphism groupoid Aut F' is
the functor
Aut F : Fy-Alg_, — Groupoids

defined as follows: the set of objects of the groupoid Aut F'(S) is the set of ring maps
R — S and the set Aut F'(S)(f,g) of morphisms from f to g is the set of R-algebra maps

¢ : R[[z]] — R[[z]] such that (cf. Remark [5.2.4)
fxFog=(0®¢)og.t

along with the normalization condition
0
d(x) =x + Z a;x'
i=1

The composition of morphisms is the composition of R-algebra maps.

Remark 5.2.10. When F' = z + y is the additive FGL one finds that ¢(z +y) = é(x) + ¢(y)
which implies that

o(z) =x+ Z ax?.
i—1

2Recall the conventions that z and y both have degree 1 and R is a graded, commutative, coconnective
Fy-algebra.
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Definition 5.2.11. Let F' be an FGL over R. A coordinate transformation is and R-algebra
map ¢ : R[[z]] — R[[x]] such that

0
o(z) = x + Z dix'th
i=1

One says that ¢ transforms F into the FGL ¢*F := (¢ '®¢ ') o Fo¢. Note that coordinate
transformations are also covariant. If f : R — S is a ring map then f,¢ is the S-algebra map
S[[z]] — S[[x]] determined by setting f.¢(x) to be the power series gotten by applying f
to the coefficients of ¢(z).

5.2.3 The derivation

Definition 5.2.12. Define the category MT as follows. Its objects are triples consisting of

1. a (contravariant) functor X — E*(X) from the category of finite CW complexes to
the category of graded abelian groups,

2. a natural isomorphism from E**1(XX) to £*(X), and
3. an associative “multiplication map” E*(X)® E*(Y) — E*** (X x Y).

Note that with the diagonal map X — X x X the data of 3. makes £*X into a graded ring.
Morphisms 7' : E — F are natural transformations of functors that commute with the data
in 2. and 3. The component of a morphism 7" at a CW complex X is denoted Tx.

Remark 5.2.13. The first examples of objects of MT are those that are induced by mul-
tiplicative cohomology theories, i.e. homotopy ring spectra. In fact, MT is an acronym
for multiplicative theory, and they are meant to capture multiplicative cohomology theories
(MCTs) without the exactness axiom, which is the only Eilenber-Steenrod axiom which is
not preserved under tensor product (cf. Definition [5.5.9).

Remark 5.2.14. Although the objects of MT are defined as functors out of finite spectra,
when working with a fixed object one can often enlarge the domain quite a bit—namely to
those spectra for which the relevant lim!-term vanishes. For all objects of MT considered in
this paper (which either come from mod p oriented spectra or are tensored from them (cf.

Lemma [5.2.17))), that includes the non-finite spectra BCy and MO.

Definition 5.2.15. (cf. Remark [5.2.13)) For an object E of MT and an E*-algebra with
unit v : £* — R let E, R be the object of MT defined by the formula

E,R*X = E*X ®px R.

When the map w is understood I often abbreviate E, R to FR.
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Lemma 5.2.16. (Evaluation at BCy) Let E be a real-oriented homotopy ring spectrum with
E*BCy ~ E*[[z]] and FGL Fg. Let R be an E*-algebra with unit map u : E* — R.
Then for every T' € Hompyr(E, E,R) there is a unique ¢p € Aut Fg(R)(Ty, u) such that

¢r(x) = (They ().
Proof. Let T be an element of Hom 7 (F, ER). To streamline notation, let f denote the ring

map Ty : £* — R. First note that uniquely determines a morphism 7 € Homyr(EfR, E,R)
by the diagram

E*X ®p« Ry 789 E*X @ps R, Qg+ Ry X5 E*X Qg R

Note that the restriction of 7 along the map £ — FE,R induced by wu recovers T. Now
consider the diagram

E/R*BCy —“ E;R*BCy?

lTB Cy r—B oX?

ELR*BC, "+ B,R*BC;?

which commutes by naturality of 7. Write ¢ for the map R[[z]] induced by 7pc,. By
multiplicativity of 7, one finds that the diagram above gives rise to the equation

J«Fpo¢ = <¢®¢)OU*FE-

In particular ¢(z) = 3.7 a;a* (cf. Definition [5.2.9). The leading coefficient a; is forced to
be 1 by considering the pullback along S — BC5. The proof is completed by noting that ¢
is uniquely determined by ¢(z), which is equal to Te, (). O]

Lemma 5.2.17. (Quillen functor for MO) Let x be any choice of universal real orientation
class in MO*BCsy, with corresponding FGL F. Let M* < MO* be the subring generated by
the coefficients of F' and write Fy+« for the corresponding FGL over M*. Then for every
ring A there is a functor v : Aut Fy«(A) — MT (cf. Definitions|5.2.9 and|5.2.12) which on
objects sends f: M* — A to the theory v(f)*X := MO*X ®+ A.

Proof. The functor « has been defined on objects, so it remains to specify it on morphisms.
Let f,g : M* — A bet two objects and let ¢ be a morphism in Aut Fy«(A)(f,g). When
we need to distinguish between the two M*-module structures on A we will write A; and
A,. Let zy and x, denote the classes in y(f)*BCy and v(g)*BCy which are the image «
under the canonical maps MO — ~(f) and MO — ~(f). We will construct (functorially) a
transformation v, : v(f) — 7(g) such that ~v,(zs) = ¢(xy).

Now MO,MO is free over MO,. In fact there is a canonical isomorphism of MO, MO
with MO,[a1,as, ...] with |a;| =i (cf. Remark [5.2.24). Using the map MO ~ S® MO —
MO ® MO we get a morphism in MT

MO*X — (MO® MO)*X ~ MO*X ®uor MOMO — MO*X ®g, Fola;].
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By Remark when X = B(C5 the image of z under that map is
-1 +2°Qa; + 2°Ras + ...

The morphism ¢ determines an Fo-algebra map ® : Fy[a;] — A sending a; to the coefficient of
"t in ¢(x). Composing with the previous display gives another morphism Ty : MO — ~(g)
in MT

MO*X — MO*X ®g, Fy[a;] 2% MO*X @, A - MO*X ®@u= A, = 7(9)* X
with the property that when X = pt the induced map MO* adet, A is equal f when
restricted to M*. Indeed, by Remark [5.2.24] Ty determines a morphism ¢r, in
Aut Fyp«(A)((Ty)pt, g such that ¢7,(z) = ¢(z). On the other hand, ¢ was by definition a
morphism from f to ¢g. So the FGLs T}, (pt).F and f,F are identical. Since the coefficients
of F' generate M* the maps f and T,(pt) must agree on M*. It follows that T}, descends to
a morphism v, : y(f) — v(g) which can be written explicitly as the following composition,
using the multiplication p1y on A as an M*-algebra via f

Tp®id
V(f)*X = MO*X ®M* Af —>¢ ’7(9)*X ®M* Af

~

MO*X @ur+ Ag Qs+ Ay — s MO*X R Ag = v(9)*X

Functoriality—the claim that (¢ o ¥) = ~(¢) o v(1)—is proved by noting that ~y(¢) is
uniquely characterized by the properties of being A-linear, multiplicative, and its behavior
at X = BC,, ie. sending z; to ¢(x,). Indeed, note that y(¢) is characterized by its
restriction along the surjection MO*X ®r, A — MO*X @+ Ay. By A-linearity that in
turn is determined by restriction along MO*X — MO*X ®g, A (which coincides with the
composite of the first two maps that make up 75,). By Remarkthe latter is determined
by its behavior at X = BC,. O

Lemma 5.2.18. (Kill the FGL to get a summand) Let x be any choice of universal real class
in MO*BCsy, with corresponding FGL F. Let M* < MO* be the subring generated by the
coefficients of F' and let Fy+ be the restriction of F' to M*. Set N* = MO* @y« Fy. Then
MN*X := MO*X Q= Fy is a cohomology theory and a summand of MO* X, and there is
a ring isomorphism MO* ~ N* @, M*

Proof. Because real line bundles are their own tensor inverse, we we know that F' and Fj =
have vanishing 2-series and are therefore isomorphic to the additive FGL. That means there
is a morphism between the objects id : M* — M* and p : M* — Fy — M* in Aut Fyp«(M*).
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Let ¢ be such an isomorphism. The functor v of Lemma provides an isomorphism
v(¢) between ~(id) and y(p) in MT. But v(id) ~ MO so we have

MO*X ~ v(id)*X = y(p)*X = MO*X ®ur+ Fo ®p, M*.

Therefore MN*X := MO*X ®p+ Fs is a summand of a cohomology theory (namely MO)
and hence a cohomology theory itself. The ring isomorphism at the end of the lemma
statement is the displayed diagram when X = pt. O]

Lemma 5.2.19. (Quillen functor for summands) Let E be a real oriented homotopy ring
spectrum which is a summand of MO. Let x be any choice of universal class in E* BCy, with
corresponding FGL F. Let M* < E* < MO* be the subring generated by the coefficients
of F' and let Fy« be the restriction of F' to M*. Then for every ring A there is a functor
v Aut Fy«(A) — MT which on objects sends f: M* — A to X — E*X Q= A.

Proof. The proof is nearly identical to that of Lemma except that the first displayed
morphism in MT, now induced by the map FE ~S® F - F® F — E® MO becomes

E*X - (E® MO)*X ~ E*X ®p, Fala;]
and in the rest of the proof every instance of MO is replaced with F. O
Lemma 5.2.20. HF, is a summand of MO.

