
UCLA
UCLA Electronic Theses and Dissertations

Title
Predicting the Young’s modulus of silicate glasses by molecular dynamics simulations and 
machine learning

Permalink
https://escholarship.org/uc/item/1wq6k8nb

Author
Yang, Kai

Publication Date
2020
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1wq6k8nb
https://escholarship.org
http://www.cdlib.org/


 

 

UNIVERSITY OF CALIFORNIA 

Los Angeles 

 

Predicting the Young’s modulus of silicate glasses  

by molecular dynamics simulations and machine learning 

 

A thesis submitted in partial satisfaction  

or the requirements for the degree Master of Science  

in Civil Engineering 

 

by 

 

 

Kai Yang 

 

 

 

 

 

2020 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

Kai Yang 

2020 



ii 

 

ABSTRACT OF THE THESIS 

 

Predicting the Young’s modulus of silicate glasses  

by molecular dynamics simulations and machine learning 

 

by 

 

Kai Yang 

 

Master of Science in Civil Engineering 

University of California, Los Angeles, 2020 

Professor Mathieu Bauchy, Chair 

 

Understanding the compositional dependence of properties of silicate glass is critical to design 

novel glasses for various technology applications. With the development in molecular dynamics 

simulations and machine learning techniques, a combined and fully computational approach, 

which is able to reveal the relationship between glass composition and its mechanical properties, 

can be developed and served as a guide prior to experiments and manufacturing. On one hand, 

machine learning is a powerful tool to predict the properties based on the existing database. On 

the other hand, molecular dynamics simulation cannot only produce sufficient data points for 

machine learning models but also provide a detailed picture of the atomic structure of glasses. This 

atomic-scale knowledge from molecular dynamics simulation contains an intrinsic relationship 

between glass compositions and their mechanical properties. 
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Here, we first use molecular dynamics simulation to generate the dataset for calcium 

aluminosilicate glasses and apply different machine learning models to predict their Young’s 

modulus using glass compositions in Chapter 1. Next, we apply topological constraint theory to 

quantify the atomic structures of simulated glasses and use this knowledge to predict Young’s 

modulus for calcium aluminosilicate glass family in Chapter 2. Last, in Chapter 3, we propose a 

fully analytical model to link the network topology with glass compositions. 
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Chapter 1. Predicting the Young’s Modulus of Silicate Glasses using 

High-Throughput Molecular Dynamics Simulations and Machine 

Learning 

1.1 Abstract  

The application of machine learning to predict materials’ properties usually requires a large 

number of consistent data for training. However, experimental datasets of high quality are not 

always available or self-consistent. Here, as an alternative route, we combine machine learning 

with high-throughput molecular dynamics simulations to predict the Young’s modulus of silicate 

glasses. We demonstrate that this combined approach offers good and reliable predictions over the 

entire compositional domain. By comparing the performances of select machine learning 

algorithms, we discuss the nature of the balance between accuracy, simplicity, and interpretability 

in machine learning. 

1.2 Introduction 

Improving the mechanical properties of glasses is crucial to address major challenges in 

energy, communications, and infrastructure [1]. In particular, the stiffness of glass (e.g., its 

Young’s modulus E) plays a critical role in flexible substrates and roll-to-roll processing of 

displays, optical fibres, architectural glazing, ultra-stiff composites, hard discs and surgery 

equipment, or lightweight construction materials [1–4]. Addressing these challenges requires the 

discovery of new glass compositions featuring tailored mechanical properties [5,6]. 
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      Although the discovery of new materials with enhanced properties is always a difficult task, 

glassy materials present some unique challenges. First, a glass can be made out of virtually all the 

elements of the periodic table if quenched fast enough from the liquid state [7]. Second, unlike 

crystals, glasses are out-of-equilibrium phases and, hence, do not have to obey any fixed 

stoichiometry [8]. These two unique properties of glass open limitless possibilities for the 

development of new compositions with enhanced properties—for instance, the total number of 

possible glass compositions [7] has been estimated to be around 1052! Clearly, only a tiny portion 

of the compositional envelope accessible to glass has been explored thus far. 

      The design of new glasses for a targeted application can be formulated as an optimization 

problem, wherein the composition needs to be optimized to minimize or maximize a cost function 

(e.g., the Young’s modulus) while satisfying some constraints (e.g., ensuring low cost and 

processability) [9]. Although the vast compositional envelop accessible to glass opens limitless 

possibilities for compositional tuning, optimization problems in such highly-dimensional spaces 

are notoriously challenging—which is known as the “curse of dimensionality.” Namely, the 

virtually infinite number of possible glass compositions render largely inefficient traditional 

discovery methods based on trial-and-error Edisonian approaches [10]. 

