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Mobile coverage maps consist of various key performance indicators such as the received

signal signal strength levels per location, and are of great importance to cellular operators.

However they are expensive to obtain, incomplete or inaccurate in some locations, imperfectly

reflective of call quality outcomes and potentially constructed from biased samples. In this

dissertation, we develop a principled machine learning framework for predicting missing values

of mobile coverage maps. It provides the knobs for operators to express their objectives and

preferences, as well as tools for data valuation.

First, we develop a prediction framework based on random forests (RFs) to improve signal

strength maps from limited measurements. The proposed RFs-based predictor utilizes a rich

set of features including but not limited to location, time, cell ID and device hardware, which

are considered jointly for the first time. We show that our RFs-based predictor can significantly

improve the tradeoff between prediction error and number of measurements needed compared

to state-of-the-art data-driven predictors, i.e., requiring 80% less measurements for the

same prediction accuracy, or reduces the relative error by 17% for the same number of

measurements.

Second, we extend the framework beyond signal strength and mean square error (MSE)

minimization to provide knobs to operators to (i) optimize prediction for coverage maps
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quality outcomes such as coverage indicators and call drop probability; and (ii) deal with

sampling bias. We show that we can improve the relative error for the call drop probability up

to 32% in the high CDP regime of greatest concern to cellular operators, which corresponds

to improvement of signal strength prediction itself in its low values regime. Similarly, we

improve recall from 76% to 92% for predictions of coverage loss, where false negatives are

costly to operators. We also introduce weight functions that allow operators to specify which

points are more important to predict accurately. We propose a reweighting scheme to obtain

unbiased error metrics in settings for which the available signal strength data is not sampled

proportionally to the target distribution of interest. We demonstrate a benefit of up to 20% of

training models with reweighted errors for two intuitive cases: (i) uniform loss with respect to

spatial area; and (ii) loss proportional to user population density. Combining both techniques

shows improvement up to 5%.

Third, we apply, for the first time, the notion of data Shapley valuation in the context

of mobile coverage maps prediction. We demonstrate data valuation for various operators

metrics and we show how our reweighted errors fit naturally the data Shapley framework.

Assessing the data Shapley values of training data points enables improving prediction, data

minimization, and pricing of mobile data. For instance, we are able to remove up to 65% of

the low valued training data points and simultaneously improve the recall of coverage loss

from 64% to 99%.

Throughout this thesis, we leverage two types of real-world mobile (LTE) datasets to evaluate

our methods and gain valuable insights: the first was collected at our university campus by

an android App we developed and the second provided by a mobile crowdsourcing company

for NYC and LA metropolitan areas, including approximately 11 million measurements. Our

work can be useful for mobile analytics companies and cellular operators, particularly in the

context of the upcoming 5G deployments.

xvii



Chapter 1

Introduction

1.1 Motivation

1.1.1 Mobile Is King

Cellular mobile telephony (e.g., 2G/3G and the newer 4G LTE/LTE-A) is used by approx-

imately 5 billion unique subscribers [64, 23], as of 2020, indicating great success of the

relevant technologies. Mobile phones are ubiquitous: although there are currently 5 billion

mobile phone users, only 3.4 billion people have access to running water [23] (see Fig. 1.1b).

Furthermore, the global mobile data traffic has been increasing exponentially and is expected

to reach 77.5 exabytes per month by 2022 [23] (see Fig. 1.1a).

The basic architecture of the network remains essentially the same across the cellular genera-

tions. Cellular networks are built using a set of Base Transceiver Stations (BTS or simply

BS) that are in charge of communicating with mobile devices. A mobile phone (a.k.a. user

equipment, UE) is connected (attached) to a unique cell (offered by a BS) in the area of

coverage at a time, and phone calls initiated by individuals are being routed through that
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(a) Exponential Global Mobile Data Traffic Growth. (b) More People with Mobile than Running Water.

Figure 1.1: Mobile is King: (a) The exponential increase of mobile data traffic (b) and the
ubiquitousness of mobile phones vs. other essential goods. Source: Visual Networking Index:
Global Mobile Data Traffic Forecast Update, 2017-2022.

BS. The received signal power levels (a.k.a. received signal strength, RSS) of the wireless

connection between the BS and the UE at each geographical region, define the quality of

service. The RSS from the serving BS in a UE, is represented by the familiar signal bars

on our mobiles’ screen; in popular culture the frustration with a dropped call usually refers

to “low bars”. At any given moment, one or more BSs can provide coverage to the mobile

phones, therefore, a UE is usually assigned to a BS (cell selection) with the strongest RSS

(among other criteria). In a nutshell, received signal strength measurements are utilized by

mobiles for cell selection, handovers decisions (i.e., change from a cell to another), mobility

measurements and numerous other network operations.

Thus, received signal strength is a fundamental property of mobile connectivity and cel-

lular operators rely heavily on such key performance indicators (KPIs) to understand the

performance and coverage of their network, as well as that of their competitors, in their

efforts to provide the best user experience. KPIs usually include several wireless channel

measurements (e.g., RSS in the older GSM or channel quality indicator, CQI, and reference

signal received power, RSRP, in LTE) as well as other performance metrics (e.g., throughput,

delay, jitter) and other information associated with the measurement (e.g., frequency band,

location of receiver, time, etc.). Mobile coverage maps, which indicate the level of service

per location, are constructed from a large number of KPI measurements; a representative
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(a) Past: Expensive “wardriving” era (Fig.
Source [3]).

(b) Present: “Dataism” era; a smartphone monitors
and records its signal strength map. An example from
the coverage (signal) maps collection tools built in
this thesis.

Figure 1.2: Methods for crowdsourcing coverage maps data, present vs. past.

example of a mobile coverage map is shown in Fig. 1.4. They are of crucial importance

to cellular providers, for network management, maintenance, upgrades and for commercial

advertising their network.

1.1.2 Dataism Meets Cellular and 5G

Traditionally, one way that operators obtain detailed and accurate measurements was by

hiring dedicated vans with special equipment, to drive through, measure and map the

received signal strength (RSS) in a particular area of interest, a technique referred to as

“wardriving” [73]. However, this method is expensive, inherently limited and it usually requires

costly radio spectrum equipment; it cannot scale and provide large scale (city- or country-

wide) measurements. Nonetheless, collecting traces through wardriving and using them as
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input to complicated wireless propagation models such as COST-231 Walfisch-Ikegami [25]

or others [76, 16] was the only option available to create coverage maps back in the 1990s

and early 2000s.

In the last decade though, the rapid emergence of smartphones has enabled a significant shift

in the efforts for mapping the cellular network coverage. Nowadays, a smartphone can be

a mobile coverage sensor itself [3] since it inherently monitors its signal strength and, most

importantly, it is equipped with a GPS module allowing granular location tracking. Moreover,

there is an abundance of other sensors (e.g., accelerometer and others) and system level

APIs which can provide rich contextual information (e.g., time, speed and altitude, low-level

network information, etc.). Basically, the coverage maps have inevitably followed the trend

of dataism1, where “information flow” is essential. This trend includes several efforts from

the research community (e.g., crowdsourcing systems with large public datasets for coverage

maps from iPhone devices [3] with an example depicted in Fig. 1.3 or Android devices [53]),

as well as from the industry with publicly available network performance monitoring apps

from mobile analytics companies, such as Tutela [70], OpenSignal [55], RootMetrics [62, 63]

etc., who aim to monetize the collected data.

Although operators can collect measurements on the network edge themselves, they increas-

ingly choose to outsource the collection of data for mobile coverage maps to the aforementioned

third parties for a variety of reasons, including: cost, liability related to privacy concerns of

collecting data on end-user devices, and lack of access to competitor networks. This practice

of operators to buy signal map data from these specialized mobile analytics companies,

has created a huge market for the mobile coverage performance analysis. These companies

crowdsource measurements directly from end-user devices, via standalone mobile apps [55],

or measurement SDKs [70] integrated into popular partnering apps, typically games, utilities

1“Dataism” is a term that has been used to describe the mindset or philosophy created by the emerging
significance of Big Data. It was first used by David Brooks in the New York Times in 2013. The term was
popularized by the book “Homo Deus” from Yuval Noah Harari, where it has been expanded to describe an
emerging ideology or even a new form of religion, in which “information flow” is the “supreme value”.
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Figure 1.3: Another example of a received signal strength (i.e., coverage) map from our past
work in [3] with data automatically collected by several phones.(i) It can be clearly seen, that
there is a coverage hole in the commute trace with consistent dropped calls. (ii) It can be
seen that the rest of the area has not been sampled since users just cross the area by driving.
This could lead to biased sampling which is being addressed in Chapter 5.

or streaming apps. This way, they crowdsource measurements at large (city, country, or

world-wide) scale and over long periods of time, but the measurements can be sparse in space

(depending on end-user location) and time (measurements are collected infrequently so as to

not drain user resources, such as battery or cellular data).

What if data are missing and/or are expensive? Coverage maps (a.k.a. signal

strength maps) are expensive for both carriers (paying millions to third parties to collect

data) and crowdsourcing companies (most of which use cloud services, thus collecting

more measurements increases their operational cost). Yet, collecting a large number of

measurements is necessary to obtain good accuracy and spatial completeness for signal maps.

Current technology and application trends, such as (i) 5G dense deployment of small cells with

network virtualization [10] and (ii) smart city/IoT monitoring and control at metropolitan

scales, will only increase the need for accurate performance measurements [36, 41, 13]. The

problem is only exacerbated by the fact that data may be sparse, unavailable, or expensive

to obtain in some locations, times, frequencies other parameters of interest.
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(a) NYC Manhattan subset. (b) NYC: LTE RSRP map. (c) NYC Manhattan zoomed in.

Figure 1.4: LTE RSRP map examples from NYC dataset, for a representative group of LTE
cells in the Manhattan Midtown area; there are also millions of other data points for other
NYC neighborhoods. (a-b) Display LTE RSRP (i.e., signal strength). (c) Different colors
indicate measurements from different cells.

Coverage maps prediction. Thus, our goal in this thesis is to develop a principled

machine learning framework to predict values for mobile coverage maps in order to fill the

gaps in space and other features of interest, as well as to predict coverage maps optimized

for objectives and error metrics of interest for cellular operators. Moreover, the prediction

framework we develop, it also assigns data valuation to our measurements.

1.1.3 Technical Limitations

Broadly speaking, signal strength prediction can be done through propagation models or

data-driven approaches, including geospatial interpolation, [33, 59] and Machine Learning

[29]. We identify several limitations of prior work, which will be addressed by this thesis.

A. Limited set of features, limited scale of data and not readily available features.

Propagation models: State-of-the-art wireless propagation and path loss (equation-based)

models include WINNER I/II [16], Ray tracing [76] and many others. However, this family

of models requires a detailed map of the environment (e.g., topology, street width, antennas’

heights, number of floors, in some cases 3D maps, etc.) and fine-grained tuning of parameters
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or a vast number of measurements [5].

Geospatial interpolation: [19, 59, 33]. This family of predictors (e.g., Ordinary Kriging)

cannot naturally incorporate additional dimensions such as time, frequency, hardware and

network information and they are inherently limited to spatial features. Moreover, extra

preprocessing is required to identify sub-regions with similar radio propagation characteristics.

Machine learning: Prior work that has used ML for RSS modeling for localization, has only

focused on spatial features (e.g., measurements’ latitude and longitude in [61]) or it has used

detailed 3D maps from Light and Range Detection Data (LiDAR) for RSRP prediction [29].

However, these specialized data are not readily available from smartphones measurements.

B. Minimizing solely the Mean Squared Error (MSE). To the best of our knowledge,

prior work has focused on predicting the raw signal strength itself, minimizing solely the

mean square error (MSE) (e.g., [29, 19]), which does not necessarily map directly to cellular

operators’ objectives. First, the operator may be more interested in predicting quality

functions (such as the number of signal bars and the call drop probability), which depend on

but are different from measurable KPIs. For instance, the operator may be more interested in

predicting accurately good vs. poor coverage than in minimizing the MSE of signal strength.

Second, an operator, may be interested in some data points more than others, e.g., locations

chosen uniformly at random, locations with dense user population, or specific locations

of interest (e.g., to 911 dispatchers, to beat competition etc.), while relying on sampling

distributions that are different from target distributions. For example, both in smaller studies

(Fig. 1.3) and larger scale data collection (Fig. 1.4 ) we can clearly see that the data are

primarily collected while commuting and in a lesser extent to the residential blocks.

C. Absence of Data Valuation tools. Although there have been significant ML devel-

opments in the last years, only recent literature addressed valuation of training data points
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Figure 1.5: Thesis Overview. We develop a principled machine learning framework to (1)
predict missing value of mobile coverage maps (Chapter 4), with (2) mobile coverage maps
optimized beyond the standard MSE in order to match the mismatch between (i) the cellular
operators’ quality (QoS) outcomes of interest and the raw signal strength and (ii) sampling
and target distributions (Chapter 5). Finally, this thesis offers (3) data valuation for mobile
coverage maps with data Shapley (Chapter 6). Throughout this thesis, we needed realistic
mobile datasets; in Chapter 3 we developed tools for collecting such data ourselves.

in the context of medical tasks classification [35], but not in the context of mobile maps.

1.2 Overview and Thesis Contributions

In this thesis, we propose a principled machine learning framework for predicting missing

values of mobile coverage maps, at particular spatiotemporal points and potentially considering

other features as well. Our goal is to improve the existing tradeoff between cost (i.e., number

of measurements) and quality (i.e., accuracy) of signal strength maps prediction. We also

provide operators with a framework with knobs to tackle the mismatch between (1) operators

quality functions and raw signal strength as well as (2) sampling and target distributions.

More specifically, we make the following contributions, summarized also in Fig. 1.5.
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1.2.1 City-Wide Coverage Maps: Prediction with Random Forests

In Chapter 4, we develop a powerful machine learning framework based on random-forests

(RFs), considering a rich set of features including, but not limited to, location, time, cell ID,

device hardware, distance from the tower, frequency band, and outdoors/indoors location of

the receiver, all of which affect the wireless properties. To the best of our knowledge, this is

the first time that location, time, device and network information are considered jointly for

the problem of signal strength prediction compared to geospatial prediction [50, 19, 59], which

does not naturally extend beyond location features. We show that our RFs-based predictors

can significantly improve the tradeoff between prediction error and number of measurements

needed, compared to state-of-the-art data-driven predictors. They can achieve the lowest

error of these baselines with 80% less measurements; or they can reduce the RMSE (root

mean square error) by 17% for the same number of measurements. In absolute terms, we

demonstrate improvements up to 2dB.

1.2.2 Quality and Weight Functions for Mobile Coverage

In Chapter 5, we extend further our framework to handle the two limitations introduced

by solely minimizing the mean squared error (MSE) and we provide cellular operators (and

mobile analytics companies) with knobs to tackle the mismatch between (1) operators’ quality

functions and raw signal strength as well as (2) sampling and target distributions. We built

on the predictor we previously developed based on Random Forests, but our techniques are

applicable to any arbitrary ML model.

First, we identify quality functions based on signal strength, such as mobile coverage indicators

and call drop probability (CDP), which are not directly optimized by learning on signal

strength. While prior work minimizes only the MSE for signal strength (e.g., [29]), we train

models directly on these functions and we show that we can improve the relative error up
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to 32% (or alternatively improve signal strength prediction itself by up to 3dB) in the high

CDP regime of greatest concern to operators and recall from 76% to 92% for predictions of

coverage loss (where false negatives are costly to operators). Our methodology optimizes

directly the function of interest and allows operators to put more emphasis in the values and

use cases of signal maps that matter most.

Second, we introduce weight functions that can express the importance operators give to

particular locations or data. This reweighting is rooted at the framework of importance

sampling and allows us to obtain unbiased error metrics in settings for which the available

data is not sampled proportionally to the target distribution of interest (a.k.a. dataset shifting

problem [67]). We demonstrate two intuitive weight function classes, respectively encoding

(i) uniform loss with respect to spatial area; and (ii) loss proportional to user population

density. Training models with reweighted errors shows an average improvement of 5% and

up to 20% for oversampled regions. Combining both techniques shows improvement up to

5.5% for the estimation of CDP adjusted with population and uniform distributions.

1.2.3 Data Shapley Valuation for Mobile Coverage Prediction

In Chapter 6, we apply, for the first time, the problem of data Shapley valuation for mobile

coverage maps. We build on and extend the framework provided by [35] with our custom

error metrics from Chapter 5, and we obtain the value of a each training point for a particular

prediction algorithm, error metric and dataset. We analyze the distribution of data Shapley

values in our datasets and we apply it for improving prediction and for data minimization.

We define jointly a specific prediction task and the performance-error metric of interest

under the umbrella of data Shapley in order to quantify the data valuation. We demonstrate

data valuation for various operators metrics instead of the standard accuracy and MSE

in classification and regression respectively and we also show how our reweighted errors
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fit naturally the data Shapley framework. Assessing the data Shapley values of training

data points enables improving prediction, data minimization, and pricing of mobile data.

For instance, we are able to remove up to 65% of the low valued training data points and

simultaneously improve the recall of coverage loss from 64% to 99%.

1.2.4 Datasets

In order to study the problems in this thesis, we needed realistic mobile traces. We used

two such real world LTE datasets: one collected by ourselves and one provided by a crowd-

sourcing company, both presented in Chapter 3. First, we built a real world crowdsourcing

system, which consists of an Android app and a central server for gathering the data (see

Chapter 3). We used this system to collect a small but dense Campus dataset, in the area

of University of California, Irvine campus. The second dataset consists of a large but sparser

set of measurements from NYC and LA metropolitan areas, provided by a mobile data

analytics company (see examples in Fig. 1.4). The dataset contains approximately 11M LTE

measurements, in areas of 300km2 and 1600km2 for NYC and LA respectively. To the best of

our knowledge, the NYC and LA datasets are among the largest used to date for coverage

maps (or other signal strength) prediction, in terms of any metric (number of measurements,

geographical scale and number of cells), enabling us to gain unique and valuable insights into

the problem.
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Chapter 2

Background and Related Work

2.1 Problem Statement and Preliminaries

2.1.1 Signal Strength - Key Performance Indicators (KPIs)

Traditionally, performance evaluation of cellular networks was primarily focused on: received

signal strength (RSS). For example, back in the days of the GSM protocol1 things were

relatively simple: each mobile phone was using a single carrier over a single channel of just

200KHz bandwidth, accessing it with TDMA. The RSS of the GSM protocol was measured

and reported on BCCH (broadcast control channel) and/or SACCH (slow associated control

channel). Most importantly, these 200KHz contain the entire useful signal for the mobile’s

communication.

In contrast, today’s LTE is much more complicated; LTE uses OFDM (orthogonal frequency

division multiplexing) with wide-band channels (up to 10MHz), therefore multiple users share

1GSM it was deployed in the 1990s and has been retired since 2017 https://www.gsmarena.com/at_t_

has_officially_shut_down_its_2g_network-blog-22811.php, accessed April 2020.
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all the available bandwidth. Received signal strength indicator (RSSI) includes interference,

transmissions from other users and other cells. Thus, in addition, multiple comprehensive

“key-performance indicators” (KPIs) have been introduced for LTE’s operation and evaluation.

Representative examples include the reference signal received power (RSRP), the reference

signal received quality (RSRQ) and the channel quality indicator (CQI).

These LTE KPIs related to RSS and the overall wireless link performance (i.e., RSRP, RSRQ,

CQI, throughput) from the end-users devices, are defined by 3GPP [30], the standardization

entity for the mobile broadband standard under the term “minimization of drive tests”

(MDT) data [44]. Another term that is being used for LTE KPIs is “user measurement data”

(UMD) [49] (e.g., state-of-the-art work from a tier-1 mobile operator [61, 49]).

Reference Signal Received Power (RSRP): 3GPP [30] defines RSRP, yP , as the

average over the power contributions of the resource elements that carry cell-specific reference

signals within the considered frequency bandwidth (e.g., 5 or 10MHz wide-band LTE channels).

RSRP is typically reported in dBm by UEs (user equipment) and is a RSS indicator type

since it is the average received power of a single reference signal (RS) of one resource element

(equivalent to a 15KHz subcarrier) [28]. Basically, RSRP excludes interference and noise from

other sectors, estimating more accurately the signal power of the serving cell. It is of great

importance for LTE since RSRP (jointly with RSRQ) measurements are mainly utilized by

smartphones for cell selection, handover decisions, mobility measurements (e.g., signal bars

which are defined later in Sec. 5.2.3) and power control calculations.

Reference Signal Received Quality (RSRQ): The RSRQ measurement, yI , is a proxy

for measuring a channel’s interference. It is defined as the ratio of the power used by

resource blocks (RBs) over the total received power RSSI (which includes power from

other sectors/cells, thermal noise co-channel interference etc.) over the same bandwidth:
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RSRQ = (N × RSRP )/RSSI. RSRQ can essentially be seen as the portion of the useful

signal and reported in dB units as a ratio.

Channel Quality Indicator (CQI): The CQI, yC , is a unit-less metric (yC= {0, · · · , 15})

of the overall performance of the wireless channel. For example, higher CQI could trigger

more aggressive modulation by LTE; or CQI values are used for LTE scheduling decisions.

The exact CQI calculation (as well as that of RSRP and RSRQ) details differ across devices

and manufacturers, which usually consider their implementations proprietary, since 3GPP [30]

just provides generic guidelines.

LTE Network Architecture: (LTE Cells vs. LTE TA) Next, we briefly review the basic

LTE network structure, which will inform how to build coverage maps and predict these

values. A UE (i.e., a mobile phone) is served by a base station (a.k.a. cell tower) and is

being attached to a specific cell. A serving LTE cell is uniquely identified by the CGI (cell

global identifier), which is the concatenation of the following identifiers: the MCC (mobile

country code), MNC (mobile network code), TAC (tracking area code) and the cell ID. We

abbreviate and refer to CGI as cell ID or cID. LTE also defines Tracking Areas (which we

will refer to as LTE TA) by the concatenation of MCC, MNC and TAC, to describe a group

of neighboring cells, under common LTE management for a specific area. The term cell

tower refers to the physical location where several antennas are serving multiple dierent cells,

usually indicated by a common prex in cID. Please note that the size of a cell varies from a

few hundred square meters in an urban environment to up to several square kilometers in

rural areas. In this thesis, we examine models of the coverage map both per cID and LTE

TA. We refer the reader to [56] for a short LTE network architecture primer.

Quality of Service (QoS). Moreover, we need to mention the connection between the

quality of service (QoS) and KPI terms because QoS is a ubiquitous concept in telecommunica-
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tions. According to [12], QoS in cellular networks is defined as: “The capability of the cellular

operators to provide a satisfactory service, which includes voice quality, signal strength, low

call blocking, dropping probability and high data rates for multimedia-data applications etc.

For network-based services, QoS depends on the following factors: throughput, delay, packet

loss, error rate, etc.” To make things even more complicated, official documentation from

another cellular telephony organization (GSMA [9]) explicitly states that “A QoS parameter

is also called quality key-performance-indicator (KPI)”.

In this thesis, we try to simplify the high heterogeneity of the terminology of the field and we

use the terms: “key-performance indicators” (KPIs) for LTE RSRP, RSRQ, CQI and QoS

for the functions defined on signal strength and KPIs y such as call drop probability, signal

bars (4 class quality) and binary quality of the cellular network.

2.1.2 Signal Strength and Coverage Maps Definition

Traditionally, coverage maps are designed to indicate the service areas of transmitting base

stations, which consequently refer to the levels of the UEs’ received signal strength. However,

in LTE there are so many parameters that define the level of service; e.g., we might experience

very good RSRP but the interference (RSRQ) could be high, causing poor performance. Thus,

in this thesis, we use the term coverage maps to refer to maps of all KPIs, including signal

strength, and all the QoSs such as call drop probability, and “mobile coverage indicator” (i.e.,

yes or no coverage); please note that where necessary we disambiguate and use explicitly the

term coverage indicator. We use the term mobile coverage maps as a superset including both

continuous and discrete forms of maps as well as QoS maps; signal strength maps refers to

only the continuous version and “coverage indicator” refers to the binary problem.

An observed coverage map is a collection of N measurements (xi, yi), i = 1, 2...N , where

the label yi = {yP , yI , yC} of data yi denotes the KPI of interest given the feature vector

xi which specifies the location, time, hardware and other features which the KPI is to be
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mapped. In general, an operator’s interest is not in the observed signal strength map, but in

an underlying true signal strength map, defined by the conditional distribution Y |x for an

arbitrary x ∈ X, where Y is the (generally unobserved) KPI at x and X specifies a region of

interest (e.g., an areal unit, time period, etc.). This denotes an estimate of the true signal

strength map by machine learning (ML), where our goal is to answer queries regarding Y |x

or functions thereof by training a predictor ŷ on the observed signal strength map.

Moreover, in this thesis, we also study coverage maps in the quality domain: (xi, Q(yi)). The

benefits of this approach is two-fold: First, this is a standalone problem itself: the operators’

interest is not always in KPI y itself, but in Q(y) (e.g., call drop probability) or predict and

create the 4-bars [63, 55] or 0-1 indicator [34] used for commercial representations of the

maps. Second and more importantly, it can be used to implicitly modify the loss function

of the coverage map; in this thesis, we extensively demonstrate how we can leverage Q(y)

domain prediction to build better maps in y and vice versa (Q(y)↔ y).

