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ABSTRACT OF THE DISSERTATION

Essays on Market Design and Auction Theory

by

Byeonghyeon Jeong

Doctor of Philosophy in Economics

University of California, Los Angeles, 2019

Professor Marek G Pycia, Co-Chair

Professer Ichiro Obara, Co-Chair

This dissertation studies market design and auction theory. Chapter 1 studies the impact

of school choice on segregation. It shows that the popular school choice mechanisms lead to

substantially different school and residential segregation, an important and overlooked aspect

of choosing among school choice mechanisms. We show that open enrollment policy in public

school choice program can decrease diversity of individual schools and increase segregation

depending on which student allocation mechanism is used. Without open enrollment, we

study the model of location choice and show that segregation is mainly associated with

income. In comparing mechanisms, we show that Boston mechanism fosters segregation

more than the deferred acceptance. With open enrollment, the difference between BM

and DA becomes more drastic. We show that BM can actually intensify segregation when

open enrollment policy is adopted, while DA is more resilient to segregation. The deferred

acceptance with multi tie breaking creates maximally diverse schools. Chapter 2 considers

conventional auctions when the seller can design bid spaces. Any symmetric equilibrium in

a second price auction with bid spaces can be replicated with an equilibrium in a first price
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auction with bid spaces, but the converse doesn’t hold. First price auctions with designed bid

spaces revenue dominates second price auction with designed bid spaces, and well-designed

first price auction is an optimal selling mechanism. Chapter 3 studies one-to-one matching

environment without transfer in the presence of incomplete information on one-side. The

existing notions of stability under incomplete information are studied and two alternatives

are proposed. Weak Bayesian stability requires that the beliefs of the agents are dervided

from a common prior via Bayes’ rule and are internally consistent with the presumption

that the given matching is stable. Strong Bayesian stability refines weak Bayesian stability

by requiring the beliefs of agents are also externally consistent in the sense that the beliefs

are narrowed down only when there is a valid reason.
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Chapter 1

School Choice in Context: Can Open

Enrollment Cure Segregation?

1.1 Introduction

Over the decades school choice policy has been adopted in many countries to expand the

schooling options for students and parents. There are many programs available to provide

choices such as charter schools, school vouchers, and tuition tax credit program. Especially,

open enrollment program with centralized assignment has been widely adopted in many

countries. In US, the majority of states have adopted open enrollment programs in some

way.1 Open enrollment policies allow students to attend to public schools outside of their

residential school district. Under the neighborhood school system, students are assigned

to neighborhood schools based on where they reside, thus, real estate costs decide who

can attend which schools and it leads to segregation between school districts. While open

enrollment programs were proposed partially as a solution to mitigate the segregation by

delinking residential choice and school choice, there are some evidences suggesting that

open enrollment programs decreased diversity of each school. Institute on Metropolitan

1See the report by Education Commission of the States (2016) for more detail.
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Opportunity (2013) reported that overall open enrollment increased segregation by analyzing

school districts in the Twin Cities. Moon (2018) studies the impact of adopting the public

school choice program on housing prices and student performance in Seoul. In the paper, the

result shows that adopting the program closes the gap of housing prices between different

school districts, while the gap of academic performance was not affected by the program.

Saporito (2003) analyzes public and magnet schools in Philadelphia and concludes that

expanding choices lead to increased segregation. Kotok et al. (2017) show an evidence

that students movement between public schools and charter schools are segregative. These

paradoxical evidences pose an important question that should be answered in designing

school choice program. Are school choice programs inherently segregative?

This paper addresses the question by studying the role of specific student assignment

mechanisms in the context of segregation.

There are two widely used student assignment mechanisms in practice; Boston mechanism

and deferred acceptance.2 While Boston mechanism or some variations are used around the

world, the mechanism has been criticized for its incentive property and unfairness. On the

other hand, Deferred acceptance is strategy-proof and fair in the sense that the mechanism

eliminates justified envy.

First, we construct a model of residential choice between two school districts when each

district has three different schools under the neighborhood school system. Within each

district, either Boston mechanism or deferred acceptance are used to assign students. We

show that ex-ante symmetric districts are segregated by income and Boston mechanism

creates less diverse schools than the deferred acceptance does.

Second, we study the impact of the open enrollment program on the already segregated

districts. We show that the open enrollment program mitigates segregation by income be-

tween districts, however, it may create or intensify segregation by characteristics other than

income between schools if Boston mechanism is used, while the deferred acceptance algorithm

2See Agarwal and Somaini (2018) for a partial list of cities using the mechanisms.
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is more resilient to segregation.

Third, we compare the performance of Boston mechanism, deferred acceptance with single

tie breaking, and deferred acceptance with multi tie breaking in the context of segregation

and school diversity. Our results show that the deferred acceptance mechanisms in general

are better than Boston mechanism concerning segregation and diversity, and the deferred

acceptance with multi tie breaking performs better than the deferred acceptance with single

tie breaking.

The rest of paper is organized as follows. Section 1.1 discusses the related literature.

Section 2 provides the baseline model. Section 3 studies the outcomes of different school

choice mechanisms without open enrollment. Section 4 studies the impact of adopting open

enrollment policy under the different school choice mechanisms. Section 5 provides the

concluding remarks. All the proofs are in the appendix A.

1.1.1 Related Literature

This paper is related to two lines of literatures. On the one hand, the baseline model

without open enrollment in this paper is inspired by the literature on multi-community

model. Tiebout (1956) introduces the multi-community model and local public good. Berglas

(1976) adds complementarity into Tiebout (1956) model. Benabou (1993) studies general

equilibrium model that combines location, education, and occupation choices. Epple and

Romano (2003) examine and compare neighborhood system and open enrollment when each

district has only one school and the quality of school is determined by peer quality. Our

model adds an element of school choice into the multi-community models by having fixed

size schools with heterogeneous agents.

On the other hand, there are papers in mechanism design literature that have focused on

student assignment algorithms. Gale and Shapley (1962) study stable matching problem and

provide that the outcome of Deferred Acceptance algorithm is the proposing side optimal

stable matching. Roth (1982) shows that Deferred Acceptance algorithm is strategy-proof.
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Abdulkadirolu and Sönmez (2003) approach the school choice problem as a mechanism design

problem and show the flaws of widely used mechanisms including Boston mechanism and

propose deferred acceptance and top trading cycle as alternatives. Miralles (2009) and

Abdulkadirolu et al. (2011) argue that Boston Mechanism is ex-ante more efficient than

Deferred Acceptance. Erdil and Ergin (2008), Kesten and Ünver (2015), and Ashlagi and

Nikzad (2016) study the impact of tie-breaking in Deferred acceptance algorithm. Pycia

(2017) shows that many standard mechanisms are equivalent in terms of mean invariant

outcome statistics. In the light of Pycia (2017), it is more natural to focus on non-variant

measures when comparing different mechanisms. Our paper provides a comparison between

Boston mechanism and deferred acceptance in the context of segregation and school diversity.

Our paper is not the first attempt to connect school choice and segregation in mechanism

design context. Avery and Pathak (2015) develop a model linking residential choice and

school choice problem with mostly one-dimensional type. In their model, the qualities of

schools are determined by peer effect and students’ ordinal preferences over schools are

homogeneous. In our paper, the qualities of schools are determined by expenditure and

there are fundamentally different types of schools with heterogeneous ordinal preferences

of students. Calsamiglia et al. (2017) compare Boston mechanism and deferred acceptance

algorithm in the context of sorting between schools in a single district. The qualities of

schools are determined by peer effect in their paper and their main model assumes one-

dimensional type.

1.2 The baseline model

There is a city with equally sized two separate school districts. The size of each district is

1. In each district, there are three public schools and each school provides different types of

education; Type A, type B, and type C. Let us denote the school type θ in district i by θi

and the size of school type θ in district i by Sipθq. There is a continuum of households with
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mass 2. Each household has one child who will enroll in a school and has two dimensional

types. The first dimension is income m P rm, m̄s. The second dimension is “student type”

a P ra, ās, which determines the relative preference between school type A and B. Each

type profile pm, aq is drawn from a joint cdf Φ with pdf φ. We assume that m and a are

either independent or affiliated throughout the paper. The utility of a household residing in

district i and the child attending school type θi is given by

Upm, a, θ, iq “ upa, θq ` qippiq ` vpm ´ piq.

The utility of living outside of city is given by a constant uo. pi is the cost of housing

associated with living in district i and vp¨q represents the utility for money. qippiq is the

quality of schools district i and increasing in pi. It reflects the fact that public schools are

funded through local property taxes. upa, θq denotes a type specific utility for different types

of schools. While we do not assume peer effect in school quality directly, there is an indirect

peer effect via housing prices. We impose the following assumptions on the utility function

and the school sizes.

Assumption 1.2.1. upa, θq is continuous in a. upa, Aq is strictly increasing in a and upa, Bq

is strictly decreasing in a. There exists â such that upâ, Aq “ upâ, Bq.

Assumption 1.2.2. upa, Cq “ 0, 0 ă upa, Aq, and 0 ă upa, Bq for all a.

Assumption 1.2.3. vp¨q is strictly increasing and strictly concave.

Assumption 1.2.4. Sipθq “ Sjpθq “ Spθq, for all θ “ A,B,C.

Assumption 1.2.5. Φpm̄, âq ą SpBq and 1 ´ Φpm̄, âq ą SpAq. Furthermore, We refer the

case of SpAq
1´Φpm̄,âq

‰ SpBq
Φpm̄,âq

as a generic case.

Assumption 1.2.6.

vpm ´ pq ` qppq “ vpm ´ p1q ` qpp1q (1.1)
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For the equation (1), there exists a unique solution mpp, p1q for any p1 ą p and mpp, p1q is

increasing in p1. Moreover,

lim
pÑ8

vpm ´ pq ` qppq “ ´8.

Assumption 1.2.7.

lim
aÑā

upa, Aq “ 8, lim
aÑa

upa, Bq “ 8.

Assumption 2.1 implies that students with higher a have relatively stronger preference

for A type schools. Assumption 2.2 implies that school type C is unanimously worst school

regardless of student types, and we normalize the utility of attending C to 0. Assumption 2.3

is a usual assumption for utility of money and implies that households with higher income are

less sensitive to the differences in housing prices. We assume that two districts are ex-ante

symmetric to emphasize in assumption 2.4. Assumption 2.5 implies that both A and B type

schools are over-demanded. Assumption 2.6 prevents the housing prices from exploding.

Throughout the paper, we will compare how different school choice mechanisms affect

the composition of each schools. There are two dimension in types of households and we

define a partial order for diversity regarding “student type” dimension as follows.

Definition 1. A school s1 is more diverse than s2 if ta|pa,mq attends s2u Ă ta|pa,mq attends s1u.

A school s is maximally diverse if ta|pa,mq attends su “ ra, ās. 3

Definition 2. A school s1 and a school s2 are segregated by income if suptm|pa,mq attends s1u ď

inftm|pa,mq attends s2u. A school s1 and a school s2 are segregated by student type if

supta|pa,mq attends s1u ď infta|pa,mq attends s2u.

Since there are multiple schools in each district, a centralized allocation mechanism is

needed for each district even without open enrollment. Given a mechanism M , each house-

hold submits a ranking over schools. We consider a game between households that each

3The diversity defined in this way is related to richness index that is widely used in biology. If a school
A is more diverse than B, A has a greater richness index than B. For additional information, Delang and
Li (2013).
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household simultaneously (i) chooses where to live and (ii) submits a ranking over schools.