      To overcome this challenge, the development of predictive models relating the composition 

of glasses to their engineering properties is required [9]. Ideally, physics-based models should 

offer the most robust predictions. In the case of glass stiffness, the Makishima–Mackenzie (MM) 

model may be the most popular predictive model [11,12]. This approach is essentially an additive 

model, wherein stiffness is expressed as a linear function of the oxide concentrations. However, 

such additive models are intrinsically unable to capture any non-linear compositional dependence, 
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as commonly observed for stiffness [1,5,13]. On the other hand, molecular dynamics (MD) 

simulations offer a powerful method to compute the stiffness of a given glass [14,15]. However, 

MD is a brute-force method, that is, it requires (at least) one simulation per glass composition—

so that the systematic use of MD to explore the large compositional envelop accessible to glass is 

not a realistic option.  

      In turn, machine learning (ML) offers an attractive and pragmatic approach to predict 

glasses’ properties [16]. In contrast with physics-based models, ML-based models are developed 

by “learning” from existing databases. Although the fact that glass composition can be tuned in a 

continuous fashion renders glass an ideal material for ML methods, the application of ML to this 

material has been rather limited thus far [16–20]. This partially comes from the fact that ML 

methods critically relies on the existence of “useful” data. To be useful, data must be (i) available 

(i.e., easily accessible), (ii) complete (i.e., with a large range of parameters), (iii) consistent (i.e., 

obtained with the same testing protocol), (iv) accurate (i.e., to avoid “garbage in, garbage out” 

models), and (v) representative (i.e., the dataset needs to provide enough information to train the 

models). Although some glass property databases do exist [21], some inconsistencies in the ways 

glasses are produced or tested among various groups may render challenging their direct use as 

training sets for ML methods—or would require some significant efforts in data cleaning and non-

biased outlier detection. 

      To overcome these challenges, we present here a general method wherein high-throughput 

molecular dynamics simulations are coupled with machine learning methods to predict the 

relationship between glass composition and stiffness. Specifically, we take the example of the 

ternary calcium aluminosilicate (CAS) glass system—which is an archetypical model for alkali-
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free display glasses [22]—and focus on the prediction of their Young’s modulus. We show that 

our method offers good and reliable predictions of the Young’s modulus of CAS glasses over the 

entire compositional domain. By comparing the performance of select ML algorithms—

polynomial regression (PR), LASSO, random forest (RF), and artificial neural network (ANN)—

we show that the artificial neural network algorithm offers the highest level of accuracy. Based on 

these results, we discuss the balance between accuracy, complexity, and interpretability offered by 

each ML method. 

1.3 Methods 

1.3.1 High-throughput molecular dynamics simulations 

To establish our conclusions, we use molecular dynamics simulations to create a database 

consisting of the Young’s modulus values of 231 glasses homogeneously covering the CAS ternary 

system, with 5% increments in the mol% concentration of the CaO, Al2O3, and SiO2 oxide 

constituents. At this point, no consideration is made as to whether all these compositions would 

experimentally exhibit satisfactory glass-forming ability. All the simulations are conducted using 

the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) package [23]. Each 

glass comprises around 3000 atoms. We adopt here the interatomic potential parametrized by 

Jakse—as it has been found to yield some structural and elastic properties that are in good 

agreement with experimental data for CAS glasses [24,25]. A cutoff of 8.0 Å is used for the short-

range interactions. The Coulombic interactions are calculated by adopting the Fennell damped 

shifted force model with a damping parameter of 0.25 Å–1 and a global cutoff of 8.0 Å [26]. The 

integration timestep is kept fixed 1.0 fs. 
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      The glass samples are prepared with the conventional melt-quench method as described in 

the following [27]. First, some atoms are randomly placed in a cubic box using PACKMOL while 

using a distance cutoff of 2.0 Å between each atom to avoid any unrealistic overlap [28]. These 

initial configurations are then subjected to an energy minimization, followed by some 100 ps 

relaxations in the canonical (NVT) and isothermal-isobaric (NPT) ensembles at 300 K, sequentially. 

These samples are then fully melted at 3000 K for 100 ps in the NVT and, subsequently, NPT 

ensemble (at zero pressure) to ensure the loss of the memory of the initial configurations and to 

equilibrate the systems. Next, these liquids are cooled from 3000 to 300 K in the NPT ensemble at 

zero pressure with a cooling rate of 1 K/ps. The obtained glass samples are further relaxed at 300 

K  for 100 ps in the NPT ensemble before the stiffness computation. Note that this quenching 

procedure was slightly adjusted for select compositions. First, a higher initial melting temperature 

of 5000 K is used for the samples wherein the SiO2 concentration is larger or equal to 95 mol%—

since these glasses exhibit high glass transition temperatures. Second, a faster cooling rate of 100 

K/ps is used for the samples wherein the CaO concentration is larger or equal to 90 mol%. Indeed, 

although the cooling rate can affect the glass stiffness, the use of a higher cooling rate here is 

necessary as these systems would otherwise tend to crystallize with a cooling rate of 1 K/ps. 