Proof. Fix notation as in the Lemma [5.2.17 Invoke Lemma to get a summand M N
of MO and a decomposition MO* ~ N* Q@ M*. MN is real oriented via its map from MO
and the corresponding FGL Fy« is by construction the additive one. Perform a coordinate
transformation (cf. Definition so that the new FGL F is not the additive one. Let
M7 < N* be the subring generated by the coefficients of Fjy,. Since M N* is a summand
of MO we can invoke Lemmas [5.5.13] and [5.2.18| to obtain a summand M N; of M N, and
then again (after another coordinate transformation as above) to obtain a summand M N,
of M Ny, and so on. Now, since coordinate transformations are covariant (cf. Definition
and MO* is finitely generated in each degree, the process can be reordered such that
for each fixed k, B* stabilizes after a finite number of steps. So after a transfinite process
we arrive at a summand M B*, and it must be that every coordinate transformation is an
automorphism of the additive FGL over B*. Considering coordinate transformations of the
form ¢(z) = z +ba™ shows that every element of B* must be in degree 1— 2* for some k > 0.
Moreover we have a decomposition M O* ~ B*®G* where 1®G* contains all those elements
that were coefficients of some FGL that was used along the way. Let z = [RP?] # 0 e MO~2.
Since MO~! = 0 we know that z decomposes as 1 ® w € B* ® G*. Let b be an element of
minimal negative degree in B* for all possible transfinite processes. Then (b®1)z = bQw is
not in degree 1 — 2* for any k and hence not in B*, so we can re-run the transfinite process
above but ensuring that we use the coordinate transformation x + (b ® w)z? to get a new
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decomposition MO* ~ Bf ® G} with (b® 1)z in G§. That is, under the composite of ring
isomorphisms

B*®G* > MO* = Bf ® G}
b®w gets sent to 1 ®¢g. On the other hand b® 1 must be sent to c® 1 by minimality of the
degree of b and covariance of coordinate transformations, and since (b@w)(b®1) = (V*Q@w) =
0®w = 0, we find that ¢ ® g = 0 which is a contradiction. So B* has no negative degree
elements and is therefore concentrated in degree zero, which means that M B is HIF,. O

Theorem 5.2.21. The cogroupoid object Fy = (HFy). HFy corepresents the groupoid valued
functor Aut F, .

Proof. Let H = HF5 and let R be an [Fs-algebra. Since every module over F, is flat, note
that Homy,7(H, HR) is precisely the subset of HR°H consisting of homotopy ring maps.
Applying the universal coefficient theorem provides an isomorphism of sets, natural in R

HomMT(H, HR) ad HomFg-A1g>0 (H*H, R)

Upgrade it isomorphism of groups by simply defining the group structure on the left to be
the one induced via this isomorphism by the group structure on the right hand side, which
comes the coproduct of H, H.

Let v be the unit map of R. By Lemma [5.2.16| evaluation at BCy defines a group
homomorphism

¢ Hompr(H, HR) — Aut Fy(R)(u,u)
that is natural in R. By Remark [5.2.24] the analogous map

MO Hompr(Mp, MA) — Aut Far,(A)(u, u)

is injective for an M O*-algebra with unit u. Hence the analogous map (¥ is injective for
any summand of E of MO, and H is such a summand by Lemma [5.2.20, The map ¢¥ has
an inverse for any summand of MO, given by sending ¢ to T}, defined in the proof of Lemma
. Finally, the map is one of groups because the inverse ¢ — T} is, since the group
structure on the left comes from S H — H® H and the group structure on the right comes
from S MO - MO MO.

Finally, since the groupoid Aut Fy(R) has one object when R is an Fy-algebra and
zero objects otherwise, combining the two natural group isomorphisms above finishes the
proof. O

Remark 5.2.22. Note that we have arrived at a coordinate-free calculation of (HFs), HF:
we have identified it (as a Hopf algebra) to be whatever Hopf algebra corepresents Aut F, .
Giving a presentation by generators and relations (e.g. (duals to) Steenrod operations) is
a simple but tedious algebraic problem. For the sake of completeness I will give the usual
description.
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Definition 5.2.23. Define the Hopf algebra A as follows.

A= TFal&1, &, ] €] = 200" — 1),

=1

It is a straightforward algebra exercise to check that the cogroupoid object Fy =3 A corep-
resents the automorphism groupoid of the additive FGL Aut F, .

Remark 5.2.24. In the above I have used some key facts about MO which reference to this
remark. There are two reasons why I won’t include their proofs. Firstly, they are well known
enough that many readers will know the proofs or know where to find them. Secondly, a
later section of this thesis covers the odd primary dual Steenrod algebras and does contain
the proofs of the odd primary analogs of all the relevant facts. Those proofs are similar but
strictly harder, so the interested reader can tease out the p = 2 versions from those if they
really feel like it (they can also email me).

5.3 Shaun Bullett’s mod p bordism spectra

5.3.1 mod p orientations

Definition 5.3.1. Let E be a complex oriented homotopy ring spectrum. A mod p orien-
tation of E consists of the data of

1. a complex orientation of FE with universal chern class cx € E*BU(1)

2. a class e € E'BC), such that if i : BC, — BU(1) denotes the inclusion and z = i*cg
then E*BC), ~ E*[[z,¢€]]/(e?) and e restricts to a generator of E'S™.

Remark 5.3.2. The prime example of a mod p orientable spectrum is the Eilenberg-Maclane
spectrum HIF),.

Remark 5.3.3. Note that the data of the class cg is equivalent to a homotopy class of fac-
torization of the unit map S — E through the bottom cell S — X72BU(1). Similarly the
class e in item 2 is equivalent to a factorization of the unit map through the bottom cell

S — S-'BC,

Remark 5.3.4. Let E be a mod p oriented homotopy ring spectrum with formal group law
F (coming from the complex orientation). Then the p series [p]r(x) is zero, because the
pullback i* : E*CP* — E*BC,, kills the p series but is also injective. In particular p = 0 €
7TOE.
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5.3.2 [,-formal group laws

Definition 5.3.5. Let CRings_, denote the category of graded commutative coconnective
rings.

Definition 5.3.6. Recall that a morphism between two formal group laws F4(x,y) and
Fg(x,y) over aring R is a power series ¢(z) € R[[x]] such that Fp(¢(x), d(y)) = ¢(Fa(z,y)).
This already implies that the constant term of ¢ is zero.

Definition 5.3.7. (cf. [9] 1.8) An F,-formal group law (or F,-FGL for short), denoted by F
or (Fy, Fy), over a (co-connective graded commutative) F,-algebraf| R is a pair of power series
F\,F; € R[[x1,x9,€1,€2]] |z;| = 2 and |e;| = 1, with F} and F, of homogeneous degree 1
and 2, such that the following hold: write & = (z;,¢;) and F(&;,&) = (F1(&1, &), Fa(&1,£2))-
Then

1. F(0,¢) = F(&,0) = 0 (identity),

2. F(E, Tl &) = F(F(6,6), &) (associativity),

3. F(&1,62) = F(&, &) (commutativity),

4. the p-fold iterate F (&, F(E, ..., §)...) is zero (p-series is zero),
5. F3 is independent of e; and ey (ordinary formal group law).

In other words, an [F,-formal group law over R is an R-algebra map
F: R|[z,e]] — Rl[[z,e]] ®r R[[z,¢€]]

determined by F(e) = F} and F(x) = F5, and each of the 5 conditions above corresponds to a
commutative diagram involving the map F and the augmentation R[[z,e]] — R (1), iterates
of F (2,4), the swap map of R|[z,e]] ®r R[[z,¢e]] (3), and the inclusion R[[z]] — R|[|z,€]]
(5).

Finally note that F,-FGLs are covariant under ring maps: if f : R — S is a ring map,
then f,F is the F,-FGL over S presented by the pair (f.F}, f«F5>), where f,F; is the element
of S|[x1, z2, €1, €2]] gotten by applying f to the coefficients of F;.

Remark 5.3.8. The prime example of an F,-FGL is F,, the additive F,-FGL (which exists
over any [F,-algebra R). It is presented by the pair (F1, F5) = (€1 + €3, 21 + x2). Indeed, the
definition of an F,-FGL is due to Bullett, first appearing in [10] (Definition 3.4.1) in which
he states that the 5 conditions are directly motivated by properties of the structure present
on HF;BC,,.

3Note that Condition 4 forces the equation p = 0 in R, so the requirement that R be an Fy-algebra is
redundant and only there for emphasis.
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Just as every complex oriented ring spectrum determines a formal group law, so does
every mod p oriented ring spectrum determine an F,-FGL.

Lemma 5.3.9. Let E be a mod p oriented ring spectrum with E*BC, ~ E*[[x,e]]. Let
% BCpX2 — BC,, be the multiplication map. Then the pair (Fy, Fy) = (u*e, p*x) defines an
F,-FGL Fg over E*.

Proof. Note that p*e and p*z are elements of E* BC)* ~ E*[[x1, 25, e1, €3]] of homogeneous
degree 1 and 2. The 5 conditions required to be an F,-FGL follow from corresponding
properties of the multiplication map p and the inclusion BC, — BU(1). H

Remark 5.3.10. As one might expect, the F,-FGL associated to any mod p orientation of
HF), is the additive F,-FGL F (cf. |5.3.§]).

As in the case of ordinary formal group laws, it is clear that there is a ring carrying a
universal formal group law—it is the quotient of a big old free graded-commutative algebra
on generators representing the coefficients of F; and F, modulo the relations imposed by the
five conditions above. The difficulty is calculating what that ring really looks like, just like
in the case of ordinary formal group laws and Lazard’s theorem.

Definition 5.3.11. Define the mod p Lazard ring L, to be the ring carrying the universal
[F,-formal group law.

Theorem 5.3.12. (Bullet [9] 1.10)

L, ~F,la,, b, s.] |a,| =2p, |b| =2r, |s;|=2r+1, pr>0, r# Pk —1.

5.3.3 mod p bordism spectra

In this section I recall Bullett’s construction of some mod p bordism spectra. See [9] and
Chapter 4 of [10] for details.

Definition 5.3.13. An "V, -manifold is a manifold-with-j-corners for 0 < j < n, together
with a MU-structure on the interior of the codimension 0 stratum, a free ), action on the
1-corners preserving the M U-structure induced there, and such that on the j-corners the C,
action combines to a free C’g x 3, action on the face-labelling bundle (the semidirect product
is the one associated to the permutation action of 3; on C7).