A strategy of a household is

σpm, aq “ pi, Rpm, aqq,

where i denotes the location choice and Rp¨q denotes ranking strategy given a mechanism

M .

Definition 3. An equilibrium consists of housing prices pp1, p2q and a strategy σpm, aq such

that

a. σpm, aq is optimal given pp1, p2q, and

b. p1 and p2 clear the housing market.

This paper focuses on stable equilibria as in Benabou (1993) and Calsamiglia et al. (2017).

Definition 4. An equilibrium (σ, p1, p2q is stable if for any converging sequence ppn
1
, pn

2
q there

is a sequence of strategy profiles σn such that σn Ñ σ and each σn is optimal given ppn
1
, pn

2
q.

1.3 Without Open Enrollment

In this section, we examine the implication of different student assignment mechanisms on

the segregation of schools and districts without an open enrollment policy. Parents can

send their kids only to the schools in the district they reside and three different mechanisms

can be used to assign students within each district; The Boston mechanism, the deferred

acceptance with single tie breaking, and the deferred acceptance with multi tie breaking.

The next theorem shows that the deferred acceptance with multi tie breaking performs

better than the others and the Boston mechanism performs worse than the others in terms

of mitigating segregation between schools and fostering diversity in each school.

Theorem 1.3.1. In the unique stable equilibrium with p2 ą p1,
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(a) schools in the same districts are not segregated under the deferred acceptance in generic

cases,

(b) Ai and Bi are segregated under the Boston mechanism if SpCq is large enough,

(c) all the schools are maximally diverse under the deferred acceptance with multi tie break-

ing,

(d) either Ai or Bi are maximally diverse under the deferred acceptance with single tie

breaking in generic cases,

(e) each school is more diverse under the deferred acceptance with single tie breaking than

under the Boston mechanism, if m and a are independent.

The rest of the section explains how each mechanism runs and analyzes the equilibrium

outcome of the game between households under each student assignment mechanism without

open enrollment.

1.3.1 Boston Mechanism Without Open Enrollment

First, we investigate equilibria when the Boston mechanism is used without open enrollment.

The Boston mechanism runs as follows.

1. Each household report a ranking of available schools.

2. In the first round, each school admits students that list the school as the first choice

until there are no seats left or there are no students left who listed it as the first choice.

Any acceptance is final. If a school is over-demanded, some students are rejected based

on priority.

3. In round k, consider only the remaining student not yet accepted and k-th choices of

students. Each school with available seats admits students until there are no seats left

or there are no students left who listed it as the k-th choice.

8



We assume that schools have no pre-determined priorities.

Lemma 1.3.2. Under the Boston Mechanism, the equilibrium ranking strategy follows cutoff

rule with cutoff âBM
i , where a ą âBM reports Ai as the most preferred school and a ă âBM

i

reports Bi as the most preferred school.

Lemma 1.3.3. In any stable equilibria, p1 ‰ p2.

Intuitively, any small perturbation of prices creates a quality difference of schools between

districts and expensive neighborhood draws household with higher income. As a result, any

symmetric equilibria unravel. With out a loss of generality we only consider equilibria with

p2 ą p1 as two districts are ex-ante symmetric.

Lemma 1.3.4. Let us denote the probability of being admitted to school θi by placing θi

at the top in ranking strategy by αθi,1 and the probability of being admitted to school θi by

placing θi at the second by αθi,2

(a) Placing C other than at the bottom in ranking strategy is a dominated strategy.

(b) If m and a are independent, αθ1,j “ αθ2,j, for j “ 1, 2, in any equilibria.

(c) If m and a are affiliated, αA1,1 ą αA2,1 and αB1,1 ă αB2,1 in any equilibria.

Lemma 3.4 (a) is a direct implication of the assumption that C is unanimously the worst

school. In order to see why Lemma 3.4 (b) is true, consider a case where αA1,1 ă αA2,1. The

only reason for αA1,1 ă αA2,1 is more students place A at the top in district 1 than in district

2 and it implies that more students demand A in district 1 than in district 2. However, the

chance of being admitted to A type school is higher in district 2, thus, for any given income,

district 2 attracts students with relatively higher a. On the other hand, αB1,1 ą αB2,1 must

be true and district 1 attracts students with relatively low a as a result. If m and a are

independent, as a result, district 2 becomes populated with more students with higher a and

district 1 becomes populated with more students with lower a, which is a contradict to that

9



A type school in more demanded in district 1. The actual proof is more involved and in

appendix A.

Proposition 1.3.5. Denote the median income by m1{2. If m and a are independent, in the

unique stable equilibrium with p2 ą p1,

(a) σpm, aq “ p2, Rpm, aqq if and only if m ě m1{2,

(b) Rpm, aq “ pAi, Bi, Ciq if a ą âBM ,

(c) Rpm, aq “ pBi, Ai, Ciq if a ă âBM , and

(d) âBM ą â if and only if

SpBq

Φpm̄, âq
ą

SpAq

1 ´ Φpm̄, âq
.

Under the independence of m and a, equilibrium outcome depicts complete segregation

by income. This is a direct implication of Lemma 3.4. If there is no difference in the chance

of being accepted to preferred type of school, the only difference between district comes from

the quality difference. Since vp¨q is concave, households with higher income are more willing

to pay for expensive housing to buy an access to better schools.

Proposition 1.3.6. If m and a are affiliated, in the unique stable equilibrium with p2 ą p1,

(a) σpm, aq “ p2, Rpm, aqq if and only if m ě mpaq,

(b) mpaq is increasing in a,

(c) Rpm, aq “ pAi, Bi, Ciq if a ą âBM
i ,

(d) Rpm, aq “ pBi, Ai, Ciq if a ă âBM
i , and

(e) âBM
2

ą âBM
1

10



ā
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m m̂

m̄
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â

A1 A2

B1 B2

(a) Independence

ā

a
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âBM
1

âBM
2A1

A2

B1

B2

(b) Affiliation

Figure 1.1: Boston Mechanism

By Lemma 3.4, students have lower chance of being accepted to A in district 2 than in

district 1. As a result, district 2 becomes less attractive to students with high a. At the

same time, district 2 is more attractive to high income households as p2 ą p1. While this

leads to a contradiction if a and m are independent, the affiliation between a and m balances

the scale so that there are enough students with high a and high m in district 2. Figure 1

depicts the equilibrium strategies for independence and affiliation cases.

1.3.2 Deferred Acceptance Without Open Enrollment

The deferred acceptance runs as follows.

1. Each household report a ranking of available schools.

2. Each round consists of two steps:

– Applying: Each student applies to his most preferred school that did not reject

him yet.

– Rejections: Each school tentatively accept students as long as capacity allows. If

there are no available seats left, rejects students based on priority.

11



3. The algorithm ends when no rejections are made in a round.

We assume that schools have no pre-determined priorities, thus, all the priorities are de-

termined by lotteries. Under the single tie breaking, each student draws a lottery number

independently and uniformly at random from r0, 1s and a student with a smaller number

has higher priority than a student with a larger number for all schools. Under the multi tie

breaking, each student draws a separate lottery for each school independently and uniformly

at random from r0, 1s and priorities for each school are determined by the lotteries for the

school.

Because deferred acceptance algorithm is strategy-proof for households, we can restrict

our attention to truthful ranking strategy. The results in this section hold regardless of tie

breaking rules. The lemma 3.2, 3,3, and 3.4 hold under the Deferred acceptance algorithm

as well and the equilibrium strategies are characterized by the following propositions.

Proposition 1.3.7. If m and a are independent, in the unique stable equilibrium with p2 ą

p1,

(a) σpm, aq “ p2, Rpm, aqq if and only if m ě m1{2,

(b) Rpm, aq “ pAi, Bi, Ciq if a ą â,

(c) Rpm, aq “ pBi, Ai, Ciq if a ă â.

Proposition 1.3.8. If m and a are affiliated, in the unique stable equilibrium with p2 ą p1,

(a) σpm, aq “ p2, Rpm, aqq if and only if m ě mpaq,

(b) mpaq is increasing in a,

(c) Rpm, aq “ pAi, Bi, Ciq if a ą â,

(d) Rpm, aq “ pBi, Ai, Ciq if a ă â.

Figure 2 depicts the equilibrium strategies for independence and affiliation cases.
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Figure 1.2: Deferred Acceptance

1.4 Open Enrollment

In this section, we do not study the game of locational choice. Rather than, we study the

effect of open enrollment by taking the locational choice in section 2 as given, and we will

focus on the short-run impact of introduction of the open enrollment program to the city

where the neighborhood system has been used originally. Specifically, we will take q2 and q1

as given.

Under the open enrollment program, students can apply to schools in other districts,

thus advantage of living in certain neighborhood disappears if the rule does not give priority

for neighborhood students. The next theorem states that adopting open enrollment has no

impact on the outcome if neighborhood priorities are used. While it is possible to apply to

schools in the other district, seats are assigned to the students of the households residing in

the district if the schools are over-demanded if neighborhood priorities are used.

Theorem 1.4.1. Open enrollment with neighborhood priority (either Boston mechanism or

deferred acceptance) does not change the outcome of the equilibrium without open enrollment.

For the same type of schools, a school in district 2 is better than a school in district 2.

Deferred acceptance algorithm does not allow any violation of priorities, thus, guarantees

13



seats in district 2 to students in the neighborhood. Under the Boston mechanism, as students

in district 2 have priorities over schools in the neighborhood, simply reporting the same

rankings in the equilibrium without open enrollment is still an equilibrium. Students in

district 1 do not have any chance of being admitted to schools in district 2, thus, place the

same school at the top is still an equilibrium strategy.

Let us deviate from neighborhood priority to no priority case. Since we take the loca-

tion choice as given, a strategy of each household is ranking strategy. Under the Boston

Mechanism there are many equilibria because bottom of reported ranking usually does not

affect the outcome due to the nature of the mechanism, thus we partially characterize the

equilibrium strategies.

Proposition 1.4.2. Under Boston Mechanism, any equilibria follow the following cutoff

strategies.

(a) cutoffs: a1 ě a2 ě a3 ě a4,

(b) if a ą a1, places A1 at the top,

(c) if a2 ă a ă a1, places A2 at the top,

(d) if a2 ă a ă a3, places C2 at the top,

(e) if a3 ă a ă a4, places B2 at the top,

(f) if a ă a4, places B1 at the top.

If q2 ´ q1 is small enough, a2 “ a3.

The main driving force behind the cutoff equilibrium is the self-selection based on the

relative intensity of preference toward the preferred type of school. Students with extreme a

care more about the chance of being accepted to the preferred type of school A or B rather

than the quality of schools. Students with a in the middle care more about the quality of

schools than being accepted to the preferred type of school. Figure 3 depicts the intuition

14



a2a3a4 a1 A1A2C2B2B1

EUpa, A1q

EUpa, A2q

EUpa, B1q

EUpa, B2q

EUpa, C2q

Figure 1.3: Boston Mechanism

behind Proposition 3.3. In the figure, EUpa, θiq denotes the expected utility in equilibrium

by placing θi at the top. In equilibrium, A2 and B2 are more over-demanded than A1 and

B1 as q2 ą q1. On the other hand, since applying A1 or B1 in the first round give a higher

chance of being accepted in the first round than A2 or B2. More extreme types care more

about being admitted to the specific types of school, they are willing to sacrifice q2 and place

A1 or B1 at the top.

Figure 4 depicts the equilibrium strategy. While segregation pattern by income disap-

pears, other pattern of sorting by a appears compared to the equilibrium without open

enrollment.

The next theorem provides one possible reason why the open enrollment programs may

fail to mitigate segregation.