      The stiffness tensor 𝐶𝛼𝛽 of the equilibrated glasses is then computed by performing a series 

of 6 deformations (i.e., 3 axial and 3 shear deformations along the 3 axes) and computing the 

curvature of the potential energy [24,29]: 

𝐶𝛼𝛽 =  
1

𝑉
 

𝜕2𝑈

𝜕𝑒𝛼𝜕𝑒𝛽
 (1) 
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where 𝑉 is the volume of the glass, 𝑈 is the potential energy, 𝑒 is the strain, and 𝛼 and 𝛽 are some 

indexes representing each Cartesian direction. Note that all of the glass samples are found to be 

largely isotropic—so that the Young’s modulus (E) can be calculated as: 

𝐸−1 = (𝑆11 + 𝑆22 + 𝑆33)/3 (2) 

where 𝑆 = 𝐶−1 is the compliance matrix [15]. Based on previous results24, the Jakse forcefield is 

found to systematically overestimate the Young’s modulus of CAS glasses by about 16%—which 

may be a spurious effect arising from the fast cooling rate used in MD simulations or the 

parameterization of the forcefield. As such, the computed Young’s modulus values are rescaled 

by this constant factor before serving as a training set for the machine learning models presented 

in the following. 

1.3.2 Machine learning methodology 

The 231 Young’s modulus values computed by the high-throughput MD simulations serve 

as a database to infer the relationship between glass composition (x, y) and E in the 

(CaO)x(Al2O3)y(SiO2)1–x–y glass system by ML. In details, we consider x and y to be the only inputs 

of the model (i.e., we neglect herein the effect of the thermal history of the glasses), whereas E is 

used as an output. Note that a similar approach can be used to predict the effect of composition on 

the shear modulus G, bulk modulus K, or Poisson’s ratio ν. In the following, we briefly describe 

our overall ML strategy as well as the different ML algorithms that are considered and compared 

herein. 

      To avoid any risk of overfitting, a fraction of the data points is kept fully unknown to the 

models and is used as a “test set” to a posteriori assess the accuracy of each model. However, 
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isolating a fixed set would further reduce the number of points used for training our models, which 

can be a serious issue in the case of a small dataset as herein. To overcome this limitation, we 

adopt here the k-fold cross-validation (CV) technique [30]. The CV technique consists in splitting 

the dataset into k smaller sets, wherein the model is trained on “k – 1” of the folds and tested on 

the remaining of the data. The results are then averaged by iteratively using each of the k folds. 

Furthermore, we apply the nested CV to conduct evaluations for different algorithms and 

models. [31] In detail, we perform a 4-fold outer CV to split the dataset into the training set (75% 

of data) and test set (25% of data), and use the average scores (i.e., R2) to compare the performance 

between different algorithms. Next, to obtain a proper setting for the hyperparameters of each 

model, we apply 10-fold inner CV within the training set. By taking the advantage of nested CV 

technique, each data point can be fairly chosen for training, testing and validating. 

      For optimal predictions, ML models must achieve the best balance between accuracy and 

simplicity—wherein models that are too simple are usually poorly accurate (i.e., “underfitted”), 

whereas models that are too complex present the risk of placing too much weight on the noise of 

the training set and, thereby, often show poor transferability to unknown sets of data (i.e., 

“overfitted”). Hence, one needs to identify the optimal degree of complexity (e.g., number of terms, 

number of neurons, etc.) for each model. Here, we optimize the degree of complexity of each 

model by gradually increasing its complexity and tracking the accuracy of the model prediction 

for both the training and test sets. Indeed, although the accuracy of the training set prediction 

typically monotonically increases with increasing model complexity, overfitted models usually 

manifest themselves by a decrease in the accuracy of the test set prediction. 



8 

 

      We herein adopt the polynomial regression (PR), LASSO, random forest (RF) and 

multilayer perceptron artificial neural network (ANN) algorithms to generate the predictive models. 

This choice is motivated by the fact that these methods exhibit varying degrees of complexity and 

interpretability. This allows us to assess the nature of the trade-off between accuracy, simplicity, 

and interpretability offered by these algorithms. 

1.3.4 Accuracy of the models 

We assess the accuracy of each model (with different degrees of complexity) by computing 

the RMSE (root-mean-square error) and R2 (coefficient of determination) factors. The RMSE 

factor measures the average Euclidian distance between the predicted and real values as: 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
 ∑(𝑌𝑖 −  𝑌𝑖

′)2

𝑛

𝑖=1

 (3) 

where 𝑌𝑖 and 𝑌𝑖
′ are the predicted and real output values, respectively. The RMSE has the property 

of being in the same units as the output variables and, hence, can be used to estimate the accuracy 

of the Young’s modulus values predicted by each model (namely, lower RMSE values indicate 

higher accuracy). Here, we use the RMSE of the training and test sets to determine the optimal 

degree of complexity for each ML model. 