Definition 5.3.14. (cf. [9] Definition 1.3) Define the spectrum "V,, to be the bordism
theory of "V, -manifolds. More precisely, "V, is the stable homotopy type representing the
following cohomology theory on manifolds: for a manifold X, the group "V(X) is the set
of cobordism (defined shortly) classes of dimX — k-dimensional "V,,-manifolds ¢ with an
"Vy-oriented, proper map f : ) — X, which means that @) is presented as a submanifold
of R® x X with a MU-structure on its normal bundle (on the interior of the zero-corners)
and f is the projection to X. Two such data (Q, f) and (Q’, f) are cobordant if there is a



CHAPTER 5. BORDISM THEORIES 52

dimX — k + 1-dimensional "V, -manifold R with an "V -oriented, proper map f: R — X xR
that is transverse to X x {0} and X x {1} and whose pullbacks over those submanifolds are
identified with (@, f) and (@', f').

Definition 5.3.15. Define V., as the colimit of MU ~ °V, — 'V, — 2V,, — ... where the
connecting maps are the maps induced by regarding an "V.,-manifold as an "™V, -manifold
with empty (n + 1)-corners.

Lemma 5.3.16. V., is mod p oriented (cf. Definition m

Proof. Since V,, is canonically complex-oriented by construction (it is an MU-algebra), it
suffices to factor the unit map of V,, through the map S = ¥7'S' — S~ BC,, which will
define the required universal class e € V,!BC, (cf. Remark . Since the unit map
S — V,, factors as S —! V,, it suffices to factor the former through S — Z*IBCP. Let ~
be the equivalence relation on dD** defined by the standard action of C), on odd spheres.
Then D?"/ ~ defines a 'V-manifold, and the map D?"/ ~<— S§?""!/C defines a class
en € 'VE(S?*1/C,). The desired factorization comes from the class e € 'V} (BC,) defined
as the limit of the e,,. O

Definition 5.3.17. (cf. [9] page 14) Let (MU ® BCP)%A?" be the homotopy quotient of
(MU ® BC,,)®v™ by the permutation action of . Geometrically (MU ® BC,)34U™ is the
spectrum associated to the bordism theory of MU-manifolds with free a C}) x ¥,,-action such
that C} preserves the MU-structure and ¥, acts by the sign representation it.

Definition 5.3.18. (cf. [9] page 11) Let C;" be the ‘unravelled’ n-fold join of C), presented
as the subset of (C, x R)" consisting of those (21, t1, ..., 25, t,) such that the ¢; are nonnegative
and sum to 1. That admits a natural action of C}} x X, considered as the group of n x n
permutation matrices with values in F), ~ C},. Note that C}" is the n=1} -manifold defined
by C % A7 together with the Cy-action that over the ith face of A" 1 acts by translation

top top
on the ith factor of C;j.

Remark 5.3.19. In the language of [9], C;™ is the "V -manifold obtained by ‘cutting along
the singularity strata’ of the n-fold join CJ".

Lemma 5.3.20. (c¢f. [9] Proposition 2.1) In the defining filtration of Vi, in Definition
the successive quotients are given by

"W/ "W = (MU @ BC,) 8™,

The quotient map is geometrically presented as the map that sends an "V,-manifold to the
MU -manifold with free a C} x Ly-action (cf. Definition [5.3.24)) defined by its n-corner’s

face-labelling bundle. Moreover, the attaching map

S MU @ BC)giv™ — "'V,
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whose cofiber is "V, is presented geometrically as the map that sends an MU-manifold P
with a free C % Zn-actiorﬂ to the "~V -manifold given by the Cpl-bundle P xcnxs, CFF

(cf. Definition

Proof. This is the proof given in [9]. It suffices to show that the geometrically defined maps
.= SN MU @ BC,)2uvm — ", — "W, — S (MU @ BC,) " — ..

form a cofiber sequence, which is equivalent to the statement that the corresponding maps
of collections of manifolds(-with-singularities) form an exact sequence up to bordism (the
base manifold X plays no real role except to clutter the notation). The composite of the left
two maps is zero since the "'V, -manifold P X Cn xS, C’;” is null as an "V, ,-manifold (since
the cone on C" is naturally an "V,-manifold). Moreover if an "~ !'V,,-manifold M is null as
an "V,-manifold, then any such nullbordism () exhibits M as bordant to a neighborhood
of the n-corners of (), which is in the image of the first map. The composite of the second
two maps is clearly zero since an " 'V -manifold has empty n-corners. Finally, if M is
an "V,,-manifold whose n-corners’ face-labelling bundle is null in (MU ® BC,)5¥V", then
gluing such a nullbordism onto the n-corners of M at one end of the product of M with an

interval produces an "V,,-manifold that exhibits M as bordant to the image of the inclusion
nflv — "V N
0 -

Definition 5.3.21. An "Vj-manifold is an "V, ,-manifold () together with a decompositionﬂ
of the 1-corners into labelled faces d;@Q, ..., d,Q) (whose r-fold intersections are of codimension
r) such that this labelling trivializes all the face-labelling bundles (which implies that ¢ = n’
where n’ is the minimal k for which @ is a ¥V_-manifold). The associated bordism theory
"V; is defined analogously to Definition [5.3.14} and V; is defined as the colimit of MU ~
Yy — 1V, — ... where the connecting maps are induced by viewing an "V;-manifold as an
"1 -manifold with empty (n + 1)-corners and the same labelling.

Lemma 5.3.22. V] is mod p oriented (cf. Definition m)
Proof. See the proof of Lemma |5.3.16 n

Remark 5.3.23. In [9] (Definition 2.4) Bullett defines an "W -manifold to be an "V,,-manifold
with a decomposition of the 1-faces into n labelled sectors di M, ...,d,M, such that the
labelling simultaneously trivializes all face-labelling bundles. He defines spectra "W and
a colimit spectrum “W = colim,, "W, where the bonding maps "W — "*1IW are those
induced by viewing an "W-manifold as an ""'W-manifold with d, .M = ¢. Although
every "Vj-manifold admits the structure of an "W -manifold by taking the minimal labelled
decomposition, the connecting maps in the colimit are different and produce different spectra.
In fact we will see that V; admits a ring structure while Bullett proves that W does not
(cf. [9] page 24).

4The action interacts appropriately with the M U-structure (cf. Definition [5.3.24]).
5This means in particular that the labelled faces are disjoint after the 2-corners have been removed.
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Remark 5.3.24. In the following it will be convenient to note that the spectrum MU®BCI<?”
represents the bordism theory of MU-manifolds with a free action of C;.

Lemma 5.3.25. In the defining filtration of Vi in Definition|5.3.21), the successive quotients
are given by
"Vi/ "TWi = " MU Q BCY".

The quotient map is geometrically presented as the map that sends an ™Vi-manifold to the
MU -manifold with free a C}'-action (cf. Remark|5.3.24)) defined by its n-corner’s (trivial)
face-labelling bundle. Moreover, the attaching map

S"IMU®Q BCP — "

whose cofiber is "V; is presented geometrically as the map that sends a MU -manifold P with
Jree a Cl-action to the "IV -manifold given by the Cpl'-bundle P xcn CJ" (cf. Definition

5913

Proof. The proof is identical to that of Lemma [5.3.20| once it is noted that C;™ is in fact an

n=11/ _manifold because the 1-corners of C’I’} x A

top are naturally labelled. O

Lemma 5.3.26. The mod p homology of V., and Vy agree with the mod p homology of their
associated graded spectra (see Lemmas |5.3.20) and [5.3.25). In particular, (HIF,)Vy is the
free associative (HF,). MU -algebra on the vector space (HF,).XBC,.

Proof. 1t suffices to show that the geometrically defined attaching maps in Lemmas
and are null after tensoring with HF,. Observe that the action of the diagonal C, in
Cy™ acts freely on P xcnxy, Cp" (vesp. P xon C3) by its natural action on the right-hand
factor, preserving the "'V, ,-structure. So the quotient by that action is an "'V~ (resp.
"~11-) manifold. Recall that the transfer map BC, — S admits the geometric presentation
as the map that sends a framed manifold with a C),-bundle to the total space of that bundle.

Hence the two attaching maps in question factor as
S"HMU @ BC,)gav™ — "'V, ® BC, — "'V,
Zn_lMU® Bcp®n N n—l‘/l ®Bcp N 'n,—l‘/'1

where the second maps are the transfer map (suitably tensored). Since the transfer map is
null after tensoring with HIF, the first sentence of the lemma is proved. The second sentence
of the lemma about the mod p homology of V; follows immediately from the identification
of the associated graded in Lemma [5.3.25

O

I conclude the section with an easy observation which will serve as a precursor to the
much more refined Lemma [5.6.6l

Lemma 5.3.27. Both V., and Vy are naturally homotopy ring spectra, and the natural map
Vi — Vi is a homotopy ring map, all modulo phantom maps.
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Proof. The cartesian product of an "V,,- and and ™V, ,-manifold is an "*™V,, manifold. The
cartesian product of an "Vi- and and ™Vj-manifold ) and R is also naturally an "*™V)-
manifold by the decomposition of the 1-corners of () x R into d1Q x R,...,d,Q x R,Q x
di R, ...,Q) xd,.R. Hence the natural map V*X — VX is a map of multiplicative cohomology
theories. Lifting this structure via Brown representability gives the representing spectra a
ring structure which is respected by the map between them. Since I have used Brown
representability, everything is modulo phantom maps. O

Remark 5.3.28. The ring structure on V,, is homotopy commutative (up to phantom maps),
since the cartesian product of V,-manifolds is symmetric up to cobordism. The same is not
true for V. The labelling of the 1-corners on a cartesian product (described above) is clearly
sensitive to the order of the factors in that cartesian product.

Remark 5.3.29. Although it is probably not hard to rule out the possibility of phantom maps
in the situation above, the much-refined Lemma makes it a moot point.