Last but not least, cellular coverage maps are described in the literature with a wide

range of different names: “RF Coverage Maps” [61, 49], “Mobile Coverage Maps” [3, 33, 32],

“Cellular Coverage Analysis/Prediction” [14, 50],“Signal Map” [39], “Signal Strength Maps” [7]

and “Radio Environment Maps” [75, 34], to name just a few. We use the terms “coverage

maps” and “signal (strength) maps” interchangeably since a big part of this work handles

the prediction of RSRP which is the signal strength metric for LTE.

2.1.3 The Coverage Map Prediction Problem

The goal is to predict signal (coverage) map value yj at a given location, time, and/or other

features of interest (as specified by xj ∈ X), based on available historical measurements

with labeled data (xi, yi), either in the same cID or in the same LTE TA. For example,

this might be needed by cellular operators for planning, maintenance, as input to network
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algorithms [41], or used from mobile analytics companies (e.g., [55]) to produce cellular

maps for the areas where data are not available or are expensive to obtain.

The real world underlying phenomenon for y (denoted as Y ) is a complex process which

depends on numerous wireless factors and environmental characteristics [60]. Most of prior

work has focused on developing increasingly sophisticated model-based (e.g., [76, 16]) and

machine learning techniques for predicting directly ŷ, both of which require complicated

environment data (the latter needs LiDAR data and the former detailed topologies, see

Sec, 2.2). Moreover, prior work has focused on a single task: the minimization of the mean

squared error of the prediction task with geospatial predictors that can handle just location

features (e.g., [59, 19]).

In sharp contrast to the prior art, we develop a prediction framework that (i) uses a rich

set of features readily available by Android APIs, (ii) allows cellular operators to express

operational objectives and optimize the prediction and (iii) enables valuation of training data

points and data minimization.

The first coverage map problem we consider (Chapter 4) is to develop a predictor for the

missing signal map values yj (e.g., LTE RSRP) for the feature space x. Our goal is to

predict an RSS value at a given location, time, device and potentially considering additional

contextual information. We treat the problem as a regression ML problem where the goal is

to minimize the mean squared error (MSE) metric.

The second coverage map problem we study (Chapter 5) builds on the first problem and con-

siders the loss to be minimized: particular choices of loss functions will improve performance

for certain objectives, while degrading it in others. We consider two general factors relating

to the choice of loss. First, operators’ interest is not always in KPI y itself, but in some

quality of service function, Q, that depends on y (we already defined examples of coverage

maps for this case in Section 2.1.2). While prior work focused on predicting y (e.g., w.r.t.
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mean squared error), we instead consider signal map prediction that minimizes error in the

predicted value of Q(yj) itself and we set up the relationship between Q(ŷ) ↔ Q̂(y). The

nonlinear dependence of quality-of-service on raw signal strength makes this direct approach

superior for many practical applications. Second, the operator may wish to assign more

importance to some values of x more heavily than others. While prior work with conventional

training schemes, implicitly assumes that importance corresponds to data sampling frequency,

we instead consider optimization w.r.t. an application-specific weight function W (x) that

may or may not be the same as the sampling distribution.

The third and last problem we consider (Chapter 6) builds naturally on the different evaluation

schemas we develop above. We define the data Shapley value φi, which quantifies the

importance of a datum (xi, yi) for the combination of a given dataset D, predictor algorithm

A and performance metric V (f), i.e., φi = {D,A, V (f)}. Basically, the choice of f̂y(x) and

f̂Q(x) corresponds to A and the application-specific W (x) defines the performance score.

This allows the valuation of the training points used in our ML predictors, which in turns,

can be used to remove low quality data and for data minimization.

In summary, this thesis develops predictors ŷ = f̂y(x) for signal strength (e.g., LTE RSRP)

as well as Q̂(y) = f̂Q(x) for quality functions Q, where f̂y(x) and f̂Q(x) are optimized w.r.t.

an appropriate weight function W (x). For each of these predictors (f̂y(x) and f̂Q(x)) the

most valuable data points are mined for different choices of W (x) and/or f̂Q(x) through the

data Shapley values.

2.1.4 Notation Summary

From now on, we use the term “coverage” to refer to y or Q(y). Throughout this thesis we

use the following notation unless specified otherwise. We use a boldface capital letter to

denote a matrix (e.g. X) and a lower case bold letter for a vector (e.g., x). Letters that are

not bold describe scalars, with uppercase letters typically used for dimensions or count (such
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as N,M), lower case used for indexing (i for training data, j for the unobserved, test data)

or greek for hyperparameters (γ, λ). The uppercase calligraphy letters D denotes a set of

data and A denotes an estimation algorithm.

The letter ŷ represents the prediction of a regressor or a classifier and the symbols f̂y(x), f̂Q(x)

denote the prediction function which produces ŷ and Q̂(y) respectively. The letter y is used for

the labels of our data, i.e., the signal strength values and the other KPIs (yi = {yP , yI , yC}).

For simplicity, we imply y = yP , since we primarily demonstrate prediction with LTE RSRP

in this thesis, unless otherwise noted. Finally, because this chapter has defined various terms

and notations that we will use throught this thesis, for convenience Table 2.2 summarizes the

definitions and terminology and Table 2.1 summarizes the common symbols and notation

used throughout this thesis (more specific notations for the technical contributions of each

chapter will be included in each chapter accordingly).

Terminology for Cellular Operators: We use the terms “cellular operators” and mobile

network carriers (MNCs) interchangeably; the latter can be found mainly in the various

technical cellular specifications and in the data description in the network APIs, where, more

specifically, MNC stands for “mobile network code” and provides a unique identifier for the

network carrier. Moreover, the term Mobile Network Operators (MNOs) is also being used in

the literature. For certain parts of the data description and results, we adopt the acronym

MNC, which implies MNO, but overall we use the term cellular operators.

2.2 Related Work

Wireless signal strength (a.k.a. received signal strength, RSS) is a fundamental property of

wireless networks. Estimation and modeling for mobile coverage maps (e.g., [50, 32, 33])

are relevant in many other application contexts, such as location estimation techniques (e.g.,
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Notations Definitions-Description

Data: KPIs

y = {yP , yI , yC} Label - KPI (Key Performance Indicator)
yP RSRP: Received Signal Reference Power
yI RSRQ: Received Signal Reference Quality (Interference)
yC CQI: Channel Quality Indicator

Data: Features

x Measurement’s Features
l = (lx, ly) Location Features (spatial coordinates)
t = (d, h) Time Features (day, hour)
dev Device Model (hardware)
out Indoors or outdoors indicator
||lBS − lj|| Euclidean distance between transmitter and receiver
freqdl EARFCN (a.k.a. LTE Frequency channel)
cID LTE cell unique identifier (i.e., Cell Global Identifier)

Network
Quality
Functions

Q(y) Network Quality Function (e.g., Qc(y
P ), Qcdp(y

P ))
Qc(y

P ) Mobile Coverage Indicator
Qcdp(y) Call Drop Probability

Predictors’
Notation

ŷ Prediction of a regression or classifier

f̂y(x) Predictor for a signal map value

f̂Q(x) Predictor for a QoS Value

Error Scores/
Importance-
Sampling

L(ŷ, y) Loss function of its arguments (this thesis: squared loss)
s(x) Sampling Distribution
W (x) Weighting Function

Table 2.1: Symbols and notation used throughout this thesis.

[37, 61, 5]), resource allocation in wireless networks (e.g., [24, 54]), robots navigation (e.g.,

[37]), etc. In this section, we review the relevant literature on RSS prediction and signal maps

construction and we discuss the state-of-the-art which provides background and baselines for

all of the following chapters in this thesis. We compare them accordingly, in more depth, with

our proposed methodology in the corresponding chapters. Broadly speaking, signal strength

prediction can be done through propagation models or through data-driven approaches, which

include geospatial interpolation (a.k.a. geostatistics), [50, 33, 59] and Machine Learning

[29, 61], to predict signal strength maps from historical data.
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Term Definiton

RSS Received Signal Strength
GPS Global Positioning System
GSM Global System for Mobile Communications (2G)
LTE Long Term Evolution (LTE-Advanced conforms to 4G)
BS Base Station
UE User Equipment (mobile device)
KPI Key Performance Indicator
UMD User Measurement Data
MDT Minimization of Drive Tests
RSRP Received Signal Reference Power
RSRQ Received Signal Reference Quality
CQI Channel Quality Indicator
EARFCN E-UTRA Absolute Radio Frequency Channel Number
MNC Mobile Network Carrier (a.k.a. Cellular Operator)
MNO Mobile Network Operator (aka Cellular Operator)
RFs Random Forests

Table 2.2: Miscellaneous abbreviations used throughout the entire thesis.

2.2.1 Propagation Path Loss Models

Wireless propagation (a.k.a. radio frequency propagation) and path loss modeling have been

extensively studied. This body of work usually combines measurement campaigns, physical

layer and environment modeling, in order to model the path loss of the signal at the receiver.

Historically, this was the prevalent way to estimate signal strength given that measurements

were much more expensive and limited in the 1990s and early 2000s. For example, one way

that operators used to obtain detailed and accurate measurements is by hiring dedicated

vans (a.k.a. war-driving [73]) with special equipment, to drive through, measure and map

the received signal strength (RSS) in a particular area of interest. The data from war-driving

could either be used directly or be fitted to the propagation path loss models. Early examples

of this family of models back in the GSM era, included the Hata model [66] and the COST

231 [25] (e.g., Walfisch-Ikegami model).

State-of-the-art wireless propagation and path loss models include WINNER I/II [16], which
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tries to develop a single ubiquitous radio access system adaptable to a range of mobile

communication scenarios. Recently, Ray tracing [76] for radio propagation modeling has

gained a lot of attention, due to its accuracy. However, it is computationally expensive and

requires a detailed mapping of the environment (e.g., buildings’ topology). The same applies

to the entire family of these models (ray tracing, WINNER I/II, COST 231), which typically

require a fine-grained tuning of many different parameters and inputs (e.g., environment

-indoors, outdoors, rural, downtown-, topology, the number of floors in the building, the

street width, the height of transmitters/receivers, occasionally 3D maps [76] etc.).

A simple, yet widely used, propagation model is the Log Distance Path Loss (LDPL)

model [60] and its variant for the indoor environments [8], which assumes wireless shadowing

(i.e., large scale fading [66]) following a log-normal distribution (i.e., normal in dBm) and

the path loss could be modeled with a logarithmic attenuation. Later in Chapter 4, we utilize

a homogeneous and heterogeneous LDPL, i.e., a different power loss exponent per location,

as the representative baselines of propagation models and we compare them to our proposed

data driven approach with Random Forests (RFs).

2.2.2 Data Driven Prediction (I): Geospatial Interpolation

Both the complexity of propagation models and the abundance of available mobile data in the

recent years, have shifted the research efforts towards data-driven prediction. Prior work used

geospatial interpolation for RSS prediction, where RSS at a particular location is predicted

by interpolating neighboring measurements. Geostatistics predictors have been extensively

used in environmental sciences, meteorology (e.g., humidity, temperature estimation), remote

sensing and many other fields when there are some available measurements and missing values

need to be predicted. The output of the estimator is a weighted average of the neighboring

measurements after solving an optimization problem.
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For example, work in [50] compares the accuracy of various geospatial interpolation techniques

for cellular signal strength prediction, using crowdsourced measurements values from Android

devices. It examines the impact of (a) inaccurate locations, (b) sparse measurements and

(c) non-uniformity in crowdsourced datasets and concludes that Ordinary Kriging (OK) is

the one of the best of this category. Furthermore, work in [59] (coverage maps of a 2.5GHz

WiMax network) and [19] (a spectrum sensing database for cellular bands and DTV bands)

have developed methods which incorporate wireless propagation characteristics in geospatial

models, namely Ordinary Kriging with Detrending (OKD) and regions Partionioning (OKP,

OKPD). An interesting framework which uses geostatistics is ZipWeave [33]. ZipWeave

identifies sub-regions with similar radio propagation characteristics and high predictive value

in order to reduce sample size of the required data and improve prediction accuracy. Both

the former (OKP, OKPD) and the latter (ZipWeave) solve separately a different optimization

problem for each local subregion, which make them impractical for city-wide signal maps.

Apart from the scalability, geostatistics have additional limitations. For example, these

methods (e.g., OK, OKD, ZipWeave [59, 19, 33, 33]) cannot naturally incorporate additional

dimensions such as time, frequency, hardware and network information (since the optimization

problem would become non tractable) as our proposed ML model in Chapter 4 of this thesis

does. Furthermore, OK has time complexity u O(N3) which makes it non-efficient for real

world applications. A faster implementation of OK, namely Fixed Rank Kriging (FRK),

which considers antenna directionality characteristics has also been proposed [14]; however, (i)

the issue of adding easily additional features dimensions and (ii) fine-tuning of the correlation

matrix (semivariogram) per region, still remain.
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2.2.3 Data Driven Prediction (II): Machine Learning

Recent literature has started applying Machine Learning for signal (coverage) maps prediction.

Work in [29] uses deep neural nets (DNNs) along with detailed 3D maps from “light and

range detection data” (LiDAR) for LTE RSRP prediction; however LiDAR are expensive

to obtain and not always readily available. Supervised ML is also used in [39], which uses

Bayesian Compressive Sensing (BCS), to develop a framework for inference of missing signal

strength values jointly with users’ incentives control. However, BCS requires the fine tuning

of separate spatial and temporal correlation matrices for each different environment, which

could be computationally expensive and limiting for large scale signal strength prediction in

city-wide scale. The experimental results are limited to a couple of thousand data points and

a very small geographical area of just 7km2.

Localization and RSS modeling: RSS modeling [31, 72] is also important in the context

of mobile devices (a.k.a. UEs) localization [61] or other wireless sources localization [5, 4].

Interestingly enough, GPS-free [5, 4] or assisted-GPS (aGPS) location estimation has been

increasingly relying on wireless signal strength measurements; the latter tries to mitigate the

GPS’ battery impact and the former offers location estimation when GPS is not available at

all in the device [5, 4]. Although the final goal is slightly different, the fundamental goal

remains to provide a statistical model (i.e., an ML model) for the RSS measurements in

order to facilitate localization. This ML model could be used for prediction as well: e.g.,

assuming a Gaussian distribution for our data, the maximum likelihood estimation (MLE),

would be given by the mean value of our data.

Examples of state-of-the-art work in ML models for facilitating UE localization come directly

from a major cellular operator research lab [61, 49]. Work in [61] develops UE localization

algorithms based on UEs’ UMD records (e.g., RSRP, RSRQ, RSSI), where the LTE RSRP

likelihood is modeled via RFs, with training features only including the measurements’
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latitude and longitude. Similarly, [49] focuses on UE localization, given large scale UMD

records and builds synopsis of RF coverage maps in order to facilitate the online matching of

the RF measurements with the locations. The authors consider the grid size, compare model

driven maps vs. data driven maps and they conclude that RSRP can be modeled as a normal

distribution, N(µ, σ2), with parameters estimated from the data, but considering only spatial

coordinates as the features. In sharp contrast to the above, we use RFs with an extended

set of features, including but not limited to location, time, frequency, device and network

information specifically for the problem of LTE KPIs (e.g., RSRP) prediction and coverage

maps creation. Last but not least, other examples come from the field of robotics localization;

Gaussian processes (GPs) for spatiotemporal signal strength modeling have also been applied

for users’ localization [74] and location estimation via particle filters (PFs) estimators [5, 31]

has used RSS modeling. Gaussian Processes are computationally expensive (u O(N3)) and

similarly to geostatistics, cannot easily incorporate additional features.

Data Volume (Throughput) Maps: Apart from signal strength, state-of-the-art focuses

on constructing the mobile traffic volume map (i.e., KPI throughput) [77, 71]. Work in [77]

deploys DNNs to capture relations between neighboring input points and spatiotemporal

locality in feature representations as well as the current traffic trends. With a double

spatiotemporal neural networks (STN) technique the authors are able to predict accurately

throughput per location for the city of Milan. Similarly for throughput maps, work in [71]

uses long short-term memory units (LSTMs) for temporal modeling and global stacked

autoencoder (GSAE).

2.2.4 Tools and Datasets

Although there is an abundance of crowdsourcing platforms and studies (e.g., [53, 2, 68]),

the public available received signal strength (RSS) datasets are limited (e.g., [5, 46]) and
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they do not include any large scale LTE measurements. There is a number of measurement

tools that can collect cellular performance measurements from end-devices. Some of them are

commercial/proprietary (e.g., Speedtest.net), but some are made available by the research

community. One significant effort in the latter category is Mobilyzer [53] and Mobiperf-

App [40], whose library allows active and passive measurements. However, neither includes

some key features used in this thesis (such as the cell-IDs) and precise location information

nor all the LTE KPIs used in this thesis for prediction.

Given the lack of publicly available datasets for LTE performance (KPIs/signal strength),

we developed a tool for collecting the Campus dataset ourselves, and the NYC and LA

datasets used in this thesis were provided to us by a mobile data analytics company. To

the best of our knowledge, this is the largest of its kind used for LTE signal (coverage)

maps prediction at metropolitan scale, and provides novel insights into city-wide prediction.

They contain 10.9 million LTE data points in areas of 300km2 and 1600km2 for NYC and

LA respectively, instead of at most a couple of tens of square kilometers in prior work

[59, 39, 19, 29] and a couple of dozens of thousands measurements at maximum [33, 19]. We

defer to Chapter 3, for background on measurements collection technqieus, the design of our

crowdosourcing system, as well as the external mobile analytics dataset.

Spectrum Monitoring - Cognitive Radios. A category of work related to signal

strength, but not directly related to the development of prediction algorithms of the signal

maps themselves, is spectrum monitoring [52, 80] of cellular bands, TV bands [79], radar

bands etc. and cognitive radio modeling [54]. This body of work utilizes GNU USRP,

and/or usb-dongles (RTL-SDR) in smartphone for signal strength and related spectrum

measurements. The Specsense framework, which was discussed earlier for the development of

geostatistics methods, firstly developed a spectrum sensing platform with RTL-SDRs and

USRP devices in [18].
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Machine Learning Methodology. There is an extensive body of work in ML related

to the prediction of missing values from historical data. We review the algorithms where

appropriately. Work in [45] utilizes importance sampling to modify the training procedure

(more specifically the order of the data in the stochastic gradient descent) to improve

prediction. In sharp contrast, we utilize importance sampling to define general reweighted

error metrics and to handle the problem of the mismatch between the training and the target

distribution problem (a.k.a. dataset shift [67]).
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Chapter 3

Datasets

“Dataism”, is the new mindset of Big Data,

where information flow is “essential” and the

“supreme value”.

Yuval Noah Harari, “Homo Deus”

3.1 Overview

We needed realistic datasets in order to study the problem of mobile coverage map prediction.

In this chapter, we present the two types of mobile LTE network datasets used throughout

this thesis and the relevant crowdsourcing system we built to collect LTE measurements.

Table 3.1 summarizes the two types of datasets used in this thesis: the first is a campus

dataset and the second consists of two city-wide datasets from NYC and LA. The former was

The material in this chapter is based on the poster A system for crowdsourcing passive mobile network
measurements by E. Alimpertis, and A. Markopoulou. presented in the Poster session of the 14th USENIX
NSDI Conference, 2017 Boston and the paper “City-Wide Signal Strength Maps: Prediction with Random
Forests” by E. Alimpertis, A. Markopoulou, C. T. Butts and K. Psounis, published in the ACM Proceedings
of World Wide Web Conference (WWW’19), May 13-17, 2019, San Fransisco, CA, USA. ACM, NY, USA,
7 pages, https://doi.org/10.1145/3308558.3313726. © 2019 IW3C2 (International World Wide Web
Conference Committee), published under Creative Commons CC-BY 4.0 License.
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Dataset Period Areas Type of Measurements Characteristics Source

Campus
02/10/17 -
06/18/17

Univ. Campus
Area u 3km2

LTE KPIs: RSRP, [RSRQ].
Context: GPS Location, timestamp, dev, cid.

Features: x =
(
lxj , l

y
j , t, dev, out, ||~lBS −~lj ||2

)
No. Cells = 25
No. Meas u 180K

Density ( N
m2 )

Per Cell: 0.01 - 0.66
Overall Density: 0.06

Ourselves

NYC & LA
09/01/17-
11/30/17

NYC Metropolitan
Area u 300km2 LTE KPIs: RSRP, RSRQ, CQI.

Context:
GPS Location, timestamp, dev, cid, earfcn.
Features:

x =
(
lxj , l

y
j , t, cid, dev, out, ||~lBS −~lj ||2, freqdl

)

No. Meas NYC u 4.2M
No. Cells NYC u 88k
Density NYC u 0.014 N

m2

Mobile
Analytics
Company

LA metropolitan
Area u 1600km2

No. Meas LA u 6.7M
No. Cells LA u 111K
Density LA u 0.0042 N

m2

Table 3.1: Overview of the Datasets used in this Thesis.

collected by ourselves and the crowdsourcing module was designed as part of AntMonitor

network monitoring tool [1]. The latter dataset, was provided by a major mobile analytics

company and includes city-wide collected datasets from NYC and LA metropolitan areas.

These two real-world datasets are among the largest used in the literature, thus providing us

with unique opportunities to evaluate coverage maps prediction in a city-wide scale. The

design of the crowdsourcing system itself helped us to gain insights and understand further the

practical implications of such systems (e.g., sampling strategies) and thus focus on handling

and mitigating these effects (see Chapter 5).

In Section 3.2, we present our system and in Section 3.3 we provide an overview of the

datasets generously provided to us by a major mobile crowdsourcing company. Section 3.4

provides the common description of the datasets such as the measurements’ information and

how we store all the data under a common format. Both datasets are anonymized, i.e., we

neither collect nor store any user identities or pseudo-ids.

3.1.1 Background

We already reviewed some of the available datasets and tools for cellular measurements

in Chapter 2 (see Section 2.2.4). Next, we present a taxonomy of the potential collection

strategies and systems for collecting data for coverage maps available in the literature.

Broadly speaking, collection of coverage maps data can be done either (1) inside the network
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Network
Infrastructure

MySignals
[3]

Speedtest.net,
Mobilyzer [53]

Our Work in
AntMonitor

Granular Large-Scale
Infrastructure Access Free 7

Precise Location 7

Network Edge 7

Cellular Info
WiFi Info 7 7 7

Active Throughput 7 7 7

Passive Throughput
per TCP/IP flow

7 7

NO Data Overhead 7

NO User Action 7

Table 3.2: Network Performance Monitoring Approaches Compared to Our System.

infrastructure or (2) at the network’s edge; using (2a) passive measurements or (2b) active

measurements collection. Representative examples for (1) include (i) large scale TCP/IP

flows stats collection at cellular operator’s infrastructure [26] and (ii) LTE UMD (i.e., RSRP,

RSRQ measurements) collection in [49] at the LTE eNodeB/EPC. It should be noted that

UEs usually report UMD to the LTE eNodeB through feedback or control channels and

used in various LTE operations. Although gathering data at the infrastructure offers certain

advantages such as large scale and granular measurements, it misses information from the

network edge/wireless link (neither precise location information is included nor all UMD

data are readily available to be reported) and it requires access to the cellular operators’s

infrastructure.

Passive measurements at network’s edge capture entirely the wireless link, can offer precise

UEs location and be deployed on users’ smartphones (i.e., the UEs). For example, the

same work that collected LTE UMD at network infrastructure [49], it also collected GUMD

(GPS-tagged UMD) by installing proprietary software at a subset of the UEs and collect

them in a central server (completely independently of the UMD reports)1. Mobile analytics

1Very interestingly, the purpose of the GUMD collection was to train location estimation algorithms in
order to label the rest of the UMD data (either GPS-less services or further evaluation).
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companies perform also passive measurements (e.g., OpenSignals [55], Rootmetrics [63] and

Tutela [70]) in order to collect signal strength and passive TCP throughput (measuring bytes

traffic over time) and offer online coverage maps. This strategy offers the advantage that

does not need access to the operators infrastructure and also offers granular measurements at

network’s edge, however scalability is a big issue2. Some active measurements 2(b) rely on the

individual user to trigger the data collection (as the most representative examples we refer

to the popular speedtest.net or mobilyzer [53]). A comparison of our own crowdsourcing

system with the existing methodologies and taxonomy is summarized in Table 3.2.

3.2 The UCI Campus dataset

As mentioned in Section 2.2, there are no large scale LTE datasets publicly, therefore, we

decided to move forward with the design of our own system and make it available to the

research community3. The goal is twofold; firstly we gain low-level understanding of the

LTE network architecture/KPIs themselves and know-how around the collection strategies,

including how the biased sampling strategies could emerge in larger scale datasets from mobile

analytics companies. Second and most important, we are able to collect a large number of

measurements with different characteristics from the larger datasets that we were able to

obtain from industry partners.

3.2.1 Dataset Overview

We collected the first dataset at University of California, Irvine (UCI) campus. This Campus

dataset is relatively small: 180, 000 data points, collected by seven Android devices that

2Lot of similar research studies just include dozens of users as we already reviewed in Section 2.2.4; that’s
the importance of accessing mobile analytics’ company datasets.