      In complement of RMSE, we compute the R2 factor, which is the percentage of the response 

variable variation. This factor can be used to quantify how close the data are to the fitted line. R2 

= 1 indicates a perfect prediction, while smaller values indicate less accurate predictions. Here, we 



9 

 

use the R2 factor to compare the performances of each ML algorithm (once the degree of 

complexity has been optimized based on the RMSE).  

1.4 Results 

1.4.1Molecular dynamics simulations    

MD simulations are first used to generate a series of 231 glasses that homogeneously span 

the CAS compositional ternary domain (see Methods section). The Young’s modulus (E) of each 

glass is then computed by MD. We first focus on the compositional dependence of the Young’s 

modulus values predicted by the MD simulations (see Fig. 1.1). Overall, we observe the existence 

of two main trends: (i) E tends to increase with increasing Al2O3 concentration and (ii) E tends to 

increase with increasing CaO concentration. However, we note that the dependence of E on 

composition is non-systematic and that CaO and Al2O3 have some coupled effects. For example, 

we find that E increases as the concentration of CaO increases when [Al2O3] = 0 mol%, whereas 

E decreases with increasing CaO concentration when [Al2O3] > 40 mol%. Overall, we find that E 

exhibits a non-linear dependence on composition—so that one likely cannot rely on simple 

additive models to predict Young’s modulus in the CAS system. 
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Figure 1. 1 Ternary diagram showing the Young’s modulus values predicted by high-throughput 

molecular dynamics simulations as a function of composition in the CaO–Al2O3–SiO2 glass system. 

This database consists of 231 compositions homogeneously distributed over the entire 

compositional domain with 5 mol% increments in the oxide concentrations. This database is used 

as a basis to train the machine learning models presented herein. 

1.4.2 Relationship between composition and Young’s modulus    

We now discuss the nature of the relationship between composition and Young’s modulus. 

In general, the Young’s modulus tends to increase with increasing connectivity [4]. To assess 

whether this trend is here satisfied (and whether it can be used to predict the linkage between 

composition and E), we compute based on the MD simulations the average coordination number 

<r> of the atoms in the network for each glass composition. As shown in Fig. 1.2a, we find that 

<r> increases with increasing CaO and Al2O3 concentrations. This arises from that fact that (i) Ca 

atoms have a large coordination number (around 6), while (ii) the addition of Al atoms tends to 

increase the degree of polymerization of the glass, i.e., by converting non-briding oxygen (NBO) 

into bridging oxygen (BO) atoms (we also note the formation of 5- and 6-fold over-coordinated 
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Al species in Al-rich glasses). Overall, we observe that the ternary plot of <r> (Fig. 1.2a) echoes 

that of E (Fig. 1.1), which supports the fact that E increases upon increasing network connectivity. 

Nevertheless, as shown in Fig. 1.2b, we find that, although E and <r> are indeed positively 

correlated with each other, the data points are widely spread and the coefficient of determination 

R2 only equals 0.623. This indicates that the <r> metric alone does not contain enough information 

to predict E and that other effects are not captured by simply considering the connectivity of the 

network—which renders challenging the development of a robust physics-based predictive model. 

  

Figure 1. 2 (a) Ternary diagram showing the average atomic coordination number computed by 

high-throughput molecular dynamics simulations as a function of composition in the CaO–Al2O3–

SiO2 glass system. (b) Young’s modulus computed by molecular dynamics simulations as a 

function of the average atomic coordination number. The line is a linear fit. The coefficient of 

determination R2 indicates the degree of linearity. 

      We now assess the ability of the popular Makishima–Mackenzie (MM) model to predict 

the compositional evolution of E [11]. The MM model relies on an additive relationship, wherein 

E is expressed as a weighted average of the dissociation energies of each oxide constituent. In 

details, the Young’s modulus E is expressed as: 
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𝐸 = 83.6 𝑉𝑡  ∑ 𝑋𝑖𝐺𝑖

𝑛

𝑖=1

 (4) 

where 𝑉𝑡  is the overall packing density of the glass, and 𝑋𝑖  and 𝐺𝑖  are the concentration and 

volumic dissociation energy of each oxide constituent i, respectively. Note that the 𝐺𝑖 terms are 

tabulated values, whereas 𝑉𝑡 depends on the glass composition and is an explicit input to the model 

(i.e., the knowledge of the compositional dependence of 𝑉𝑡 is a prerequisite to the MM model). To 

this end, we compute the packing density 𝑉𝑡 of each glass based on the MD simulations. Figure 

1.3a shows the ternary diagram of the E values predicted by the MM model as a function of 

composition in the CAS glass system. We observe that the MM model properly predicts the 

increase of E with increasing Al2O3 concentration, but fails to predict the increase in E upon 

increasing CaO concentration. This is due to fact that the dissociation energy terms associated with 

the CaO and SiO2 oxides are close to each other (i.e., 15.5 and 15.4 kcal/cm3, respectively), 

whereas that of Al2O3 (32 kcal/cm3) is significantly higher. Overall, we observe that the MM model 

does not properly predict the non-linear dependence of E on composition. This is not surprising as 

the MM is essentially an additive model (although some level of non-linearity can exist within the 

𝑉𝑡 term). The MM model also fails to describe any coupling between the effects of CaO and Al2O3. 