5.4 A solution to Bullett’s conjecture

Definition 5.4.1. Let R, denote the image in mod p homology of the canonical map V; —
Vo, induced by viewing a Vj-manifold as a V,-manifold. It is a subalgebra of (HF,). V. Let
R* be the degree-wise F-linear dual of R,. It is a quotient co-algebra of HF V..

Lemma 5.4.2. R, is isomorphic to the free commutative (HF,),MU-algebra on the F,-
module (HF,),XBC,.

Proof. The map i : Vi — V,, respects the filtrations defined in Definitions [5.3.15| and [5.3.21]
On the successive quotients it is the canonical quotient iy : MU ® (BC,)* — (MU ®
(BCy)*)ps,- Let A% denote the antisymmetric part of HF:(MU ® (BC,)*). On mod p
cohomology, the image of 7} is HF; MU ® Aj, (cf. [9] Proposition 2.10). Combining that
with Lemma finishes the proof. O

Definition 5.4.3. By [9] Proposition 2.14, R* is a free module over the Steenrod algebra,
so the formula V*X := Homy,(R*, HF;X) defines a cohomology theory. The universal
mod p oriented ring spectrum V (cf. [9] Corollary 3.3) is the spectrum associated to that
cohomology theory. By construction, V' is a summand of V,, as presented by the canonical
inclusion V*X — Homy, (HF;V,,, HF; X), and V, ~ L, (cf. Definition by Corollary
3.3 of [9].

Remark 5.4.4. By construction, V*BC,, carries the universal mod p formal group law, and
the set of homotopy ring maps V' — R is in bijection with the set of mod p orientations of
R.

Lemma 5.4.5. The mod p cohomology of Vi and V,, are free over the Steenrod algebra.
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Proof. It suffices to show that V; and V,, are sums of shifts of HF,. By a theorem of Rourke
(cf. [9] Theorem 1.1, [24]) a multiplicative cohomology theory E*X is (represented by) a
direct sum of shifts of HF,, if E°(pt) = F, and E~°(pt) = 0 and there is a map of cohomology
theories E*X — HF*X which is surjective when X = 5***!/C,, for sufficiently large n (note
that those are finite subcomplexes of BC)).

Consider the morphisms V; — HF, and V,, — HF, defined by sending a V- or V-
oriented map ) — X to the Poincare dual of the associated homology class. Write HF; BC), ~
Fple, 2] with |e| = 1 and |z| = 2. Let i, : S*"*'/C, — BC, be the inclusion. Then the sur-
jectivity condition in Rourke’s theorem for the two maps in question reduces to the condition
that for sufficiently large n there are Vi-(and hence V,,-) manifolds Q., — S**!/C, and
Qun — S* 1 /C, representing the Poincare duals of i¥z and ife.

The Poincare dual of i*z is represented by Q,, := S**~1/C, — S***1/C,. Let Q., be
the quotient of D?" by the action of C, on its boundary S?*~!. Then the Poincare dual of i*e
is represented by the map Q., — S?"™!/C, induced by including D?" as a half an equator
in §?"*1. Finally, Q,, is a MU-manifold, and Q. , is a V;-manifold (in fact, a 'V; manifold)
so the proof is complete. O

Remark 5.4.6. There is a different proof of the above (see [11]), which uses formal groups
and some defining universal properties of V; to show that it is an HIF,-algebra in the stable
homotopy category, and one derives the mod p (dual) Steenrod algebra at the same time.

Theorem 5.4.7. (Bullett’s conjecture) The spectrum V admits a geometric presentation
as the bordism theory of Vy-manifolds which admit a labelling (cf. Definition up to

cobordism.

Proof. First I claim that the image of ix : V*X — VX coincides with V*X (cf. Definition
, so that ¢ factors as the projection onto a summand of V; (which must be equivalent
to V) and the inclusion of the summand V into V,,. Indeed, the mod p cohomology of V;
and V,, are free over the Steenrod algebra by Lemma [5.4.5] so ix can be written as

i*o(—)

VX ~ Homy, (HFV;, HF:X) =24 Homy, (HF* Ve, HEEX) ~ V2 (X)

so its image is Hom 4, (R*, HF; X), which is the definition of V*X. So V*X is the image of
Vi*X in VX, and a V-oriented map [Q — X] € VX is in that image precisely when it
admits a Vj-structure up to cobordism, i.e. when it is cobordant to a " — X that admits
a labelling. ]

Remark 5.4.8. Bullett frames his conjecture on page 24 of [9], where he suggests that V' is
the image of the natural map *W — V,, (cf. Remark[5.3.23). That map has the same image
as the map V; — V,, (Compare Lemma and Proposition 2.13 of [9], and cf. Remark

5323).
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5.5 The odd p dual Steenrod algebras

Much of this is joint with Tim Campion ([I]).

Definition 5.5.1. Let F,-Alg_, denote the category of (graded commutative coconnective)
[F,-algebras.

Definition 5.5.2. Let F be an F,-FGL over a ring R (cf. Definition [5.3.7). The automor-
phism groupoid Aut F is the functor

AutF : F,-Alg_, — Groupoids

defined as follows: the set of objects of the groupoid AutF(S) is the set of ring maps
R — S and the set Aut F(S)(f,g) of morphisms from f to g is the set of R-algebra maps
¢ : R[[x,e]] — R|[z,e]] such that

[+Fog¢ = (¢®¢)OQ*F

along with the condition that ¢(z) depends only on z. Together with Condition 4 of Defini-
tion that forces the constant term of ¢(x) to be zero (cf. Definition which in turn
forces the constant term of ¢(e) to be zero as well. Finally one imposes the normalization
conditions on leading coefficients:

o(z) = o + Z diz't?

i=1

e}
ole) =e+ Z biex' + a;x’'
i=1
The composition of morphisms is the composition of R-algebra maps.

Remark 5.5.3. When F; = e; + ey the formula for ¢(e) simplifies. Namely the b; in the
formula above vanish and a(z) = Y. a;z° is a morphism from F; to the additive formal group
law.

Recall that the additive F,-FGL is presented by the power series F = (e + ea, 1 + x2)
(cf. Example [5.3.8)). In some sense that’s is all there is:

Theorem 5.5.4. (c.f. [10] 3.5.1) All F,-FGLs are isomorphic to the additive one. More
precisely, let F be an F,-FGL over a ring R. Let f : R — R be any map that factors through
the unit F, — R, so that f,F = F.. Then there is a morphism ¢ € Aut F(id, f).

Definition 5.5.5. Let F be an F,-FGL over R. A coordinate transformation is and R-
algebra map ¢ : R[[z,e]] — R[[z, e]] such that

o(z) = o + Z diz'tt
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ee}
ole) =e+ Z biex' + a;x’.
i=1
One says that ¢ transforms F into the F,-FGL ¢*F := (¢"'® ¢~ ') o F o ¢. Note that
coorinate transformations are also covariant. If f : R — S is a ring map then f,¢ is the
S-algebra map S|[z, e]] — S[[z, €]] determined by setting f.¢(x) and f.¢(e) to be the power
series gotten by applying f to the coefficients of ¢(x) and ¢(e).

Definition 5.5.6. Define the category MT as follows. Its objects are triples consisting of

1. a (contravariant) functor X — E*(X) from the category of finite CW complexes to
the category of graded abelian groups,

2. a natural isomorphism from E**1(XX) to E*(X), and
3. an associative “multiplication map” E*(X)® E*(Y) — E*** (X x Y).

Note that with the diagonal map X — X x X the data of 3. makes £*X into a graded ring.
Morphisms T : E — F' are natural transformations of functors that commute with the data
in 2. and 3. The component of a morphism 7" at a CW complex X is denoted T'x.

Remark 5.5.7. The first examples of objects of MT are those that are induced by mul-
tiplicative cohomology theories, i.e. homotopy ring spectra. In fact, MT is an acronym
for multiplicative theory, and they are meant to capture multiplicative cohomology theories
(MCTs) without the exactness axiom, which is the only Eilenber-Steenrod axiom which is
not preserved under tensor product (cf. Definition [5.5.9).

Remark 5.5.8. Although the objects of MT are defined as functors out of finite spectra,
when working with a fixed object one can often enlarge the domain quite a bit—mamely to
those spectra for which the relevant lim*-term vanishes. For all objects of MT considered in
this paper (which either come from mod p oriented spectra or are tensored from them (cf.

Lemma [5.5.11])), that includes the non-finite spectra BC,, BU(1), and MU.

Definition 5.5.9. (cf. Remark [5.5.7) For an object E of MT and an E*-algebra with unit
u: E* — Rlet E,R be the object of MT defined by the formula

E,R*X = F*X ®g= R.
When the map u is understood I often abbreviate £, R to ER.

Lemma 5.5.10. (Evaluation at BC,) Let E be a mod p-oriented homotopy ring spectrum
with E*BC, ~ E*[[z,e]] and F,-FGL Fg. Let R be an E*-algebra with unit map u :
E* — R. Then for every T € Homyr(E,E,R) (cf. Definition there is a unique
¢ € Aut Fg(R)(Ty, u) such that ¢r(x) = (Tpe,(x) and ¢r(e) = Tre,(€).
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Proof. Let T be an element of Hom 1 (F, ER). To streamline notation, let f denote the ring
map Ty : E* — R. First note that uniquely determines a morphism 7 € Homyr(E¢R, E,R)
by the diagram

E*X Qg+ Ry ~2% E*X Qp+ Ry ®p Ry 25 E*X @p» R,
Note that the restriction of 7 along the map £ — FE,R induced by wu recovers T. Now
consider the diagram

E;R*BC, —" E;R*BC?

lTBCp lTBcg 2

E,R*BC, —“ E,R*BC?

which commutes by naturality of 7. Write ¢ for the map R[[z,e]] induced by 7p¢,. By
multiplicativity of 7, one finds that the diagram above gives rise to the equation

fiFpod=(¢0®¢)ou.Fp.