Theorem 1.4.3. Suppose that open enrollment is adopted to a city that has been using the

Boston mechanism. Then, (a) A2 and B2 are segregated by student type. (b) If q2 ´ q1 is

small enough, all schools but C1 and C2 are segregated by student type.
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A2

C2

B2
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Figure 1.4: Boston Mechanism

Theorem 4.3 states that another form of segregation appears after open enrollment. More-

over, a pair of schools that were not segregated before the open enrollment can be segregated

after the introduction of the open enrollment if Boston mechanism is used. Notice that A1

and B1 were not segregated without the open enrollment. Even though Theorem 4.3 analyzes

the pattern of segregation in the short-run after the introduction of the open enrollment, we

want to emphasize (b) of Theorem 3.3 has an implication in the long run. In the long run,

as housing prices become adjusted the difference between qpp2q and qpp1q becomes smaller.

Theorem 4.3 (b) implies that the pattern of segregation might not disappear if the difference

in housing prices become arbitrarily small. As far as we know, there is no empirical work on

studying the impact of open enrollment combining different mechanisms. However, school

districts in Twin cities experienced an increase in segregation after the adoption of open

enrollment and they use the Boston mechanism.4

Now, we investigate the impact of open enrollment under deferred acceptance algorithm.

Truthful reporting is a dominant strategy under the deferred acceptance algorithm regardless

4See Institute on Metropolitan Opportunity (2013).
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of tie breaking rule, thus, students with a ą â will place A2 at the top and students with

a ă â will place B2 at the top in ranking strategy.

Proposition 1.4.4. Under the deferred acceptance with single tie breaking and open enroll-

ment, the equilibrium outcome is as follows.

(a) If SpBq
Φpm̄,âq

ą SpAq
1´Φpm̄,âq

, then

– A2 is composed of only students with a higher than â, (i.e., ta|pm, aq attends A2u “

râ, ās) and

– B1 and B2 are maximally diverse

(b) If SpBq
Φpm̄,âq

ă SpAq
1´Φpm̄,âq

, then

– B2 is composed of only students with a lower than â, (i.e., ta|pm, aq attends B2u “

ra, âs) and

– A1 and A2 are maximally diverse.

The intuition behind the proposition is as follows. Single tie breaking favors applicants

accepted in the earlier round as the those applicants pick relatively better lotteries and has

higher chance of securing the seats as the applicants competing those seats later rounds

likely picked bad draws. For instance, if A2 is relatively more demanded than B2, there is no

chance of being accepted to A2 after the first round. On the other hand, under the multi tie

breaking rule, there is any students accepted to a school in the first round can be rejected

down the road if the school becomes over-demanded in some round of the algorithm.

The next theorem contrasts the deferred acceptance algorithm with the Boston mecha-

nism in that the deferred acceptance is more resilient to segregation than the Boston mech-

anism when the open enrollment is adopted.

Theorem 1.4.5. (a) The deferred Acceptance with multi tie breaking under open enroll-

ment results in maximally diverse schools.

(b) No schools are segregated under the deferred acceptance with any tie breaking.
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1.5 Concluding Remarks

This paper has studied the comparison between different school choice systems and mech-

anisms by connecting multi-community model and mechanism design problem. On the one

hand, there are empirical evidences suggesting that open enrollment program decreased di-

versity of each school and this paper provide one possible reason by focusing on the role

of specific student assignment mechanism and how they affect the outcome differently. On

the other hand, there have been many studies comparing the Boston mechanism and the

deferred acceptance mechanism in market design literature. However, there are very few

research about how they compare combined with location choices or under specific environ-

ments with regard to segregation and diversity of schools and this paper provides one more

aspect to consider in comparing school choice mechanisms.

We show that the Boston mechanism can create less diverse schools than the deferred

acceptance mechanism even under the neighborhood school system. Combined with open

enrollment, the difference between two mechanisms become more drastic and open enrollment

program actually worsens segregation if it is combined with Boston mechanism. The deferred

acceptance with multi tie breaking makes all schools maximally diverse.
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1.6 Appendix

1.6.1 Proofs

Lemma 3.2

Consider a district i. Notice that reporting Ci as the most or second preferred school is

a dominated strategy. Denote the mass of students that report A as the most preferred

school by β and denote the expected utility of reporting θi as the most preferred school by

EUpa, θ, βq. Since EUpa, A, βq is increasing in a and EUpa, B, βq is decreasing in a, there

exists a cutoff aBM pβq such that EUpa, A, βq ě EUpa, θ, βq. Now, we show the existence of

the unique equilibrium. Denote the cutoff type a by apβq given β. For SpAq ă β ă 1´SpBq,

EUpa, A, βq “
SpAq

β
upa, Aq, EUpa, B, βq “

SpBq

1 ´ β
upa, Bq,

because both A and B are filled in the first round of the Boston mechanism. Then,

SpAq

β
upapβq, Aq “

SpBq

1 ´ β
upapβq, Bq.

Note that apβq is increasing in β. Now suppose that β ă SpAq. Then, only B is filled in the

first round of the Boston mechanism and

EUpa, A, βq “ upa, Aq, EUpa, B, βq “
SpBq

1 ´ β
upa, Bq `

SpAq ´ β

1 ´ β
upa, Aq,

and

EUpa, A, βq “ EUpa, B, βq ðñ p1 ´ SpAqqupa, Aq “ SpBqupa, Bq.

Therefore, αpβq “ ã for some ã ă â. The inequality ã ă â comes from 1 ´ SpAq ą SpBq.

Similarly, if β ą 1´SpBq, the cutoff apβq is another constant 9a ą â. To show the existence,
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it is enough to show that there exists β P r0, 1s such that

Γpβq “ β ´

ż apβq

a

φipaqda “ 0.

Note that Γp0q “ ´
şã

a
φipaqda ă 0 and Γp1q “ 1´

şã

a
φipaqda ą 0. By the intermediate value

theorem, there exists β such that Γpβq “ 0 and such β is unique since αpβq is monotone.

Lemma 3.3

Consider an equilibrium where p1 “ p2 “ p and a sequence of prices pn
1

ă pn
2
converging to

pp, pq. By Lemma 3.4, the equilibrium residential choice follows a cutoff form, where pm, aq

chooses district 1 if and only if m ď mnpaq.5 Now, pick a different sequence of prices, where

pn
1

ą pn
2
. The residential choice follows a cutoff form, where pm, aq chooses district 1 if and

only if m ą mnpaq. The limit of two different residential choice cannot coincide, thus, an

equilibrium with p1 “ p2 cannot be stable.

Lemma 3.4

(b): Denote the mass of students that place school A at the top in district i by βi. Then,

αAi,1 “ min
!

1,
SpAq

βi

)

,

αBi,1 “ min
!

1,
SpBq

1 ´ βi

)

,

αAi,2 “
´

1 ´ min
!

1,
SpBq

1 ´ βi

)

˘

´maxt0, SpAq ´ βiqu

p1 ´ βiq ´ SpBq

¯

,

αBi,2 “
´

1 ´ min
!

1,
SpAq

βi

)

˘

´maxt0, SpBq ´ p1 ´ βiqu

βi ´ SpAq

¯

.

Notice that at least one of αAi,1 or αBi,1 should be less one since SpAq ` SpBq ă 1, for each

i. We will show that β1 “ β2 in any equilibria.

Suppose that β1 ą β2 in an equilibrium. Then αA1,1 ď αA2,1 with equality only if both

5This part of Lemma 3.4 does not rely on lemma 3.2.
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are 1. αA1,1 “ αA2,1 “ 1 implies that there is a student with a ą â that applies B first than

A by Assumption 2.5, which leads to a contradiction to equilibrium condition since such a

student can apply to A and be accepted for sure. By the same reason, αB1,1 “ αB2,1 “ 1 does

not happen in any equilibria and we can conclude that αA1,1 ă αA2,1 and αB1,1 ą αB2,1. This

implies that αB2,2 “ 0 since students can be accepted to the second choice only if there is a

remaining seat in the school after the first round under Boston mechanism. As we assume

that β1 ą β2, αA1,2 “ αB2,2 “ 0. We can write the expected utility of a student in district i

to applying to school θi first as follows.

EUpm, a,A1q :“ αA1,1upa, Aq ` αB1,2upa, Bq ` qpp1q ` vpm ´ p1q,

EUpm, a,B1q :“ αB1,1upa, Bq ` qpp1q ` vpm ´ p1q,

EUpm, a,A2q :“ αA2,1upa, Aq ` qpp2q ` vpm ´ p2q,

EUpm, a,B2q :“ αA2,2upa, Aq ` αB2,1upa, Bq ` qpp2q ` vpm ´ p2q.

Since β1 ą 0, either there exists a cutoff â1 such that EUpm, â1, A1q “ EUpm, â1, B1q

and any students above â1 in district 1 apply A first in the equilibrium or every student

in the district applies to A first. In district 2, either there exists a cutoff â2 such that

EUpm, â2, A2q “ EUpm, â2, B2q and any students above â2 apply A first in the equilibrium

or every student in the district applies to B first. If such cutoffs â1 and â2 exist, the cutoffs

solve the following equations.

αA1,1

pαB1,1 ´ αB1,2q
upâ1, Aq “ upâ1, Bq, (1)

pαA2,1 ´ αA2,2q

αB2,1

upâ2, Aq “ upâ2, Bq. (2)

We argue that â2 ă â1.

Consider a case where both αA2,2 “ αB1,2 “ 0. In other words, both types of schools are
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over-demanded in the first round of Boston mechanism. Then,

αA1,1

pαB1,1 ´ αB1,2q
“

1 ´ β1

β1

SpAq

SpBq
,

pαA2,1 ´ αA2,2q

αB2,1

“
1 ´ β2

β2

SpAq

SpBq
.

Since we assume that β2 ă β1, then
αA1,1

pαB1,1
´αB1,2

q
ă

pαA2,1
´αA2,2

q

αB2,1
and â2 ă â1.

Consider a case where both αA2,2 and αB1,2 are postive. This happens only if A2 and B1

are under-demanded in the first round of Boston mechanism, thus, αA2,1 “ αB1,1 “ 1 and

αA1,1

pαB1,1 ´ αB1,2q
“

SpAq

1 ´ SpBq
,

pαA2,1 ´ αA2,2q

αB2,1

“
1 ´ SpAq

SpBq
.

Notice that SpAq ` SpBq ă 1 implies that
αA1,1

pαB1,1
´αB1,2

q
ă

pαA2,1
´αA2,2

q

αB2,1
, thus, â2 ă â1.

Consider a case where αA2,2 ą 0 and αB1,2 “ 0. In this case, A2 is under-demanded in

the first round. Then,

αA1,1

pαB1,1 ´ αB1,2q
“

1 ´ β1

β1

SpAq

SpBq
,

pαA2,1 ´ αA2,2q

αB2,1

“
1 ´ SpAq

SpBq
.

Since αA1,1 ă 1, SpAq ă β1. This implies
αA1,1

pαB1,1
´αB1,2

q
ă

pαA2,1
´αA2,2

q

αB2,1
and â2 ă â1.

Consider a case where αA2,2 “ 0 and αB1,2 ą 0. In this case, B1 is under-demanded in

the first round, αB1,1 “ 1, and αB2,1 ă 1.

αA1,1

pαB1,1 ´ αB1,2q
“

SpAq

1 ´ SpBq
,

pαA2,1 ´ αA2,2q

αB2,1

“
1 ´ β2

β2

SpAq

SpBq
.