Figure 1.3b shows a comparison between the Young’s modulus values predicted by the MM model 

and computed by MD. Overall, we find that, although the MM model offers a fairly good 

prediction of E, the correlation remains poor (with R2 = 0.556). In addition, we find that the MM 

model underestimates E, especially in the low E region (which corresponds to the technologically 

important low-Al compositional domain wherein glasses exhibit good glass-forming ability). 

Overall, we note that, although the MM model can be used as a rough guide to infer some 

compositional trends,  it cannot be used to accurately predict E in CAS glasses. 
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Figure 1. 3 (a) Ternary diagram showing the Young’s modulus values E predicted by the 

Makishima-Mackenzie (MM) model as a function of composition in the CaO–Al2O3–SiO2 glass 

system. (b) Comparison between the Young’s modulus values predicted by the MM model and 

computed by molecular dynamics simulations. 

1.4.3 Polynomial regression    

The Young’s modulus values computed by MD then serve as database to infer the 

relationship between glass composition (x, y) and E in the (CaO)x(Al2O3)y(SiO2)1–x–y glass system 

by ML (see Methods section). In the following, we compare the performance of select ML 

algorithms. To this end, a fraction (25%) of the data points is kept fully unknown to the models 

and is used as a “test set” to a posteriori assess the accuracy of each model, whereas the rest of the 

data (75%) is used as a “training set.” The accuracy of the prediction is assessed by calculating the 

root-mean-square error (RMSE, see Methods section). 

We first focus on the outcomes of polynomial regression (PR). Figure 1.4a shows the 

RMSE offered by polynomial regression for the training and test sets as a function of the maximum 

polynomial degree considered in the model. As expected, we observe that the RMSE of the training 
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set decreases upon increasing polynomial degree (i.e., increasing model complexity) and 

eventually plateaus. This signals that, as the model becomes more complex, it can better interpolate 

the training set. In contrast, we observe a significant increase in the RMSE when the polynomial 

degree is equal to 1 or 2—which indicates that, in this domain, the model is underfitted. This 

confirms again that linear models based on additive relationships are unable to properly describe 

the linkages between composition and Young’s modulus. On the other hand, we observe that the 

RMSE of the test set initially decreases with increasing polynomial degree, shows a minimum for 

degree 3, and eventually increases with increasing degree. This demonstrates that the models 

incorporating some polynomial terms that are strictly larger than 3 are overfitted. This arises from 

the fact that, in the case of high degrees, the model starts to fit the noise of the training set rather 

than the “true” overall trend. This exemplifies (i) how the training set allows identifying the 

minimum level of model complexity that is required to avoid underfitting and (ii) how the test set 

allows us to track the maximum level of model complexity before overfitting. Overall, the optimal 

polynomial degree (here found to be 3) manifests itself by a minimum in the RMSE of the test set. 

      We now focus on assessing the accuracy of the predictions of the best polynomial 

regression model (i.e., with a maximum polynomial degree of 3). Figure 1.4b shows a comparison 

between the Young’s modulus predicted by the ML model and computed by MD. We find that the 

R2 factors for the training and test sets are 0.975 and 0.970, respectively. This indicates that, even 

in the case of a simple algorithm like polynomial regression, ML offers a good prediction of E 

based on the simulated results.  
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Figure 1. 4 (a) Accuracy (as captured by the RMSE value) of the polynomial regression models as 

a function of the maximum polynomial degree considered in each model (see Sec. 2b)—as 

obtained for the training and test set, respectively. The optimal polynomial order is chosen as that 

for which the RMSE of the test set is minimum. (b) Comparison between the Young’s modulus 

values predicted by polynomial regression (with a degree of 3) and computed by molecular 

dynamics simulations. 

1.4.5 LASSO   

We now focus on the outcomes of the LASSO algorithm, which aims to reduce the 

complexity of the model by placing an extra weight on the model coefficients (see Methods 

section). Figure 1.5a shows the RMSE offered by LASSO for the training and test sets as a function 

of the degree of complexity, –log(𝜆), of the model. In contrast with the outcomes of the polynomial 

regression, we observe that LASSO does not yield any noticeable overfitting at high model 

complexity—which would manifest itself by an increase in the RMSE of the test set. This can be 

understood from the fact that the LASSO algorithm specifically aims to reduce the number of 

polynomial terms to mitigate the risk of overfitting. Here, since the RMSE of the test set only 
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shows a plateau with increasing –log(𝜆), we select the optimal degree of complexity as the one for 

which the RMSE of the test set becomes less than one standard deviation away from the minimum 

RMSE (i.e., in the plateau regime). 