3https://github.com/UCI-Networking-Group/AntMonitor/
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Figure 3.1: System overview, design and data flow in our passive network monitoring
crowdsourcing too, implemented as part of AntMonitor. In this thesis, the cellular signal
strength (e.g., LTE RSRP) is used for mobile signal maps prediction.

belong to graduate students and faculty members, using 2 cellular providers. In terms

of geographical area, it covers approximately 3km2, as the devices move between student

housing, offices and other locations on campus. Some examples are depicted in Fig. 3.2.

Although small, this is a dense dataset, with multiple measurements over time on the same

and nearby locations. Furthermore, the cells in this dataset exhibit a range of characteristics:

(i) the number of measurements N per cell varies from a few thousand up to 50 thousand;

(ii) the measurement density (i.e., N
sq m2 ) also varies from 0.01 to 0.6; (iii) the measurements

in some cells are concentrated in a few locations while in some others they are dispersed.

These properties (number of measurements, density and dispersion as well as the mean and

variance of the LTE RSRP) and how the affect the signal maps prediction are reported later

in this thesis; please see Section 4.5.2 and Table 4.4.

3.2.2 Crowdsourcing System for Data Collection

Fig. 3.1 presents the design of our measurement system. Our system is a fully functional

end-to-end crowdsourcing system which allows the collection of passive network measurements

such as wireless received signal strength (WiFI RSSI or LTE RSRP), various others LTE KPIs
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MNCarrier-1 LTE 
RSRP (dBm)
TAC: xx640
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Legend
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(a) Campus example cell x355: small density (0.12) more dispersed data (573).

MNCarrier-1 LTE 
RSRP (dBm)
TAC: xx640
Cell-ID: x204

RSRP 
(dBm) 
Legend

250m

(b) Campus example cell x204: high density (0.66), low dispersion (325).

MNCarrier-1 LTE 
RSRP(dBm)
MNC: 260
TAC: xx640
Cell-ID: 21026306

RSRP 
(dBm) 
Legend

(c) Campus example cell x204: small density (0.011), more dispersed data (701).

Figure 3.2: LTE RSRP Map Examples from Campus dataset. Color indicates RSRP value.

(e.g., RSRQ), TCP/IP layer measurements such as throughput as well as other contextual

information (location, time etc.). Our system handles the data transfer to a central web-server
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for permanent storage via a custom designed web-service via JSON. A comparison of our

crowdsourcing system with state-of-the-art network measurements approaches is summarized

in Table 3.2.

Measurements on the Device. On the device, we incorporate our network monitoring

module in AntMonitor as shown in Fig. 3.1 which uses the Android APIs to obtain LTE

information: cellular LTE RSRP, RSRQ, CQI, network carrier, radio access technology (RAT)

to confirm that the network is LTE, and the relevant serving cell information cID as defined

earlier. Each measurement is initiated by Android’s notifications/callbacks for network and

location changes (e.g., RSS or cell status change) and is also piggy-backed on location change

notifications from other apps, in order to achieve a low energy footprint. Rich contextual

information is also recorded at the time of the measurement, including: timestamp, device

hardware type (dev) and location via the Google Location API, which offers both precision

and low energy consumption. Several of the app’s screens such as the signal map for LTE

RSRP on user’s device are shown in Fig. 3.3. It should be noted at this point that these

are relatively easy strategies to be implemented in order to minimize the battery overhead

(therefore is expected to be present in real systems), however they can introduce sampling

biases as we will see later in Section 3.3 and Chapter 5.

The various internal sub-modules (e.g., cellular monitor, WiFi Monitor and location monitor)

are attached to a background “Intent” Service offered by Android APIs for such operations.

This “NetworkPerformanceLoggingService” is also responsible for coordinating the local

caching of the data and the forwarding to the central web server.

Storing, Uploading and Processing Measurements. The measurements are saved

locally in an SQLite database, by utilizing an object-relational mapping (ORM) library

for automated conversion between Java objects and Sqlite relational tables. ORM is an
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(a) Main Screen. (b) Nearby WiFi Info. (c) Cellular Connection. (d) UE’s LTE RSRP Map.

Figure 3.3: AntMonitor passive network performance module user space app GUI examples.

middleware which automatically maps runtime Java objects to SQLite relational tables, thus

provides easy and efficient data manipulation, without complex SQL statements. Our systems

converts the collected data to Javascript Object Notation (JSON) format4 and uploads them

to a MongoDB on our server on the LogServer, per user’s request or when the phone is

charging and on WiFi.

MongoDB offers several advantages: it scales well, better than traditional database systems,

it supports spatio-temporal operations, and allows schemaless storage, which is necessary

given the heterogeneous parameters across devices. The data are stored for further off-line

processing (e.g., analysis, feature generation and machine learning for prediction for signal

maps in the following chapters) and visualizations (e.g., 3.4). We have anonymized the

dataset by assigning a random id at the user’s device, therefore, we cannot track back the

original users. No personally identifiable information is stored or used in this thesis and the

appropriately IRB exemption has been obtained.

4JSON is a lightweight data-interchange protocol widely used for communication by heterogeneous
platforms.
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Figure 3.4: Performance maps from the university campus. Low RSRP (loc. 1) does not
necessarily mean low cellular throughput (for the same carrier).

Signal Maps - LTE RSRP Measurements. This has been primarily the goal of our

data campaign and our main use case; we collected the UCI Campus dataset in a period of

4 months, from 7 users in the UCIrvine campus. Fig. 3.2 depicts LTE RSRP maps for UCI

campus for three distinct cells (i.e., unique cID) with different characteristics. For example,

Fig. 3.2a shows the LTE RSRP map for cell x355 which has small density and more dispersed

data (i.e., more uniformly distributed in space). On the contrary, Fig. 3.2b depicts a map for

a cell that the collection was primarily performed on a specific location (higher density, less

dispersed data). Apart from the LTE RSRP measurements RSS metrics from other wireless

networked, when available, were collected as well, such as RSS data for 3G networks and

RSSI, Frequency and WiFi SSID for WiFi network.

TCP/IP Layer & WiFi Passive Measurements: A secondary use case and a side

benefit of our system is that we are capable of collecting passively TCP/IP layer measurements

such as byte counts per TCP flow. First, we utilize our module to compute passively the

smartphone’s throughput and we compare it to a state-of-the-art active monitoring tool

(Speedtest). Table 3.3 shows that the values are very close, but our passive approach does

not incur any data overhead. Resources usage by these two methods is shown in Table 3.4.

Fig. 3.4a also reports the average throughput of WiFi and LTE networks and compares it
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Exp # 1 2 3 4 5 6 7

AM: W=5 21.24 29.26 22.83 27.01 30.75 26.84 26.14
Speedtest 19.96 28.42 22.39 28.74 31.66 26.98 27.22

Table 3.3: Throughput (Download Mbps): Active (using Speedtest) vs Passive (using Ant-

Monitor: AM) measurements. First, we ran multiple Speedtests, with 5 min gaps, from the
same location, and we list the throughput mentioned by Speedtest. Second, we computed
the throughput using AntMonitor logs, over a window of 5 sec. Our approach is close to
Speedtest but does not incur any measurement overhead. For a fair comparison in this table,
we passively monitored the Speedtest packets using AntMonitor. In the wild, throughput
computations can be made by counting the bytes of actual traffic sent over time.

to LTE RSRP. Interestingly, we observe that low RSRP does not necessarily result in low

throughput. Fig. 3.4b depicts recorded WiFi measurements and the utilized WiFi frequency

channels. Further measurements such as daily patterns of MB usage per user and per

application are available in [6].

Metric Data Overhead Memory CPU Battery

Speedtest 50 MB 116 MB 14.7% −0.5%
AntMonitor 0 MB 134 MB 43.4% −0.7%

Table 3.4: Resources Utilization for AntMonitor and Speedtest per Exp.

3.3 NYC and LA datasets

3.3.1 Dataset Overview

We also use two much larger datasets generously provided to us by a Mobile Crowdsourcing

Company: 10.9 million measurements in total, covering approx. 300km2 and 1600km2 in the

metropolitan areas of NYC and LA, respectively, for a period of 3 months (Sep’17 - Nov’17).

There are approx. 88, 000 and 111, 000 unique cell global identifiers (CGIs), as defined earlier,

in the NYC and LA, respectively.5 Other key characteristics are summarized in Table 3.1.

5It should be noted that many of these cells are either overlapping for extra capacity (i.e., different
network settings such as frequency etc.) and many of them are being served by the same cell tower (i.e.,
different sectors). Moreover, cellular providers share their infrastructure with virtual providers (i.e., MNVOs)
which usually have unique MNCs and subsequently create new CGIs.
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(a) NYC Manhattan LTE TA. (b) NYC: zooming in Manhattan Midtown (Time Square).

Figure 3.5: LTE RSRP Map Examples from NYC dataset, for a group of LTE cells in the
Manhattan Midtown area. Different colors indicate different cell IDs (i.e., cID).

Examples of the data points locations from NYC Midtown Manhattan neighborhood are

depicted in Fig. 3.5 and Fig. 3.6 respectively; the density of the particularly neighborhood

lead the cellular operators to deploy many distinct cells as demonstrated in the figures. Signal

maps examples are also shown in Fig. 3.7; Fig. 3.7a shows the RSRP values in Eastern NYC

(Brooklyn) nearby JFK and Fig. 3.7b depicts the signal map, again for LTE RSRP, for the

west part of San Gabriel Valley in LA metropolitan area. Please note that RSRP values

are locally spatially correlated overall in terms of few blocks, however, there is also large

variability across the map because of the random nature of the wireless channels.

(a) NYC Manhattan LTE TA-
30000 Feet View.

(b) NYC Coverage (RSRP) Maps: zooming in Manhattan Midtown (Time
Square) for some of the available cells.

Figure 3.6: NYC dataset LTE RSRP Map Examples: Color indicates RSRP value
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(a) East NYC nearby JFK: Example of Signal Map.
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(b) LA West San Gabriel Valley LA Signal Map.

Figure 3.7: NYC dataset LTE RSRP Map Examples: Color indicates RSRP value.

While these are large datasets and cover a big span of space and time, they are also relatively

sparse in space; consider for example the density per cell (an average of 300 measurements

per cell) or per cell tower (495 measurements per cell tower). There is also large heterogeneity

across cells: we consider cells with more than 100 measurements and the maximum number

of measurements per cell is 17424. Fig. 3.8 shows the CDF of the measurements per unique

cID, as well as grouped by cell tower as defined above. Furthermore, there is sparsity in

time: unlike the Campus dataset, there are fewer measurements for the same location. As

we mentioned, no personal information or user identities are included in this dataset; our

focus is on predicting signal strength and not on users.

To the best of our knowledge, these are the largest datasets used to date for signal maps

prediction (e.g., LTE RSRP), in terms of any metric (number of measurements, geographical

scale, number of cells). As such, they provide novel insight into the problem at a scale that is

relevant to operators and crowdsourcing companies, which is orders of magnitude larger than

the scale previously considered in RSS prediction. Work in [19] uses 1500 locations samples

from cellular networks for an area u 15km2, a university campus area in [59] and ∼ 1000

locations sampled at a 7km2 urban area in [39]. Work in [33] considers 20, 000 data points

over approx. 20km2 in Edinburgh. Work in [29] collected 10 million measurements but in
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Figure 3.8: NYC and LA datasets: Number of measurements per cID and per cell tower
(i.e., cID with common prefix). We omit cells with less than 100 measurements.

much more limited geographical scale (3 neighborhoods in Dallas) and does not handle the

effects of biased sampling as we do in this thesis, but rather focuses on minimizing the MSE.

3.3.2 Data Collection

This dataset was collected by a major mobile crowdsourcing and data analytics company

and shared with us. RSS and other LTE KPIs have been collected through a measurement

SDK, which is integrated into popular third party apps. The company crowdsources from a

large user base, but they also try to collect measurements infrequently so as to not burden

end-users, which explains the smaller overall density of the dataset compared to our Campus

dataset, as it can be seen in Table 3.1. The observed data sparsity is a result of good

sampling practices, i.e., low overhead and battery usage for the users. Each location data

point is accompanied by rich network and contextual information, except for device or other

personal identifiers, which are not included in the dataset, for privacy-preserving reasons.
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The details of the company’s collection methodology are proprietary and not available to

us. In Fig. 3.7b, we can see that commute traces (note the roads-highways trajectories) are

over-sampled compared to nearby residential blocks where data are mostly absent. Similarly,

for Eastern NYC in Fig. 3.7a the sampling density on the highway leading to JFK is much

higher than nearby residential blocks (we refer to chapter 5 for more details on that). This

sampling distribution seems similar to that observed in other crowdsourcing systems, i.e.,

collect data when a notification/callback for a location change by another application takes

place in Android OS. This strategy to collect data by piggy-backing on location changes

notifications by other apps when the phone is power plugged, takes advantage of users

commutes habits (e.g., using Google Maps for GPS navigation) and offers a low energy

footprint but can also lead to sampling biases.

The observation that even good measurement and sampling practices in crowdsourcing

systems (i.e., those minimizing user overhead, cost and battery usage) can lead to sampling

bias and sparse measurements, further motivates our interest in developing techniques for

predicting signal strength values from limited data (see Chapter 4). We also design techniques

to handle the effects of sampling bias later (see Chapter 5).

3.4 Description of Datasets

For the purposes of signal maps prediction, we use the same subset of information from all

datasets, i.e., RSRP, RSRQ, CQI values and the corresponding contextual information -

features defined earlier in Table 3.1. These features include LTE cell information, EARFCN

(downlink LTE frequency channels), device hardware information, connectivity status, time

and location. A comprehensive list of all the measurements’ fields used in this thesis and

their description are included in Table 3.5. It is worth mentioning that the two data sets have

distinct attributes. On the one hand, although Campus dataset covers a smaller geographical

41



KPI GeoJson Schema Key Description
Timestamp properties.time.timestamp Timestamp of the measurement.
Timezone properties.time.timezone Timezone Recorded.
Latitude (lx) geometry.coordinates.1 Latitude reading by Android’s Location APIs.
Longitude (ly) geometry.coordinates.0 Longitude reading by Android’s Location APIs.

RSRP (yP ) properties.lteMeasurement.rsrp
Reference Signal Received Power: The average
received power in the reference LTE subcarriers.

RSRQ (yI) properties.lteMeasurement.rsrq
Reference Signal Received Quality:
Interference indicator ≡ N x RSRP / RSSI.

CQI (yC) properties.lteMeasurement.cqi
Channel Quality Indicator for LTE connections,
which considers several factors.

PCI properties.lteMeasurement.cqi
Physical Cell Identifier: It is being utilized
internally by the LTE protocol stack.

TA properties.lteMeasurement.ta
Timing Advance: Signal’s Time of Arrival
reported by Android.

EARFCN (freqdl) properties.lteMeasurement.earfcn
LTE frequency band a.k.a. E-UTRA
Absolute Radio Frequency
Channel Number In LTE

MCC properties.cell.mcc Mobile Country Code.
MNC properties.cell.mnc Mobile Network Code.

TAC properties.cell.tac
Tracking Area code: Unique identifier
of a group of neighboring cells.

CID properties.cell.cid Cell-ID: Identifier of a cell in a TAC.

RAT properties.connection.rat
Radio Access Technology: The current
technology of the network (e.g. LTE).

Network Carrier properties.connection.netCarrier The name of the Cellular Provider.
Phone Connectivity properties.connection.connectivity Type of Internet Connectivity (Mobile or WiFi).
Device Model (dev) properties.device.model Hardware Name of the Device Model.
Android API properties.device.api Current version of Android API.
Android OS properties.device.os Name of the Android Operating System
Altitude properties.locationMetaD.altitude Altitude reading by Android’s Location APIs.
Accuracy properties.locationMetaD.accuracy Accuracy of the location reported.
Speed (out) properties.locationMetaD.speed Moving speed of the device.
Bearing properties.locationMetaD.bearing Bearing of the device.

Table 3.5: Detailed Description of the Measurements of our Datasets: LTE KPIs (Key
Performance Indicators), contextual information (time, location) and various other fields.
Please note that the unique cell identifier cID consists of the concatenation of MCC, MNC,
TAC, CID.

area and some fields contain limited or no data (e.g., LTE CQI, EARFCN and location

altitude), interestingly offers very dense samples on time and space. On the other hand, NYC

and LA datasets cover a larger geographical area and offer a richer measurement collection

including EARFCN, CQI, RSRQ etc. but the data are sparser.
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Data Format. Measurements from both data sets are converted to GeoJSON format,

which offers various advantages (lightweight JSON, compatibility with geospatial software,

compact and intuitive representation of location information). A GeoJSON example with

some of the KPIs fields (obfuscated) follows:

{” type ” : ” Feature ” , ” p r o p e r t i e s ” : {

”timestamp” : ”2017−09−11T17 : 5 4 : 3 5EDT” ,

” lteMeasurement ” : {” r s rp ” : −89,

” r s r q ” : −20, ” cq i ” : 9 ,

” pc i ” : 169 , ” ea r f cn ” : 9820} ,

” c e l l ” : { ” c i ” : xxxxx710 , ”mnc” : 410 , ”mcc” : 310 ,

” tac ” : xx22 , ”networkType” : 4} ,

” dev i c e ” : {” manufacturer ” : ”samsung” ,

”model” : ”SM−G935P” , ” os ” : ” android70 ” } ,

” locationMetaData ” : {” c i t y ” : ”New York” ,

” accuracy ” : ”x” , ” v e l o c i t y ” : ”x” }} ,

” geometry” : {” type ” : ” Point ” , ” coords ” : [−73.9xx , 40 .7 xx ]}}

Listing 3.1: GeoJSON example with LTE KPIs and location, in MongoDB (obfuscated for presentation).

Properties of the Datasets. For each dataset, the following metrics describe characteris-

tics that affected signal maps prediction, as shown later in this thesis.

• Data Density: This is the number of measurements per unit area, i.e., N
m2 .

• Cells Density: Number of unique cells (cids) per unit area, i.e., |C|
km2 .

• Dispersion: In order to capture how concentrated or dispersed are the measurements in

an area, we use the spatial distance deviation (SDD) metric, defined as the standard

deviation of the distance of the data points from geometric mean center, i.e., (X, Y ).

SDD =

√∑N
i (lxi −X)2

N
+

∑N
i (lyi − Y )2

N
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Higher SDD, means that geospatial points are more widely dispersed around the center.

OpenCellID. As we defined earlier in Table 3.1 and we will see later in the methodology,

we need distance between the transmitting antenna and the receiver’s location (where signal

strength is measured or predicted), ||lBS − lj||2, in order to use it as a feature or in the

prediction directly. To that end, we lookup the location of the base station, ~lBS, using the

public APIs of a popular online crowdsourced database opencellid.org. This is the only

external information we need in addition to the main RSS datasets.

3.5 Summary

In this chapter, we presented the LTE mobile network measurements datasets we use in

this thesis, namely (i) the UCI Campus dataset and (ii) NYC and LA datasets. We

also presented the crowdsourcing system we designed in order to collect Campus data and

important lessons we learned throughout designing it. The first dataset is collected on a

university campus of approx. 3km2, contains cells with a wide range of characteristics and

interestingly offers very dense samples on time and space. The second dataset consists of much

larger datasets from NYC and LA metropolitan areas, which contain approx. 10 million LTE

measurements and covering areas of approx. 300km2 and 1600km2 respectively. Although

these datasets are much larger, they are also sparser in space and time and preliminary

observations revealed the need to deal with sampling bias. Interestingly, it was a validation of

what was expected considering our experience designing our own system; devices are typically

collect and send data while plugged on power and GPS applications are pushing location

updates (thus offer low battery footprint) leading to over-sampling roads and highways. We

further described the common characteristics, contextual information and features we store

for both of these LTE datasets.
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Although the NYC and LA datasets are proprietary and cannot be released, we were lucky

to be able to study them and obtain useful insights. We are in the process of releasing

the Campus dataset (and the code we use to collect it) in order to allow the research

community to experiment further with signal maps prediction or other tasks. To the best

of our knowledge, the Campus dataset is among the largest publicly available data of RSS

metrics for LTE networks. We also packaged our crowdsourcing system as an Android library

and will make it open source for the community to maintain and evolve.
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Chapter 4

City-Wide Mobile Coverage Maps

Prediction with Random Forests

All Predictive Models are Wrong, but, some are

useful and work.

George, Box

4.1 Overview

As we reviewed in the introduction and Chapter 2, mobile coverage maps are of great

importance to cellular operators for network planning, however they are expensive to obtain,

usually limited in scale, and possibly inaccurate in some locations. Apart from the mobile

coverage maps by popular mobile analytics companies, there are myriad other applications

for coverage maps. Examples include network management, maintenance, upgrades, and

The material in this chapter is based on the paper “City-Wide Signal Strength Maps: Prediction with
Random Forests” by E. Alimpertis, A. Markopoulou, C. T. Butts and K. Psounis, published in the ACM
Proceedings of World Wide Web Conference (WWW’19), May 13-17, 2019, San Fransisco, CA, USA. ACM,
NY, USA, 7 pages, https://doi.org/10.1145/3308558.3313726. © 2019 IW3C2 (International World
Wide Web Conference Committee), published under Creative Commons CC-BY 4.0 License.
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operations, e.g., in order to determine if and where to deploy more cells, to identify problems

and troubleshoot in self organizing networks SON, e.g., [36, 41].

Our goal in this chapter is to improve the tradeoff between cost (number of measurements) and

quality (i.e., error) of signal maps via signal strength prediction from limited measurements.

In general, as we reviewed in Chapter 2, there are two approaches for signal strength prediction:

propagation models and geospatial interpolation. The latter is inherently limited to spatial

features and does not take into account various critical aspects of the problem while the

former requires extensively a priori modeling of the environment. Our approach falls in the

broader data-driven category and we employ a powerful machine learning framework that

naturally incorporates multiple features.

More specifically, the contributions of this chapter are the following:

1. Prediction framework based on Random Forests (RFs). We develop a powerful

machine learning framework based on random-forests (RFs). We consider a rich set of

features including, but not limited to, location, time, cell ID, device hardware, distance from

the tower and frequency band; all of them affect the wireless properties and the calculation of

the signal strength on the device. This is the first time that RFs have been applied to the

coverage maps estimation problem. Prior work on data-driven prediction for signal maps was

primarily based on geospatial interpolation techniques [50, 19, 59], which do not naturally

extend beyond location features. To the best of our knowledge, this is the first time that

location, time, device and network information are considered jointly for the problem of

coverage maps prediction. We assess the feature importance and we find cell ID, location,

time and device type to be the most important. We show that our RFs-based predictors

can significantly improve the tradeoff between prediction error and number of measurements

needed, compared to state-of-the-art data-driven predictors. They can achieve the lowest

error of these baselines with 80% less measurements; or they can reduce the RMSE (root

mean square error) by 17% for the same number of measurements.
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2. Device Hardware Information. Prior work has ignored important device, radio

frequency and hardware’s receiver information. First, each device calculates its signal strength

(e.g., LTE RSRP) differently (i.e., proprietary algorithm in the device’s cellular modem).

Second, receiving sensitivity (the minimum RSRP for a feasible wireless communication)

changes per device because each wireless receiver has different noise figure (NF) [5]. In

this work we perform prediction per device (device hardware is used as a feature) and we

incorporate different coverage thresholds per device (see Chapter 5), therefore we take into

account both of the aforementioned phenomena.

3. Evaluation with large-scale real-world datasets. Our study leverages two types of

real-world datasets: (i) a small but dense Campus dataset collected on a university campus;

and (ii) several large but sparser NYC and LA datasets, provided by a mobile data analytics

company. Examples are depicted in Fig. 1.4 and information about the datasets is provided

in Table 3.1. We use these datasets to evaluate and contrast different prediction methods and

gain insights into tuning our framework. For example, cell ID is an important feature in areas

with high cell density, which is encountered in urban areas such as Manhattan Midtown; in

contrast, cell ID should be used to train cell-specific RFs in suburban areas. Furthermore,

time features are important in cells with less dispersed measurements, i.e., concentrated in

fewer locations. To the best of our knowledge, the NYC and LA datasets are among the

largest used to date for RSRP (or other signal strength) prediction, in terms of any metric

(number of measurements, geographical scale, number of cells etc.). They contain 10.9 million

LTE data points in areas of 300km2 and 1600km2 for NYC and LA respectively, instead of at

most tens of km2 and tens of thousands of measurements in [33] or just three neighborhoods

of Dallas [29] or smaller scale in [59, 50, 39, 19]. Thus, we provide novel insights into city-wide

coverage maps prediction.
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Outline. The rest of this chapter, is organized as follow. Section 4.2 recaps the coverage

maps definitions and the problem statement for this chapter. Section 4.3 reviews the baseline

prediction methods which reveals simultaneously fundamental properties of the wireless signal

strength. In Section 4.4, we present our random forests-based approach and the rationale

behind our modeling. In Section 4.5, we assess the feature importance for our framework and

we provide evaluation results of our methodology compared to the state-of-the-art. Finally,

Section 4.6, summarizes the findings of this chapter.

4.2 Problem Recap

We have already described and coverage maps problem domain and our goals in in Chapter 2

(see Sec. 2.1.3). To recap, a coverage map (a.k.a. signal map) is a collection of N measurements

(xi, yi), i = 1, 2...N , where the label yi is the signal strength measurement collected along

with the features xi that include the location, time, device, network information etc.