In this case, SpBq
1´β2

ă 1 implies
αA1,1

pαB1,1
´αB1,2

q
ă

pαA2,1
´αA2,2

q

αB2,1
and â2 ă â1.

By Assumption 2.7, for any given a, there exist a cutoff income mpaq where pm, aq is

indifferent between two districts. We argue that mpaq is decreasing in a. As we established

that â2 ă â1, there are three disjoint intervals in ra, ās we need to consider.
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For a P râ1, ās, mpaq solves the following equation.

pαA1,1 ´ αA2,1qupa, Aq ` αB1,2upa, Bq “ qpp2q ´ qpp1q ´ pvpm ´ p1q ´ vpm ´ p2qq.

Notice that the left hand side is decreasing in a and the right hand side is increasing in m,

thus, mpaq is decreasing in a.

For a P râ2, â1s, mpaq solves the following equation.

αB1,1upa, Bq ´ αA2,1upa, Aq “ qpp2q ´ qpp1q ´ pvpm ´ p1q ´ vpm ´ p2qq.

The left hand side is decreasing in a and the right hand side is increasing in m, thus, mpaq

is decreasing in a.

For a P rā, â2s, mpaq solves the following equation.

pαB1,1 ´ αB2,1qupa, Bq ´ αA2,2upa, Aq “ qpp2q ´ qpp1q ´ pvpm ´ p1q ´ vpm ´ p2qq.

the left hand side is decreasing in a and the right hand side is increasing in m, thus, mpaq is

decreasing in a.

Now, we show that β2 cannot be smaller than β1.

β1 “ 2

ż ā

â1

ż mpaq

m

φmpmqφapaqdmda “ 2

ż ā

â1

Φmpmpaqqφapaqda,

β2 “ 2

ż ā

â2

ż m̄

mpaq

φmpmqφapaqdmda “ 2

ż ā

â2

p1 ´ Φmpmpaqqqφapaqda,

1 ´ β1 “ 2

ż â1

a

ż mpaq

m

φmpmqφapaqdmda “ 2

ż â1

a

Φmpmpaqqφapaqda,

1 ´ β2 “ 2

ż â2

a

ż m̄

mpaq

φmpmqφapaqdmda “ 2

ż â2

a

p1 ´ Φmpmpaqqqφapaqda.
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Then, β2 ` 1 ´ β1 ą β1 ` 1 ´ β2 for the following reason.

β2 ` 1 ´ β1 “ 2

ż ā

â1

p1 ´ Φmpmpaqqqφapaqda ` 2

ż â2

a

pΦmpmpaqqqφapaqda ` 2pΦapâ1q ´ Φapâ2qq,

β1 ` 1 ´ β2 “ 2

ż ā

â1

Φmpmpaqqφapaqda ` 2

ż â2

a

p1 ´ Φmpmpaqqqφapaqda.

Notice that Φmpmpaqq and 1 ´ Φmpmpaqq cross exactly once and

ż ā

a

Φmpmpaqqφapaqda “
1

2
.

Moreover, Φmpmpaqq is decreasing in a. This implies that, for any x P ra, ās,

ż ā

x

p1 ´ Φmpmpaqqqφapaqda ě

ż ā

x

Φmpmpaqqφapaqda,

ż x

a

Φmpmpaqqφapaqda ě

ż x

a

p1 ´ Φmpmpaqqqφapaqda.

Therefore, β2 ` 1´β1 ą β1 ` 1´β2 and β2 ą β1, which is a contradiction to the assumption

β2 ă β1.

Now, suppose β1 ă β2. Then, mpaq is increasing in a and it leads to the same contraction.

(c): Notice that the proof of (b) does not rely on independence until the last step.

Suppose that β2 ă β1. Then, mpaq in decreasing in a and â1 ą â2.

β2 ` 1 ´ β1 “ 2

ż ā

â1

p1 ´ Φpmpaq|aqqφapaqda ` 2

ż â2

a

pΦpmpaq|aqqφapaqda ` 2pΦapâ1q ´ Φapâ2qq,

β1 ` 1 ´ β2 “ 2

ż ā

â1

Φpmpaq|aqφapaqda ` 2

ż â2

a

p1 ´ Φpmpaq|aqqφapaqda.

Note that Φpmpaq|aqq is decreasing in a due to the stochastic dominance and decreasing mpaq.
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Suppose that β1 “ β2. Then, mpaq does not change with a and â1 “ â2 “ â. Denote the

median income by m1{2.

β1 “ 2

ż ā

â

Φpm1{2|aqφapaqdmda, β2 “ 2

ż ā

â

p1 ´ Φpm1{2|aqqφapaqdmda.

Stochastic dominance implies that β2 ą β1, which is a contradiction.

Proposition 3.5

(a): By Lemma 3.4, we know that β1 “ β2. Given pp1, p2q there is a cutoff income mpp1, p2q

such that

vpm ´ p1q ` qpp1q “ vpm ´ p2q ` qpp2q.

(b), (c): Ranking strategy in any equilibria follows a cutoff strategy as established in Lemma

3.4. â1 “ â2 is implied by β1 “ β2.

(d): For β1 “ β2 “ β, both types of schools are over-demanded in the first round and cutoff

strategy is characterized by the equation

SpAq

β
upâBM , Aq “

SpBq

1 ´ β
upâBM , Bq.

If SpAq
β

ě SpBq
1´β

, then âBM ď â. In equilibrium,

β “ 1 ´ Φpm̄, âBM q.

Then, the following inequalities hold.

SpBq

Φpm̄, âq
ď

SpBq

Φpm̄, âBMq
ď

SpAq

1 ´ Φpm̄, âBMq
ď

SpAq

1 ´ Φpm̄, âq
.

This is a contradiction to the assumption that SpAq
1´Φpm̄,âq

ă SpBq
Φpm̄,âq

.
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To establish the uniqueness of the equilibrium, notice that p1 is determined by the in-

difference condition of the household with minimum expected utility in district 1 so that

the household is indifferent between living in district 1 and living outside of the city. The

household’s type with minimum expected utility is pm, âBM . The equilibrium p1 solves

SpBq

Φpm̄, âBM q
upâBM , Bq ` q1pp1q ` vpm ´ p1q

Existence of the solution is guaranteed by Assumption 2.6. There can be more than one

prices that solve the equation, and the maximum solution p1 is the equilibrium price in that

case. Given the p1, the market clearing price p2 solves

vpm1{2 ´ p2q ` qpp2q “ vpm1{2 ´ p1q ` qpp1q.

Proposition 3.6

If an equilibrium exists, (a),(b),(c),(d), and (e) are already established in the proof of Lemma

3.4. Suppose that βi mass of students apply to Ai and 1 ´ βi mass of students apply to Bi

for each i. Then the cutoff âi is increasing in βi and denote the relationship by âi “ âpβiq.

To show this proposition, we will fix an arbitrary p1 and show the existence of the

equilibrium strategy profile and p2 that clears the housing market by ignoring outside option.

As p1 can be arbitrary, it shows the existence of the equilibrium.

Given β2 ą β1, the cutoff income m solves,

EUpm, a,A1q “ EUpm, a,A2q, @ a P râpβ2q, ās,

EUpm, a,A1q “ EUpm, a,B2q, @ a P râpβ1q, âpβ2qs,

EUpm, a,B1q “ EUpm, a,B2q, @ a P ra, âpβ1qs.

Denote the solution m by m “ mpa, p2, β1, β2q. Then, m is increasing in β2 and decreasing in

β1 for a P râpβ2q, ās since the higher β2 makes district 2 less attractive and increasing β1 makes
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district 2 more attractive for the students who will place A2 at the top. For a P ra, âpβ1qs,

m is decreasing in β2 and increasing in β1 for the opposite reason. For a P râpβ1q, âpβ2qs, m

is decreasing in each of both β1 and β2 since the students with those types will place B2 at

the top in district 2 and place A1 at the top in district 1.

The equilibrium is characterized by the following three equations.

2

ż ā

a

ż m̄

mpa,p2,β1,β2q

φpm, aqdmda “ 1, (2)

2

ż âpβ1q

a

ż mpa,p2,β1,β2q

m

φpm, aqdmda “ 1 ´ β1, (3)

2

ż ā

âpβ2q

ż m̄

mpa,p2,β1,β2q

φpm, aqdmda “ β2. (4)

The first equation is the housing market clearing condition, and the last two are consistency

condition. Denote the solution of (3) by β1 “ β1pp2, β2q and the solution of (4) by β2 “

β2pp2, β1q. The existence and uniqueness of the solutions β1p¨, ¨q and β2p¨, ¨q is established in

Lemma 2.8. From (3), β1pp2, β2q is increasing in β2 because mpa, β1, β2, p2q is decreasing in

β2. From (4), β2pp2, β1q is increasing in β1 because mpa, β1, β2, p2q is decreasing in β1. Also,

notice that apβ1q and apβ2q are bounded below and above by some constants ã and 9a.6 This

implies that

lim
β2Ñ1

β1pp2, β2q ă 1, lim
β1Ñ1

β2pp2, β1q ă 1, (5)

lim
β2Ñ0

β1pp2, β2q ą 0, lim
β1Ñ0

β2pp2, β1q ą 0, (6)

Combining the monotonicity of β1pβ2, p2q and β2pβ1, p2q, (5), and (6), there is a unique fixed

6This is also established in Lemma 2.8.
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point pβ˚
1

pp2q, β
˚
2

pp2qq such that

β2pβ
˚
1

pp2q, p2q “ β˚
2

pp2q, β
˚
1

pp2q “ β1pβ˚
2

pp2q, p2q. (7)

By Assumption 2.6, mpa, p2, β1, β2q is decreasing in p2, thus, there exists unique p˚
2
that

solves the equation (2). So far, we show that there exist a unique solution to the system of

equations (2), (3), and (4). One needs to verify the solution β˚
2

ą β˚
1
. Fix the equilibrium

by β˚
1
, β˚

2
, and p˚

2
and denote the cutoff income in the equilibrium by m˚paq.

Claim 1. limβ1Ñβ,β2Ñβ mpa, p˚
2
, β1, β2q “ m˚pâpβqq

Proof. This follows from that how mpa, β1, β2q rotates about âpβiq as βj changes.

Consider the equation (4) given p˚
2
. We look for a fixed point of a mapping β2pβ1, p

˚
2
q “ β1.

Denote the fixed point β̃2. Then,

2

ż ā

âpβ̃2q

1 ´ Φpm˚pâpβ̃2q|aqφapaqda “ β̃2.

Similarly, let us denote the fixed point from the equation (3) by β̃1, then

2

ż âpβ̃1q

a

Φpm˚pâpβ̃1q|aqφapaqda “ 1 ´ β̃1.

The existence and uniques of β̃2 and β̃1 follow from the intermediate value theorem.

Claim 2. β̃2 ą β̃1.

Proof. Suppose that β̃2 ď β̃1 and denote âpβ̃1q “ ã1, p̂β̃2q “ ã2, m˚pâpβ̃1 “ m˚
1
, and

m˚pâpβ̃2 “ m˚
2
. Then, ã2 ď ã1 and m˚

2
ď m˚

1
. Notice that
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2

ż ā

ã2

p1 ´ Φpm˚
2
|aqqφapaqda “ β̃2,

2

ż ã1

a

Φpm˚
1
|aqφapaqda “ 1 ´ β̃1.

The same trick used in the proof of Lemma 3.4 can be used here to show β̃2 ` 1 ´ β̃1 ą

β̃1 ` 1 ´ β̃2, which is a contradiction.