      We now focus on assessing the accuracy of the predictions of the best LASSO model (i.e., 

with the optimal degree of complexity). Figure 1.5b shows a comparison between the Young’s 

modulus predicted by the ML model and computed by MD. We find that the R2 factors for the 

training and test sets are 0.971 and 0.966, respectively. Here, LASSO offers a slight decrease in 

accuracy as compared to polynomial regression. 

 

Figure 1. 5 (a) Accuracy (as captured by the RMSE value) of the LASSO models as a function of 

the degree of complexity (see Methods section)—as obtained for the training and test set, 

respectively. The optimal degree of complexity is determined as the one for which the RMSE of 

the test set is one standard deviation away from the minimum RMSE (i.e., in the plateau regime). 

(b) Comparison between the Young’s modulus values predicted by LASSO (with an optimal 

degree of complexity) and computed by molecular dynamics simulations. 
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1.4.6 Random forest   

We now focus on the outcomes of the RF algorithm. Figure 1.6a shows the RMSE offered 

by RF for the training and test sets as a function of the number of trees (i.e., which characterizes 

the complexity of the model). As observed in the case of LASSO, we find that RF does not yield 

any noticeable overfitting at high model complexity, that is, the RMSE of the test set only plateaus 

upon increasing number of trees. Here, we select 200 as being the optimal number of trees. 

      We now focus on assessing the accuracy of the predictions of the best RF model (i.e., with 

200 trees). Figure 1.6b shows a comparison between the Young’s modulus predicted by the ML 

model and computed by MD. We find that the R2 factors for the training and test sets are 0.991 

and 0.965, respectively. This suggests that, although RF offers an excellent interpolation of the 

training set (i.e., with a higher R2 value than those obtained with the other ML models), its ability 

to offer a good prediction of the test set is slightly lower than those of the other ML models 

considered herein. 

 

Figure 1. 6 (a) Accuracy (as captured by the RMSE value) of the random forest models as a 

function of the number of trees considered in each model (see Sec. 2d)—as obtained for the 
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training and test set, respectively. The optimal number of trees is taken as the threshold at which 

the RMSE of the test set starts to plateau. (b) Comparison between the Young’s modulus values 

predicted by random forest (with 200 trees) and computed by molecular dynamics simulations. 

1.4.7 Artificial neural network.    

Finally, we focus on the outcomes of the ANN algorithm. Herein, we adopt a multilayer 

perceptron (MLP) ANN, which is a class of feedforward neural network containing an input layer, 

hidden layer, and an output layer, is trained using the back-propagation algorithm. We train ANN 

models with one hidden layer—which is found to be sufficient considering the nature of the 

training set. Figure 1.7a shows the RMSE offered by ANN for the training and test sets as a 

function of the number of neurons (i.e., which characterizes the complexity of the model). Overall, 

as previously observed in the cases of LASSO and RF, ANN does not yield any noticeable 

overfitting at high model complexity. Nevertheless, we note that the RMSE of the test set exhibits 

a slight minimum in the case of 5 neurons, which is the degree of complexity that we adopt herein. 

We now focus on assessing the accuracy of the predictions of the best ANN model (with 

one hidden layer and five neurons). Figure 1.7b shows a comparison between the Young’s modulus 

predicted by the ML model and computed by MD. We find that the R2 factors for the training and 

test sets are 0.980 and 0.975, respectively. Overall, we find that the ANN algorithm offers the most 

accurate model among all the ML methods considered herein—as quantified in terms of the RMSE 

of the test set. 
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Figure 1. 7 (a) Accuracy (as captured by the RMSE value) of the artificial neural network models 

as a function of the number of neurons considered in each model (see Methods section)—as 

obtained for the training and test set, respectively. The optimal number of neurons is determined 

as that for which the RMSE value of the test set is minimum. (b) Comparison between the Young’s 

modulus values predicted by artificial neural network (with 5 neurons) and computed by molecular 

dynamics simulations. 

1.5 Discussion 

      We now compare the performance of the different machine learning algorithms used herein. 

We first focus on the level of accuracy offered by each method. To this end, Table 1.1 presents the 

coefficient of determination R2 of each method for the training set (which characterizes the ability 

of the algorithm to properly interpolate the training data) and test set (which captures the accuracy 

of the model when predicting unknown data). We first observe that the RF algorithm offers the 

best interpolation on the training set (i.e., RF shows the highest R2 for the training set). However, 

the RF algorithm also yields the lowest level of accuracy for the test set. This suggests that the RF 

algorithm presents the lowest ability to properly interpolate Young’s modulus values in between 
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two compositions of the training set and/or to offer realistic extrapolations toward the edges of the 

compositional domain. On the other hand, we note that LASSO offers a lower accuracy in both 

training and test set, compared to PR. While gaining simplicity from the penalized regression 

method, LASSO also loses the accuracy (see Tab. 1). Nevertheless, we observe that the artificial 

neural network algorithm clearly offers the highest level of accuracy among all the models 

considered herein since it yields the highest R2 value for the test set. 