In this chapter, our goal is to develop a predictor for the missing values yi, i.e., to predict

the signal (coverage) map value yP= y at a given location, time, and potentially considering

additional contextual information (i.e., the feature space x; see recap in Table 3.1 and to be

analyzed in Sec. 4.4.2), based on available measurement historical data either in the same

cell cID or in the same LTE TA. In this chapter, we showcase prediction with LTE RSRP

yP= y, which is arguably the most important KPI for LTE networks assessments (e.g., define

coverage), however our predictors can be applied to any other signal strength (RSS) metric

(e.g., RSRQ or CQI in Chapter 5).
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(1) Model Based
(Radio Frequency
Propagation Model)

1(a) LDPL
(Log Distance

Path Loss Eq. 4.1)

1(b) LDPLknn

(heterogeneous PLE)

1(c) WINNER I/II [16], COST 231 [25],
Ray Tracing [76], Hata Model [66] etc.

(2) Geostatistics
see Sec. 4.3.2

2(a) OK
Ordinary Kriging

2(b) OKD
OK Detrending

2(c) OKP, OKPD
OK Partitioning Detrending

Data

Driven
(3) Random Forests

3(a) RFsx,y
Spatial Features

x= (lx, ly)[61]

3(b) RFsx,y,t
Spatiotemporal

x = (lx, ly, d, h)

3(c) RFsall
Full Feats

x = (lx, ly, d, h, dev, cid, ||lBS − lj ||2, freqdl, out)

Table 4.1: Overview of RSRP Prediction Methodologies evaluated in this chapter. Random
Forests (RFs) methods proposed in this chapter are marked in bold. Methods in regular font
are prior art, evaluated as baselines for comparison. Methods in light gray font are reviewed
but not implemented in this thesis. Please also see Sec. 2.2 for a detailed review of prior work
and more examples from each family of predictors and their limitations.

4.3 Background and Baseline Models

We begin by presenting the most representative state-of-the-art prediction methods, which

will be used as baselines in this chapter. Table 4.1 summarizes the family of predictors

for RSS which can be used to generate coverage maps as well as put our proposed work

into perspective. There is a large literature on propagation models [16, 76, 25], which are

reviewed in detail in Chapter 2 (see Sec. 2.2.1). They model the received signal strength given

the location of receiver, transmitter and the propagation environment. As a representative

baseline from the family of model-based predictors, we consider the Log Distance Path Loss

(LDPL) propagation model, which is simple yet widely adopted in the literature. Additionally,

it provides further understanding of the (i) low-level RSS statistical properties and (ii) the

wireless network fundamentals that should be taken into account for the prediction task.

4.3.1 Model Based Prediction (LDPL)

The Log Distance Path Loss (LDPL) model predicts the power (in dBm) at location lj at

distance ||lBS − lj||2 from the transmitting basestation (BS) or cell tower, as a log-normal
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random variable (i.e., normal in dBm) [60, 5]:

y
(t)
cID (lj) = P

(t)
0 − 10nj log10

( ||lBS − lj||2
d0

)
+ ω

(t)
j . (4.1)

The most important parameter is nj, i.e., the path loss exponent (PLE), which has typical

values between 2 and 6. P
(t)
0 is the received power at reference distance d0, which is calculated

by using the free-space path loss (Friis) transmission equation for the corresponding downlink

frequency, gain and antenna directionality, and lBS the location of the transmitting antenna.

In its simplest form, the equation assumes antenna reception gain and base station antenna

gain equal to 0 dBi, but the application of an antenna directionality gain model as well as

mobile gain model is also possible as shown in [5]. The log-normal shadowing is modeled by

ω
(t)
j ∼ N(0, σ2

j (t)) (in dB), with variance σ2
j (t) assumed independent across different locations.

The cell (identified by cell ID cID) affects several parameters in Eq. 4.1, including P0, ωj,

the locations of transmitting (lBS) and receiving (lj) antennas. The simplicity of this model

lies in that it has only one parameter (the path loss exponent nj) to be estimated from the

measurements. Prior work [5] has shown that the PLE values and the time variant RSS

variance (σ2
j (t)) can be estimated by a large number of collected measurements. It should be

noted, that in real world setups, base stations’ transmission power changes according to the

network load and conditions [5], contributing to the time varying component of the equation.

We consider two cases.

Homogeneous LDPL: Much of the literature assumes that PLE nj is the same across all

locations. We can estimate it from Eq. (4.1) from all the training data points.

Heterogeneous LDPL-knn: Recent work (e.g., [19, 5]) has considered that PLE changes

across different locations. We considered various ways to partition the area into regions with

different PLEs, and we present the one where we estimate n̂j via knn regression, from the k

nearest neighbors, weighted according to their Euclidean distance (refer to as “LDPL-knn”).
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4.3.2 Geospatial Interpolation (OK-OKD)

State-of-the-art approaches in data-driven RSS prediction [19, 50, 59] have primarily relied

on geospatial interpolation (a.k.a. geostatistics). However, this approach is inherently limited

to predicting RSS from spatial features (lx, ly) and does not naturally extend to additional

dimensions and contextual information. We refer to Chapter 2 (Sec. 2.2.2) for a detailed

review of the related work. In this section, we present the best representatives of this family

of predictors, namely ordinary kriging (OK) [50] and its variants OK detrending (OKD) [19],

which are used as baselines for comparison in this chapter.

Ordinary Kriging (OK): It predicts RSS at the testing location lj = (lxj , l
y
j ) as a weighted

average of the K nearest measurements in the training set: yj =
∑K

i=1 λiyi. The weights λi

are estimated by solving a system of linear equations that correlate the test with the training

data via the semivariogram function γ(h), which defines the variance between two different

data points. Semivariogram γ(h) must be estimated by the training data for different values

of the lag h (i.e., the distance between the data points) and each different environment

requires different γ(h); i.e., distinct γ(h) for Campus and NYC and LA datasets. The

solution of the system is given by a Lagrange multiplier; more details for the derivation can

be found in [19].

Ordinary Kriging Partitioning (OKP): In [19], Voronoi-based partitioning was used to

identify regions with the same PLE and apply a different OK model in each region. This

is comparable to the heterogeneous propagation model. However, OKP solves separately a

different optimization problem for each local subregion, which make them impractical for city

wide signal maps.
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Ordinary Kriging Detrending (OKD) [19]: While OK typically assumes the same mean

value across locations1, this does not necessarily hold for RSS values. OKD incorporates a

simplified version of LDPL in the prediction in order to address this issue [19]. This can be

thought as a hybrid approach of data-driven (geospatial) and model-driven (LDPL). It is the

best representative of the geospatial predictors and serves as our baseline for comparison.

The basic steps of OKD are as follows: (i) OKD needs a transmitter location (we can use the

strongest RSS algorirthm [73] or the OpenCellID online DB) and computes the perceived path-

loss exponent ni at each training data point (ni = P0− yP i/ log10 di , where di = ||lBS− li||2).

(ii) After computing the mean PLE n̂, OKD computes L(yi) = yi − 10n̂ log10(di) and the

detrending component δi = yi−L(yPi ) for the training data points. (iii) Finally, OKD applies

OK to predict δj by learning with the data δi and predicts δj.

4.4 Prediction with Random Forests (RFs)

4.4.1 Formulation

In this chapter, we leverage a state-of-the-art machine learning (ML) framework: Random

Forests (RFs) regression. RFs is an ensemble of multiple decision trees [15], which provides

a good trade-off between bias and variance by exploiting the idea of bagging. RFs first build

multiple decision trees based on sub-samples of the training data and splits between nodes

using a random sample of features. The random forest is the combination (average) of the

individual trees. For regression, the objective is to minimize the MSE at the terminal leaf. A

coverage map (signal) value y (e.g., LTE RSRP) to be estimated can be modeled as follows,

1The first applications of geostatistics were interpolation for environmental measurements like humidity
and temperature.
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given a set of feature vectors x.

y|x ∼ N(RFsµ(x), σ2
x) (4.2)

where RFsµ(x), RFsσ(x) are the mean and standard deviation respectively of the RFs pre-

dictor (≡ f̂y(x)). The total variance of the prediction is equal to σ2
x = RFsσ(x) + σ2

RFs,

where σ2
RFs is the error (MSE) from the construction of the RFs itself (we refer to [38] for a

detailed decomposition of the variance’s terms). The final prediction ŷ = f̂y(x) = RFsµ(x) is

essentially the MLE (maximum likelihood estimate) since we assume Gaussian distribution of

the data2. Basically, the prediction is the mean of the training values at a terminal leaf node.

4.4.2 Features

Random Forests are a well-known and successful ML model, which have been used to facilitate

UEs localization with RSRP measurements [61]. In this thesis, we exploit this powerful

algorithm to create a rich framework for coverage maps (i.e., predict missing LTE RSRP and

other KPIs values) given the contextual information a cellular operators might be interested,

modeled by the feature space x. We already presented a summary of the features in the

problem statement (Chapter 2 - Sec. 2.1) and in the datasets (Chapter 3 - Sec. 3.1); a coverage

map value depends on a lot of different characteristics and the operators might be interested

in some or all of them. Now, we present the rationale for incorporating each feature to the

predictor as well as what are the important features on each scenario. For each measurement

j in our data, we consider the following full set of features, available via the Android API:

xfull
j = (lxj , l

y
j , d, h, cID, dev, out, ||lBS − lj||2, freqdl) (4.3)

2As we already discussed in Sec. 4.3.1, signal strength values experience log-normal shadowing (i.e.,
normal in dBm), therefore, the final conditional mean prediction of RFs can be the mean value of a Gaussian
distributed r.v.
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• Location lj = (lxj , l
y
j ). These are the spatial coordinates and the only ones considered by

previous work on data-driven RSS prediction with geostatistics [19, 50] or in the context of

localization [61, 49].

• Time features tj = (d, h), where d denotes the weekday and h the hour of the day that

the measurement was collected. Using h as a feature implies stationarity in hour-timescales,

which is reasonable for signal strength statistics.

• The cell ID, cID. This is a natural feature since any signal strength value and KPI, such

as LTE RSRP, is defined per serving cell cID (see Sec. 2.1.1 for the cID definition). The

rationale is that the reception characteristics from one cell at one specific location might give

information for the RSRP for other cells.

• Device hardware type, dev. This refers to the device model (e.g., Galaxy9 or iPhone 11) and

not to device identifiers. We consider this feature for several reasons. First, there are different

noise figures (NF), i.e., electronic interference, and reception characteristics across different

devices. Second, the LTE KPIs calculation details differ across devices and manufacturers,

since 3GPP just provides generic guidelines. Third, hardware manufacturing affects the

mobile sensors output [4]. Fourth, each device has different receiving sensitivity, therefore, a

different minimum RSRP threshold to be able to communicate over the wireless link.

• The dowlink carrier frequency, freqdl. This is calculated by EARFCN (E-UTRA Absolute

Radio Frequency Channel Number). We consider this feature because radio propagation and

signal attenuation heavily depend on freqdl.

• out ∈ {0, 1} is an approximate indicator of outdoors or indoors location, inferred from

Android’s GPS velocity sensor.

• Euclidean distance ||lBS − lj||2, of the receiver at location lj from the transmitting BS (base

station).
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Among the above features, the cell ID is particularly important, as it will be demonstrated in

Section 4.5.2. It turns out that when there is a large number of measurements with the same

cID, it is advantageous to train a separate RFs model per cID, using the remaining features:

x−cIDj = (lxj , l
y
j , d, h, dev, out, ||lBS − lj||2, freqdl).

When there are a few measurements per cID, then we treat cID as one of the features in

xfull
j .

We denote as RFsx,y, RFsx,y,t, RFsall the RFs predictors with only spatial (lx, ly), spatial

(lx, ly) and temporal (d, h), and all features, respectively. In Section 4.5.2, we assess feature

importance in different datasets, using tools inherent to the RFs regression framework.

4.4.3 Why RFs Prediction?

First, we selected RFs regression because, RFs can inherently incorporate all aforementioned

features in Sec. 4.4.2, since geospatial interpolation [59, 78, 33, 19] does not naturally extend

to arbitrary features. Second, RFs, by definition, partition the feature space with axis-parallel

splits [51]3. Examples of decision boundaries produced by RFsx,y (for LTE RSRP data)

is depicted in Fig. 4.1. One can see the splits according to the spatial coordinates (lat,

lng) and the produced areas agree with our knowledge of the placement and direction of

antennas on campus. Essentially, these axis-parallel splits assume that measurements close

in space, time most likely should be in the same tree node, which is a reasonable assumption

for signal strength statistics. Automatically identifying these regions with spatially (and

temporal) correlated RSRP comes for free to RFs and is particularly important in RSRP

prediction because wireless propagation has different properties across neighborhoods [61].

3For non-linear splits in space, e.g., rivers, natural borders, hills, which would affect RSRP statistics,
maps’ terrain splits (shapefiles) can be used as extra features.
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(a) Campus example cell x306: More Dispersed data, Feature Importance for location features is higher.
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(b) Campus example cell x204. Less Dispersed data, Feature Importance for times features higher. Intuitively,
we would expect the RFsx,y,t to perform better because where there are a lot of concentrated measurements,
splits in time are needed to predict the dynamics of signal strength. Regardless, location features splits
demonstrate the segmentation of space.

Figure 4.1: Example of decision boundaries chosen by RFsx,y for (a) Campus cell x306 and
(b) x204. We can see that RFs can naturally identify spatially correlated measurements,
i.e., regions with similar wireless propagation characteristics. Color indicates RSRP value.
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Features Setup: Environment, Scale and Data

Spatial Time
Device &
Network

Environment
Agnostic

City-Wide
No Expensive
LiDar Data

Log-Distance
Path-Loss
(LDPL) [5]

7 7 7

COST-231/
WINNER I-II/
Ray Tracing

7 7 7

Geostatistics
SpecSense [19]

7 7 7 7

BCS [39] 7 7 7

RAIK-DNNs [29] 7 7 7 7

Our Work:
Random Forests

Table 4.2: Signal Maps Approaches Compared with Our Predictor in this thesis.

In contrast, prior art (e.g., OKP, [33, 19]) requires additional preprocessing for addressing

this spatial heterogeneity; the area is splitted to disjoint areas with different interpolation

parameters, with Voronoi diagrams, which is a problem with its own extra complexity. All

the aforementioned advantages of our RFs prediction framework compared to prior-art and

the incorporation of all features are summarized in Table 4.2.

4.5 Performance Evaluation

We evaluate all predictors of Section 4.4 (both state-of-the-art and our own RFs-based ones)

over the datasets of Chapter 3. Along the way, we provide insights into the prediction

performance and into tuning the framework depending on the characteristics of the dataset.
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4.5.1 Setup

RFs Setup. RFs require less tuning compared to prior-art techniques (e.g., estimating the

parameters of the semivariogram [19], lag [19] and spatiotemporal correlation matrices per

environment [39]). The most important hyper-parameters for RFs are the number of decision

trees (i.e., ntrees) and the maximum depth of each tree (i.e., maxdepth). We used a grid search

over the parameter values of the RFs estimator [58] in a small hold-out part of the data

to select the best values. For the Campus dataset, we select ntrees = 20 and maxdepth = 20

via 5-Fold Cross-Validation (CV ); larger maxdepth values could result in overfitting of RFs.

For the NYC and LA datasets,we select ntrees = 1000 and maxdepth = 30; more and deeper

trees are required for larger datasets.

RFs Model Granularity. As argued in Sec. 4.4.2, one crucial design choice is what

granularity we choose to build our RFs models: per cID or per LTE TA (defined in 2.1.1).

Training per cID: We can train a separate RFs model per cell (cID) using all features except

cID (x−cIDj ). This is natural since RSRP is defined per serving cell (see Sec. 2.1.1) but

requires a large number of measurements per cell, which is the case in Campus dataset but

not in NYC and LA datasets.

Training per LTE TA Another option is to train one RFs model per Tracking Area (LTE

TA), and use cID as one of the features in (xfull
j ). This is particularly useful in the NYC

dataset, where there are less measurements for the same cell unit area, insufficient to train a

model per cID. However, in urban areas, there is very high cells density in a region and data

points from different cells in the same LTE TA can still be useful.

In the next section, we consider the datasets and perform prediction at different granularities:

(i) per cell (cID) (ii) per Tracking Area (LTE TA). Examples of representative LTA TAs

used in our evaluation, are summarized in Table 4.3.
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NYC (MNC-1)
Manhattan Midtown

NYC (MNC-1)
E. Brooklyn

LA (MNC-2)
Southern

No. Measurements u 63K u 104K u 20K
Area km2 1.8km2 (Fig. 1 (c-d)) 44.8 km2 220 km2

Data Density N
m2 u 0.035 u 0.002 u 0.0001

No. Cells |C| 429 721 353

Cell Density |C|
km2 238.3 16.1 1.6

Table 4.3: NYC and LA datasets: LTE TAs Examples.

Baselines’ Setup. For LDPL methods. we do the following for the parameters of Eq. (4.1):

we compute the distance from the base station using the online database from opencellid.

org; breaking distance d0 = 1m [5]; freqdl is obtained from the EARFCN measurement

readily available via the Android API. 4. In addition, for LDPL-knn: we select empirically

k = 100 neighbors for the Campus dataset and k = 10% of the training data points in each

cell for the NYC and LA datasets.

Geostatistics Predictors. The number of neighbors was empirically set to k = 10. For

geospatial interpolation methods, a larger k did not show any significant improvement, and

it would result in much higher computational cost. An exponential fitting function of the

semivariogram function γ(h) was selected [19]; the maximum lag (h) was set to 200m, as

in [19], for the Campus and NYC environments, while it was set to 600m for the LA suburban

environment. The approximated empirical semivariogram γ̂(h) was calculated per 10m [19].

Splitting Data into Training and Testing. We select randomly 70% of the data as

the training set Dtrain = {Xtrain,ytrain} and 30% of the data as the testing set Dtest =

{Xtest,ytest} for the problem of predicting missing signal maps values. The results are

averaged over S = 5 independent random splits. These default choices are used unless

otherwise stated. An exception is Fig. 4.5, where we vary the size of training set and we show

that our RFs-based predictors degrade slower than baselines with decreasing training size.

4For the Campus dataset we got a limited number of EARFCN measurements which indicated the most
utilized frequencies in the area.
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Evaluation Metrics. We evaluate the performance of the predictors in terms of absolute

error (RMSE) and Relative Improvement (ARI) as well as feature importance in RFs.

Root Mean Square Error (RMSE): If ŷ is an estimator for yP , then RMSE(ŷ) =
√
MSE(ŷ) =

√
E((y − ŷ)2), in dB, since RSRP is reported in dBm. We report RMSE for each predictor

at different levels of granularity, namely: (i) per cID (ii) per LTE TA (in NYC and LA) or

(iii) over the entire dataset (Campus).5

Absolute Relative Improvement (ARI): This captures the improvement of each predictor over

the variance in the data: ARI = 1− 1
|C|
∑

i∈C
MSEi

V ari
, where |C| is the number of the different

cells in the dataset, and V ari is cell i’s variance. Please note that (one of the simplest

predictors would be the mean value over all data and its error would be the variance, therefore

ARI encapsulates the improvement over the most minimal baseline.

Mean Decrease Impurity (MDI), a.k.a. Gini Importance: This essentially captures how often

a feature is used to perform splits in RFs. It is defined as the total decrease in node impurity,

weighted by the probability of reaching that node (approximated by the proportion of samples

reaching that node), averaged over all trees in the ensemble [58].

Mean Decrease Accuracy (MDA), a.k.a. Permutation Importance: It measures the predictive

power of each feature. The values of that feature are randomly permuted, i.e., its predictive

power is destroyed. Then we measure the decrease in the performance, when we predict with

the remaining features and average over all trees in RFs.

5If we use RFs model per cell, denote ŷcidj the prediction for the measurement j, with the dedicated

RFs model for that specific cID. Then for each cell, MSEcid = 1
Ncid

∑Ncid

j (ycidj − ŷcidj )2 while for all data

points MSEall = 1
N

∑N
j (ycidj − ŷcidj )2.
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4.5.2 Results

For the experimental evaluation, we report results with LTE RSRP coverage maps (as defined

earlier) however the predictors could be used for any other RSS metric as shown in Chapter 5.

Feature Importance.

We begin our evaluation with the report of feature importance in Fig. 4.2.

a. Campus dataset: We train one RFs model per cID for the set of features x =

(lxj , l
y
j , d, h, ||lBS − lj||2, out, dev). We assess their importance w.r.t. MDI and MDA and

representative results are shown on Fig. 4.2. We observe that, in cells with high data density

and low dispersion, the most important are the time features (d, h) w.r.t. to both metrics.

An example of such a cell is x204, which has SDD = 325, density=0.66 points/m2 and is

depicted in Fig. 3.2b). We see that (d, h) are the top features for this cell w.r.t. both MDI

and MDA, as shown in Fig. 4.2b and Fig. 4.2c, respectively. For the rest of the thesis, we only

report feature importance w.r.t. MDI. We also inspected the decision trees produced and

these features are indeed being used at the higher levels of the decision trees. On the contrary,

for more dispersed and less dense cells, such as cell x355 (SDD = 573, 0.116N/m2, map in

Fig. 3.2a), the location (lxj , l
y
j ) is naturally the most important, as confirmed in Fig. 4.2a.

Feature importance for dev and out are close to zero, which is expected because of the small

number of devices in the Campus dataset. These results show that RFs can handle a

diverse set of datasets with different characteristics, by splitting nodes according to the most

important features.

b. NYC and LA datasets: In this case, freqdl is available and the datasets contain thousands

of cells. We start with a RFs model per LTE TA. As a representative example, we report

the feature importance, in Fig. 4.2d, for the LTE TA of a major mobile network carrier

(MNCarrier-1) located in NYC Midtown Manhattan and already depicted in Fig. 3.5a-3.5b.
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Figure 4.2: For Campus dataset (a), (b), (c): Feature Importance for two distinct cells
(RFs built per distinct cell). Cells’ data are depicted in Fig. 3.2. For NYC dataset, (d)
shows the MDI score for one LTE TA for MNC-1. LTE TA’s data are shown in 3.5.

The most important features turn out to be the spatial features (lxj , l
y
j ) as well as the cell

cID and the device dev. This is because the data are sparser and the whole LTE TA is

served by geographically adjacent or overlapping cells; although RSRP is defined per serving

cell (Sec. 2.1.1), the receptions characteristics at a specific location give information for the

statistics of the RSRP for other cells and the RFs predictor is capable of encapsulating

this information. The device hardware, dev, seems also important, because of (i) the

heterogeneity in the devices reporting data in NYC dataset and (ii) the different RSRP

calculation algorithm per device (see Sec. 2.1.1). We also investigated whether we should

train a separate RFs per cID, or cID should be used as one of the features in a single RFs.
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Figure 4.3: RMSE in NYC and LA datasets. This figure makes multiple comparisons: (1)
urban vs suburban LTE TAs; (2) cID as feature vs. training a different RFs model per
cID (i.e., granularity of the models); (3) providers MNC-1 vs. MNC-2.

For a representative urban LTE TA (Manhattan Midtown), in Fig. 4.3a we calculate the

RMSE for two cases: (i) when cID is used as a feature in a single RFs per LTE TA and

(ii) when a separate RFs model is produced per cell. Interestingly, the prediction is better

when cID is utilized as a feature. Given the sparsity of the data and the high overlap of the

cells, RFs benefit from the features of the additional measurements. Manhattan Midtown

has a cells density of 238 per km2 at it can be seen in Table 4.3: the cell size does not exceed

the size of a few blocks or sometimes there are even multiple cells within a skyscrapper. On

the contrary, for the suburban LA dataset, where the cells are not so densely deployed, a

unique RFs model per cell performs better than RFs per LTE TA, as shown in Fig. 4.3c.
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Cell Characteristics RMSE (dB)

cID N N
sq m2 SDD E[yP ] σ2 LDPL

hom
LDPL
kNN

OK OKD
RFs
x,y

RFs
x,y,t

RFs

all

x312 10140 0.015 941 -120.6 12.0 17.5 1.63 1.70 1.37 1.58 0.93 0.92
x914 3215 0.007 791 -94.5 96.3 13.3 3.47 3.59 2.28 3.43 1.71 1.67
x034 1564 0.010 441 -101.2 337.5 19.5 7.82 7.44 5.12 7.56 3.82 3.84
x901 16051 0.162 355 -107.9 82.3 8.9 4.60 4.72 3.04 4.54 1.73 1.66
x204 55566 0.666 325 -96.0 23.9 6.9 3.84 3.85 2.99 3.83 2.30 2.27
x922 3996 0.107 218 -102.7 29.5 5.6 3.1 3.16 2.01 3.10 1.92 1.82
x902 34193 0.187 481 -111.5 8.1 21.0 2.60 2.47 1.64 2.50 1.37 1.37
x470 7699 0.034 533 -107.3 16.9 24.8 3.64 2.73 1.87 2.78 1.26 1.26
x915 4733 0.042 376 -110.6 203.9 14.3 7.54 7.39 4.25 7.31 3.29 3.15
x808 12153 0.035 666 -105.1 7.7 4.40 2.41 2.42 1.60 2.34 1.75 1.59
x460 4077 0.040 361 -88.0 32.8 11.2 2.35 2.28 1.56 2.31 1.84 1.84
x306 4076 0.011 701 -99.2 133.3 18.3 4.85 4.30 2.80 3.94 3.1 3.06
x355 30084 0.116 573 -94.3 42.6 9.3 2.42 2.31 1.85 2.26 1.79 1.79

Table 4.4: Campus dataset: Comparing Predictors per cell.