So far, we have shown that the fixed point of β2pβ1, p
˚
2
q is greater than the fixed point of

β1pβ2, p
˚
2
q and the fixed points are unique. The following diagram shows that β˚

2
ą β˚

1
.

1

0
1β˚

1

β2pβ1q

β1pβ2q

β˚
2

β̃1

β̃2

β̃1 β̃2

Proposition 3.7

Since the deferred acceptance is strategy-proof, in any non-dominated equilibrium, house-

holds report truthful ranking and (b) and (c) directly follow. To establish (a), Suppose that

β2 ą β1, which implies that αA2,1 ă αA1,1 and αB2,2 ą αB1,2 Then, cutoff income mpaq is
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increasing and this leads to a contradiction as follows.

β2 “ 2

ż ā

â

p1 ´ Φmpmpaqqqφapaqda,

β1 “ 2

ż ā

â

Φmpmpaqqφapaqda.

Φmpmq crosses 1 ´ Φmpmq exactly once from below and

ż ā

a

Φmpmpaqqφapaqda “
1

2
.

Therefore,

ż ā

x

Φmpmpaqqφapaqda ě

ż ā

x

p1 ´ Φmpmpaqqqφapaqda, @ x.

If β2 ă β1, mpaq is decreasing and it leads to a similar contradiction. If β1 “ β2 in an

equilibrium, the optimal strategy is to reside in district 2 if and only if the income m exceeds

some threshold. Market clearing condition requires that such a threshold is the median

income.

Proposition 3.8

(a),(b):

If β1 ą β2, mpaq is mpaq is decreasing in paq. Then

β2 “ 2

ż ā

â

p1 ´ Φpmpaq|aqqφapaqda,

β1 “ 2

ż ā

â

Φpm|aqφapaqda,

ż ā

a

Φpm|aqφapaqda “
1

2
.
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Then, 1 ´ Φpmpaq|aq is increasing in a and 1 ´ Φpmpaq|aq crosses Φpm|aq exactly once from

below. Therefore,

β2 “

ż ā

â

p1 ´ Φpmpaq|aqqφapaqda ą

ż ā

â

Φpm|aqφapaqda “ β1,

which is a contradiction. Even if β1 “ β2 and mpaq is constant, 1´Φpm|aq is still increasing

in a due to affiliation, and it leads to the same contradiction. This establishes (a) and (b)

since β2 ą β1 in any equilibria if an equilibrium exists. Under DA algorithm, the minimum

utility in district 1 is given by

EUpm, â, Aq “ rSpAq ` SpBqsupâ, Aq,

and p1 in the equilibrium solves

rSpAq ` SpBqsupâ, Aq ` vpm ´ p1q ` qpp1q “ uo.

Given pa, p2, β1, β2q, denote the cutoff income by mpa, p2, β1, β2q. Then, mp¨q is increasing

in β1 if and only if a ă â, increasing in β2 if and only if a ą â. The equilibrium is characterized

by the following equations.

2

ż ā

a

Φpmpa, p2, β1, β2qq|aqφapaqda “ 1, (8)

2

ż â

a

Φpmpa, p2, β1, β2qq|aqφapaqda “ 1 ´ β1, (9)

2

ż ā

â

p1 ´ Φpmpa, p2, β1, β2qq|aqqφapaqda “ β2.. (10)

Denote the solution β1 of (9) by β1 “ β1pp2, β2q. By (9), β1pp2, β2q is increasing in β2.

Similarly, the solution of (10), β2pp2, β1q is increasing in β1. The remaining proof is similar

to the proof of Proposition 2.12.

31



Theorem 3.1

(b): Based on the equilibrium characterized in Proposition 3.5, if SpCq is large enough, Ai

and Bi are filled in the first round in the equilibrium. Since the equilibrium strategy takes

a form of a cutoff strategy, Ai and Bi are segregated by student type.

(c): The outcome of DA-MTB is characterized by cutoffs cjθi P r0, 1s for each student j and

each school θi and each student j in district i draw 3 lotteries ljAi
, ljBi

, and l
j
Ci

independently

from a uniform distribution on r0, 1s. A student has a right to attend a school θi if and only

if cjθi ą l
j
θi
. Thus, a student j that reports Ai ą Bi draw lotteries such that l

j
Ai

ą c
j
Ai

and

l
j
Bi

ă c
j
Bi
, then the student will be assigned to Bi. The same logic applies to a student j

that reports Bi ą Ai. Therefore, all the schools are maximally diverse under DA-MTB.

(d): The outcome of DA-MTB is characterized by cutoffs cθi P r0, 1s for each school θi and

each student draws a lottery from a uniform distribution on r0, 1s. If SpBq
Φipâq

ą SpAq
1´Φipâq

, school

A is relatively over-demanded in district i, and the cutoff CAi
is less than CBi

. Thus, any

students rejected from Bi in the first round will not be accepted to Ai the following rounds

and the school Ai does not admit any students with type below â. On the other hand, there

are positive mass of students rejected from Ai in the first round and some of those students

will be accepted to Bi in the second round, thus, Bi is maximally diverse. If SpBq
Φipâq

ă SpAq
1´Φipâq

,

the same proof still holds.

(e): Without loss of generality, suppose that SpBq
Φipâq

ą SpAq
1´Φipâq

. By Proposition 3.5, aBM ą â

and the school Ai is filled in the first round under the Boston mechanism. Thus, Ai is less

diverse under the Boston mechanism than the deferred acceptance with single tie breaking.

Bi is maximally diverse under the deferred acceptance with single tie breaking because there

are student rejected from Ai in the first round but accepted to Bi in the second round. (a):

Established in the proof for (c) and (d).
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Theorem 4.1

Consider the Boston mechanism. As the students in each district have priories for the

schools in the district, the same ranking strategy followed by any order of schools from

other district consists an equilibrium. For example, if it was an equilibrium strategy of a

student in district in i to report Ai ą Bi ą Ci, then, Ai ą Bi ą Ci ą Aj ą Bj ą Cj is an

equilibrium strategy under open enrollment. Consider the deferred acceptance mechanism.

Since truthful reporting is an equilibrium strategy, all the students place θ2 higher than θ1

for each θ. As students in district 2 have higher priority, no students from district 1 can be

accepted to schools in district 2 at the end of the deferred acceptance algorithm.

Proposition 4.2

Denote the mass of students that place θi at the top by βθ
i .

Claim 1. βB
2

ą SpAq and βB
2

ą SpBq in any equilibria.

Proof. Suppose not, the probability of being accepted to A2 or B2 is 1 and every student

that has not placed A2 or B2 at the top can profitably deviate by doing so.

Claim 2. If βθ
2

ą βθ
1
, there exist cutoffs a1 and a4 such that any students with a ą a1

prefer to place A1 at the top rather than A2 and any students with a ă a4 prefer to place

B1 at the top rather than B2

Proof. Since βθ
2

ą βθ
1
, placing θ1 at the top gives a higher chance of being accepted to θ

type school than placing θ2 at the top, while placing θ2 at the top gives a higher chance of

enjoying q2 ą q1. As upa, Aq Ñ 8 as a Ñ ā, upa, Bq Ñ 8 as a Ñ a, and u is continuous,

there exist cutoffs a1 and a4.
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Claim 3. If q2 ´ q1 is large enough, there exist cutoffs α2 and α3 such that a P rα3, α2s

places C2 at the top. If q2 ´ q1 is small enough, then no students place C2 at the top in

equilibrium.

Proof. First of all, in any equilibrium, βC
2

ă βB
2

and βC
2

ă βA
2
. Otherwise, the students

placed C2 at the top will deviate by placing A2 or B2 at the top. Given that βC
2

ă βA
2
,

denote the probability of being accepted to C2 by placing it at the top by αC2,1 and denote

the probability of being accepted to A2 by placing it at the top by αA2,1. For a student that

places C2 at the top, placing A2 or B2 at the second is dominated strategy as A2 and B2 are

filled in the first round in any equilibrium. Thus, the expected utility of placing C2 at the

top is

αC2,1q2 ` p1 ´ αC2,1qfpq1q,

where f is increasing in q1. f depends on which school the student places at the second in

ranking and we know that it is not a school in district 2. The expected utility of placing A2

at the top is

αA2,1upa, Aq ` αA2,1q2 ` p1 ´ αA2,1qfpq1q.

As αA2,1 ă αA2,1, there exist students that prefers to place C2 at the top rather than A2 if

q2 ´q1 is large enough. To show the latter part of the claim, note that the expected payoff by

placing C2 at the top is bounded from above by q2 if it is an equilibrium strategy. Suppose

that there is a student with type a ě â that places C2 at the top. If the student places A2

at the top instead of C2, the expected payoff is bounded from below by SpAq
2

pupâ, Aq ` q2q `

p1 ´ SpAq
2

qq1 and such deviation if profitable if

q2 ă
SpAq

2
pupâ, Aq ` q2q ` p1 ´

SpAq

2
qq1 ðñ p1 ´

SpAq

2
qpq2 ´ q1q ă

SpAq

2
upâ, Aq.
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The inequality holds if q2 ´ q1 is small enough.

Suppose that q2´q1 is large enough, so that there are students placing C2 at the top in an

potential equilibrium. Given βA
1

ă βA
2
, let a1pβA

1
, βA

2
q be the student type that is indifferent

between applying A1 first or A2 first. Then, the equation

2r1 ´ ΦapapβA
1
, βA

2
qqs “ βA

1

specifies a mapping βA
1

“ βA
1

pβA
2

q. Since a1pβA
1
, βA

2
q is decreasing in βA

2
and increasing in

βA
1
, βA

1
pβA

2
q is increasing in βA

2
. As a ă apβA

1
, 2q, β1p2q ă 2 and β1p0q “ 0.

Consider the indifferent type between A2 and C2. Then, β
A
2

pβA
1
, βC

2
q solves the equation

2rΦapa1pβA
1
, βA

2
qq ´ Φapa2pβA

2
, βC

2
qqs “ βA

2
.

apβA
2
, βC

2
q is increasing in βA

2
and is decreasing in βC

2
. Therefore, βA

2
pβA

1
, βC

2
q is increasing

in βA
1
and βC

2
. Moreover, since a ă a1p0, βA

2
q, 0 ă βA

2
p0, βC

2
q. Thus, for any given βC

2
, there

exists a fixed point pβA
1

˚
pβC

2
q, βA

2

˚
pβC

2
qq and βA

2

˚
pβC

2
q ą βA

1

˚
pβC

2
q. Moreover, βA

1

˚
pβC

2
q and

βA
2

˚
pβC

2
q are increasing in βC

2
.

2

0
2βA

1

˚
pβC

2
q

βA
2

pβA
1
, βC

2
q

βA
1

pβA
2

q

βA
2

˚
pβC

2
q

Similarly, there exists a fixed point pβB
1

˚
pβC

2
q,βB

2

˚
pβC

2
qq such that βB

2

˚
pβC

2
q ą βB

1

˚
pβC

2
q.
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The equilibrium βC
2

˚
solves

βA
1

˚
pβC

2
q ` βA

2

˚
pβC

2
q ` βB

1

˚
pβC

2
q ` βB

2

˚
pβC

2
q ` βC

2
“ 2.

The uniqueness and existence of βC
2

˚
is followed by the intermediate value theorem and the

monotonicity of βθ
i

˚
pβC

2
q.

If βC
2

“ 0 in a potential equilibrium, we have three mappings βA
1

pβA
2

q, βA
2

pβA
1
, βB

2
q, and

βB
1

pβB
2

q instead of the four and the remaining proof is the same.