Consider the diagram above but with BC), replaced by BU(1). Since x = i*cp (cf. Definition
that diagram includes into the diagram above, and we find that ¢(z) depends only on
z. Combining that with the displayed equation implies that ¢(z) = >~ a;z’ (cf. Definition
. The leading coefficient a; is forced to be 1 by considering the pullback along S? —
BU(1). The proof is completed by noting that ¢ is uniquely determined by ¢(z) and ¢(e)
and those are equal to Ts¢,(z) and Tsc, (€). O

Lemma 5.5.11. (Quillen functor for Vi) Let e and x be any choice of universal mod p
classes in Vi* BC,,, with corresponding F,-FGL F. Let M* < Vi* be the subring generated by
the coefficients of F and write Fyr+ for the corresponding F,-FGL over M*. Then for every
ring A there is a functor v : Aut F i« (A) — MT (cf. Definitions|5.5.4 and|5.5.6) which on
objects sends f: M* — A to the theory v(f)*X := Vi*X Q= A.

Proof. The functor v has been defined on objects, so it remains to specify it on morphisms.
Let f,g: M* — A bet two objects and let ¢ be a morphism in Aut Fp«(A)(f, g). When we
need to distinguish between the two M*-module structures on A we will write Ay and A,.
Let ef, z¢ and e,, x, denote the classes in v(f)*BC, and v(g)* BC, which are the image of e
and z under the canonical maps V; — v(f) and Vi — v(f). We will construct (functorially)
a transformation v, : y(f) — 7(g) such that y4(ef) = ¢(ey) and y4(xf) = d(zy).

Now (V1).V1 is free over (V1)s (c.f. Section 2). Moreover there is a canonical map to
(V1)« MU ®r, Fpla1, as, ..., by, by, ...] with |a;| = 2i — 1 and |b;| = 2i.Write ¢ € VZBU(1) for
the (canonical) complex orientation of V;. Then we can write (V1) .MU ~ (Vi).[ds,ds, ...]
with |d;| = 2i being the image under 2BU (1) — MU of the dual of ¢**!. So together with
the map V}; ~S®V; —» Vi ® V; we get a morphism in MT

‘/1*X — (‘/1 X Vvl)*X ~ V?X ®V1* ‘/1*‘/1 — ‘/1*X ®Fp Fp[a,»,bi,di].
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By Lemma |5.5.23| when X = BC), the images of e and x under that map are
e—e®@l+rRa; +ex®b; + 12 Qag + ex’ @by + 23 ® az + ex® @ bs + ...

21+ 220d + 3 Qdy + ...

The morphism ¢ determines an F,-algebra map
(I) . Iﬁ‘p[ai, budz] — A

sending a; to the coefficient of z* in ¢(e), b; to the coefficient of ex’ in ¢(e), and d; the

coefficient of x'*! in ¢(z). Composing with the previous display gives another morphism
Ty: Vi —~(g)in MT

VX — VX ®r, Fylag, by, di] 25 ViEX @p, A — VX @ Ay = 7(g)* X

with the property that when X = pt the induced map V* kot Ais equal f when restricted
to M*. Indeed, by Lemma T, determines a morphism ¢z, in Aut Fyp(A)((T4)pt, g
such that ¢r,(z) = ¢(v) and ¢7,(e) = ¢(e). On the other hand, ¢ was by definition a
morphism from f to g. So the F,-FGLs T, (pt).F and f.F are identical. Since the coefficients
of F generate M* the maps f and Ty (pt) must agree on M*. It follows that T} descends to
a morphism vy, : y(f) — v(g) which can be written explicitly as the following composition,
using the multiplication py on A as an M*-algebra via f

TyXid
V)X = VX @ux Ay ——— v(9)* X Qurs Ay

~

VX @uw Ag @ux Ay —— VX @uis Ay = 7(9)*X

Functoriality—the claim that (¢ o ¥) = ~v(¢) o v(1)—is proved by noting that v(¢) is
uniquely characterized by the properties of being A-linear, multiplicative, and its behavior
at X = BC,, i.e. sending (ef,zf) to (¢(ey), ¢(x,)). Indeed, note that v(¢) is characterized
by its restriction along the surjection Vi* X ®r, A — V* X ®p+ Ay. By A-linearity that in turn
is determined by restriction along Vi*X — V*X ®g, A (which coincides with the composite
of the first two maps that make up 7). By Corollary the latter is determined by its
behavior at X = BC,. O

Lemma 5.5.12. (Kill the FGL to get a summand) Let e and x be any choice of universal mod
p classes in V*BC,, with corresponding F,-FGL F. Let M* < V}* be the subring generated
by the coefficients of F and let Far« be the restriction of F to M*. Set N* = V|* Qux F,.
Then MN*X := V*X Qux F,, is a cohomology theory and a summand of Vi*X, and there is
a ring isomorphism Vi* ~ N* ®g, M*
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Proof. By Theorem we know that F and F )y« are isomorphic to the additive F,-FGL.
That means there is a morphism between the objectsid : M* — M* and p : M* — F, — M*
in Aut Fp«(M*). Let ¢ be such an isomorphism. The functor v of Lemma provides
an isomorphism () between (id) and v(p) in MT. But y(id) ~ V; so we have

VX > (id)*X = 9(p)* X = V"X @urx F, ®s, M.

Therefore MN*X := Vi*X @+ Fp is a summand of a cohomology theory (namely V;) and
hence a cohomology theory itself. The ring isomorphism at the end of the lemma statement
is the displayed diagram when X = pt. O]

Lemma 5.5.13. (Quillen functor for summands) Let E be a mod p oriented homotopy ring
spectrum which is a summand of Vy. Let e, x be any choice of universal class in E*BC,,, with
corresponding F,-formal group law F. Let M* < E* < Vi* be the subring generated by the
coefficients of F and let Fy« be the restriction of ¥ to M*. Then for every ring A there is
a functor v : Aut F i« (A) — MT which on objects sends f: M* — A to X — E*X ®p+ A.

Proof. The proof is nearly identical to that of Lemma [5.5.11| except that the first displayed
morphism in MT, now induced by the map F ~S® F - E® E — E® V; becomes

E*'X - (E@WV)*'X ~ B*X ®g, E.MU|ay,az, ...,b1, bs, ...]
and in the rest of the proof every instance of V; is replaced with E. n
Lemma 5.5.14. HF, is a summand of V;.

Proof. Fix notation as in the Lemma [5.5.11] Invoke Lemma to get a summand M N
of V; and a decomposition V|* ~ N* @ M*. M N is mod p oriented via its map from V; and
the corresponding F,-FGL F y+ is by construction the additive one. Perform a coordinate
transformation (cf. Definition[5.5.5)) so that the new F,-FGL F'y. is not the additive one. Let
M; < N* be the subring generated by the coefficients of F'y.. Since M N* is a summand
of V; we can invoke Lemmas [5.5.19] and [5.5.12] to obtain a summand MN; of M N, and
then again (after another coordinate transformation as above) to obtain a summand M N
of M Ny, and so on. Now, since coordinate transformations are covariant (cf. Definition
and V}* is finitely generated in each degree, the process can be reordered such that
for each fixed k, B* stabilizes after a finite number of steps. So after a transfinite process
we arrive at a summand M B*, and it must be that every coordinate transformation is an
automorphism of the additive F,-FGL over B*. Considering coordinate transformations of
the form ¢(x) = z +ba", ¢(e) = e shows that every element of B> must be in degree 2 — 2pF
for some k£ > 0. Considering coordinate transformations of the form ¢(z) = z, ¢p(e) = e+ ba™
shows that every element of B***! must be in degree 1 — 2p* for some k > 0. Moreover the
square of any negative degree element must be zero: if it is odd that is clear from graded-
commutativity, otherwise it would be in degree not of the form 2p* — 2. Moreover we have a
decomposition V|* ~ B* @ G* where 1 ® G* contains all those elements that were coefficients
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of some F,-FGL that was used along the way. Let z = [D?/ ~] # 0 € V[ 2 (cf. Lemma ?7?).
Let b be an element of minimal negative degree in B* for all possible transfinite processes.
Then (b® 1)z is in even degree but not of the form 2p* — 2 for any & and hence not in
B*, so we can re-run the transfinite process above but ensuring that we use the coordinate
transformation z + (b ® 1)z2% to get a new decomposition V}* ~ Bf ® G¥ with (b® 1)z in
G7T. That is, under the composite of ring isomorphisms

B*QG* 5 VS B QG

(b® 1)z gets sent to 1 ® g. On the other hand b ® 1 must be sent to ¢ ® 1 by minimality of
the degree of b, and since (b®1)2(b®1) = (1*® 1)z = 0z = 0, we find that c® g = 0 which
is a contradiction. So B* is concentrated in degree zero, which means that M B is HF,. [

Theorem 5.5.15. The cogroupoid object ¥, = (HF,).HF, corepresents the groupoid valued
functor Aut Fy,.

Proof. Let H = HF, and let R be an [Fp-algebra. Since every module over [, is flat, note
that Homy;7(H, HR) is precisely the subset of HRH consisting of homotopy ring maps.
Applying the universal coefficient theorem provides an isomorphism of sets, natural in R

Homyr(H, HR) ~ Homg, 1., (H+H, R).

It is an isomorphism of groups because the group structure on both sides comes from the
map S® H® H — H® H ® H induced by the unit map S — H.

Let v be the unit map of R. By Lemma evaluation at BC, defines a group
homomorphism

¢t Hompp(H, HR) — Aut Fz(R)(u, u)
that is natural in R. By Lemma [5.5.20| the analogous map
¢Y' : Homyr(Vi, MA) — Aut Fy, (A)(u, u)

is injective for a V;*-algebra with unit u. Hence the analogous map (¥ is injective for any
summand of F of V;, and H is such a summand by Lemma . The map (¥ has an
inverse for any summand of V;, given by sending ¢ to Ty defined in the proof of Lemma
. Finally, the map is one of groups because the inverse ¢ — Ty is, since the group
structure on the left comes from S® H — H® H and the group structure on the right comes
fromS®V, - V; ® V.