Very interestingly, prediction in Brooklyn is somewhere in the middle of these two cases

and the performance per cell is approx. equal to the performance of the prediction per LTE

TA (See Fig. 4.3b); Brooklyn neighborhood is denser than the suburban LA but there are

definitely a lot of residential areas where there is not much overlapping of the cells.

Likewise in the Campus dataset (higher data density than NYC) RFs model per cID did

better than using as a feature in a single RFs model for the entire LTE TA; even if there is

overlapping for some of the cells there are usually from different cellular operators therefore a

lot of the wireless network setup is fundamentally different: different transmitters’ locations

and power control etc. Most importantly, there are so many measurements from the same

cell (up to approx. 50 thousands for the cell x204) that the model has a lot of information

already. In general, RFs trained per cID is usually a better option, but cID should be

used as a feature in urban areas with high cells density. Furthermore, the features with the

least score could be omitted for computational costs and to avoid overfitting.
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Figure 4.4: Comparison of all predictors over the entire Campus dataset (all points, all
cells), for all the methods (see Tab. 4.1). Left (a) RMSE(dB) under various scenarios, Right
(b) ARI over all data points. Our Approaches (RFsx,y,t, RFsall) outperform prior art in all
scenarios.

Comparing Coverage (RSRP) Maps Predictors. We compare the performance of the

RFs prediction framework against state-of-the-art geospatial interpolation techniques (OK

and OKD) as well as model-driven techniques (LDPL-knn and LDPL-hom).

a. Campus dataset: Table 4.4 reports the RMSE for all predictors for each cell in the

Campus dataset, and for the default 70-30% split. Fig. 4.4 compares all methods but

calculating RMSE over the entire Campus dataset, instead of per cell. In both cases, we can

see that our RFs-based predictors outperform model (LDPL) and other data-driven (OK,

OKD) predictors, as long as they use more features than just location.

Fig. 4.5 shows the RMSE as a function of the training size (as % of all measurements in

the dataset). First, the performance of OK and RFsx,y is almost identical, as it can be seen

for RMSE over all measurements (Fig. 4.5 and Fig. 4.4) and RMSE per cell (Table 4.4).

This result can be explained by the fact that both predictors are essentially a weighted

average of their nearby measurements, although they achieve that in a different way: OK

finds the weights by solving an optimization problem while RFsx,y uses multiple data splits

in multiple decision trees which are averaged at the end. Essentially, the RFs is a weighted
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Figure 4.5: Campus dataset: RMSE vs. Training Size Trade-off. Our methodology
(RFs with more than spatial features, i.e., RFsx,y,t, RFsall) significantly improves the RMSE-
cost tradeoff: it can reduce RMSE by 17% for the same number of measurements compared
to state-of-the-art data-driven predictors (OKD); or it can achieve the lowest error possible
by OKD (' 2.8dB) with 10% instead of 90% (and 80% reduction) of the measurements.

neighborhood scheme as shown in [48].

Second and more important, considering additional features can significantly reduce the error.

For the Campus dataset, when time features t = (d, h) are added, RFsx,y,t significantly

outperforms OKD: it decreases RMSE from 0.7 up to 1.2 dB. Alternatively, in terms of

training size, RFsx,y,t needs only 10% of the data for training, in order to achieve OKD’s

lowest error (' 2.8dB) with 90% of the measurement data for training. Our methodology

achieves the lowest error of state-of-the-art geospatial predictors with 80% less measurements.

The absolute relative improvement of RFsx,y,t compared to OKD is 13%, as shown in Fig. 4.4b.

ARI, defined in Sec. 4.5.1 can be considered as an overall improvement score, which mitigates

the effect of the different’ variance and scale of the collected measurements per each distinct

cell (reported in Table 4.4).

b. NYC and LA datasets: Fig. 4.6 shows the error for the same four LTE TAs used in

Fig. 4.3, namely for NYC Manhattan Midtown (urban), for Eastern NYC Brooklyn (urban-
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Figure 4.6: NYC and LA datasets: CDFs for RMSE per cID for four different LTE
TAs, for two major Cellular Operators (a.k.a. MNCarrier). RFsall offer 2dB gain over the
baselines for the 90th percentile.

residential) and for southern LA (suburban), where RFs have been trained per cID. CDFs

of the error per cID of the same LTE TA are plotted for different predictors. Again, OK

performance is very close to RFsx,y, because they both exploit spatial features. However,

RFsall with the rich set of features improves by approx. 2dB over the baselines for the 90th

percentile. Interestingly, the feature dev is now important (see discussion in Fig. 4.2d), which

is expected in this crowdsourced data with high heterogeneity of devices reporting RSRP.

Limitations of Geospatial Interplolation. There are multiple reasons why RFsall out-

perform geospatial interpolation (a.k.a. geostatistics) predictors. First, geostatistics tech-
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niques such as OK, work optimally when the random process is second-order stationary,

which means (i) constant mean and (ii) the semivariogram of OK depends only on its lag (i.e.,

the distance between two locations). However, the LTE RSRP’s (and other RSS metrics)

mean and variance depend on a plethora of phenomena such as complex wireless-propagation

environment, time varying cells’ parameters (e.g., transmitted power [5]) etc.; apparently the

correlation between two locations does not depend only on the distance. As we already shown

in Fig. 4.1, RFs can easily capture all this complexity from the data, instead of modeling

everything a priori. Second, even the more advanced OKD cannot naturally incorporate

the influence of additional features (e.g., time, device type, etc.), as shown in the numerical

results. For example, RFsx,y,t predicts a time-varying value for the measurements at the same

location in Fig. 3.2b, while RFsx,y or OK/OKD produce just a flat line over time or for NYC

dataset cannot harvest the information from the heterogeneity of the devices (i.e., different

calculation of RSRP per device as we in Sec. 2.1.1 and 4.4.2). Last but not least, geostatistics

methods have inherently technical limitations. For example, the methods cannot consider

multiple measurements on the same location. More specifically, OK equations assume that

the matrix of the measurements (to be precise, the semivariogram of the measurements) is

an invertible matrix. However, if there are multiple measurements on the same location

with the same value, this does not hold, since matrix with duplicate rows yield a matrix

with determinant zero and therefore the matrix is not invertible. Given that we could have

multiple measurements on the same GPS coordinates, we loose important information if we

omit them or just take the average.

Assessing location density and overfitting. In the Campus dataset, we observed that

a significant fraction of the data comes from a few locations, i.e., from participating grad

students’ home and work. In other words, many data points were reported from the same

or nearby locations over time, which begs the question whether this leads to overfitting

of RFs to those oversampled location. We investigated this question and found that our
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Data Characteristics RMSE(dB)

cID N SDD LDPL-knn OK OKD
RFs

x, y

RFs
x, y, t

RFs
all

x312 4852 1240 1.66 1.49 1.46 1.62 1.06 0.91
x914 858 922 5.08 4.94 5.09 5.04 3.38 3.33
x034 514 532 6.94 6.52 6.59 6.6 5.52 5.25
x901 1549 218 3.07 2.79 2.86 2.9 1.9 1.97
x204 13099 535 2.53 2.48 2.46 2.57 1.93 1.93
x922 1927 309 3.62 3.66 3.56 3.66 2.13 2.17
x902 7589 245 2.45 2.06 1.89 2.08 0.92 0.92
x470 1357 431 3.72 0.75 1.51 0.79 0.48 0.52
x915 785 345 5.17 4.81 4.78 4.94 4.27 4.34
x808 5655 972 2.43 2.36 2.41 2.46 1.95 1.82
x460 1176 347 3.35 3.38 3.47 3.43 3.23 3.23
x306 1382 1131 5.84 5.15 5.13 5.34 4.14 4.3
x355 15356 790 2.68 2.54 2.53 2.58 2.04 2.03

Table 4.5: Campus dataset: Comparing Predictors per cell, considering only sparse mea-
surements (i.e., after removing measurements which create dense clusters).

RFs predictors neither get an “artificial” performance boost nor overfit. To that end, we utilize

HDBSCAN [17], a state-of-the-art clustering algorithm, to identify very dense (spatially)

clusters of measurements (cluster size 5% of the cell’s data). We refer to data from those

locations as “dense”; we remove them and we refer to the remaining ones as “sparse-only”

data. Fig. 4.4a reports the RMSE of different methods when training and testing is based on

(i) all-data, (ii) sparse-only data and (iii) sparse-only data with a 5% randomly sampled from

the dense data. It can be clearly seen that our RFsx,y,t and RFsall have similar performance

in all scenarios and consistently outperform baselines. Please note that OK and LDPL-knn’s

errors slightly decrease for “sparse-only”; OK cannot handle repeated locations and LDPL-

knn may overfit, but are still higher than our error. Table 4.5 reports the error per cell for

sparse-only data, and our proposed predictors outperform baselines in a cell-by-cell basis.

Lessons from different datasets. When possible, we already provided insights w.r.t. the

characteristics of the datasets (e.g., different density and dispersion) and their effect on
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feature selection and selection of training block of RFs (cID or LTE TA). We would like

to further discuss the effect of the wireless propagation environment in the prediction error.

On the one hand, the Campus dataset has an average error of 2.2 dB while on the other

hand the NYC LTE TA for Manhattan Midtown (see Table 4.3) has an average RMSE

of approximately 10dB (see Fig. 4.3a). The former is a suburban campus with very dense

measurements in a small area, while the latter exhibits very harsh wireless propagation

conditions because of Manhattan’s skyscrapers, large number of people etc. It should be

noted that the data density (number of measurements per m2) is comparable (e.g., ' 0.035

for both NYC Midtown LTE TA and cell x808 in Campus), the Campus dataset has 180

thousand measurements for 13 cells, while LTE TA for NYC Midtown has approx. 63K

measurements for 429 cells, thus less measurements per cell. For less harsh propagation

environments such as Brooklyn (Fig. 4.3b) or suburban LA (Fig. 4.3d), the error decreases to

approx 7.5dB, i.e., within the range of one signal bar.

Importance of RSRP Prediction and Magnitude of Error. We argue that the re-

duction in prediction error (RMSE is on the order of a few dB for the Campus dataset and

7-11dB in NYC and LA datasets) is significant for cellular operators, notably in areas with

low (i.e., borderline) coverage. It should be emphasized, that RSRP values are not only used

to determine signal bars (e.g., coverage maps), but also determine the performance of voLTE

(voice over LTE), which gives us a crucial real world example. Work in [43] showed that

the probability of a call drop in VoLTE is approx. 2− 5% for RSRP ∈ [−105,−110)dBm,

increases to 5−10% for [−115,−120) and more than 15% for RSRP ≤ −120dBm. Apparently,

dropped calls are one of the main customers’ complaints regarding operators, therefore, a

reduction in error by a few dB from our methods is critical to accurately identify such regions.

Most importantly, by carefully inspecting the real world implications of RSRP for the users

and the operators, we recognize the non-linear relationship between the signal strength and
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the Quality of Service (QoS) and realize that certain values of signal strength matter more

than others. Our methods already perform well for these values (e.g., RFsall has low error of

u 1.5 dB for cells x470, x902, see Tab. 4.4 and E[yP ]), nonetheless, might waste predictive

power treating all RSS values equally (e.g., −105 to −120 dBm vs. −80 to −90dBm), since

our RFs regression method, as well as existing literature, minimizes the standard mean

squared error (MSE). This will be the topic of the next chapter of this thesis, which among

other improvements shows that by identifying quality functions based on signal strength, can

improve coverage maps for the low reception regime even further.

4.6 Summary

In this chapter, we developed a machine learning framework for cellular signal strength (LTE

RSRP) prediction, which is important for creating mobile coverage maps in a cost-efficient

way, crucial for future 5G and IoT deployments. We used the powerful tool of random forests

(RFs), which we adapted in this context for the first time by evaluating different features

readily available by Android APIs. We demonstrated the following contributions:

• We conclusively showed that the RFs-based predictors outperform state-of-the art

data-driven predictors (geospatial interpolation) in all scenarios, when more features

beyond just location are considered. We showed that the most important features were

primarily cID, location, time and device type, which none of them can be naturally

incorporated to geostatistics.

• We can significantly improve the tradeoff between prediction error and number of

measurements needed compared to the state-of-the-art, i.e., require 80% less data for

the same error, or reduce the relative error by 17% for the same number of measurements.

• We showed how device hardware information is very important because of (i) the
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different signal strength calculation per device and (ii) the different NF per device; for

example, device hardware dev was one of the most important features in NYC dataset.

• The datasets under study such as the dense Campus and NYC and LA datasets with

approx. 11 million LTE Measurements, are among the largest used in terms of any

metric (number of measurements, geographical scale, number of cells etc.) in this

context and provide unique insight into city-wide signal map prediction.

Moreover, for city-wide signal maps we should train a separate RFs model per cell, when

there is a large number of data points per cell, otherwise we should use cID as a feature.

Overall our RFs-based predictors offer (i) superior performance, (ii) better performance

vs. measurements tradeoff and (iii) extensibility to any RSS metric and different features.

In this chapter, we focused on minimizing the mean squared error (MSE) for the prediction

task, however, there are certain values of signal strength that might matter more than others

(e.g., low coverage areas). Moreover, this chapter evaluated the RFs predictors on unobserved

test data, which might not correspond to the real target data distribution (e.g., we already

got a glimpse of the sampling biases in chapter 3). The next chapter addresses both of these

issues: we demonstrate (i) how to optimize the coverage map via quality functions and (ii)

mitigate the sampling biases via weight functions.
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Chapter 5

Quality and Weight Functions

Data Is Useless Without Context

Nate Silver, “The Signal and the Noise”

5.1 Overview

We already discussed the need for coverage (signal strength) map prediction techniques in

order to improve the accuracy of these maps based on limited data. These include propagation

models [76, 16] as well as data-driven approaches [33, 19, 39] and combinations thereof [59].

Increasingly sophisticated machine learning models have been developed that try to capture

various spatial, temporal and other characteristics of signal strength [61, 29] including our

work in Chapter 4.

Although there are complicated models for the signal strength itself, as we discussed in

Sec. 4.5.2, not all signal strength values matter the same and to the best of our knowledge all

prior work focused solely on minimizing the mean square error (MSE) for the signal strength

prediction. However, this strategy, of treating all values equally, neither necessarily maps
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directly to cellular operators’ objectives nor reflect the users’ experience. First, the operator

may be more interested in predicting quality functions (such as the number of signal bars

and the call drop probability), which depend on but are different from measurable KPIs. For

example, the operator may be more interested in predicting accurately good vs. poor coverage

than in minimizing the MSE of signal strength. Second, an operator, may be interested

in some locations more than others, e.g., locations chosen uniformly at random, locations

with dense user population, or specific locations of interest (e.g., to 911 dispatchers or to

beat competition), while relying on sampling distributions that are different from target

distributions of interest. For example, Fig. 3.7a depicts the signal map for highways leading

to JFK, which are over-sampled compared to nearby residential blocks (as shown on Fig. 5.8).

In this chapter, we develop a principled machine learning framework that provides cellular

operators (and mobile analytics companies) with knobs to tackle the mismatch between

(1) operators’ quality functions and raw signal strength as well as (2) sampling and target

distributions. Our focus is not on improving the machine learning model itself (although

we adopt state-of-the-art random forest-based prediction as our running example), but on

the above two orthogonal aspects. These can, in principle, be combined with any prediction

model and have not been addressed by existing literature.

More specifically, we make the following contributions.

First, we identify quality functions based on signal strength, such as mobile coverage

indicators and call drop probability (CDP), which are not directly optimized by learning on

signal strength. While prior work minimizes naively the MSE for signal strength [29, 33, 39, 59],

we train models directly on these functions and we show that we can improve the relative

error up to 32% in the high CDP regime of greatest concern to cellular operators, recall from

76% to 92% for predictions of coverage loss (where false negatives are costly to operators)

and balanced accuracy from 87% to 94%. Working directly with the quality function, our

methodology optimizes directly the function of interest and allow operators to put more

75



emphasis in the values and use cases of signal maps that matter most. Alternatively, if signal

strength (e.g., RSRP) prediction is needed, we can leverage the CDP QoS optimization

framework to improve the signal strength prediction itself (up to 3dB in RMSE improvement),

in its low values regime.

Second, we introduce weight functions that can express the importance operators give to

particular locations. This reweighting is rooted at the framework of importance sampling

and allows us to obtain unbiased error metrics in settings for which the available data is not

sampled proportionally to the target distribution of interest (a.k.a. dataset shift problem

where the train and the test distribution differ significantly [67]). We demonstrate two

intuitive weight function classes, respectively encoding (i) uniform loss with respect to spatial

area; and (ii) loss proportional to user population density. Training models with reweighted

errors shows an average improvement of 5% and up to 20% for oversampled regions.

Combining both techniques shows improvement up to 5.5%, compared to the base problem

prediction, for the estimation of CDP adjusted with population and uniform distributions.

Finally, we leverage the two real-world LTE datasets, which are presented earlier in

Chapter 3 to evaluate the performance of our framework: (i) the small but dense Campus

dataset, we collected on our own university campus; and (ii) the large but sparser city-wide

(in NYC and LA) datasets, provided by a mobile data analytics company. The city-wide scale

of the latter dataset, allows us to gain valuable insights into the sampling strategies of mobile

analytics companies and reveal significant sampling biases, that we handle in this chapter.

This chapter in perspective. In the previous Chapter 4, we proposed random forests for

predicting signal strength (RSRP) based on a number of features, including but not limited

to location and time (see Section 4.4 and 4.4.2). In this chapter, we build on this random

forest-based predictor as our running example. However, our focus is no longer on evaluating
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Notations Definitions-Description

Data

x Measurement’s Features
y = {yP , yI , yC} Label - KPI (Key Performance Indicator)
yP RSRP: Received Signal Reference Power
yI RSRQ: Received Signal Reference Quality (Interference)
yC CQI: Channel Quality Indicator

Network
Quality
Functions

Q(y) Network Quality Function (e.g Qc(y
P ), Qcdp(y

P )
Qc(y

P ) Mobile Coverage Indicator
Qcdp(y) Call Drop Probability

Error / Loss
Scores

L(ŷ, y) Loss function of its arguments (e.g., squared loss)
εp Reweighted Error Metric for target distribution p(x)

Importance
Sampling
Framework

p(x) Target distribution
s(x) Sampling Distribution
P (x) Population Distribution
u(x) Unifom Distribution
W (x) Weighting Function
wu Importance Ratio for Uniform Target Distribution
wP Importance Ratio for Population Target Distribution

Table 5.1: Notation used in this chapter.

the underlying RFs algorithm itself. Instead we can leverage any ML-based predictor to

allow a cellular provider to express operational objectives, which have not received attention

in prior literature, namely (1) quality functions that are not directly optimized by learning

the signal strength itself and (2) importance sampling to address the mismatch between the

sampling and target distribution (i.e., the dataset shift problem [67]).

Outline. The rest of this chapter is organized as follows. Section 5.1.1 recaps the formulation

of the coverage maps prediction for both signal maps values and QoS values. Section 5.2

presents the quality functions framework for coverage indicators and call drop probability.

Section 5.3.2 develops the weight error functions and the corresponding importance sampling

framework. Section 5.4 presents evaluation results. Section 5.5 concludes the chapter.
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Training Options y Domain Q domain

same w = 1 for all points ŷ → Q(ŷ) Q(y)→ Q̂(y)

training weights w (Table 3) ŷw → Q(ŷw) Q(y)→ Q̂w(y)

Table 5.2: Overview of Prediction Methodologies. One can perform prediction on the y
(signal) or on the Q (quality) domain. One can assign the same or different weights to
different points. These are orthogonal to each other and to the prediction model used.

5.1.1 Problem Formulation

In Chapter 2 (see Sec. 2.1.3), we formulated coverage maps (for both signal strength/KPIs

y and QoS Q) and prediction (ŷ and Q̂). To recap briefly, a coverage map is a collection

of N measurements (xi, yi), i = 1, 2...N where the label yi is a KPI measurement collected

along with the features xi which specifies the location, time, device, network information

etc. for the signal value to be mapped. A coverage map in the QoS domain is defined

as quality-transformed observations (xi, Q(yi)) instead of raw signal strength observations

(xi, yi). We elaborated on (xi, yi) in Sec. 2.1.1 and 4.4.2 where we refer for details. In this

chapter, we discuss in detail network quality functions Q(y) (e.g., call drop probability or

coverage 0-1 indicator) and our goal is to predict directly in the Q domain (Q̂(y)). We also

show the relationship between y ↔ Q(y) and how we can leverage prediction in the Q domain,

i.e., Q−1
(
Q̂(y)

)
, in order to improve prediction back in the signal strength y domain for the

values that matter the most for the operators

In Section 5.3.2, we present important sampling to allow the operator to specify what points

are important to predict, via weight functions W . Prior work focused on sophisticated models

to predict ŷ, then computed Q(ŷ). Our contribution lies in proposing two other aspects of

prediction (i.e., network quality function and importance sampling) that provide knobs to

allow operators to express their operational objectives and optimize signal map prediction

accordingly. The two ideas are orthogonal to each other and to the prediction model used,

thus can be used independently or jointly. Tables 5.2 and 5.1 summarize the methodologies

and notation, respectively.
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5.2 Quality of Service (QoS) Functions

5.2.1 Background

We introduced QoS in Section 2.1.1 and here we present a more detailed taxonomy, considering

the wide range of use cases. QoS literature are focused on (i) measuring the QoS itself and (ii)

take actions to ensure an adequately level of QoS in the network. First, for QoS measurements,

as reviewed in Chapter 2 (Sec. 2.1.2) and seen above, the terms KPIs and QoS are sometimes

being used interchangeably. Similarly, LTE RSRP is used as a proxy in [43], to determine

the call drop probability. Second, QoS may also refer to any technology that manages data

traffic to reduce packet loss, latency etc. on the network, i.e., tries to offer adequate network

service, particularly the performance as seen by the users. A good example is the QoS Class

Identifier (QCI) in LTE [27], for different queue buffers according to the traffic type.

Similarly, we use the term QoS to relate to user experience, rather than a sophisticated

performance metric (we already reserved the term KPIs for them). Thus, we define a quality

of service (QoS) function as follows:

A QoS function, Q, is a real-valued function of KPI y that reflects an application-specific

outcome that depends upon signal strength (i.e., KPI) y. Such examples of QoS of interest

to cellular operators include, but are not limited to, the call drop probability Qcdp(y), the

number of signal bars QB(y), and the mobile coverage indicator Qc(y).

There is a large body of work related to QoS, however, to the best of our knowledge, this thesis

is the first to consider how to leverage QoS in order to improve a signal strength map itself.

Our rationale is simple: we use a cellular operators objective and user experience proxies

that might not be reflected to the typical MSE minimization in the signal strength domain.

We reviewed such an example in Chapter 4 where the same error for y = −110dBm would

miss-characterize low coverage area vs. for y = −80dBm would not really matter. Thus, for
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Figure 5.1: Call Drop Probability (CDP) Q(y) as a function of KPIs.

certain tasks, we can operate to the QoS domain and then transform to signal strength domain.

This chapter demonstrates how our approach, which exploits the nonlinear dependence of

quality-of-service on raw signal strength, is superior for many practical applications.

5.2.2 Call Drop Probability (CDP)

One of the most important cellular network quality metrics is the call drop probability

(CDP), a.k.a. connection drop rate (see above). We here model CDP with the exponential

function, Qcdp(y) = ae−by + c, with parameters a, b, c estimated using empirical data from

the literature [43], [42]. Examples of CDP vs. KPIs are shown on Fig. 5.1. It is immediately

apparent that nearly all of the variation in CDP occurs at signal strengths below −100 dBm,

implying that signal strength errors at high dBm will have far less impact on predictions of

Qcdp than errors of equal size at low dBm. As a continuous outcome, the call drop probability

estimation Q̂cdp(y) can be treated as a ML regression problem.

5.2.3 Mobile Coverage Indicator and Signal Bars

Absolute RSRP values y are translated to the widely used network performance bars QB(y)

on mobiles’ screens. Mobile analytics companies usually produce 5-colors map to visualize
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signal bars [55]. Despite variation across devices, typical LTE RSRP values for iOS and

Android devices are:

QB(y) =





0 if yP <= −124 dBm

1 if yP ∈ [−123,−115]) dBm

2 if yP ∈ [−114,−105]) dBm

3 if yP ∈ [−104,−85]) dBm

4 otherwise (i.e., excellent reception)

(5.1)

As with the other Q functions described here, better accuracy for producing such maps can

be obtained by seeking to directly reduce error in QB, rather than y.

Mobile Coverage Indicator. Detecting areas with weak/no signal (i.e., bad coverage) is a

major problem for cellular operators. This is essentially a binary classification (per [34]). We

define the mobile coverage indicator as a function of RSRP for LTE [34]:

Qc(y) =





0 if yP <= −115 dBm, i.e., 0 or 1 bar

1 otherwise

(5.2)

The rationale behind this indicator is that the call drop probability begins to increase

exponentially and the service deteriorates significantly below −115dBm [43]; at this threshold,

a mobile phone is on the edge of very bad service. We want to detect areas of bad coverage

because undetected Qc(y) = 0 could impact the operator’s reputation, revenue and overall

performance (e.g., a cell upgrade or a SON/SDN configuration could solve the problem).