Theorem 4.3

(a): A2 and B2 are segregated since both schools are filled in the first round of the Boston

mechanism and the students follows cutoff strategy in the equilibrium.

(b): If q2 ´ q1 is small enough, no students place C2 at the top and A1 and B1 are filled in

the first round as well as A2 and B2.
7 Since all schools but C1 and C2 are filled in the first

round, A1, A2, B1, B2 are all segregated by student type.

Proposition 4.4

(a): The deferred acceptance is characterized by cutoffs. SpBq
Φpm̄,âq

ą SpAq
1´Φpm̄,âq

, then the cutoff

CAi
for Ai is lower than CBi

and the cutoff CA2
is the minimum among cutoffs. Any accep-

tances to A2 in the first round are final since any students rejected in the first round drew

higher lottery than CA2
. B2 becomes maximally diverse because there are students with the

true preference A2 ą B2 ą . . . and those students draw a lottery number in rCA2
, CB2

s with

positive probability. There are students with the true preference A2 ą B2 ą A1 ą B1 and if

those students draw a lottery in rCA1
, CB1

s, then the students are assigned to B1, thus, B1

becomes maximally diverse. A1 may or may not be maximally diverse depending on whether

CA1
ą CB2

or not. The same proof applies to (b).

7See the proof of Proposition 3.2
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Theorem 4.5

(a): The proof for Theorem 3.3 (a) applies here.

(b): Corollary of Proposition 4.4.
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Chapter 2

Auctions with Designed Bid Spaces

2.1 Introduction

In different auction formats, there are some restrictions implicitly or explicitly on bids level

that each bidder can choose. For example, eBay uses different minimum bid increment for

different current maximum bid levels. Sometimes each bidder has constrained budget, so

there can be endogenous restriction on bid space. In this paper, we establish the revenue

ranking between conventional auction formats when the restriction on bid spaces is a part

of auction design. Moreover, we show that any Bayesian incentive compatible mechanism is

a convex combination of first price with designed bid spaces. Section 2 discusses the revenue

comparison between first price auctions and second price auctions when the seller can design

the bid spaces. Section 3 shows that the optimal selling mechanism can be implemented by

first price auctions with well-designed bid spaces. Section 4 provides a characterization of

any symmetric Bayesian incentive compatible mechanisms.

The revenue equivalence principle was established by Riley and Samuelson (1981) and

Myerson (1981) for continuous type space. Maskin and Riley (2000) considered conventional

auctions when the type space is discrete, but the revenue raking is ambiguous. Che and Gale

(2006) and Chung and Olszewski (2007) considered the revenue equivalence on general type
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space. Our work considers finite type space with restriction on bid spaces. We establish

the revenue raking by showing that any outcome in second price auctions can be replicated

with an equilibrium in first price auction, but the converse doesn’t hold. Furthermore, we

also show that well-designed first price auction is actually an optimal selling mechanism.

Bergemann and Pesendorfer (2007) characterized the optimal direct selling mechanism for

finite type space, and our well-designed auction can implement the same outcome of the

optimal mechanism.

2.2 Revenue Rankings

There are n bidders indexed by i P t1, . . . , Nu. Each bidder i’s value θi P Θ Ă r0,8q is

distributed i.i.d. according to a distribution F , and utility is linear in monetary transfer.

Only bids from finite set of bids B are allowed; same bid levels for all bidders.

We study conventional auctions in which the highest bidder wins, in case of a tie the

winner is chosen uniformly at random from among the highest bidders. We will also assume

that only the winning bidder pays. Furthermore, we restrict attention to the finite type

space.

Proposition 2.2.1. For any bid space BS , there is a symmetric equilibrium σS : Θ Ñ △pBSq

under second price auction with the bid spaces BS. Moreover, there is a symmetric equilibrium

σF under first price auction with some bid space BF that generates same buyer payoffs for

each type, same allocation, hence, same revenue as σS.

The existence of a symmetric equilibrium is a direct implication of Nash (1951). For

the remaining part of the theorem, denote the induced distribution over the bid spaces by

Gp¨, σq “ Gp¨q. Let πGpBq and TGpBq denote the winning probability and the expected

payment from bidding B, given Gp¨, σq. When a bidder with type θ bids B, the interim

utility Upθ, B,Gq is given by θπGpBq ´ TGpBq.

Proof. Denote tB P BS | B P supppσSpθqq, for some θ P Θu by tBS
1
, . . . , BS

Ku, where BS
k ą
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BS
k´1

, for all k “ 2, . . . , K. Construct the bid spaces BF and an equilibrium strategy σF in

first price auction as follows.

BF
k :“

TGpBS
k q

πGpBS
k q

, for all k “ 1, . . . , K.

σF pθqpBF
k q :“ σSpθqpBS

k q, for all θ P Θ and k “ 1, . . . , K.

In order to show that σF and σS achieve the same allocation, it is enough to show that BF
k is

strictly increasing in k because the allocation only depends on the order of submitted bids.

Since BS
k is chosen with positive probability in equilibrium σS, there is some type θ such

that

πGpBS
k qθ ´ TGpBS

k q ě πGpBS
k`1

qθ ´ TGpBS
k`1

q.

This implies that

´

θ ´
TGpBS

k q

πGpBS
k q

¯ πGpBS
k q

πGpBS
k`1

q
ě θ ´

TGpBS
k`1

q

πGpBS
k`1

q
ðñ BF

k`1
ą BF

k .

Note that πGpBS
k q ă πGpBS

k`1
q since the both are played with positive probability. Therefore,

σF and σS generate the same distribution over the allocation. Denote the induced bidding

distribution from σF over tBF
1
, . . . , BF

Ku by GF . The utility of bidding BF
k under first price

auction can be written as

πGF
pBF

k qpθ ´ BF
k q “ πGpBS

k qpθ ´
TGpBS

k q

πGpBS
k q

q “ πGpBS
k qθ ´ TGpBS

k q,

which is the same payoff under σS. We established (1) allocation equivalence, (2) payoff

equivalence, hence, (3) revenue equivalence. The remaining step is to show that σF is a

Bayesian Nash equilibrium. Since σS is a Bayesian Nash equilibrium in the original second

40



price auction with BS ,

πGpσSpθqqθ ´ TGpσSpθqq ě πGpBqθ ´ TGpBq, @θ, @B.

By the construction, πGpσSpθqq “ πGF
pσF pθqq and TGpσSpθqq “ TGF

pσF pθqq. Therefore, σF

is an equilibrium in the first price auction with the bid spaces BF .

According to the proposition, the designer can get any desired outcome in a first price

auction with designed bids if the outcome is achievable in some second price auction with

designed bids. However, our following example shows that the converse doesn’t hold.

Example 2.2.2. There are 2 bidders, and each bidder i’s value vi is drawn independently

following

vi “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1 with probability 0.6,

11{4 with probability 0.2,

13{2 with probability 0.2.

Suppose BF “ t1, 2, 3u. Then

σF pviq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1 if vi “ 1,

2 if vi “ 11{4,

3 if vi “ 13{2.

is a symmetric equilibrium in pure strategies of first price auction with BF and

GF pBq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0.6 if B “ 1,

0.8 if B “ 2,

1 if B “ 3.
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Figure 2.1: Overshooting

The expected payment for each type (denote the type by L, M, H in the order of the lowest

to the highest) is

T pLq “ 0.3, T pMq “ 1.4, T pHq “ 2.7.

The payoff equivalent bid level for L type is BL “ 1. Given that, the payoff equivalent bid

level for M type is 8, which is greater than H “ 13{2. Notice that if BH ą BM ą H then,

H type never bids BH in any symmetric equilibrium.

The problem in the example is that the bid level for middle type can overshoot the value

of the high type as depicted in figure 1. We can characterize the condition that prevents

the overshooting. Denote tB P BF | B “ σF pθq, for some θ P Θu by tBF
1
, . . . , BF

Ku, where

BS
k ą BS

k´1
, for all k “ 2, . . . , K. Denote the bidding distribution over tBF

1
, . . . , BF

Ku in

the equilibrium σF by GF . πGF
p¨q and TGF

p¨q denote the winning probability and expected

payment, given GF . We can define BS recursively as follows.

BS
1

“ BF
1
,

BS
k “

πGF
pBF

k´1
q ´ GF pBF

k´1
qN´1

πGF
pBF

k q ´ GF pBF
k´1

qN´1
BS

k´1
`

πGF
pBF

k qBF
k ´ πGF

pBF
k´1

qBF
k´1

πGF
pBF

k q ´ GF pBF
k´1

qN´1
, for k ě 2. (˚)

BS
k is strictly increasing if and only if

πGF
pBF

k qBF
k ´ πGF

pBF
k´1

qBF
k´1

πGF
pBF

k q ´ πGF
pBF

k´1
q

ą BS
k´1

, for all k ě 2. (˚˚)
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Proposition 2.2.3. For any symmetric equilibrium that p˚˚q holds in pure strategies σF :

Θ Ñ BF under first price auction with some bid space BF , there is a symmetric equilibrium

σS under second price auction with some bid space BS that generates same buyer payoffs for

each type, same allocation, hence, same revenue as σF .

Proof. Set

σSpθqpBS
k q :“ σF pθqpBF

k q, for all θ P Θ and k “ 1, . . . , K.

Since BS
k is strictly increasing, σS and σF generate the same allocation. The remaining step

is to show that TGS
pBS

k q “ TGF
pBF

k q. Since TGS
pBS

1
q “ TGF

pBF
1

q, it is enough to show that

TGS
pBS

k q ´ TGS
pBS

k´1
q “ TGF

pBF
k q ´ TGF

pBF
k´1

q, for all k ě 2.

TGS
pBS

k q “ pπGS
pBS

k q ´ GSpBS
k´1

qN´1qBS
k `

k´1
ÿ

j“1

pGSpBS
j qN´1 ´ GSpBS

j´1
qN´1qBS

j .

ñTGS
pBS

k q ´ TGS
pBS

k´1
q

“ pπGF
pBF

k q ´ GF pBF
k´1

qN´1qBS
k ´ pπGF

pBF
k´1

q ´ GF pBF
k´1

qN´1qBS
k´1

“ TGF
pBF

k q ´ TGF
pBF

k´1
q.

The last equality holds by construction. σS and σF achieve the same allocation and the same

interim payment for each type, therefore the revenue is the same for the both.

Even though we show that an outcome of some equilibrium in first price auction with

designed bid spaces cannot be achieved with an equilibrium in second price auction with

designed bid spaces, it may be possible to achieve the same revenue. Furthermore, the

revenue of an auction depends on equilibrium strategies played and designed bid spaces. In

order to consider revenue ranking it makes sense to compare the revenue of each auction

formats when the bid spacess are designed in a way to achieve the maximal revenue. We

define a first (second) price auction is well-designed if the bid spaces is designed to maximize
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the revenue of the seller. The next example shows that well-designed first price auction can

revenue dominates well-designed second price auction.

Example 2.2.4. There are 2 bidders, and each bidder i’s value vi is drawn independently

following

vi “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

2 with probability 0.5,

11{3 with probability 0.25,

13{2 with probability 0.25.

The well-designed bid space under first price auction is BF “ t2, 3, 4u with an equilibrium

σF pviq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

2 if vi “ 2,

3 if vi “ 10{3,

4 if vi “ 13{2.