Table 1. 1 Comparison between the levels of accuracy, complexity, and interpretability offered by 

the machine learning algorithms used herein, namely, polynomial regression (PR), LASSO, 

random forest (RF), artificial neural network (ANN). The level of accuracy is described by the 

coefficient of determination (R2) for the training and test sets. The complexity is described in 

parenthesis by the number of non-zero parameters in PR and LASSO, the number of trees in RF, 

and the product of the number of inputs, neurons, and parameters in each individual neuron in 

ANN. The “interpretability” describes the degree to which a human can understand the outcome 

produced by each model. 

ML algorithms 

Coefficient of determination R2 

Complexity Interpretability 

Training set Test set 

PR 0.975 0.970 Low (9) High 

LASSO 0.971 0.966 Low (8) High 

RF 0.991 0.965 High (200) Intermediate 

ANN 0.980 0.975 Intermediate (20) Low 
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      To further characterize the accuracy offered by each ML algorithm, Figure 1.8 shows the 

Young’s modulus values that are predicted for two series of compositions, namely, (i) 

(CaO)x(Al2O3)40–x(SiO2)60, wherein the SiO2 fraction is kept constant and equal to 60 mol% and 

(ii) (CaO)x(Al2O3)x(SiO2)100–2x, wherein the CaO/Al2O3 molar ratio is kept constant and equal to 1. 

These two series specifically aim to investigate (i) the effect of the degree of polymerization of the 

network (i.e., fraction of non-bridging oxygen) and (ii) the effect of network-forming atoms (i.e., 

Si vs. Al) at constant degree of depolymerization (i.e., in fully charge-compensated glasses). We 

first note that, in contrast to the other ML methods, RF yields piecewise-constant-shape results, 

which arises from the fact that the RF method is essentially based on an ensemble of decision trees. 

In details, the decision tree algorithm works by relying on a binary split, that is, at each node, 

randomly selected observations are dropped to either the left or right daughter node depending on 

the values and selected features. Although a single decision tree cannot capture any non-linearity 

within a dataset, the output of the model is eventually averaged over all its trees—so that an RF 

model can capture the non-linearity of a set of data by comprising enough trees. Nevertheless, we 

observe here that the piecewise-constant nature of single decision trees remains encoded in the 

outcome of this method, which yields non-smooth predictions. This feature of the RF algorithm 

likely explains its excellent ability to interpolate the training set while offering only a fair 

prediction of the test set. 

      We now compare the predictions offered by the PR and LASSO algorithms. Overall, 

although LASSO yields lower R2 values on both training and test set compared to PR, we note that 

LASSO offers an improved prediction of E at the edges of the training set (see Figs. 1.8a and 1.8b). 

For instance, we note that the PR method predicts an unrealistic slight increase in E in pure SiO2 

(see the right end of Fig. 1.8b). This non-monotonic evolution of E at the edges of the 
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compositional domain suggests that the PR model might be slightly overfitted. In turn, such 

behaviour is mitigated by the LASSO algorithm. Finally, we find that ANN offers the best 

description of the non-linear nature of the data. 

  

Figure 1. 8 Comparison between the Young’s modulus values computed by molecular dynamics 

simulations and predicted by the polynomial regression (PR), LASSO, random forest (RF), and 

artificial neural network (ANN) models for the series of compositions (a) (CaO)x(Al2O3)40–

x(SiO2)60 and (b) (CaO)x(Al2O3)x(SiO2)100–2x. 

      Besides accuracy, it is also desirable for ML-based models to be “simple” (i.e., low 

complexity) and “interpretable” (i.e., to avoid the use of “black box” models). Unfortunately, a 

higher level of accuracy often comes at the expense of higher complexity and lower interpretability. 

Simpler and more interpretable models are usually preferable as (i) simpler models are less likely 

to overfit small datasets, (ii) simpler models are usually more computationally-efficient, and (iii) 

more interpretable models are more likely to offer some new insights into the underlying physics 

governing the relationship between inputs and outputs. 
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      We now discuss the level of complexity/interpretability of the different ML-based models 

developed herein. The degree of complexity of each of the trained models can be roughly captured 

by the number of non-zero parameters in PR and LASSO, the number of trees in RF, and the 

product of the number of inputs, neurons, and parameters in each individual neuron in ANN (i.e., 

number of weight coefficients and threshold terms to adjust). As presented in Table 1.1, we first 

note that RF offers a poor balance between accuracy and simplicity (as the number of trees 

approaches the number of values in the training set). On the other hand, PR and LASSO clearly 

offer the lowest degree of complexity. The PR and LASSO algorithms also clearly yield the highest 

level of interpretability thanks to the analytical nature of the inputs/outputs relationship they offer. 