For the reader’s convenience, we should re-iterate some of our terminology. We use the term

mobile coverage maps as prior art does ([61, 49]) to refer to both continuous signal strength

(e.g., LTE RSRP) values as well as other forms of such maps such as the 5-colors map for
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signal bars etc. When we need to refer to both we could distinguish them by referring as

“signal maps” for the continuous version and “coverage indicator” for the binary version.

5.2.4 Prediction in the Original domain vs. the Quality Domain

Q̂(y) vs. Q(ŷ): In this thesis, we show that prediction can be improved by training models

directly on QoS observations Q(y) and predicting Q̂(y) instead of using the proxy Q(ŷ); in

other words, we minimize the error of fQ(x) instead of minimizing the error of fy(x). This is

equivalent to changing the loss function used in estimation from one that treats errors at

all y values equally to one that emphasizes errors with practical consequences for cellular

operators such as mis-identifying bad coverage areas or failing to predict areas with high call

drop probability (e.g., see Fig. 5.1, yP≤ −100dBm). Our experimental results in Section 5.4

show how the prediction is improved for these regions that matter the most; e.g., we can

improve the prediction of bad coverage areas (Qc(y) = 0) for the binary coverage indicator

problem and the prediction for below −100dBm for the continuous signal map.

Prediction of Q̂ using Random Forests. We use RFs to predict Q̂, similarly to predicting

ŷ in the previous chapter. Given a QoS metric Q(y) that is a deterministic function of y,

we can model Q̂(y) prediction similarly: Q(y)|x ∼ N(RFs′µ(x), σ2
x), where RFs′µ is trained

on quality-transformed observations (xi, Q(yi)) instead of raw signal strength observations

(xi, yi). This simple procedural modification (using Q̂(y) in place of Q(ŷ(x))) can improve

prediction.

5.3 Weight Functions for Cellular Operators

Cellular Operators Objectives. We have argued above that different values of y are

not equally important for operators from a QoS perspective, therefore we invoke the QoS
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function Q to modify out losses so as to place more weight on errors with greater practical

consequence. Similarly, not all inputs x are necessarily equally important. For example, an

operator may be particularly interested in accurate predictions in some locations, e.g., 911

locations or hospitals, areas with high revenue or competitive advantage and areas with dense

user population. Therefore, selection of appropriate (i) ML training loss functions and (ii)

evaluation error metrics should be aligned with operators’ use cases and objectives.

Prior work [19, 29] has primarily minimized MSE for predicted signal strength via cross-

validation (CV), i.e., report the error on held-out test data, after training on a sample of signal

strength measurements. This implicitly assumes that all observations are equally important

for both learning and evaluation, and further, that the importance of error minimization

in some subset of X is proportional to the number of observations in it. These are strong

assumptions that are often violated in practice. For example, an operator might consider all

locations within an areal unit having equal importance. If, however, the available data is

distributed according to population (which is highly uneven), then the weighting implicitly

used in the analysis will be far from the desired (uniform) distribution. Conversely, an

operator interested in population-weighted error may encounter problems when using data

intensively collected by a small subset of users with residential locations or commuting

patterns that are not reflective of the customer base. Such mismatches between the sampling

distribution of signal strength observations in X and the target distribution that captures the

operator’s desired loss function lead to prediction bias, which can be corrected by techniques

borrowed from importance sampling. It should be noted that ML literature uses the term

“dataset shift” [67] to describe this mismatch between the training and the test data.
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5.3.1 Importance Sampling

Importance sampling [69] is a general technique for estimating properties (e.g., the expected

value) of a particular distribution, when the available samples are generated from a different

distribution than the distribution of interest. We start with a function ε(x) and suppose

that our problem is to calculate the quantity µ = Ep [ε(x)] =
∫
D
ε(x)p(x)dx, where p is a

probability density function on D ⊆ Rd. We can write the following:

µ =

∫

D

ε(x)p(x)dx =

∫

D

ε(x)p(x)

s(x)
s(x)dx = Es

(
ε(x)p(x)

s(x)

)

where we assume that s(·) is a positive pdf over Rd and Es(·) denotes expectation for x ∼ s.

Our goal remains to find the original Ep [ε(x)]. In essence, by making a multiplicative

adjustment to ε we compensate for sampling from s instead of p, with this factor p(x)
s(x)

being

known as importance ratio, which expresses the relative weight given to a data point under

the target distribution p versus the sampling distribution s (a.k.a. importance distribution).

It can be proven [69] that an unbiased estimator of µ = Ep [ε(x)] is given by the importance

sampling estimate:

µ̂s =
1

N

N∑

i=1

ε(xi)p(xi)

s(xi)
, xi ∼ s (5.3)

In order to use Eq. (5.3) we need to be able to compute p(x)
s(x)

at any xi we might sample.

When p or s has an unknown normalization constant, then we can utilize a ratio estimate.
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5.3.2 Reweigthed Errors with Importance Sampling

We are interested in fitting to and assessing performance via an error metric corresponding

to an operator-defined objective, which is some measure of expected prediction error (i)

integrated over some space X (e.g., geography, time, frequency band), as per 4.4.2 (ii) with

some weight function that says how much the operator cares about different points in that

space; the space of interest is our feature space x as described in 4.4.2 and 3.4. The expected

prediction error over the target data distribution of interest p(x) can be written as:

εp = ε (x,W, ŷ, y) =

∫

X
W (x)E

[
L
(
f̂(x)− f(x)

)]
dx (5.4)

where,

• W (x)→ R+ is the weighting function for the cellular operators‘s objective of interest.

• L(·) is the loss function, e.g., the square of its arguments in this thesis.

• f(x) = y → Ry to facilitate our notation (please remember that we already denote the

predictor of y with ≡ f̂y(x) = ŷ).

• The following condition is true:
∫
XW (x) dx <∞.

For simplicity of notation, we write the above integral generically over set X. In practice, this

integral will typically be over the various dimensions of the input space (e.g.,
∫
l

∫
t
· · · dtdl,

where l = (lx, ly) denotes the location vector and t the time vector.

If we knew E
[
L((f̂(x)− f(x)))

]
, we could directly evaluate this integral, however we do

not. For a given predictor (e.g., RFs in our case, but it could be any nonparametric

prediction function) and outcome, we do not actually know the expected prediction loss.

Ideally, f(x) would be given by an oracle, which knows the “true” underlying signal strength

map phenomenon Y |x (see Sec. 2.1.2 for the signal maps definition).
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Nevertheless, we can sample from smartphones measurements (xi, yi) and compare our

predictions to true values under e.g., cross-validation (CV). However, the mean CV error

itself will not in general give us εp, because CV is based on the sampling distribution of the

data s(x), which may look nothing like W (x),x ∼ p(x) (which we can interpret as target

distribution, though it may not be normalized). In order to deal with the miss-match of the

sampling and the target probabilities, we turn to importance sampling techniques (introduced

above in Sec. 5.3.1). If we know that our sampled data represents iid draws from the sampling

distribution (PDF) s(x), we then have:

εp (x,W, ŷ, y) =

∫

X
W (x)E

[
L(f̂(x)− f(x))

]
dx, x ∼ p(x) (5.5)

=

∫

X
W (x)E

[
L(f̂(x)− f(x))

] s(x)

s(x)
dx, x ∼ p(x) (5.6)

= Es
[
W (x′)

s(x′)
E
[
L(f̂(x′)− f(x′))

]]
, x′ ∼ s(x), (5.7)

where x′ represents the (random) test data originating from s(x). By using the law of total

expectation and importance sampling estimation [69] from Eq. (5.3), we can provide an

estimate for Eq. (5.4):

ε̂s (x,W, ŷ, y) =
1

N

N∑

i=1

W (xi)

s (xi)

(
f̂ (xi)− f (xi)

)2

,xi ∼ s(xi) (5.8)

where N is the number of observations (sampled data points), s (xi) is the sampling distri-

bution for data point i, p (xi) is the target distribution for data point i and the adjustment

factor W (xi)
s(xi)

is the importance ratio.

Thus, we are able to estimate an error weighted by W (x), x ∼ p(x), with data generated

from the distribution s(x). More precisely, by making a multiplicative adjustment to the

squared error term (f̂(x)− f(x))2 we compensate for sampling from the distribution s(x)

instead of the actual distribution p(x). We note that the above development treats s as
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Target Distribution
(Cellular Operator Objective)

Importance Ratio
(Weights wi)

Uniform distribution u(x) wu ∝ 1
s(x)

Population distribution P (x) wP ∝ P (x)
s(x)

Operator’s custom target distr. p(x) wo ∝ p(x)
s(x)

Table 5.3: Examples of importance sampling for operators.

known, which is not always the case; as we show below, however, kernel density estimation

(KDE) can be used to estimate s when it is not known a priori.

This development sheds light on what naive CV does. We can provide an interpretation of naive

CV by observing what W would yield the standard CV loss, εCV = 1
N

∑
i

(
f̂(xi)− f(xi)

)2

.

If we observe carefully our importance sampling estimate of εp from eq. 5.8, our importance

ratio W (x)
s(x)

must be equal to 1 in this case, leading to εCV =
∫
x
s(x)E

(
L(f̂(x)− f(x))

)
dx,

with x as before being the distribution of the observed data on the space of interest. Seen in

this way, it is obvious that this εCV function is biased by the sampling distribution and a

naive metric of dubious interest (i.e., we get biased errors unless we have been very lucky

about how we picked our data and s matches the p distribution).

5.3.3 Weight Functions Examples

In sharp contrast to the common practice of reporting just the naive εCV , we provide operators

with explicit choice of the target distribution, to express which parts of the space are important

for prediction. Some intuitive examples are summarized in Table 5.3 and described below.

(1) εu uniform over X. This is equivalent to the expected loss evaluated at a random

location in X, and reflects settings where the operator is equally concerned with performance

over all portions of the target area. To obtain this objective function, we need W (x)

proportional to a constant, i.e., the uniform distribution u(xi). This leads to an importance
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ratio wu ∼ 1
s(x)

: we want to weight each data point inversely by how often its region of the

space is sampled, i.e., the inverse of the weights implicitly used by naive estimation.

(2) εP proportional to population density. An intuitive target for operators is loss

averaged over the user population, denoted by P (x) at point x of the input space. We

then want W (x) ∼ P (x), thus importance ratio wP ∼ P (x)
s(x)

. This means that observations

from parts of the user population that are rarely sampled need to be given more weight

and those that are oversampled should be given less weight. It should be noted that if our

sample is representative of our user population, then the naive error estimator is already an

approximation of the target. However, if some groups of users are under or oversampled then

the naive estimator may not perform well. Data collection from mobile analytics companies

can be biased and does not necessarily match the operators’ user population.

The former can be generalized further. We always weight inversely by s and directly by W to

calculate the importance ratio w. Different choices of W and L determine respectively where

we want to weight our performance and how we judge different kinds of errors. We can also

select X as another tacit choice: do we only use space? time? frequency? device (e.g., some

devices might have been under-sampled)? Operators should take care that their targets of

interest are well-represented in the data they purchase or collect, to avoid prediction biases.

Estimating the sampling distribution s(x). Our observed signal strength data may

have come from a known or unknown sampling design s(x). In the latter case, s must be

inferred. In Section 5.4 we estimate s(x) via adaptive bandwidth KDE [47] on the 2D spatial

space and therefore the importance ratio is wu ∝ u(l)
s(l)

. Our experimental results show that the

main source of bias is location of devices therefore we assume a uniform sampling over the

rest of the feature space x∈ X. Our approach can be extended to arbitrary input (features)

space x ∈ X.
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5.3.4 Weighted Random Forests

The reweighted error metric we introduced above from Eq. (5.8) can be used for both (i) the

training procedure as well as (ii) the evaluation and final error reporting. In this thesis, we

utilize RFs (as described earlier in this chapter and in Chapter 4) for prediction of signal

strength, therefore, we present shortly how we can implicitly incorporate the reweighted score

in the training of the RFs algorithm.

For growing an individual tree, the RFs algorithm splits each node utilizing a random set of

features. The criterion of each split is to maximize the Information Grain (for classification),

or to minimize the MSE (for regression). For N training samples for the signal map of

interest, weighted RFs [20] adjust MSE for each split [58] according to the samples weight

vector w = (w1, · · · , wN), (i.e., implicitly turning loss function to a wMSE) while the default

setting would be wi = 1.

5.4 Performance Evaluation

5.4.1 Setup

Random Forest Setup. We train RFs, for predicting the KPI ŷ (then calculating Q(ŷ))

or Q̂(y) directly. Basically, we utilize the RFsall model [7], which is developed in Chapter 4

as the underlying predictor, but it could be replaced by other ML model. Our focus is not

on evaluating RFs in this chapter, but rather our two proposed improvements on top of

RFs and on how to leverage any ML model. We refer to Sec. 4.4.2 for a features x recap.

RFs Hyperparameters Selection. The most important hyper-parameters for RFs are

the number of decision trees (i.e., ntrees) and the maximum depth of each tree (i.e., maxdepth).
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We follow the same selection procedure as Sec. 4.5.1. For the Campus dataset, we select

ntrees = 20 and maxdepth = 20; larger maxdepth values could result in overfitting. For the

NYC and LA datasets, we select ntrees = 1000 and maxdepth = 30; more and deeper trees

are required for larger datasets.

RFs Model Granularity. One important design choice is what granularity we choose to

build our RFs models. As we extensively demonstrated in Chapter 4, using a model per cell

(i.e., train a separate RFs model per cell cID with x−cIDj = {x : x ∈ xfull
j ,∼ x /∈ {cID}})

is beneficial when there is a large number of measurements per cID. On the other hand, in

many cases in sparser data such as NYC and LA datasets it is better to train a model per

LTE TA using xfull
j . In this chapter, we utilize models per cID for the Campus dataset

and per LTE TA models for NYC and LA datasets as Chapter 4 and our work in [7], unless

otherwise stated.

Default Training RFs vs. Weighted Training RFsw. We want to improve the

reweighted prediction error εp according to operators objectives (Section 5.3). Thus, we

train weighted random forests RFsw model as described in 5.3.4, with wi = {wui , wPi
}

proportionally to the target distribution (see Table 5.3). In essence, the ML training weights

are set equal to the importance ratio of each sample. We compare RFsw with the default

RFs, where all samples are weighted equally. Please note that this applies to both predicting

signal strength values y and quality Q(y) (See Table 5.2 for a summary).

Splitting Data into Training and Testing. We select randomly 70% of the data as

the training set Dtrain = {Xtrain,ytrain} and 30% of the data as the testing set Dtest =

{Xtest,ytest} for the problem of predicting missing signal map values (i.e., KPIs y =

{yP , yI , yC} or QoS Qc(y), Qcdp(y)). The reported results are averaged over S = 10 random

splits.
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Evaluation Metrics - Coverage Classification. We evaluate the performance of the

QoS coverage indicator Qc(y) in terms of binary classification metrics, i.e., recall, precision,

F1 score and balanced accuracy. Recall, as we will see, is very important for the cellular

operators.

Recall: For a class of interest is a measure of completeness, a.k.a. the ratio of relevant instances
⋃

retrieved instances over the relevant instances (i.e., what’s fraction of the relevant instances

were actually retrieved). In other words, it is defined as R = Tp
Tp+Fn

where Tp is the true

positive rate and Fn is the false negative rate, for the class of interest.

Precision: It is a measure of exactness or quality, a.k.a. the ratio of relevant instances over

the retrieved instances. In other words, Pr = Tp
Tp+Fp

where Fp is the number of false positives.

F1 Score: (a.k.a. F-score) It is an overall accuracy measure and can be interpreted as a

weighted average of the precision and recall. The relative contribution of precision and recall

to the F1 score are equal. F1 = 2× (Pr ×R)/(Pr +R).

Balanced Accuracy: The balanced accuracy in binary classification problems to deal with

unbalanced datasets. It is defined as the average recall obtained on each class.

Evaluation of Regression. For signal strength maps1 with continuous signal strength-

KPIs values (i.e., y = {yP , yI , yC}) we define the following evaluation metrics.

Root Mean Squared Error (RMSE). Similarly to the evaluation Sec. 4.5 in Chapter 4, if ŷ is

an estimator for y, then RMSE(ŷ) =
√
MSE(ŷ) =

√
E((y − ŷ)2), in dB for RSRP yP (since

RSRP is reported in dBm) and RSRQ yIand unitless for CQI yC .

Reweighted Error εp for target distribution p(x). According to importance sampling estimate

from eq. 5.8, εp = 1
N

∑N
i=1 wi (ŷi − yi)

2, with wi = {wui , wPi
} ∝ { 1

s(li)
, P (li)
s(li)
}, as defined in

1See Sec. 2.1.2 for more about terminology. Coverage maps with continuous y ≡ Signal maps, and coverage
maps with QoS Qc(y) ≡ Coverage Indicator.
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Table 5.3, where wu corresponding to the importance ratio for error in a random location in

X and wP the weighting proportional to population density. In tis thesis, we use only location

density s(l) to calculate the (i) uniform error εu or (ii) εP , over the space X, however, our

methodology is applicable to an arbitrary space X.

5.4.2 QoS Domain Coverage Maps

Coverage Indicator QoS Domain Qc(y). This setup is a typical binary classification

problem, where class 0 corresponds to bad coverage (i.e., coverage hole) and class 1 corresponds

to good coverage. As a baseline, we train the RFs regression models with the features we

described in Sec. 4.4.2 in order to predict ŷ and compute the proxy Q(ŷ). We compare that

with our approach, which is to train RFs classifiers, with the same features, on quality-

transformed observations (xi, Q(yi)) and predicting Q̂(y). Please note that for coverage

indicator we employ y = yP since it is defined on RSRP and RFs use the default training

(∀i, wi = 1).

Ideally from operators’ perspective is to maximize the Recall for class-0 R0 because the higher

R0 means fewer false negatives for the class-0, which can be translated to the statement that

our algorithm did not classify a bad coverage (Q(y) = 0) as a good coverage area (Q̂(y) = 1).

In this setup, coverage holes (class-0) misclassified as good coverage areas (class-1) would

impact reputation, revenue, and overall performance (e.g., the need for a cell upgrade may

not be detected).

Campus dataset: Fig. 5.2 illustrates the improvement in UCI data set from utilizing our

predictor Q̂(y) instead of the naive proxy Qc(ŷ) for bad coverage spots. For this example,

we discover 1939 bad coverage sites that the baseline did not detect (16% of the total 12418

bad coverage points). Moreover, Fig. 5.2c shows how the bad coverage spots which were

mis-classified as good coverage spots have been reduced by our predictor Q̂c(y), especially
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(a) Bad Coverage Spots on UCI Campus.

(b) Campus: Baseline-Proxy- Prediction Qc(ŷ).

(c) Campus: Our Approach Q̂c(y).

Figure 5.2: LTE Coverage Map for UC Irvine area (Campus dataset). Display only Test
Data. (a) Bad Coverage in Test Data (b) Baseline -Proxy- Prediction Qc(ŷ) (c) Our Model
Prediction. It can be seen that (c) has more red points than (b), implying better classification.
For this example, we find 1939 data points which the baseline would not detect (16% of the
total 12418 bad coverage points). Best viewed in color.
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(b) Our method Q̂c(y).

Figure 5.3: Campus dataset: Confusion matrix for coverage, Qc(y). The points incorrectly
classified as “good coverage” by the baseline Qc(ŷ) are shifted to the “bad coverage” class

under our model Q̂c(y).

Recall Precision F-1
Accuracy

Balanced
AccuracyQc(ŷ) Class Label 0 1 0 1 0 1

Qc(ŷ) 0.762 0.978 0.910 0.934 0.830 0.956 0.930 0.870

Q̂c(y) 0.917 0.952 0.847 0.975 0.881 0.963 0.944 0.935

Table 5.4: Campus Dataset Coverage Qc(y) results: (i) Recall for Class-0 (No-Coverage)
76% → 92%, (ii) Accuracy and (iii) Balanced Accuracy Improve. The improved Recall (R0)
is of immense importance for Cellular Providers; higher R0 means less false negatives for
Qc(y) (i.e., miss-classifications of bad coverage to good coverage).

in areas of densely sampled data and commute traces (note the road and path trajectories).

The confusion matrix for these results is shown in Fig. 5.3, where we can see again the shift

of points incorrectly classified as “good coverage” by the baseline Qc(ŷ) predictor to the “bad

coverage” class under the improved predictor.

The overall classification results, summarized in the terms of the binary classification metrics,

are shown in Table 5.4. We see an improvement of 16% for Recall R0, per Fig. 5.2, as well

an improvement in balanced accuracy from 87% to 94%. These improvements do not come

at the expense of F1 for class-1 and overall Accuracy, which improve by approx. 1% while

F1-score for class-0 improved by 5%.

NYC and LA datasets: Table 5.5 lists the classification results for some characteristic

examples of NYC and LA datasets. We observe a similar increase up to 12% in terms of R0
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Recall Precision F-1
Accuracy

Balanced
AccuracyQc(ŷ) Class Label 0 1 0 1 0 1

MNC-1, LTE-TA: x561, NYC Manhattan Midtown
Qc(ŷ) 0.49 0.96 0.71 0.91 0.58 0.94 0.90 0.73

Q̂c(y) 0.61 0.94 0.66 0.93 0.63 0.94 0.90 0.78
MNC-1, LTE-TA: x552, Eastern Brooklyn
Qc(ŷ) 0.55 0.98 0.80 0.93 0.65 0.96 0.93 0.77

Q̂c(y) 0.67 0.95 0.70 0.95 0.68 0.96 0.93 0.81
MNC-1, LTE-TA: x641, LA, Covina - Hacienda Heights
Qc(ŷ) 0.58 0.90 0.73 0.82 0.65 0.86 0.80 0.74

Q̂c(y) 0.70 0.86 0.70 0.86 0.70 0.86 0.81 0.78

Table 5.5: NYC and LA datasets Coverage Qc(y) results. Recall R0 improves up to 12%.
Operators would ideally minimize the false negatives of class-0. Similar results in other LTE
TAs omitted due to space limitations.

for our predictor Q̂c(y) compared to the baseline proxy.

In summary, using Q̂c(y) instead of Qc(ŷ) optimizes the function of interest instead of naively

optimizing the MSE for the regression prediction for the entire range of y. The result is

better performance for the outcomes of primary interest.

Call Drop Probability (CDP) Domain Qcdp(y). CDP estimation is a continuous value

prediction problem (i.e., regression) on the [0,1] interval. As with the coverage domain, we

train RFs models with the features described in Section 4.4.2 in order to predict ŷ and use

the proxy Qcdp(ŷ) as a baseline. We compare that with our approach, which is to train RFs,

using the same features, on quality-transformed observations (xi, Q(yi)) and predict Q̂cdp(y).

We evaluate performance in terms of relative reduction in RMSE.

Campus dataset: We report results for estimating CDP, both by using the proxy baseline

as well as predicting CDP directly. Fig. 5.4 shows the relative reduction in RMSE of CDP

estimation vs. RSRP, which confirms the validity of our design option. Our technique Q̂cdp(y)

improves estimation up to 27% in terms of relative error, in lower reception regime (i.e.,

bars 0-1, yP≤ −115dBm), where the error function being minimized is highly sensitive to

predictive performance in that regime.
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Figure 5.4: Call Drop Probability Qcdp(y) results for Campus dataset. (a) Qcdp(y) RMSE
vs. RSRP. Our methodology provides an improvement of 27% error reduction for the CDP
estimation for the lower RSRP values (bar 0-1). (b) Q−1(Q̂cdp) RMSE vs. Predicting
Directly our RSRP values. We observe that the improvement has been shifted towards the
lower RSRP accordingly to the new QoS function Qcdp(y) that was used for training.

From Qcdp(y) to the RSRP yP = y domain and vice versa. It is very important to

highlight that even if our methodology minimizes the QoS error and predicts value in the QoS

domain, it is a very elegant way to handle the input in order to improve significantly signal

strength prediction itself for values that matter the most for cellular operators. Fig. 5.4b

demonstrates such an example of how we can improve the continuous RSRP yP coverage

map (a.k.a. signal map) itself for the Campus dataset. In order to demonstrate how our

technique focuses the sensitivity of the prediction model on the RSRP range with higher

call drops, we compare the prediction error of ŷ values (RSRP) themselves, vs. inverting

Q̂cdp(y) back to the original yP space. We group the error by signal bars and we observe

that, as designed, the change in learning objective shifts model effort to reducing error where

it is most critical (lower signal strength range). We basically exploit the fact that we can

tolerate higher uncertainty at high RSRP (where a large error has little impact on CDP). We

can hence view our procedure as allowing us to train on an application-specific loss function,

without requiring us to modify our underlying learning algorithm.
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Figure 5.5: Call Drop Probability Qcdp(y) Estimation for NYC and LA datasets. Results for
RSRQ (y = yI), models per cID. Please note that our methodology outperforms the baseline-
proxy Qcdp(ŷ) in the high CDP regime, where it really matter for the cellular operators.

CDP Estimation for the NYC and LA datasets. We also present results for CDP

estimation for NYC and LA datasets; we demonstrate CDP estimation from RSRQ, yI , and

CQI, yC , data apart from RSRP yP . Fig. 5.5 and Fig. 5.6 show RMSE of CDP estimation

with RSRQ, yI , and CQI, yC , respectively. We note that the different KPIs and the use of

per-cID models in one case (RSRQ yI) do not change the improvements from our technique.