Finally, since the groupoid AutFpy(R) has one object when R is an F,-algebra and
zero objects otherwise, combining the two natural group isomorphisms above finishes the
proof. O

Remark 5.5.16. Note that we have arrived at a coordinate-free calculation of (HF),).HF,:
we have identified it (as a Hopf algebra) to be whatever Hopf algebra corepresents Aut Fr,.
Giving a presentation by generators and relations (e.g. (duals to) Steenrod operations) is
a simple but tedious algebraic problem. For the sake of completeness I will give the usual
description.
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Definition 5.5.17. Define the Hopf algebra A, as follows.

Ap = Fp[gi”r” |§Z’ = 2(pk - 1)7 |T]| = 2pk - 17Z = ]-727 aj = 07 1a ])
AG) =Y ¢ ®¢,
=1

i !
Alry) =1,01+ Zﬁ?_l ® 7.
[
As mentioned, it is straightforward, tedious, and purely algebraic to check that the cogroupoid
object F, =3 A, corepresents the automorphism groupoid of the additive F,-FGL (cf. Re-

mark [5.3.8) AutF,.

5.5.1 Required technical facts about 1}

Lemma 5.5.18. Let E be a mod p oriented homotopy ring spectrum. Write E*BC, ~
E*[[e,z]], |e| = 1, |x| = 2. There is an E.-algebra isomorphism

E.Vi = Freeasy, (E.SBC,) ®p, ExMU

~ B (u,Ye, Yz, Yex, Xa?, ..y Qp, Fildy,dy,..],
lul =1, [Sea'| = 2i +2, |S2'| =2+ 1, |dy] = 2i.
Proof. This follows directly from Lemma [5.3.26] O

Corollary 5.5.19. Let E be a mod p oriented ring spectrum. A morphism T : Vi, — E in
MT is determined by its behavior at BC,,

TBCp : ‘G*BCP - E*BCp

Proof. First note that since £*BU(1) is a summand of E*BC,, the behavior of 7" at BC,
determines it at BU(1). By the Thom isomorphism and the splitting principle for complex
vector bundles (together with the multiplicativity of T') that determines 7" at MU (cf. also
Remark . Let t be an element in E°V; representing T'. Let X be a finite spectrum and
¢ : X — Vi a map representing some & € VX. Since X is finite, a factors through some
filtration step iy, : ¥V; — V; (cf. Definition [5.3.15). Hence T(¢) € E°X is determined by the
restriction 75t € E° *V;. By the proof of Lemma , pullback along the attaching map
ar : X'MU ® (XBC,)"™ — ¥V} is an injection in E*-cohomology. So T'(£) is determined
by afiit. But if ap € VP(X'MU ® (£BC,)F*1) is the class associated to ag, then ajift is
T(oy) (cf. again Remark [5.5.8)), which has been determined. O

Corollary 5.5.20. Let E be a mod p oriented ring spectrum, R < E* a subring and A an
R-algebra. Let EA be the object of MT defined by X — E*X ®r A. Then a morphism
T:Vi— EA in MT is determined by its behavior at BC),: Tgc, : Vi*BC), — EA*BC,,.
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Proof. The proof of Lemma [5.5.19 applies mutatis mutandis. O

Corollary 5.5.21. Let E be a mod p oriented homotopy ring spectrum. There is an F,-
algebra map

Proof. Given Lemma |5.5.18|this is an abelianization map. It sends u to a;, ez’ to b;; and
Y2t to ajy. O

Lemma 5.5.22. Let E' be a mod p oriented homotopy ring spectrum. There is a commutative
diagram
P=(1Qid)o(—)

HO’WLE* mod(E BCP,E ‘/1

Vi*BC, » (E®V4)*BC,

wm which ‘pair’ is an isomorphism.

Proof. The commuting diagram is a special case of Lemma 6.2 page 59 of [2]. Since E is
mod p oriented the previous lemmas imply that the relevant modules are sufficiently free,
and so the universal coefficient theorem guarantees that ‘pair’ is an isomorphism. O

Lemma 5.5.23. In the diagram above,
Ye)=e@1+r2Qa+ex @by + 12 Ras + ex? by + 2° Qas + ex® @by + ...

V(@) =2®1+2°®@d, + 1°®@dy + ...

Proof. To calculate the effect of e : ¥"'BC, — V; on E-homology, note that it factors
through the first stage of the filtration Z; — V;. Furthermore, Z; sits in a cofiber sequence
MU — Z; - MU ® X, BC,. The composite ¥ 'BC, — Z; — MU ® X, BC, has the
following geometric presentation. First approximate ¥~ 'BC, by £~15**1/C, Then e is
geometrically presented as the inclusion D**/ ~— S?"*1/C, (cf. Lemma ?7?). The sec-
ond map in the composite above sends a Z;-manifold to its boundary (singularity), so the
composite is geometrically presented as S?"~'/C, — S*'*1/C,. But that is the geometric
presentation of the class x € Z{ BC), and hence also z € V*BC),. Let o, 3; € E,BC, be dual
to ez’ ! and a'. We find that e, : E,1BC, — E,V; is given by

et Bur{l, a1, B1,0,...} — Eu,Ye, Yx, Yer, X2, ..) ®p, Fidi,dy,...]
1—0

a; — Yexr' 2

B Szt
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To calculate the effect of the map = : ¥2BC, — W; on E-homology, note that it factors
through the canonical orientation MU — V;. Moreover the classes d; introduced above are
the standard generators defined as the images under MU(1) — MU of the classes dual to
¢t e E*MU(1) (recall that if ¢ denotes the inclusion of BC, into BU(1) then z = i*c).
Then we find that z, : E,BC, — E,_»W; is given by

OZZ"—>O

Bi = di1.
With the intent of applying Lemma [5.5.22] note that since the «; and (§; were defined to
be dual to monomials in e and « the images of 1, e, x, ex, 2%, ... € (EQV;)*BC, ~ E,Vi[[e, z]]
under the map pair are given as follows: for z = 1,e,z,ex, 2%, ..., pair(z) takes a nonzero
value on exactly one of the F,-module generators a;, b;, which are recorded below

pair(e)(a;) =1

pair(ex')(a;41) = 1
pair(x')(b;) = 1.
Finally, an application of Lemma [5.5.22| finishes the proof. O

5.5.2 Other algebras of operations

In work in progress I aim to use the formalism of symmetric functors (note the absence of
“stable”) to get similar derivations of algebras of unstable cohomology operations (which
correspond to FGL endomorphisms including power operations such as the Dyler-Lashof
operations.

5.6 FE.-structures, etc

I will now define two sequences of objects 'F,,, 'F} 2F,, 2F,..."Fp, "F,...,F,, F} in the
category SstFun(C, o, d) just defined. The underlying homotopy type of §* "F,, will be "V,
and the underlying homotopy type of 0* " F; will be "V;. F,, will be a commutative monoid,
Fy will be an associative monoid, and under Lemma those two will provide E- and
E- lifts of the bordism spectra V,, and V;.

Definition 5.6.1. For a finite set N and a positive number m let U(mN) be the group
of unitary transformations of the m-fold direct sum of the complex vector space of maps
N — C with its obvious hermitian inner product structure. Let BUy be the colimit of
BU(N) — BU(2N) — ... and let BOy be defined analogously with C replaced by R? and

“unitary” by “orthogonal.”
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Definition 5.6.2. Define F,, € SstFun(C, o, §) (cf. Def[2.0.7) by setting Fi,(N, X, A¥) to be
the set of k-simplices of the simplicial set associated to the following groupoid: its objects are
submanifold-with-corners Q < X x (C")* of dimension dimX —|N| such that the composite
with the projection to X is a proper submersion. Furthermore, ) (and hence all the fibers
over points in X)) is equipped with the structure of a V,-manifold where the M U-structure
is defined by a map to BUy which lifts the map to BOy classifying the vertical normal
bundle in (R?")®. The morphisms in the groupoid are diffeomorphisms commuting with the
inclusions into X x (CM)®. The submersion property ensures that F,, is indeed functorial
under pullbacks along maps Y — X in Man. For every finite set M there is a map

Fo(N,X,A") - F (N + M, X x SM, AF)

which simply pushes forward an element @ < X x (CV)® along the inclusion of X x (C")*
into X x SM x (CN*M)® at the basepoint of SM and enlarges the stable normal structure
along the evident map BUy — BUy, . The maps s, give rise to a o-module structure via
the composite

Homgan (X, SM) ® Fio (N, X, A%) 2% Homypn (X, SM) ® Fio(N + M, X x SM, AF)

diag*

Fo(N + M, X x X, AF) » Fo(N + M, X, AF)

where the diagonal map sends f ® @ to f*Q.

Definition 5.6.3. The definitions of "F,,, F}, and "F; € SstFun(C, 0,d) are almost word-
for-word identical to Definition [5.6.2] the only difference being that the one instance of “V,”
is replaced by the evident symbol denoting the type of manifold allowed. In particular the
functors with subscript “1” have objects that come with the additional data of the labelling

(cf. Definition [5.3.21]).

Lemma 5.6.4. There are equivalences ud*Fy, ~ Vo, (and ud* "F, ~ "V ) and ué*Fy ~ V)
(and ud* "Fy ~ "V, ).