The expected revenue equals to 51{16. Suppose BS “ tBL, BM , BHu. If BL ă BM ă BH ,

then

πGS
pBLq “

1

4
, πGS

pBMq “
5

8
, πGS

pBHq “
7

8
,

TGS
pBLq “

1

4
BL, TGS

pBMq “
4

8
BL `

1

8
BM , TGS

pBHq “
4

8
BL `

2

8
BM `

1

8
BH .
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In this case, revenue maximization problem becomes

max
BL,BM ,BH

2
ÿ

fpvqTGS
pBvq subject to

13 ě BH ` BM , (ICH)

11 ě BM ` 2BL,

2 ě BL,

BH ą BM ą BL (Monotonicity)

Not only doesn’t the solution exist but also any bid levels satisfying the constraints give

less revenue than 50{16, which comes from the solution of the same problem with relaxed

monotonicity constraint to weak inequalities. Suppose BS “ tBL, BM , BHu. If BL “ BM ă

BH , then

πGS
pBLq “ πGS

pBMq “
3

8
, πGS

pBHq “
7

8
,

TGS
pBLq “ TGS

pBM q “
3

8
BL, TGS

pBHq “
1

8
BH `

6

8
BL.

In this case, revenue maximization problem becomes

max
BL,BH

2
ÿ

fpvqTGS
pBvq subject to

26 ě BH ` 3BL, (ICH)

2 ě BL.

The solution is BL “ BM “ 2, BH “ 20. The expected revenue is 50{16.

Proposition 2.2.5. The revenue from well-designed first price auction is greater than or

equal to the revenue from well-designed second price auction. In some cases, it is strict.

Proof. The first part is a corollary of Proposition 1. The second part comes from the previous
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example.

2.3 Optimal Mechanism

So far, we only consider two auction formats; first price and second price auctions. The next

proposition shows that well-designed first price auction is an optimal selling mechanism for a

single object. Bergemann & Pesendorfer (2007) characterizes the optimal direct mechanism

for a sale of single object when the type space is finite. Suppose each bidder i’s type θi is

distributed over Θ following c.d.f. F , for all i. Then the allocation rule of the optimal direct

mechanism is described as follows.

1. Each bidder i reports θi.

2. Award the good to i with maximum positive virtual valuation µpθq “ θ ´ 1´F pθq
fpθq

. If the

maximum µpθq is negative, the seller keeps the good. If there are more than one bidder with

maximum µpθq then the winner is picked uniformly at random. 3. If µpθq is not monotone,

then use ironed virtual value.

Proposition 2.3.1. Well-designed first price auction is an optimal selling mechanism for

single unit.

Proof. Collect the interim payment and interim allocation rule pT pθq, πpθqq from the direct

mechanism, only for the type θ such that µpθq is positive. Construct the bid spaces and

equilibrium strategies in first price auction as follows.

Bθ “
T pθq

πpθq
, @θ.

σpθq “ Bθ.

Since we only consider θ that wins the item with positive probability, Bθ is well-defined and
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Bθ is increasing in θ by the following inequality.

θπpθq ´ T pθq ě θπpθ1q ´ T pθ1q ðñ
πpθq

πpθ1q
pθ ´ Bθq ě θ ´ Bθ1 .

According to the allocation rule of the optimal direct mechanism, πpθq ě πpθ1q if and only

if µpθq ě µpθ1q. Therefore σF achieves the same allocation of the optimal mechanism.

Furthermore, the interim payoff for each type is the same for the direct mechanism and

σF . Therefore, σF is an equilibrium that achieves the same revenue of the optimal direct

mechanism.
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Chapter 3

Weak and Strong Bayesian Stability

3.1 Introduction

In the classical two-sided matching model, the main solution concept is stable matchings; no

one can find a better partner who is willing to be matched with him or her. While the classical

definition of stability relies on the complete information, where the value of a matching is

known to everyone, it is not trivial problem how to define stability if there is incomplete

information. A pair of agents pi, jq can block the matching if i and j consider each other

better than their current partners. If i or j do not know for sure that the potential blocking

is mutually beneficial, the assessment of the value of the blocking depends on the beliefs each

agent has. Thus, defining a notion of stability under incomplete information must entail how

the beliefs of the agents are formed and maintained, thus, there can be different sets of stable

outcomes depending on how to discipline beliefs. This paper investigates existing definitions

of stable outcomes and proposes an alternative definition when each agent in one side has

a private information that might affect the value of potential matchings. The paper is

organized as follows. Section 2 introduces the notations and the definition of stability under

complete information. Section 3 and 4 explore existing definitions of stable outcomes and

propose weak Bayesian stability. Section 5 presents a refinement of weak Bayesian stability.
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3.1.1 Related Literature

This paper is related to the literature on two-sided matching with incomplete information.

Liu et al. (2014) introduce incomplete information stable outcome under transferable utility

based on a belief-formation process resembling rationalizability in non cooperative game the-

ory. Bikhchandani (2017) investigates stability under non-transferable utility and proposed a

refinement of Liu et al. (2014). Section 3 will discuss these papers in detail. Pomatto (2015)

proposes non-cooperative solution concept that is equivalent to incomplete information sta-

ble outcome in Liu et al. (2014). Chakraborty et al. (2010) study stability of mechanisms

rather than stable outcomes in the context of college admission and show that stable mech-

anisms exist only if students have identical preferences. Peivandi and Vohra (2017) explore

a notion of blocking a centralized mechanism and core under incomplete information.

3.2 Complete Information

There are a finite set I of workers and a finite set J of firms. A matching µ is a one-to-one

correspondence from I Y J to I Y J such that if µpiq R I then µpiq P J , if µpjq R J then

µpjq P I, and µ2pxq “ x. Each firm j has a known type fpjq and a vector of types is denoted

by f . Worker i’s type is denoted by wpiq and firm j’s type is denoted by fpjq. The utility of

each worker and each firm only depends on their own types and their partner’s types. Worker

i’s utility is denoted by vipwpiq, fpjqq and firm j’s utility is denoted by ujpwpiq, fpjqq, given

that i and j are matched. The utility of being unmatched is normalized to 0. I can define

fpiq “ ∅ if i P I and wpjq “ ∅ if j P J and ujp∅, fpjqq “ vipwpiq,∅q “ 0 for any i, j, w,

and f . Now, I can define a stable outcome under complete information originated from Gale

and Shapley (1962) in the notations above.

Definition 5. An outcome pµ,w, fq is individually rational if vipwpiq, fpµpiqqq ě 0 and

ujpwpµpjq, fpjqqq ě 0 for all i P µpJq and j P µpIq.

An individually rational outcome guarantees the payoff no worse than being unmatched
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to each agent.

Definition 6. An individually rational outcome pµ,wq complete-information stable if for

any pi, jq such that vipwpiq, fpjqq ą vipwpiq, fpµpiqqq,

ujpwpµpjqq, fpjqq ě ujpwpiq, fpjqq.

Under complete information, a matching outcome is not stable if either it is not indi-

vidually rational or there are worker i and firm j that prefer each other than their current

partners.

3.3 Incomplete Information

The assumption of complete information is relaxed and environments where agents are un-

certain about the types of others are considered. Specifically, I consider environments where

the type of firms f is publicly known, while each worker i’s type wpiq is only known to the

worker i and his or her partner µpiq. Assume that wpiq is drawn independently from some

set Ω Ă R
I following some distribution. Since the type of workers are unknown, firms can

form different beliefs after some thought processes and an outcome may or may not be stable

depending on the beliefs of each firm. Denote the belief of firm j on wpiq by Gij.

Definition 7. An individual rational outcome pµ,w, fq is stable with beliefs tGijupi,jqPIˆJ if

for any pi, jq such that vipwpiq, fpjqq ą vipwpiq, fpµpiqqq,

ujpwpµpjqq, fpjqq ě Erujpwpiq, fpjqq|Gijs.

This definition is similar to the definition of a stable outcome under complete information

other than each firm j uses a set of beliefs tGiju to assess the potential blocking partner i.

Without disciplining the beliefs further, it is usual that any individually rational outcomes

are stable with some beliefs tGiju. One can derive different concepts of stability by restricting
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the beliefs firms can have in different ways. As a comparison, I introduce a modified version of

the definition of incomplete-information stable outcomes in Liu et al. (2014).1 The following

three definitions are adapted from Liu et al. (2014).

Definition 8. A matching outcome pµ,w, fq P Σ is Σ-stable if for any pi, jq such that

vipwpiq, fpjqq ą vipwpiq, fpµpiqqq, there exists pµ,w1, fq P Σ satisfying

(a) ujpw
1pµpjqq, fpjqq ě ujpw

1piq, fpjqq,

(b) wpµpjqq “ w1pµpjqq, and

(c) vipw
1piq, fpjqq ą vipw

1piq, fpµpiqqq.

Suppose that worker i applies to firm j. For firm j not to replace its current worker

µpjq, the firm has to be pessimistic enough about i’s type. The first and second parts of

the definition says that there exists such a type of worker i so that firm j weakly prefers the

current worker to i. The last part of the definitions says that such beliefs of firm j must

be consistent with the fact that worker i applies to firm j. So, the beliefs that the current

matching outcome is in the set Σ are reinforced by observing no pair of agents have formed

blocking pairs.

Definition 9. A nonempty set of individually rational matching outcomes Σ is self-stabilizing

if every pµ,wq P Σ is Σ-stable.

Definition 10. The largest self-stabilizing set of outcomes is the set of incomplete informa-

tion stable outcome.2

I present an example to show that how the definition actually works.

1Liu et al. (2014) consider environments with transferable utilities. The adapted version to non-
transferable environments is introduced by Bikhchandani (2017).

2The actual definition of the set of incomplete information stable outcomes in Liu et al. (2014) is the
surviving set through the process of iterated elimination of blocked matching outcomes under the most
conservative beliefs. One main finding of Liu et al. (2014) is to show that the definition is equivalent to the
self-stabilization.
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0 1/2 wp1q

wp2q

(a) Complete information

0 1/2 wp1q

wp2q

(b) Incomplete information

Figure 3.1: Stable outcomes

Example 3.3.1. There are two firms ta, bu and two workers t1, 2u. Ω “ r0, 1s ˆ r0, 1s. Both

firms prefer a higher type worker, while worker i’s utilities are given by vipwpiq, aq “ w and

vipwpiq, bq “ 1{2. One can interpret that firm a uses incentive payment system while firm

b uses fixed payment system, and wpiq is the productivity parameter. Consider a matching

µ “ tp1, aq, p2, bqu, where wp2q ą wp1q ą 1{2. Under complete information, this matching

outcome is not stable since p2, aq would be a blocking pair. Under incomplete information,

if firm a believes that wp2q is 1{2 ` ǫ for some small ǫ ą 0, firm a would not replace

worker 1 with worker 2. Such a belief is justified as firm 2 would still prefer firm a even if

wp2q “ 1{2 ` ǫ, and this line of logic satisfies the condition p3q in the definition of Σ-stable.

One can easily verify that tµ, p0.5` ǫ, wp2qq, pwp2q, 0.5` ǫqu is self-stabilizing. Now, suppose

that wp1q ă 1{2 ă wp2q. Consider a potential blocking pair p2, aq. In this case, for any type

of worker 2 that prefers a to b is bigger than 1{2. Thus, worker 2 is able to convince firm a

that his or her productivity is higher than 1{2. Therefore, µ is not incomplete information

stable if wp1q ă 1{2 ă wp2q.

In Figure 2(b), the reasoning behind of ruling out the upper left region from the stable

outcomes solely relies on the fact that firm a can infer something from the fact that only a
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certain types of worker actually prefers firm a to b. If the utilities of workers are similar to

each other regardless of the types, there would be nothing to infer for firms. The following

proposition shows that the incomplete information stability is too permissive.

Proposition 3.3.2. Suppose that

(1) Ω “ rw, w̄sI, and any matching is individually rational.