We improve in the low KPI y regime up to 0.1 in absolute error value (in the probability

domain); in terms of relative error our method Q̂cdp(y) performs up to 32% better than the

baseline Qcdp(ŷ) for CDP estimation.

Fig. 5.7 summarizes the performance of CDP estimation for the different LTE TAs (i.e.,

areas) available in our dataset. We plot the log-ratio of the RMSE of the baseline vs. our

approach. Values greater than 1 indicate improvement for our model as in the other examples,

we see that our procedure successfully focuses improvement where it is needed for CDP
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Figure 5.6: Call Drop Probability Qcdp(y) estimation for NYC and LA datasets. Results
for CQI (y = yC), models per LTE TA. Similarly, we offer improvement in the high CDP /
low CQI regime.

prediction, rather than wasting statistical power on the high signal strength regime. Similarly

to the Campus dataset, we could utilize this improvement in the QoS domain by inverting

the CDP estimation Q−1
(
Q̂cdp(y)

)
back to the original KPI domain, improving the signal

map itself.

Why minimizing MSE can be naive. In signal strength prediction, an error of few dB

(e.g., 5 dB) will not reflect much change in QoS when the user’s received signal strength

is high (e.g., -50 to -60 dBm, see Fig. 5.1). The UE experiences excellent QoS in that

regime, and hence even moderately large errors in predicted RSRP would not greatly impact

predictions of QoS. By turns, an error of 5dB would substantially affect QoS prediction in

the weak reception regime (e.g., for -120dBm vs.-125dBm you can notice the large difference

in CDP in Fig. 5.1). For a signal map which reflects both user QoS experience and operators

objectives, it can hence be worth “trading” greater RSRP error in the high-strength regime
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Figure 5.7: NYC and LA datasets Call Drop Probability Qcdp(y) estimation.
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RMSE(Qcdp(ŷ))

RMSE(Q̂cdp(y)
)

for lower error in the low-strength regime, as we demonstrated. Working directly with Q(y)

alters our application loss function so as to focus performance where it is most needed (but

without requiring us to modify the RFs procedure to change its nominal loss function). The

result is improved performance for QoS outcomes, here up to 32% for the values that matter

more to cellular operators.

5.4.3 Reweighted Error for Coverage RSRP Maps

In this section, we evaluate our framework in terms of the reweighted error εp; we start with the

prediction of RSRP signal strength values ŷ; we compare a default setting RFs vs. RFsw (i.e.,

the ML wi are set to importance ratio as described in 5.4.1).

εu over Uniform Spatial Distribution. Campus dataset: In order to calculate the

importance ratio wu = 1/s(l) we estimate s(l) with adaptive bandwidth KDE over the spatial

dimensions as we describe in 5.3.3 (an exception is for two cells with very densely sampled

data (see Table 5.6) where we used fixed kernel bandwidth estimation over both space and

time dimensions).
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Cell Characteristics Default RFs → ŷ RFswu → ŷw Improvement
cID N

√
εu

√
εu Diff. Diff. (%)

x922 3955 0.86 0.69 0.17 19.6
x808 12153 1.54 1.25 0.28 18.5
x470 7688 0.71 0.59 0.12 17.0
x460 4069 1.66 1.44 0.22 13.1
x355 29608 1.77 1.57 0.20 11.5
x306 4027 2.21 2.03 0.18 8.1
x901 16049 0.94 0.91 0.03 3.4
x902* 34164 1.93 1.90 0.03 1.5
x914 3041 1.66 1.64 0.02 1.0
x915 4725 1.81 1.80 0.00 0.2
x312 9727 0.64 0.65 -0.01 -0.6
x204* 55413 0.91 0.94 -0.03 -3.2
x034 1554 2.43 2.68 -0.24 -10.0
All 186173 1.34 1.28 0.06 4.89

Table 5.6: Campus dataset RSRP y prediction: εu Error (i.e., reweighted according to the
uniform distribution): (i) Train on Default RFs vs. (ii) train on RFsw wi = wu ∝ 1

s(l)
.

Models per cID. For each cID and training case, we pick the best performing adaptive
bandwidth KDE for estimating s(l). Our methodology shows improvement up to approx.
20%. For cells * with extremely high sampling density in few locations, we utilize fixed
bandwidth estimation both in space and time (see Table 4.4 for the density of the data).
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(a) East NYC: Sampling s(l). (b) Importance ratio log(wu).

Figure 5.8: NYC dataset Comparison of the actual data sampling and the correction our
model (wu) to optimize uniform error εu. (a) Real sampling estimated by adaptive bandwidth
KDE. (b) wu from importance sampling. It can be clearly seen that the collected data from the
Mobile analytics companies oversample devices during commute (GPS Apps push locations
updates - power plugged) and undersample other residential areas. We also observed this
common engineering practice when we designed our own crowdsourcing system in Chapter 3.
Best viewed in color.

Table 5.6 reports the error εu for both the default RFs predictor as well as the RFsw. We

observe an improvement of up to 20% for εu for cells which have been oversampled in just few

locations; the average relative improvement is approx. 5%, which demonstrates the significant

benefits for readjusting the training loss when the error we want to optimize is different than

the typical MSE.

5.4.4 Driving with GPS enabled nearby JFK Airport

The NYC dataset allows us to demonstrate in large scale the mismatch between the sampling

distribution and the target distribution (a.k.a. dataset shift problem [67]) and how our

methodology has real world implications for mobile analytics companies (as we suspected in
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the preliminary discussion in Chapter 3 about the datasets and our crowdsourcing system).

Fig. 5.8a depicts the sampling distribution s(l) in spatial dimensions (estimated by adaptive

bandwidth KDE as we described in 5.3.2-5.3.3), in East NYC nearby JFK airport. It can be

observed that the data are primarily being collected on the highway (Belt Pkwy) adjacent to

the sea; the sampling density is much higher compared to nearby residential blocks. Although

the specifics of the data collection for NYC dataset are proprietary, we hypothesize that the

data collection is more frequent when the devices are plugged to power and the users utilize

a location navigator app which pushes location updates to other applications. This is a good

common practice in crowdsourcing systems [6], as we extensively describe in Chapter 3, to

minimize the impact on users’ devices. Fig. 5.8b illustrates the importance ratio weights wu

and how our model readjusts for the sampling-target distribution mismatch. Similar patterns

in data collection are observed throughout many different areas in NYC and LA datasets

(e.g., 405 highway in Long Beach area x210). In other words, this mismatch of the collected

data with the target distribution is not a bug, but rather is a feature of good crowdsourcing

systems, an observation which further motivates our research for dealing with this mismatch.

Table 5.7 reports the error εu for different LTE TAs in NYC and LA datasets. The average

performance improvement by training RFswu is approx. 3%, with up to 5% in some areas.

We also examined the area x532 where the benefit of our method was small and as expected

the spatial distribution was indeed approx. uniform. At the other extreme, regions with

highly biased data collection (i.e., x540 East NYC near JFK and x210 Long Beach in LA)

show the highest error reduction (here 3.6% and 5.3% respectively).

Overall, we achieve higher gain from reweighting on Campus dataset, as it is collected from

a small number of users and hence more unevenly sampled. In general, we expect that this

feature will be common for small-scale data sets as well as setups with biased sampling

because of mobile analytics companies practices, making reweighting especially important to

correct for sampling bias.
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LTE-TA Characteristics Default RFs → ŷ RFswu
→ ŷw Improvement

TAI N Area/Neighborhood
√
εu

√
εu Diff. Diff. (%)

x210 197521
Long Beach
Lakewood

4.06 3.84 0.21 5.3

x552 97942 Eastern Brooklyn 5.38 5.12 0.26 4.9
x540 136105 E. Long Island 5.01 4.83 0.18 3.6
x535 121159 W. Queens 5.36 5.17 0.19 3.6

x641 10663
Covina
Hacienda Heights

1.8 1.74 0.06 3.5

x561 62448 Manhattan Midtown 5.64 5.46 0.18 3.2

x470 198252
LA Downtown
Hollywood

4.56 4.43 0.13 2.8

x211 77049 Suburban S. LA 4.06 3.96 0.1 2.4

x442 14538
Manhattan Uptown
Queens - Bronx

3.23 3.19 0.05 1.5

x537 37247
Manhattan Midtown
East

7.62 7.53 0.09 1.1

x321 5111 Eastern Brooklyn 3.87 3.83 0.04 1.1
x532 136508 Brooklyn 5.46 5.43 0.03 0.5
ALL 1094543 NYC & LA 4.88 4.72 0.16 3.16

Table 5.7: NYC and LA datasets RSRP y prediction: εu Error (i.e., reweighted according
to the uniform distribution): (i) Train on Default RFs vs. (ii) train on RFsw wi = wu ∝

1
s(l)

. Models per LTE TA. We use adaptive bandwidth KDE for estimating s(l)[47]. Our

methodology shows improvement up to 5.3%.

Reweighted error to target Population Density εP . An alternative to uniform weight-

ing is to weight errors by local population density, resulting in a metric that places more

emphasis on accuracy in regions where more potential users reside. To that end, we utilize

public APIs to retrieve the census data and estimate the population density P (li). Table 5.8

includes the reweighted εP for RSRP data by using the default RFs vs. the weighted train

RFswP
; we see performance improvement up to 5.7%. Please note that cellular operators could

also utilize similar users’ location activity data (e.g., [22]) from other sources. For example,

some locations in census such as big parks or airports, do not have high assigned population

and they experience high user traffic.

Reweighted Error for QoS functions. So far, we have separately evaluated the improve-

ment from (1) predicting QoS directly and (2) re-weighting by importance ratio. We can

also combine our two contributions and calculate the reweighted error εp (how we handle the
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LTE-TA Characteristics Default RFs → ŷ RFswP
→ ŷw Improvement

TAI N Area/Neighborhood
√
εP

√
εP Diff. Diff. (%)

x561 63303 Manhattan Midtown 7.23 6.82 0.41 5.7
x321 7014 Eastern Brooklyn 4.94 4.8 0.14 2.8
x535 122071 W. Queens 6.03 5.87 0.15 2.5
x552 98240 Eastern Brooklyn 5.35 5.29 0.06 1.2
x532 137962 Brooklyn 6.24 6.22 0.02 0.3
x537 37964 Manhattan Midtown-East 8.82 8.81 0.01 0.1
x540 138495 E. Long Island 5.09 5.09 0.00 0.0

x442 16372
Manhattan Uptown
Queens - Bronx

3.97 4.21 -0.24 -6.1

ALL 621421 NYC 5.98 5.90 0.08 1.35

Table 5.8: NYC and LA datasets RSRP y prediction: εP Error (i.e., reweighted according
to the population distribution): (i) Train on Default RFs vs. (ii) train on RFsw wi = wP ∝
P (l)
s(l)

. Models per LTE TA. We use adaptive bandwidth KDE for estimating s(l)[47]. Our

methodology shows improvement up to 5.7%.

input space) for a QoS function (how we handle the output space) of interest. We only show

results for Qcdp(y), although this can be extended to Qc(y). As summarized in Table 5.2,

there are four cases to be compared. First, Qcdp(ŷ) is the baseline, where we first predict the

signal map value y of interest and then get an estimate of the CDP. Second, Q̂cdp(y) is our

prediction directly on the function of interest. Third, we can train a weighted RFsw for y,

and get Qcdp(ŷw). Last, we can have Q̂w
cdp(y) which is the weighted trained model RFsw for

estimating CDP. In essence, reweighting the samples according to the target distribution is

orthogonal to adjusting the outcome of interest Q(y) of interest, and the two approaches can

be combined.

Table 5.9 reports the errors for uniform loss over a spatial area, and shows improvements up

to 5.5%. Interestingly, the baseline performance deteriorates when we train on the adjusted

weights. It tries to minimize MSE for y, therefore the weights can either have very little

or even negative effect for mapping back to CDP space. Similar results are observed for

error proportional to user population density (see Table 5.10). This again demonstrates the

importance of choosing the loss function, here jointly controlled by w and Q, to optimize

performance for a specific prediction problem.
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KPI: CQI
All LTE-TA regions

Training Options y domain → Q(ŷ) Q(y) domain

wi = 1,∀i Qcdp(ŷ) 0.018 Q̂cdp(y) 0.0169

wi = wu ∝ 1
s(li)

Qcdp(ŷw) 0,018 Q̂w
cdp(y) 0.0160

Relative Difference 0.5% 5.5%

KPI: RSRP
All LTE-TA regions

wi = 1,∀i Qcdp(ŷ) 0.028 Q̂cdp(y) 0.023

wi = wu ∝ 1
s(li)

Qw
cdp(ŷ) 0.029 Q̂w

cdp(y) 0.022

Relative Difference -2% 2.3%

Table 5.9: NYC and LA datasets εu Error (i.e., reweighted according to the uniform
distribution) results on the Q domain. Predicting ŷ with weights and then converting to Q(y)

does not help because information is lost from the transformation. Predicting Q̂(y) after
training with the importance sampling weights can further improve the error up to 5%.

KPI: CQI
All LTE-TA regions

Training Options y domain → Q(ŷ) Q(y) domain

wi = 1,∀i Qcdp(ŷ) 0.0107 Q̂cdp(y) 0.0088

wi = wP ∝ P (li)
s(li)

Qcdp(ŷw) 0,0109 Q̂w
cdp(y) 0.0085

Relative Difference -2.3% 3.07%

KPI: RSRP
All LTE-TA regions

wi = 1,∀i Qcdp(ŷ) 0.0045 Q̂cdp(y) 0.0036

wi = wP ∝ P (li)
s(li)

Qcdp(ŷw) 0.0047 Q̂w
cdp(y) 0.0034

Relative Difference -5% 4%

Table 5.10: NYC and LA datasets εP Error (i.e., reweighted according to the population
distribution) results on the Q domain. Predicting ŷ with weights and then converting to Q(y)

does not help because information is lost from the transformation. Predicting Q̂(y) after
training with the importance sampling weights can further improve the error up to 5%.
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5.4.5 Applicability to 5G and beyond

Obtaining signal (or other KPI, and most importantly coverage) maps in an accurate and

cost-efficient way is a fundamental need in 5G and our method is directly applicable and

useful in that context. A major trend in 5G is to use a large numbers of small cells. Having

accurate estimates of signal strength, coverage and other KPIs, will be necessary for knowing

where to deploy more cells, and how to control 5G parameters. Our framework can naturally

handle prediction over small cells, e.g., similarly to what we did with the NYC and LA

datasets, where prediction was not per cell, but across an area covered by multiple cells,

(i.e., LTE TA) with cID used as a feature. Furthermore, small cells will introduce even

higher sampling biases and our importance sampling framework handles an mitigates these

train-target distribution mismatches. Moreover, our error metrics, are (i) integrated over X

(e.g., geography, time, frequency band, device) with (ii) weight functions W (x) which can

express complex operator objectives in various 5G setups (e.g., IoT, self driving cars).

5.5 Summary

We presented a principled ML framework for cellular coverage map prediction. Instead of

evaluating prediction of signal strength itself w.r.t. conventional MSE, we introduced QoS

functions (e.g., call drop probability, signal bars, coverage) and importance ratio re-weighting

(e.g., for uniform, population, or arbitrary target distributions) that allows a cellular operator

to express its operational objectives and optimize prediction (for both classification and

regression tasks) accordingly. We demonstrated improvements for both quality and weight

functions on the same real-world and large scale LTE data sets we have used in this thesis.

Coverage indicator (or signal bars) QoS maps can be used directly by both mobile analytics

and cellular operators for coverage maps and relevant applications, since a class of quality
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can provide enough information for certain tasks of interest (e.g., visualizations, network

decisions in SDN/SON, detect coverage holes etc.). We trained models directly on these

QoS functions and showed an improvement up to 32% in terms of the relative error in the

high CDP regime, which is of greatest concern to cellular operators, as well as improved

recall from 76% to 92% for predictions of coverage loss (where false negatives are costly to

operators). However, if signal strength (e.g., RSRP) prediction is needed, our CDP QoS

optimization framework provides an elegant way to improve the signal strength prediction

itself (up to 3dB in RMSE improvement), in its low values regime, where it matters more for

the cellular operators.

Our importance ratio re-weighting framework, apart from expressing the operational objective

of interest, handles and mitigates the dataset shift problem [67], i.e., the mismatch of the

available training data distribution with the target (test) distribution. The dataset shift is a

prominent problem in the ML area and we hope our work can offer a framework to mitigate it

specifically for mobile coverage maps. As we demonstrated in this chapter the best practices

of mobile analytics companies could introduce significant sampling biases and our technique

allows an improvement of up to 20% for the uniform spatial error when we train models with

reweighted loss.

We also showed how both adjustments operate together by implicitly changing the loss

function optimized by the ML method, providing a direct and easily implemented way

to work with complex, operator-specific loss functions without modifying the underlying

learning algorithm. Thus, our methodology is also applicable to the upcoming complex 5G

deployments(e.g., dense small cells, IoT, self driving cars), where additionally coverage and

other KPIs estimates would be of immense of interest.
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Chapter 6

Data Shapley Valuation for Coverage

Maps Prediction

If Your Data Is Bad,

Your Machine Learning Tools Are Useless

Thomas C. Redman

6.1 Overview

In this chapter, we apply, for the first time, the problem of data Shapley valuation for mobile

coverage maps. Although there have been significant ML developments in the last years, only

recent literature addressed valuation of training data points in the context of medical tasks

classification [35], but not in the context of mobile data. In this chapter, we study the unique

aspects of coverage maps prediction and we address the absence of data valuations tools.

Assessing the data Shapley values of training data points enables a number applications: (1)

it enables “cleaning” of the data and improving prediction by removing negative values, (2)
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data minimization and privacy-utility tradeoffs by removing low valued data and (3) it can

be an important tool for pricing for mobile crowdsourced data.

We define jointly a specific prediction task and the performance-error metric of interest

under the umbrella of data Shapley in order to quantify the data valuation. This holistic

approach is necessary since there is no universal value for data points, but the value depends

on the particular use of the data in ML. We demonstrate data valuation for various operators

metrics instead of the standard accuracy and MSE in classification and regression respectively.

We also show how our reweighted errors, from Chapter 5, fit naturally the data Shapley

framework. We built on and extend the framework provided by [35], which itself builds on

the fundamentals of Shapley value from economics. More specifically, we make the following

contributions:

1. We study and implement a wide range of different performance metrics instead of

the standard accuracy and MSE in classification and regression respectively. We

calculate the data Shapley valuation for the mobile coverage QoS Q̂c(y) classification for

evaluation metrics such as recall for coverage loss, R0, which is of immense importance

for cellular operators. We analyze the distribution of data Shapley values in our

datasets and we apply it to remove data points with negative/low Shapley values, which

simultaneously improves prediction and achieves data minimization. For instance, we

are able to remove up to 65% of the low valued training data points and simultaneously

improve the recall of coverage loss from 64% to 99%. Furthermore, we identify how the

dataset shift problem [67] (a.k.a. mismatch of the training and the target distribution)

can affect the performance after a certain threshold of removing training data.

2. We implement novel reweighted performance scores for data Shapley based on the

principles of importance sampling. First, we compare data Shapley and importance

sampling and we recognize similarities (e.g., both can inform us where the data are scarce

and valuable for our objective) and differences (e.g., importance sampling does not
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quantify the contribution of training data points) between the two frameworks. Second,

we leverage the importance ratio weights as an input to the data Shapley framework

creating a powerful framework that provides training data valuation according to the

cellular operators objectives.

In a nutshell, there is no a universal data valuation for crowdsourced mobile measurements,

thus, application specific performance metrics must be carefully considered jointly with the

prediction task when assigning a value to a data point.

Outline. The rest of this chapter is organized as follows. Section 6.2.1 introduces the

formulation and the fundamentals of data Shapley. Section 6.3, presents the application

specific error metrics with data Shapley for mobile coverage maps prediction. Section 6.3.3

demonstrates data minimization results. This chapter is finally concluded by Section 6.4.

6.2 Data Shapley Background

The Shapley value [65] is a solution concept in cooperative game theory1. The Shapley

value assigns a numerical (monetary) valuation for the contribution among the different

participants (players) in a cooperative game. The Shapley value is characterized by a collection

of desirable properties and has motivated the research for data Shapley [35], which quantifies

the contribution of each data point in algorithmic prediction.

1It was named in honor of Lloyd Shapley, who introduced it in 1951 and won the Nobel Prize in Economics
for it in 2012.
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6.2.1 Formulation

Data Shapley is a framework developed in [35], which attempts to provide an answer to

the question: “How do we quantify the value of the data in an algorithmic predictions and

decisions?” Data Shapley can provide us a valuation of the data (i.e., assign an arithmetic

value to each data point) in the setting of supervised ML. What is an equitable measure of

the value of each train data point (a.k.a. datum) (x, yi) to the training algorithm A? In order

to answer that, we have to take a closer look to the essential ingredients of a supervised ML

algorithm: (a) training data, (b) learning algorithm, (c) performance metric. The prediction

is a function that depends jointly on all of them, therefore, each one of them affects the

equitable measure assigned to our data. We follow the exposition and the organization of [35];

the notation of the aforementioned components is as follows:

(a) Data: The dataset of the ML setting follows the typical setup we have already seen in

this thesis: D = {(xi, yi)}N1 . We denote with Dtrain and Dtest the training and the test data

respectively; in the Data Shapley framework we also need Deval for the final evaluation, i.e.,

the heldout data.

(b) Learning Algorithm A: A black box for the data Shapley setting, which takes as input

Dtrain and produces as ouput a predictor ŷ = f̂y(x). For example, the algorithm could be a

logistic regression or the RFs predictors we have developed throughout this thesis.

(C) Performance Score V : We can treat it as a black box that takes an input f̂ , the error

metric - valuation we want to apply to each data point, the test data Dtest and outputs a

performance score V . We denote with V (S,A) = V (S) the performance score of a predictor

trained on train data S using the learning algorithm A. Please note, that the performance

score can be completely different than the loss function of the learning algorithm itself. For

example, we can train RFs regression with the typical MSE minimization and then report

also RMSE as we did in Chapter 4, however, we could train a model on a different loss

111



function than the evaluation functions as we did in some cases in Chapter 5. Data Shapley

provides us a powerful framework for evaluating the different quality functions and weights

functions (which essentially are other forms of error metrics according to a target distribution

of interest).

Goal. The goal is to compute the data Shapley value φi(D,A, V ) ≡ φi(V ) = φi ∈

R ∀i, (xi, yi) ∈ Dtrain, which follows the equitable valuation properties (described in Sec. 6.2.2).

Leave-one-out Value. A simple way to get a proxy of a data point value is through the

leave-one-out method, which calculates the datum value by leaving it out and estimates

the performance score, i.e., φLOO
i = V (D)− V (D − {i}). However, leave-one-out does not

satisfy the equitable valuations, inspired by the original Shapley value and described next.

Intuitively, a data point interacts and influences the training process, which creates the

predictor function, in conjunction with the other training points. Thus, these conditions

should be taken into account for data valuation.

6.2.2 Equitable Valuation Conditions

We follow the organization and the notation of [35]. The equitable properties of data Shapley

are defined as follow:

1. Null Property. If a datum (xi, yi) does not change the performance it should be given

φi = 0. Thus, ∀S ⊆ D− {i}, V (S) = V (S ∪ {i})

2. Symmetry Property. If two distinct datums i, j contribute equally to the performance

score V then they should have equal data Shapley values. In other words, ∀i, j ∈ D

such as S ⊆ D− {i, j} and V (S ∪ {i}) = V (S ∪ {j})⇒ φi = φj.
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3. Summation and linearity. It is very typical in Machine Learning to have an overall

performance score which is the sum of seperate performance scores. A typical example

is the mean squared error (MSE) that is the summation of the weighted equally (i.e.,

the mean) squared losses of individual points. When V consists of the summation of

individual scores, then, the overall value of a datum should be the sum of its values for

each score. In other words, for data Shapley we should have: φi(V +W ) = φi(V )+φi(W )

for performance scores V,W . It should be re-emphasized, that the data Shapley value

is defined for the train data points according to the performance scores on the test

data. Thus, V = −∑k∈test lk with lk to be the predictor’s loss on the kth test point;

the data Shapley value for quantifying the value of the ith source for predicting the kth

test point is denoted with φi(Vk). If datum i contributes values φi(V 1) and φi(V2) to

the predictors of the test points 1 and 2 respectively, then we expect the data Shapley

value of i in predicting both test points, i.e., when V = V1 + V2, to be φi(V1) + φi(V2).

6.2.3 Data Shapley Approximation

According to [35] the data Shapley value which complies to the above three properties, must

have the form:

φ = C
∑

D−{i}

V (S ∪ {i})− V (S)(
n−1
|S|

) (6.1)

In other words, the data Shapley value must he the average of the leave-one-out value (a.k.a.

marginal contributions) of all possible training subsets of data in S. It should be noted that

an exhaustive computation of Eq. (6.1) is very expensive computationally. An approximation

- truncated Monte Carlo algorithm (TMC-Shapley) is provided by [35] and is being used in

this thesis.