Proof. Let j denote the set {1,2,...,7}. Then if F' is a symmetric stable functor, the spec-
trum uwd* F' (cf. Definition [2.0.6)) is presented by the sequential spectrum whose j-th term is
|F(j, Az, A%)]. T will only give the proof of the equivalence ud*F,, ~ V,, since the others

sm’

are completely analogous.
For any finite set N the assignment X — |F,o(N, X x A2, A®)| is an R-invariant?| sheaf

on Man (because V,, manifolds can be glued along isomorphisms). Therefore by 4.3.1.2 of
3]
ud* FL(X) = moMap(X, Yud*F) ~ mo| Fo(j, X x A2, A®)].

sm’

6Indeed it is the R-invariantization of the sheaf of (nerves of) groupoids X +— F(N,X,A*) on Man.
R-invariantization preserves sheaves by the main result of [7].
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The latter is the set of cobordism classes of V-manifolds of dimX — j with a V-oriented
proper map to X which is also a submersion. On the other hand, VO%(X ) is (by Definition
5.3.14)) the set of cobordism classes of V,-manifolds of dimension dim.X —j with a V,-oriented
proper map to X. So there is a natural morphism of cohomology theories ud*F¥(X) —
V(X)) induced by the inclusion of those V,-oriented proper maps ) — X which are also
submersions. But when X = pt the submersion property is automatic so the inclusion is an
isomorphism and hence the induced map of spectra ud*F,, — V,, induces an isomorphism
on homotopy groups. m

Remark 5.6.5. Note that we have implicitly given a presentation of MU as a commutative
symmetric stable funtor (satisfying the sheaf condition) by simply disallowing all singularities
(i.e. considering the filtration 0 part of V,, or Vj). Let Fjy denote the corresponding
commutative symmetric stable functor and Fy;y — F., and Fy;y — V; the obvious inclusions

Lemma 5.6.6. I, is a commutative monoid in SstFun(C,0,0) and Fy is an associative
monoid. Hence Vo, and Vi are Ey- and Ey-ring spectra. In fact they are Ey and Ey MU -
algebras.

Proof. Note that the second sentence of the lemma follows from the first because of Lemma
and Lemma [5.6.4] and that the third sentence follows from the second because of
Remark [5.6.5] So it suffices to prove the first sentence.

First I will show that both F,, and F} are associative monoids in SstFun(C,c,0). To
that end, first note that the Cartesian product of V- and Vj-manifolds makes F,, and F}
associative monoids in Fun(Fin* x C°P Set,). More precisely, the product sends a pair of
elements Q € F (N, X,AF) and R € F,(M, X, A¥) to the element of F (N + M, X, A¥)
given by the pullback along the diagonal map X — X x X of the composite

QxR X x (CV)* x X x (CM)* 5 X x X x (CNM)©,

So it suffices to show that this product is compatible with the o-module structure, i.e. that
it descends to an associative product for the o-relative tensor product. For that it suffices
to show that the two maps Fi,y ® S® F, 3 F, ® Fiy become equal after composing with the
product F, ® F,, — F,, (and same for F;). That follows from the fact that the cartesian
product is associative and that pullbacks and cartesian products commute.

Finally F,, is a commutative monoid because the V,,-manifolds (diag x f;)*(Q x R) and
(diag x fr)*(R x @) agree since they are identical as submanifolds-with-corners-with-C,-
action on the 1-corners, and their M U-structures agree because both pairs of maps (BUy %
BUM — BUN+M and BUM X BUN — BUN+M) and (CN X CM - (CN+M and (CM X CN -
CN+M) are related by the twist map of their domains. O
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5.7 The geometry of structured pushouts

This subsection requires some familiarity with the theory of pushouts in E;- and E-ring
spectra. Really all the reader needs to believe is that these pushouts exist and have the
evident universal properties. A detailed treatment can of course be found in [21].

What I will show is that certain structured (E;- and E,) pushouts (which are naturally
filtered spectra) agree as filtered spectra with geometrically defined spectra with filtration-
by-singularities (as in the definition of Bullet’s mod p bordism spectra, cf. [5.3.15).

5.7.1 mod p bordism spectra
In this section I will prove that the spectra V,, and V; (cf. Definitions [5.3.15 and [5.3.21))

agree as filtered spectra with certain F., and F;-pushouts.

Definition 5.7.1. Let tr : BC, — S be the transfer map, presented geometrically as the
map that sends a framed manifold with a map to BC), to the total space of the associated C,-
bundle (which is again a framed manifold). Let tr also denote the induced map MU®BC, —
MU ® S, which has the same geometric presentation but with ‘framed’ replaced by ‘stably
almost complex.’

The following is a precise definition of “the F., quotient of MU by tr.”

Definition 5.7.2. Define the E, MU-algebra MU /,tr as the following pushout in the
category of F,, MU-algebras:

Free(BC,) —%— MU

l |

MU —— MU /ytr

Remark 5.7.3. This means (by definition) that the space of E,, M U-algebra maps MU /,tr —
R is naturally equivalent to the space of nullhomotopies MU® — MU — R.

Lemma 5.7.4. MU ,tr admits a filtration

MU ~ MU | tr[0] > MU Jptr|2] — ... &> MU Jytr
by MU -modules with successive quotients given by

MU [ tr[k]/ MU J o tr{k — 1] ~ (MU ® £BC,)g*,

Proof. To get the desired filtration, lift to the category of filtered E,, MU-algebras and form
the pushout of

Free(BC,[2]) —2— MU

P |

MU —— MU Jptr



CHAPTER 5. BORDISM THEORIES 69

To analyze the successive quotients, apply the associated graded functor to present griM U /[, trf!

as the pushout
gr(tr)

Free(BC,[2]) MU
MU ———— grMU [t

Since gr(tr) = 0, that pushout is Free(¥BC,[2]), from which the successive quotients are
read off immediately. O]

In exactly the same way we can define the Fj-quotient of MU by the transfer map.

Definition 5.7.5. Define the E; MU-algebra MU /itr by declaring the following diagram
to be a pushout in the category of Fy MU-algebras:

Free(BC,) —%— MU
J |
MU ——— MU /;tr
Lemma 5.7.6. MU /,tr admits a filtration
MU ~ MU J,tr[0] - MU J1tr[2] — ... > MU/ tr
by MU-modules with successive quotients given by
MU )1 tr[k]/MU )itk — 1] ~ MU ® (XBC,)®*.

Proof. The proof is identical to the E., case above except that one works in the category of
E, MU-algebras. O

Lemma 5.7.7. There are filtered equivalences
MU |ptr = Vi,
MU Jytr = V;
of By and Ey ring spectra, respectively.

Proof. 1 will prove the first equivalence; the second is proved completely analogously. First
note that by Lemma Ve is a filtered E,-ring equipped with an F,, map from MU
(presented by the map of symmetric stable functors induced by the inclusion of those V.-
manifolds with no singularities) and hence a filtered E,, MU-algebra. Moreover by Lemma
the first filtration step 'V, is identified with the cofiber of the transfer map MU ®
BC, — MU, and since the unit map MU — V,, factors through 'V,,, the composite

MU ® BC, — MU — Vi,
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has a nullhomotopy. Equivalently, the unit of V,, factors through the cone of the transfer. By
the universal property of (the filtered version of, cf. Lemma MU |/, tr, a factorization
of the unit of V,, through a filtered map from the cone of the transfer i.e. a commutative
diagram

MU —— cone(tr)

| .

MU — 'V,

we get a corresponding filtered E, MU-algebra map
¢ : MU Jptr — V.
Now consider the induced E,-map on associated graded rings
gro : grMU [otr — grV,.

Applying Lemmas [5.3.20| and [5.7.4] to identify the associated graded spectra we get a filtered
Eo map

gI‘¢ : FreeEOC_MU(EBCp) - FI‘GGEOO_MU<EBCP).

To check whether that is an equivalence it suffices to check whether the filtration 1 component
gri¢ : XBC, — X BC, is an equivalence. But that is clear since ¢ was freely determined by
its filtration 1 component, which was chosen to be an equivalence between the cone of the
transfer and V.. O

5.7.2 Ravenel’s X(n)

Recall that Ravenel defines a filtration of MU by spectra X(n): S = X(1) - X(2) —
.. = X () = MU and that these spectra feature prominently in the celebrated nilpotence
theorem of Devinatz, Hopkins, and Smith.

Definition 5.7.8. Recall that X (n+ 1) may be presented as the Thom spectrum of the map
QSU(n +1) > BU — BGL;S. Consider the map QSU(n + 1) — Q(SU(n +1)/SU(n)) =
QS8**1 The James filtration J;S?" of the latter induces a filtration F,QSU(n + 1) in the
domain which, after applying the Thom spectrum functor, induces the DHS filtration of
X (n + 1) by spectra I will denote by F. Note that the filtration is multiplicative because
the James filtration is.

Definition 5.7.9. Let ¥72CP" — X(n) be the canonical partial orientation. Let x,, :
S?=1 — X(n) be the precomposite of that with the attaching map of the top cell of
»-2CPt.
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Definition 5.7.10. An X (n)-manifold is a manifold whose stable normal bundle is equipped
with a lift along the map QSU(n) < QSU ~ BU — BO.

Remark 5.7.11. Note that x, is represented by the X (n)-manifold whose underlying manifold
is S?"~1 and whose stable normal bundle is equipped with the lift to QSU(n) given by the
map S?"~! — CP"' — QSU(n) which is the composite of the standard quotient map and
the map that sends a line in C" to the loop of special unitary matrices given by rotation
around that linem That indeed lifts the (trivializable) stable normal bundle of S?**~! since
the composite with QSU(n) — BU is null. Write x* for the k-fold Cartesian product.

Definition 5.7.12. An X (n)*¥-manifold Q is a manifold-with-labelled-j-corners for 0 <
Jj < k, together with a X (n)-structure on the interior of the codimension 0 stratum, an
identification of each face d;@) of the 1-corners (as X (n)-manifolds) with V; x x,, for some
X (n)-manifold N;(7), and such that on the j-corners the identifications combines to an
identification (again, as X (n)-manifolds) of each face d;Q the j-corners with N; x y? for
some X (n)-manifold N;, which will be called the leftovers of the j-corner. The associated
bordism theory gives a geometric presentation of a spectrum that will be called X (n)*.

Definition 5.7.13. An X(n)*-manifold is naturally an X (n)**!'-manifold, which induces
maps X (n) — X(n)' — X(n)> — ... Define the colimit to be X (n)®, presented geo-
metrically as the bordism theory of X (n)f-manifolds for all k at once, which are called
X (n)*-manifolds.