(2) vip¨, fq is a positive monotonic transformation of vi1p¨, fq with respect to f for all i, i1 P

I.

(3) |I| ě |J |.

Then a matching outcome pµ,w, fq is incomplete information stable if all firms are matched.

Condition (1) is imposed to make a clean statement and can be relaxed. Condition (2)

says that if worker i with some type w prefers a firm with type f to a firm with type f 1, any

other workers with the same type w prefer f to f 1 as well.3

Proof. It is enough to show that any outcome pµ,w, fq is pµ,Ω, fq-stable, for any w, f , and

µ. Consider a matching outcome pµ,w, fq and a potential blocking pair pi, jq. It is enough

to provide a w1 that satisfies the conditions in Definition 4. Set w1piq “ w1pµpjqq “ wpµpjqq

for given i and j and w1pi1q “ wpi1q for any other i1 ‰ i or i1 ‰ µpjq. The condition (a) holds

with equality and (b) holds trivially. Condition (c) holds by the assumption (2). Therefore,

there is no blocking pair pi, jq such that j is currently matched with someone else.

3.4 Refinements

One possible refinement of incomplete information stability is to discipline the beliefs of firms

so that each firm’s posterior should be Bayes-consistent with the common prior. Denote the

common prior on w by F .

3There is a similar proposition in Bikhchandani (2017), but one does not imply another. For instance,
Bikhchandani (2017) requires that the utilities increase in types.

53



Assumption 3.4.1. Each wpiq is drawn independently.

As mentioned in Section 3, to define incomplete information stability, Liu et al. (2014)

use the iterated elimination of possible blocking outcome under the pessimistic beliefs. One

might apply such elimination procedure using conditional expectation rather than the most

pessimistic beliefs. I provide an example to illustrate how the procedure works rather than

stating the definition of Bayesian stability provided by Bikhchandani (2017). For more

information, refer to Bikhchandani (2017).

Example 3.4.2. There are two firms ta, bu and two workers t1, 2u. Suppose that firm 1

prefers higher type while firm 2 prefers lower type. Specifically, uapwq “ w and ubpwq “ 1´w.

Worker 1 prefers a regardless ofwp1q while worker 2 prefers b regardless ofwp2q. Assume that

each wpiq is drawn from uniform r0, 1s independently. Consider a matching tpa, 2q, pb, 1qu.

Iterated elimination goes by rounds.

- Round 1: Notice that worker 1 always wants to form a blocking pair with firm a as

long as firm a is willing to. Moreover, if wp2q is low enough, firm a is willing to do

so. In other words, tpa, 2q, pb, 1qu would have been blocked if Eruapwp1qqs ą uapwp2qq,

where the expectation is taken with respect to the common prior. The condition is

equivalent to 1{2 ą wp2q. Similarly, one can derive the condition wp1q ą 1{2 for firm

b. Eliminate r0, 1{2q form Ω2 and p1{2, 1s from Ω1.

- Round 2: After the elimination, Eruapwp1qqs “ 0.25. Notice that for any wp2q P

r1{2, 1s, firm a prefers to stay with 2 rather than blocking with 1. The similar logic holds

for firm b. There is no possible types that can block the matching with the condition

expectation, no further elimination is necessary. µ “ tpa, 2q, pb, 1qu is Bayesian stable

if and only if w P r0, 1{2s ˆ r1{2, 1s.

Even though Bayesian stability is a natural extension of incomplete information stability,

there is a caveat. The thought process of agents should be done in a very coordinated way.

In Example 4.1, firm a and firm b should eliminate certain possibility at the same time in
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each round. In other words, the order or elimination actually matters. This caveat does not

exist in Liu et al. (2014). Intuitively, since they rely on the elimination based on the most

pessimistic beliefs and the most pessimistic beliefs become less pessimistic as eliminations

are iterated, there is monotonicity in elimination. However, if one eliminates certain types

based on expectation, the monotonicity does not present anymore. In Example 4.1, if firm

a rules out p1{2, 1s from Ω1, then only r0, 1{4q would be eliminated from Ω2.

An alternative way of imposing Bayesian consistency is to use the concept of self-

stabilization. Suppose that an outcome is pµ,w, fq is stable with beliefs tGijupi,jqPIˆJ . How

would such beliefs Gij be justified? If for any pair of agents have no incentive to form a

blocking pair whenever the realized types of workers are in the support of beliefs, such be-

liefs are reinforced by observing the given matching, thus, the matching will remain stable.

I propose the following definition to capture the idea.

Definition 11. A set of beliefs tGiju is weak Bayes-consistent with a matching µ if

1. pµ,w, fq is stable with beliefs tGiju for any w P
ś

iPI supppGijq,

2. Gij “ margiF conditional on supppGijq.

3. supppGijq is not measure 0 with respect to the prior.

The first condition imposes the consistency of the beliefs with the observation that no

one hasn’t blocked the matching, and the second condition requires that such beliefs should

be consistent with the common prior.

Definition 12. A matching outcome pµ,w,wq is weak Bayesian stable if

1. there exists a set of beliefs tGiju that is weak Bayes-consistent with the matching µ,

2. w P
ś

iPI supppGijq, for any j P J .

55



3.4.1 Examples

In this subsection, I provide an example and a proposition. While weak Bayesian stability

is a natural extension of self-stabilization under the assumption that firms are Bayesian, the

definition is still too permissive.

Example 3.4.3. Suppose that there are two firms ta, bu and two workers t1, 2u. Both worker

prefers firm a to firm b, and both firms prefer higher type, where types are drawn from Ur0, 1s

independently. Note that only firm a has a possible blocking opportunity. For a realization

of pw1, w2q, define Sµpaq and Sµpbq as follows.

Sµpaq “ rwµpaq, 1s,

Sµpbq “ r0, ǫs Y twµpbqu.

By taking ǫ arbitrarily small, we can make firm a arbitrarily pessimistic so that the condi-

tional expectation based on Sµpbq is less than wµpaq. This is Bayesian self-stabilizing since for

any realization firm b has no blocking opportunity, and firm a is pessimistic.

The idea behind of the example is if we do not impose certain restrictions on the types

outside of the support of the beliefs, one can always infuse arbitrarily pessimistic beliefs to

the firms so that no blocking occurs for any realization and such beliefs can be justified if

firms share the same ”worst” type of workers. Figure 2 illustrates the set of stable outcomes

for different concepts of stability.

Proposition 3.4.4. Suppose that

(1) Ω “ rw, w̄sI, and any matching is individually rational.

(2) Common prior is atom-less.

(3) vip¨, fq is a positive monotonic transformation of vi1p¨, fq with respect to f for all i, i1 P

I.
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0 1/2 wpµpaqq

wpµpbqq

(a) Complete information

0 1/2 wpµpaqq

wpµpbqq

(b) Weak Bayesian

0 1/2 wpµpaqq

wpµpbqq

(c) Incomplete information

Figure 3.2: Stable outcomes

(4) ujpw, ¨q is increasing in w for all j P J .

(5) Utilities are continuous.

Then an pµ,w, fq is weak Bayesian stable for any w ąą pw, . . . wq.

Proof. Define a set Si “ runderlinew, underlinew ` ǫs Y tiu for each i. By defining Gij “

margiF conditional of Si, pµ,w, fq is weak Bayesian stable with the beliefs tGiju.

Even if I drop the condition (4), the proposition still holds if firms share a common worst

type w P rw, w̄s.

3.5 Strong Bayesian Stability

The main reason behind why imposing Bayesian is not enough to make sharper prediction on

stable outcomes is because it only requires the beliefs are internally consistent, thus, firms can

be arbitrarily pessimistic by ruling out any possibilities that the potential blocking partner

has higher type than the worst type. I propose a refinement of weak Bayes-consistency by

requiring the beliefs are externally consistent as well.

Definition 13. A set of beliefs tGiju is strong Bayes-consistent with a matching µ if

- it is weak Bayes-consistent with µ,
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- for any j and w R
ś

iPI supppGijq, there is j1 such that

(1) uipwpiq, fpj1qq ą uipwpiq, fpµpiqqq,

(2) Ervjpwpiq, fpj1qq|Gij1s ą vjpwpµpj1qq, fpj1qq.

If firm j rules out w from the realms of possibility, there must be a valid reason for it.

Strong Bayesian stability requires that for the firm j to rule out w, it has to be the case that

there would been a blocking pair if w were the actual state of the world. By not observing

a blocking pair, firm j can eliminate w from the possible state of the world.

Definition 14. A matching outcome pµ,w,wq is strong Bayesian stable if

1. there exists a set of beliefs tGiju that is strong Bayes-consistent with the matching µ,

2. w P
ś

iPI supppGijq, for any j P J .

3.5.1 Examples

The next example compares Strong Bayesian stability with Weak Bayesian stability.

Example 3.5.1. Suppose that there are two firms ta, bu and two workers t1, 2u. Both

worker prefers firm a to firm b, and both firms prefer higher type, where types are drawn

from Ur0, 1s independently. The utility of firms are given by uipwq “ w. Note that only firm

a has a possible blocking opportunity. Consider a matching µ “ tpa, 1q, pb, 2qu. Since b is

unequivocally worse firm than a, b does not have any blocking opportunity, thus, no types

are eliminated from Ω2. For firm a, given that there is no elimination from Ω2, it would

block the matching if wp1q were less than 1{2. Thus, by defining

S1 “ r0.5, 1s,

S2 “ r0, 1s,
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0 1/2 wp1q

wp2q

(a) Complete information

0 1/2 wp1q

wp2q

(b) Strong Bayesian

0 1/2 wp1q

wp2q

(c) Weak Bayesian

Figure 3.3: Stable outcomes

and with the beliefs Gia “ Gib “ F conditional on Si, pµ,w, fq is strongly Bayesian stable

for any w P r0.5, 1s ˆ r0, 1s.

Figure 3 illustrates how the stable outcomes differ for Strong and Weak stable concepts.

Since firm a is preferred by every worker, in expectation, firm a will get a better match

than firm b under Strong Bayesian stability. In fact, Strong Bayesian stability coincides with

Bayesian stability in Bikhchandani (2017) in this example.

The second example illustrates how Strong Bayesian stability is different from Bayesian

stability in Bikhchandani (2017).

Example 3.5.2. There are two firms ta, bu and two workers t1, 2u. Suppose that firm 1

prefers higher type while firm 2 prefers lower type. Specifically, uapwq “ w and ubpwq “

1 ´ w. Worker 1 prefers a regardless of wp1q while worker 2 prefers b regardless of wp2q.

Assume that each wpiq is drawn from uniform r0, 1s independently. Consider a matching

µ “ tpa, 2q, pb, 1qu. This is Example 4.2. The Bayesian stable types of workers, given

the matching µ, was w P r0, 1{2s ˆ r1{2, 1s. With Strong Bayesian stability, bigger set of

outcomes can be supported as stable outcomes. Suppose that firm a believes that wp1q P

r0, 2{3s and firm b believes that wp2q P r1{3, 1s. For any wp2q P r1{3, 1s, firm a prefers the

current partner worker 2 over worker 1 in expectation as Eruapwp1qq|r0, 2{3ss ě 1{3. For any

wp1q P r0, 2{3s, firm b prefers the current partner worker 1 over worker 2 in expectation as
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Erubpwp1qq|r1{3, 1ss ě 1{3. Thus, such beliefs are weak Bayes-consistent. To check strong

Bayes-consistent, notice that for any type profiles outside of r0, 2{3s ˆ r1{3, 1s, there would

be at least 1 blocking pair.
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