113



6.3 Data Shapley Applications for Coverage Maps

6.3.1 Prediction Tasks & Error Metrics for Coverage Maps

In the context of mobile coverage maps, this thesis has already considered prediction tasks

for which the notions of “data valuation” and “some measurements are more valuable than

others” were implied but not explicitly formulated. First, we took a glimpse of how a small

portion of the data may bring the majority of the error reduction in the prediction. For

example, in Fig. 4.5, with the 10% of the train data size the error was approx. equal to

2.7dB; for 10% → 50% the error decreased to 2.1dB, however, for a larger training set the

improvement was negligible. Second, in Chapter 5 we introduced weight functions, via the

importance sampling framework, that specified operators objectives. The weights correct

the data distribution in order to match the target distribution of the objective of interest.

For example, if we calculate the spatial uniform error εu (see Sec. 5.3), instead of the naive

cross-validation error εCV , under-sampled regions would be assigned higher weights.

Data Shapley and importance sampling share many common characteristics but also have

some distinct differences. We argue that they can complement each other and create a very

powerful framework. Data Shapley requires three main components, namely (a) a dataset,

(b) a training algorithm and (c) a performance score (evaluation metric) and quantifies

the contribution of individual training data points to a learning task. Apart from the data

valuation itself, according to [35], data Shapley has other benefits too: 1) it gives more

insights into the importance of each data point than the common leave-one-out score; 2)

it can identify outliers and corrupted data; 3) it can inform how to acquire future data

to improve the predictor. On the other hand, importance sampling is being used to as a

technique to modify the predictor (b) (i.e., define a weighted loss function) and to define (c)

the evaluation metric, when the train and the target distribution miss-match. However, it

does not provide a valuation of the training data for the learning task (as data Shapley does)

114



since it does not consider which datums helped the most for the final test error. Although

they do not provide direct answers to (1) and (2), please note that importance weights are

directly comparable to (3) above, since they indicate where the data are scarce and valuable

for our objective.

Basically, data Shapley can leverage importance ratio weights as an input (for the predictor’s

loss function and/or the performance score itself) creating a powerful framework which

provides training data valuation according to operators’ objectives. Data Shapley inherently

requires a performance score to evaluate the test data, therefore, our importance sampling

framework with the family of weight functions provide the context for the data Shapley value.

There is no a universal data valuation and for different learning tasks (i.e., objectives) some

data points might be more valuable than other.

In Section 6.3.3 we showcase data minimization for coverage indicator QoS prediction. Some

of the questions we are interested in are: (i) Does a subset of data points bring significant

benefits to the prediction? (ii) Can we remove low valued data and improve simultaneously

the performance, the privacy-utility tradeoff and save in storage? In Section 6.3.4 we showcase

how our weight functions can be used as evaluation metrics for data Shapley for mobile

coverage maps. We provide a data valuation scheme for potential transactions between mobile

analytics companies and cellular operatorsaccording to different objectives and scenarios.

Thus, for coverage maps we consider and evaluate the data Shapley valuation for the

following prediction tasks and their corresponding evaluation metrics. First, we start with

the classification of the mobile coverage indicator Qc(y) (see Sec. 5.2 for its formulation) and

we calculate data Shapley values for the evaluation metric of (1a) accuracy and (1b) Recall or

the class-0 (i.e., R0). Particularly R0 is of immense importance for cellular operators as we

studied in Chapter 5. For coverage maps regression (signal strength values) we calculate data

Shapley with mean squared error (MSE) and the reweigthed uniform error εu as defined in 5.
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6.3.2 Data Minimization Setup

For data minimization, we showcase results for mobile coverage QoS maps (i.e., Qc(y) with

y = yP ), which were introduced in Chapter 5. This setup is a typical binary classification

problem, where class 0 corresponds to bad coverage and class 1 encodes good coverage. As

we demonstrated in Chapter 5, minimizing directly the error of Q̂(y) provides significant

benefits compared to predicting coverage with the proxy Qc(ŷ).

Metric of Interest: Recall for coverage loss R0. For a class of interest Recall is a

measure of completeness, a.k.a. the ratio of relevant instances
⋃

retrieved instances over

the relevant instances (i.e., what’s fraction of the relevant instances were actually retrieved).

In other words, it is defined as R = Tp
Tp+Fn

where Tp is the true positive rate and Fn is

the false negative rate, for the class of interest. Ideally from operators’ perspective is to

maximize the Recall for class-0 R0 because the higher R0 means fewer false negatives for

the class-0, which can be translated to the statement that our algorithm did not classify a

bad coverage (Q(y) = 0) as a good coverage area (Q̂(y) = 1). In this setup, coverage holes

(class-0) misclassified as good coverage areas (class-1) would impact reputation, revenue, and

overall performance (e.g., the need for a cell upgrade may not be detected).

Prediction with RFs. As a briefly recap, we can model Qc(y) to be estimated as Qc(y)|

x∼ N(RFs′µ(x), σ2
x); therefore the final prediction is given by Q̂c(y) = f̂Q(x) = RFs′µ(x); for

further details we refer back to Sec. 5.2.4.

RFs Setup. We follow the same hyperaparameters selection procedure and setup as in

Chapter 4 and 5. For the Campus dataset, we select ntrees = 20 and maxdepth = 20 and we

build-train models per cID.
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Data Shapley - TMC-Shapley Setup. We adapt the TMC-Shapley’s library, provided

by [35], in order to estimate the data Shapley values φi of each training data point (xi, yi).

Although the particular library implements RFs classification with accuracy as the evaluation

metric, it neither provides RFs regression nor recall or other custom evaluation metrics as we

do. Thus, we augment it with the recall R0 evaluation metric for classification, RFs regression

implementation and our reweighted-spatial uniform error εu, as defined in Chapter 5.

Moreover the TMC-Shapley algorithm is a Monte-carlo approximation, therefore, it generates

Monte-carlo approximation until the average φ̂i value has converged. Work in [35] suggests a

convergence (stopping) criterion of 1
n

∑n
i=1

|φti−φ
t−100
i |
|φti|

< 0.05 and they claim that the algorithm

usually convergences with up to 3Ntrain iterations. However, our datasets are significantly

larger than the data utilized in [35], which is in range of 1000-3000 data points; for example,

the cell with the smallest number of measurements in Campus dataset contains approx. 1500

measurements and the majority of cells contain significant larger number of measurements,

as can be seen in Table 4.4. Thus, we relax the convergence criterion to save execution time

and we set a 30% convergence rate if we we exceed 2Ntrain iterations.

Splitting Data into Training Dtrain, Testing Dtest and Held-out Sets Dheld-out. We

select randomly 60% of the data as the training set Dtrain = {Xtrain, ytrain}, 20% as the

testing set Dtest = {Xtest, ytest} and 20% for the held-out data Dheld-out = {Xheld-out, yheld-out}.

Please note the difference between the typical train-test split (as we did in Chapter 4 and 5)

and the split here; data Shapley values φi are being calculated per training point (xi, yi) by

calculating the performance score V of the prediction on Dtest. We use the Dheld-out dataset

to report the final data minimization results, i.e., use some completely unseen data in order

to report recall R0 and accuracy A, while removing training data. Dtest should not be used

for the final evaluation since it was used to calculate the data Shapley in the first place.
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Removing Low Value Data and Baselines. We utilize the TMC-Shapley algorithm

to calculate the data Shapley values φi per training data point (xi, yi), for the problem of

coverage classification (i.e., Q̂c(y) as outlined in Sec. 6.3.1). For the data minimization

process, we remove batches of 5% of the data points Dtrain starting from the least valuable

(i.e., lowest φi). At each step (i.e., removal of a 5% batch), we re-train the RFsall model

with the remaining Dtrain and we calculate the performance of the prediction on the Dheld-out

data. In the same way, we setup two natural baselines. First, Leave-one-out (LOO), defined

in Sec. 6.2.1, produces a similar data valuation, therefore, we remove Dtrain batches according

to φLOOi , and second, we remove randomly selected 5% of the Dtrain at each step.

6.3.3 Data Minimizations Results

Remove Low Value Data vs. Recall R0. For the Campus dataset, Fig. 6.1-6.2 present

data-minimization results for several representative cells and for all the discussed methods

(TMC-Shapley, LOO and Random), in terms of the recall R0, as a function of the percentage

of Dtrain removed. TMC-Shapley’s performance either improves or remains the same when

start removing low value data points compared to LOO and Random. There are two possible

explanations. First, the batches with low valued Dtrain contain outliers and corrupted data;

the data Shapley has correctly identified these points compared to LOO which does not

show any benefit. Second, the data points with low φi do not have much predictive power to

maximize the defined performance metric of interest for the particular learning task; essentially

their removal lets the best suited data points to train the predictor. Very interestingly, after

a certain threshold, TMC-Shapley’s performance drops dramatically with just a removal

of single batch, which means that this subset of points (highly “influential” points) hold

significant predictive power. In contrast, by removing data randomly we keep bad quality

data, however we might also keep some of these “influential” points and that explains that

Random’s performance neither improves nor decays very fast.
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(d) Cell x914.

Figure 6.1: Campus dataset: Remove low valued data points (for Data-Shapley, LOO and
Random) for various cells.

In order to grasp the root causes of the above results and understand better the underlying

phenomena, we focus on a representative cell (cID x901) in Fig. 6.2. The label “A” in Fig. 6.2

refers to the beginning of the process where Dtrain is the full training dataset. The label

“B” indicates the step where 65% of the data have been removed and the performance has

reached its peak. Finally, the label “C” refers to the Dtrain after the sudden performance

drop. Table 6.1 reports supplemental information for the cell x901 in Fig. 6.2 which includes:

removed fraction and number of trianing data, the recall R0, number of measurements per
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A

C

B

Figure 6.2: Campus Cell x901. We remove the lowest valued data points first in the case of
TMC-Shapley and LOO as well as random. R0 performance vs. fraction of data removed.
Fig. 6.6 and FIg. ?? depicts the training measurements for the labels A, B and C on the
above figure. Fig. 6.3 depicts the sampling density of the points for the same labels.

users as well as the number of 0s and 1s of both the held-out data and the predicted ŷ, per

each step of the removal process.

First, for the label B, where 65% of the data have been removed and R0 has peak at 0.99,

we notice that the predictor Q̂c(y) has predicted significant higher number of 0s than 1s

(1631 0s vs. 294 1s). This does not surprise us, because, the predictor Q̂c(y) at label B

is being trained with data points of higher quality for maximizing R0. Essentially, in this

scenario, data Shapley φi encodes the ability of the data to result in training predictors that

would minimize the false negatives (i.e., maximize recall) and tend to over-predict 0s than

1s. Apparently, for a different metric the low/high φi points could be different. When R0

drops from 99% to 33% there is still data availability for both classes and users.
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% Training Data
Removed

N R0 userID-0 UserID-1 0s 1s 0̂ 1̂

0.0 5777 0.64 5521 256 1938 3839 541 1384
0.05 5489 0.68 5246 243 1855 3634 601 1324
0.1 5201 0.69 4967 234 1752 3449 622 1303
0.15 4913 0.76 4697 216 1651 3262 733 1192
0.2 4625 0.83 4429 196 1550 3075 889 1036
0.25 4337 0.82 4159 178 1448 2889 885 1040
0.3 4049 0.84 3882 167 1337 2712 916 1009
0.35 3761 0.84 3611 150 1226 2535 918 1007
0.4 3473 0.86 3335 138 1146 2327 1007 918
0.45 3185 0.88 3059 126 1058 2127 1062 863
0.5 2897 0.91 2780 117 976 1921 1183 742
0.55 2608 0.94 2502 107 872 1737 1274 651
0.6 2321 0.96 2226 95 768 1553 1393 532
0.65 2032 0.99 1948 85 674 1359 1631 294
0.7 1745 0.33 1671 74 585 1160 195 1730

Table 6.1: x901 Cell detailed Data Minimization Results per removal step.

The sampling distribution of the data between label “A” vs label C offers also significant

insights. Fig. 6.3a shows wu ∝ 1
s(l)

for the Dtrain data at label A; the home and work

locations where data have been oversampled are illustrated clearly; the average data density

is E[log s(l) = −3.3]. On the contrary, Fig. 6.3b depicts wu ∝ 1
s(l)

for the remaining Dtrain

at label C and it can be clearly seen that the data distribution is closer to uniform and

the average data density has been dropped to E[log s(l) = −9.3]. The held-out data were

randomly sampled from the original distribution, therefore, there is now a miss-match between

the original and target distribution (i.e., the dataset shift problem we studied in Chapter 5)

which can explain the drop in the performance. Last but not least, the data that are being

removed from label B → label C (Fig. 6.6c) are primarily from the two oversampled regions,

where we have a lot of held-out data to be tested (i.e., if the most “influential points” are

removed, significant predictive power can be lost).

Fig. 6.4 depicts the CDF values of φi values for the certain scenarios we have seen so far.

Fig. 6.4a show the CDF of all data (i.e., all Dtrain at label A). We can see that there is a
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(a) Label A, Fig 6.2.

(b) Remaining Data’s sx for performance at Label C, Fig 6.2.

Figure 6.3: Campus dataset cell x901. Top: Initial Sampling distribution s(x) (Data for
Label A in Fig. 6.2). E[log s(x) = −3.3] Bottom: Final Sampling distribution s(x) (Data
for Label C in Fig. 6.2). The procedure of removing data points eventually changed the
sampling distribution of the data; at label A two regions were largely oversampled; at label C
when the performance has finally been decreased the sampling distribution of the data look
more uniform therefore it missmatches the original train distribution. E[log s(x) = −9.3].

portion of the data having negative φi value, however, the CDF sharply switches to positive

values after a certain threshold. Very interestingly, the data points that have been removed at

65% removal (i.e., label B, see Fig. 6.4b) have overwhelming negative values. Data Shapley

has correctly identified that these points do not help the prediction for the particular task

and the performance score (R0) we consider. Fig 6.2 shows the CDF of φi at label B, i.e.,

for the Dtrain the algorithm has achieved the best score and we observe that are all positive.
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(b) Label A → Label B, Fig 6.2.
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(c) after removing 65% of low
valued data points.

Figure 6.4: CDFs of Data Shapley φiof the various scenarios in Fig. 6.2.

Please note that Fig. 6.4b includes a few positive values that were removed and there was

a positive effect in R0. This occurs because the TMC-algorithm itself is an approximation

of data Shapley φi, which requires exponential number of computations (see eq. 6.1). In

addition, we have slightly relaxed the convergence rate to save execution time given the bigger

size of our datasets. Thus, it is expected that there are going to be some errors in φi values.

Removing Low Value Data vs. Accuracy. We also calculate data Shapley φi by using

accuracy A as the performance metric V . Fig. 6.5 reports data for the same data removal

process as we discussed so far. We observe that the TMC-Shapley’s performance eventually

outperforms LOO and Random when certain threshold of data removal has been reached,

however after a certian point the performance of TMC-Shap drops, as happened with the

recall. That is something we expect because the portion of the data that can be removed

varies according to the particular dataset and most importantly for the particular error metric

we evaluate. Different performance metrics produce different data Shapley valuations for the

training data.

6.3.4 Weight Functions for Performance Score

Data Shapley and importance sampling share many common characteristics but also have

some distinct differences. We already argued that they can complement each other and create
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Figure 6.5: Campus dataset: Remove low valued data points (for Data-Shapley, LOO and
Random) for various cells and for the performance metric of accuracy A.

(a) Label A, Fig 6.2. (b) Label B, Fig 6.2.

(c) Label B →Label C, Fig 6.2. (d) Label C, Fig 6.2.

Figure 6.6: Qc(y) Values at different fractions-removed in Fig. 6.3. Please note that Qc(y)=
{0, 1} but some spatial points might be experiencing both (that’s the values between 0 and
1).

a very powerful framework for data valuation for mobile coverage maps prediction. Here,

we showcase an example for how these different frameworks can be combined together by

using the reweighted error metrics we developed in Chapter 5 as a a performance score for
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(a) wu ∝ 1
s(l) .

(b) Data Shapley φi with V ← MSE.

(c) Data Shapley φi with V ← εu .

Figure 6.7: Example of how the reweighted error metric εu affects the data Shapley values.
(a) wu (i.e., inversed data sampling). Please note the oversampled home and work locations.
(b) Data Shapley values for the Mean Squared Error valuation. (c) Data Shapley for the εu
performance score, i.e., reweighted MSE. Please note how the oversampled areas (i.e., with
very low weights) at the home/work locations, have been assigned super small data shapley
values. The performance score-evaluation function really matters.
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data Shapley. Fig. 6.7 demonstrates a characteristic example. Fig. 6.7a shows the sampling

distribution of the collected data and we can observe the oversampled data for the Calit2

building and the more sparse data at the surroundings of the building. Fig. 6.7b shows the

data Shapley values for the typical performance metric of MSE. On the contrary, Fig. 6.7c

shows the data Shapley values φi for the performance metric of εu (uniform spatila error) as

defined in Chapter 5. As expected, the over-sampled areas have assigned a significant lower

φi score because they do not contribute at the maximization of the performance score εu .

6.4 Summary

In this chapter we considered, for the first time, the problem of data Shapley valuation for

mobile coverage maps. We defined jointly a specific prediction task and the performance-error

metric of interest under the umbrella of data Shapley in order to quantify the data valuation

of this particular predictive task. This approach is necessary since there is no universal data

valuation score but rather it depends on the goal at a time. We calculated the data Shapley

valuation for the mobile coverage indicator classification for evaluation metrics such as recall

for coverage loss, R0, which is of immense importance for cellular operators. We analyzed the

distribution of data Shapley values in our datasets and we apply it for improving prediction

and for data minimization. For instance, we were able to remove up to 65% of the low valued

training data points and simultaneously improve the recall of coverage loss from 64% to 99%.

Last but not least, we showed how our novel reweighted performance scores based on

importance sampling can be naturally combined with data Shapley, producing data valuations

according to the importance ratio of the data points and we demonstrated an example for the

uniform spatial error. Overall, assessing the data Shapley values of training data points enables

improving prediction, (by removing data with negative Shapley values), data minimization (by

removing data with lowest shapley values), and pricing of crowdsourced data. Therefore, we
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hope that our work can be used from both cellular operators and mobile analytics companies.
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Chapter 7

Conclusions and Future Directions

Throughout this dissertation, we developed a principled machine learning framework to predict

missing values for mobile coverage maps. We optimized mobile coverage maps prediction for

objectives and error metrics of interest to cellular operators and we provided data Shapley

valuation according to the specific prediction task.

In Chapter 4, we used the powerful tool of random forests (RFs), which we adapted in

this context for the first time by evaluating different features readily available by Android

APIs. We conclusively showed that the RFs-based predictors outperform state-of-the art

data-driven predictors (geospatial interpolation) in all scenarios, when more features beyond

just location are considered. We showed that the most important features were primarily

cID, location, time and device type, which none of them can be naturally incorporated

to geospatial interpolation. Most importantly, we demonstrated how we can significantly

improve the tradeoff between prediction error and number of measurements needed compared

to the state-of-the-art, i.e., require 80% less data for the same error, or reduce the relative

error by 17% for the same number of measurements. At the same time, we showed how device

and wireless receiver’s characteristics are very important and should be taken into account.
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RFs regression minimizes the standard mean squared error (MSE), however, this does not

always satisfy the goals of operators.

In Chapter 5, we address two limitations introduced by solely minimizing MSE. There are

certain values of signal strength that might matter more than others (e.g., low coverage

areas) and sampled data (where MSE is calculated) do not correspond to the real target data

distribution. Instead of evaluating prediction of signal strength itself w.r.t. conventional MSE,

we introduced QoS functions (e.g., call drop probability, coverage indicator) and importance

ratio re-weighting (e.g., for uniform, population, or arbitrary target distributions) that allows

a cellular operator to express its operational objectives and optimize prediction accordingly.

We trained models directly on these QoS functions and showed an improvement up to 32%

in terms of the relative error in the high CDP regime, which is of greatest concern to cellular

operators, as well as improved recall from 76% to 92% for predictions of coverage loss (where

false negatives are costly to operators). However, if signal strength (e.g., RSRP) prediction

is needed, our CDP QoS optimization framework provides an elegant way to improve the

signal strength prediction itself (up to 3dB improvement), in its low values regime, where

it matters more for the cellular operators. Our importance ratio re-weighting framework,

apart from expressing the operational objective of interest, handles and mitigates the dataset

shift problem [67]. The dataset shift is a prominent problem in the ML area and we hope

our work can offer a framework to mitigate it specifically for mobile coverage maps. As we

demonstrated in this thesis, the best practices of mobile analytics companies could introduce

significant sampling biases; our technique of training models with reweighted loss decreases

error by 20% for a uniform target distribution. We also showed how both adjustments operate

together by implicitly changing the loss function optimized by the ML method, without

modifying the underlying learning algorithm. QoS maps can be used directly by both mobile

analytics and cellular operators for coverage maps and relevant applications, since a class

of quality can provide information for certain tasks of interest (e.g., visualizations, network
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decisions in SDN/SON, detect coverage holes etc.).

In the last part of our work, in Chapter 6, we considered, for the first time, the problem of data

Shapley valuation for mobile coverage maps. Basically, we defined jointly a specific prediction

task and the performance-error metric of interest under the umbrella of data Shapley in order

to quantify the data valuation of this particular predictive task. We calculated the data

Shapley valuation for the mobile coverage indicator classification for evaluation metrics of

interest for cellular operators, such as recall for coverage loss. We analyzed the distribution

of data Shapley values in our datasets and we apply it for improving prediction and for data

minimization. For instance, we were able to remove up to 65% of the low valued training

data points and simultaneously improve the recall of coverage loss from 64% to 99%. Last

but not least, we showed how our novel reweighted performance scores based on importance

sampling can be naturally combined with data Shapley, producing data valuations according

to the importance ratio of the data points. Overall, assessing the data Shapley values of

training data points enables improving prediction, (by removing data with negative Shapley

values), data minimization (by removing data with lowest Shapley values), and pricing of

crowdsourced data.

Throughout this thesis, we leveraged two types of real-world mobile (LTE) datasets to

evaluate our methods: the first was collected at our university campus by an android App

we developed and the second provided by a mobile crowdsourcing company for NYC and

LA metropolitan areas, including approx. 11 million measurements. They are among the

largest used and provided unique insights into city-wide coverage maps prediction. We hope

that our work can useful to cellular operators and mobile analytics companies, to improve

coverage maps prediction in a cost-efficient way.
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7.1 Future Directions

There are many exciting research endeavors that can build on this thesis, particularly in the

context of the upcoming 5G deployments.

Explicit Loss Functions. In this thesis, we introduced quality and weight functions and

we showed how both adjustments operate together by implicitly changing the loss function

optimized by the ML method. However, there are explicit loss functions that may be of interest

to cellular operators and mobile analytics companies. For example, a Hubber asymmetric

loss function for regression could put more emphasis in the low signal strength regime.

Hybrid Models, Transfer Learning and Applicability to 5G. Transfer learning [57]

could also be explored. For example, consider a neighborhood where there are no collected

(training) data and the data are collected from a totally different neighborhood (i.e., we

could not use the location of the measurements as features). In that case, we could build ML

models that utilize features such as distance (||lBS − lj||), AoA (angle of arrival), freqdl etc.,

which are location agnostic and omit the spatial coordinates feature. Thus, we would be

able to generalize a prediction model to a new area by looking only at the similarities of

different neighborhoods [22]; for example, a model trained on Seattle downtown (grid with

skyscrapers) could be similar to SF downtown or NYC downtown. Moreover, hybrid models

of data driven approaches and wireless propagation models can be explored.

Obtaining coverage maps in an accurate and cost-efficient way is a fundamental need in

5G and our method is directly applicable in that context. A major trend in 5G is to use

a large numbers of small cells. Having accurate estimates of signal strength, coverage and

other KPIs, will be necessary for knowing where to deploy more cells, and how to control

5G parameters. For example, we can use the coverage prediction for enabling LTE Direct
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communication or to turn on and off small cells [21] appropriately to save energy. Our

framework can naturally handle prediction over small cells, e.g., similarly to what we did

with the NYC and LA datasets, where prediction was not per cell, but across an area covered

by multiple cells, (i.e., LTE TA) with cID used as a feature. Furthermore, small cells will

introduce even higher sampling biases and our importance sampling framework handles an

mitigates these training-target distribution mismatches. Last but not least, our quality, Q(y),

and weight functions, W (x), with x ∈ X (e.g., geography, time, frequency band, device)

could be expanded to express complex operator objectives in various 5G setups (e.g., dense

small cells, IoT, self driving cars).

Privacy-Preserving Coverage Maps. In Chapter 6, we presented tools for data mini-

mization that can improve the privacy-utility tradeoff. One interesting direction is to further

enhance the privacy aspects of mobile coverage maps with federated learning techniques

(FL). Federated learning [11] is a technique for training a global ML model by sharing users’

models updates instead of uploading raw data collecting on the devices, which is particularly

important for crowdsourcing systems. A natural direction for future work is to“federate” the

prediction methodology developed in this thesis to crowdsource the training of the model,

without actually uploading the raw data from mobile devices to servers. Another idea

for privacy-preserving signal maps would be to use the data Shapley valuation for data

minimization, i.e., to remove data for privacy reasons while preserving high predictive power.

At the same time, data Shapley requires further research for faster approximation algorithms;

although the TMC-Shapley algorithm offers a good framework, the execution time for datasets

over 10 thousand points remains high (in the orders of dozens of days for a single core setup).
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