Remark 5.7.14. The cartesian product of an X (n)*manifold and an X (n)"-manifold is an
X (n)**, which equips X (n)® with a natural ring spectrum; in fact it lifts to an Fj-ring
structure (cf. [L] Section 2.2.2). This will not be needed here.

Definition 5.7.15. Consider the standard topological k-simplex Ai“op < R**!. Since the
faces of the k-simplex are ordered the product Afop x x**1 is naturally an X (n)k—manifol.
Note that the product [0,1] x Af  x x&*! is naturally an X (n)**'-manifold (by Remark
and the composite of the projection to the first factor and the map [0,1] — R,

x — x — 1/2 exhibits the unravelled (k + 1)-fold join as nullbordant in X (n)**!-manifolds.

Lemma 5.7.16. In the defining filtration of X(n)® in Definition the successive
quotients are given by
X(n)*/X (n)* ~ 22" X (n)

The quotient map is geometrically presented as the map that sends an X (n)*-manifold Q its
k-corners’ leftovers Ny (c.f. Definition . Moreover, the attaching map

E2nk71X<n) N X(n)kfl

"One normalizes by the value at some point to get matrices with unit determinant.
80n the ith face one identifies Xfﬁl with N; x x, where N; is the product of the k factors of x
excluding the ith factor.

k+1
n
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whose cofiber is X (n)* is presented geometrically as the map that sends an X (n)-manifold
P to the ¥=1 X (n)*-manifold given by the product P x AF-1 x X® with the unravelled k-fold

top
join (cf. Definition .

Proof. (cf. [L] Lemma 2.1.15) It suffices to show that the geometrically defined maps
oo XRLX(n) - X ()P X (n)F - 27X (n) — .

form a cofiber sequence, which is equivalent to the statement that the corresponding maps
of collections of manifolds(-with-singularities) form an exact sequence up to bordism. The
composite of the left two maps is zero since the X (n)*~*-manifold Afo_pl x X% is null as an
X (n)*-manifold because the cone on the unravelled join is (cf. Definition [5.7.15). If an
X (n)*~Lmanifold @ is null as an X (n)*-manifold, then any such nullbordism M exhibits Q
as bordant to the k-corners of M, which is in the image of the first map. The composite of
the second two maps is clearly zero since an X (n)*~!-manifold has empty k-corners. Finally,
if Q is an X (n)*®-manifold whose k-corners’ leftover Ny, is null, then gluing such a nullbordism
into @ eliminates the k-corners and produces an X (n)*~!-manifold, exhibiting M as bordant
to the image of the inclusion *~1X (n)* — X(n)". O

Definition 5.7.17. Here is an inductive definition of X (n)*-manifolds that may be more
geometrically intuitive. An X (n)'-manifold @ in the above definition is an X (n)-manifold
with boundary identified with N; x x,,. Since Y, is presented by S?*~!, one can glue in a copy
of N x D*" to obtain a smooth manifold ' with a “singular” X (n)-structurd’] Call such a
manifold an X (n)g)4-manifold. Note that the filled version of the unravelled join A{,, x x2
has underlying manifold the usual join x, * X, ~ S*~!. Then using the attaching maps of the
filtration above one can inductively view an X (n)*-manifold Q as an X (n)k,L,-manifold with
boundary identified with N;, x x** as an X (n)lgﬂeld—manifold. Again x** is a sphere, so gluing
in N, x D** produces an underlying smooth manifold Q' with “up-to-k-fold singularities”
in its X (n)-structure, an X (n)k, 4-manifold.

Note that an X (n)k, 4-manifold is in particular a stratified manifold. Cutting along those
“singularity strata” recovers the X (n)*-manifold.

Here is a geometric presentation of the DHS filtration.

Lemma 5.7.18. The DHS filtration admits a geometric presentation: there is a “filling”
map inducing a filtered equivalence X (n)* — X(n + 1).

Proof. The first step is to define the map. It will morally come down to the fact that in the
“filled” picture of Definition the X (n)-structures can be extended into the interior of
the disks if one allows them to become X (n + 1)-structures.

Fix a nullhomotopy of the composite S**~1 — QSU(n) — F,QSU(n + 1), which exists
because the first map is homotopic to the adjoint of the map S?* — SU(n) classifying

90me leaves the X (n)-structure in the interior of the disk undefined.
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FiQSU(n + 1) as an QSU(n)-bundle. That nullhomotopy exhibits the conelﬂ on Y, as an
Fj-manifold-with-boundary. Call it 2;. Replacing D*" with z; in the “filling” procedure
of Remark shows that every X (n)!-manifold naturally produces an Fj-manifold with
the X (n)'-manifold as a subset on which the Fj-structure specializes to an Fy = X(n)-
structure. In particular the X (n)g,.q-manifold x,, * x,, (see Definition is naturally an
Fi-manifold, with Fj-structure classified by a map S**~t — F1QSU(n + 1).

Towards induction, suppose that z;_; is an Fj_;-manifold-with-boundary whose under-
lying manifold is D*"*~1) and whose boundary is the X (n)k-2-manifold x5 " in the sense
that the F,_; structure specializes to the Fy = X(n)-structure of the X (n)f;2-manifold

X;‘;(k‘” on the locus where the latter is defined. Then the filling procedure of Definition
can be done to every X (n)* l-manifold to produce an Fj_;-manifold with the X (n)F~1-
manifold as a subset on which the Fj_j-structure specializes to an Fy = X (n)-structure.
Next I claim that z, := 2z,_; * S~ ! is naturally an Fj-manifold. Indeed, the underlying
manifold is D?"¢ = D?(k=1) 4 §2n=1 Ty specify the map out of a join to Fj, it is equivalent
to specify maps D**¢~1) — F, §?»~1 — F, and a homotopy between the two induced
maps D?"k—1) x §2=1 _, [} (using the projections to each factor). Then the maps are
Dk By — F, S - Fy — F},, and the homotopy between the two corresponds
to the pushforward along Fy — Fj, of the nullhomotopy of S?"~! — F} chosen to define z;.

By induction on k the “filling” map X(n)*® — X(n + 1) is defined and is clearly a
map of filtered spectra (an X (n)*-manifold “fills” to an Fj-manifold). Therefore it is an
equivalence if it induces an equivalence of associated graded spectra. Note that the kth
graded piece on both sides are indeed equivalent—that of X (n)* is identified in Lemma
and that of X (n+1) is the Thom spectrum of the trivial map from S?"* = J, 52"/, 8% —
BGLy(X(n)). I claim that the map on associated graded spectra can be presented by the
identity map, which will finish the proof. First, the map

F, — X2 X (n)

has the following geometric presentation: it takes an Fj-manifold (), composes the structure
map @ — FrQSU(n + 1) with the QSU (n)-fibration F,QSU(n + 1) — J;,5?" and takes the
transverse intersection of () and a nondegenerate point in JkS2”k\Jk,1S 2nk - That transverse
intersection is indeed an X (n)-manifold (since its stable normal bundle is equipped with a
map to the fiber QSU(n)) and is of codimension 2nk in @ (since the point is of local codi-
mension 2nk in J,S?"). The map Fy_; — F} has the evident the geometric presentation:
“extension of structure group”. Now consider the following diagram. Having given geo-
metric presentations of all maps—with the candidate geometric presentation of the bottom
map being the identity—it suffices to show that the diagram commutes up to bordism, i.e.

'9Recall that the underyling manifold is D" and naturally has an X (n)f.q-manifold (c.f. Definition

a0}
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produces a map of cofiber sequences.

X(n)F! —— F

| J

X(n)* —— FX(n+1)

| |

Y2 X (n) ——— B2 X (n)

The top square clearly commutes even without the need to correct by a bordism. It remains
to compare the two ways to traverse the bottom square. The way involving the left vertical
map sends an X (n)* manifold to its k-corners leftovers Ny (c.f. [5.7.16]). The other way takes
an X (n)*-manifold @, glues in the chosen z; to get some @', and then takes the transverse
intersection of Q' with a point in S?™* < J,,5?". Now, the map classifying the stable normal
bundle of @’ factors through Fj,_1QSU(n+ 1) — FQSU(n + 1) except in a neighborhood of
the glued in Ny x z, since all other pieces that are glued in (and all of the original @) have
stable normal bundles admitting such factorizations. The F}, structure on Ny x z is given
by the map
Ny x z, > QSU(n) x Fy, — Fy

which is the composite of the cartesian product of the X (n)-structure of Nj and the Fy
structure of z followed by the QSU(n)-action on Fy. It follows that the composite with
F, — J,S?" factors through the projection N, x z, — 2z, and the map D?*"* = 2, — F, —
JpS?" — S?"F i a degree +1 covering in a neighborhood of some nondegenerate point by
construction (it is clear for k = 1 and true for general k£ by induction). So the transverse
intersection at that point will indeed be bordant to NNy.

O

Remark 5.7.19. It is fair to say that X (n)* is a geometric incarnation of X (n)/1xn, the Ej-
X (n)-algebra quotient of X (n) by x,. In that sense, Lemma|5.7.18|is a geometric incarnation
of [6] Corollary 13, which identifies X (n)/1x, with X (n + 1).

5.7.3 Nilpotence
The the celebrated nilpotence theorem of Devinatz, Hopkins, and Smith [12] reads as follows.

Theorem 5.7.20. For any homotopy associative ring spectrum R, the kernel of the Hurewicz
map R, — MU,R consists of nilpotent elements.

The proof makes crucial use of the filtration of MU by the X (n) and in turn the DHS
filtration of each X(n) (cf. Definition |5.7.8). The key is to analyze the attaching maps
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of the DHS filtration, which is the heart of the proof of the nilpotence theorem. That
analysis is originally done p-locally and rather algebraically phrased in terms of Bousfield
classes. In work in progress I hope to use Lemma to analyze the DHS attaching maps
geometrically and arrive at a new proof of the nilpotence theorem.
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