In details, we note that, LASSO yields a slightly simpler analytic function—with only 8 non-zero 

terms, vs. 9 non-zero terms for PR, while it also gives a lower level of accuracy. This shows that, 

by relying on a penalized regression method, LASSO allows us to slightly enhance the level of 

simplicity of the model. Finally, we note that the increased level of accuracy offered by ANN 

comes at the cost of higher complexity and lower interpretability, which is a common tradeoff in 

ML techniques. 

      We now compare the predictions of the most accurate ML-based model developed herein 

(i.e., ANN) with the simulated data (i.e., used during the training of the model) and available 

experimental data (see Fig. 1.9) [13,32–42]. We first note that the experimental data present a 

higher level of noise as compared to the simulation data. In the present case, these results illustrate 

the advantage of training ML models based on simulations rather than experimental data. Overall, 

we observe a good agreement between simulated data, ANN predictions, and experimental data. 

In contrast, we note that, as mentioned in the Results section, the MM model systematically 

underestimates E and does not properly capture the non-linear nature of the simulated data. 



24 

 

Combining the results in Fig. 1.8 and Fig. 1.9, we also note that even simple algorithms, e.g., 

polynomial regression, can capture the non-linearity between composition and Young’s modulus 

and yield some realistic predictions of the Young’s modulus values. All the models offer a 

prediction that is significantly more accurate than that of the MM model. Overall, we find that the 

ANN model properly captures the non-linear compositional trend of E while filtering out the 

intrinsic noise of the simulation data. These results strongly support the ability of our MD+ML 

combined method to offer a robust prediction of the stiffness of silicate glasses. 

 

  

Figure 1. 9 Comparison between the Young’s modulus values computed by molecular dynamics 

simulations, predicted by the artificial neural network model, and predicted by the Makishima-

Mackenzie (MM) model for the series of compositions (a)  (CaO)x(Al2O3)40–x(SiO2)60 and (b) 

(CaO)x(Al2O3)x(SiO2)100–2x. The data are compared with select available experimental data [13,32–

42]. 

      Finally, we discuss the advantages of combining ML with high-through MD 

simulations—rather than directly training ML-based on available experimental data. First, we note 
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that, although the CAS ternary system may be one of the most studied systems in glass science 

and engineering, the number of available experimental stiffness data available for this system is 

fairly limited. Further, most of the data available for this system are clustered in some small regions 

of the whole compositional domain (namely, pure silica, per-alkaline aluminosilicates, and 

calcium aluminates glasses). Such clustering of the data is a serious issue as, in turn, available 

experimental data come with a notable uncertainty—for instance, the Young’s modulus of select 

glasses (at fixed composition) can vary by as much as 20 GPa among different references [21,41]. 

As such, the combination of a high level of noise and clustering of the data would not allow ML 

to discriminate the “true” trend of the data from the noise. Finally, we note that conducting MD 

simulations is obviously faster/cheaper than synthesizing glass samples and measuring their 

stiffness. In turn, the results presented herein demonstrate that properly conducted MD simulations 

can offer a quantitative agreement with experimental data and, thereby, offer a desirable alternative 

to systematic experiments. At the same time, we note some possible limitations for the MD+ML 

combined method. Since the data-based models are highly sensitive to the nature of data procured, 

the simulated results have effect on the final models trained from ML algorithms. Which is to say, 

the gap between simulations and experiments can also cause the gap between predictions from 

MD+ML models and experimental results. To fill the gaps and limitations of our method, it 

requires (i) the development of computationally cheap and accurate forcefields to enhance the 

performance of simulations, and (ii) more experimental data to guide the learning of ML models. 

1.6 Conclusions 

Overall, these results demonstrate that the combination of high-throughput molecular 

dynamics simulations and machine learning offers a robust approach to predict the elastic 
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properties of silicate glasses. Further, our method clearly identifies the optimal level of complexity 

of each ML-based model, that is, to mitigate the risk of under- or overfitting. Based on these results, 

we find that the artificial neural network algorithm offers the highest level of accuracy. In contrast, 

the LASSO algorithm offers a model that features higher simplicity and interpretability—at the 

expense of a slight decrease in accuracy. The method presented herein is generic and transferable 

to new properties (e.g., other stiffness metrics) and new systems (e.g., other families of silicate 

glasses). 
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Chapter 2. Prediction of the Young’s Modulus of Silicate Glasses by 

Topological Constraint Theory 

2.1 Abstract 

Understanding and predicting the compositional dependence of the stiffness of silicate 

glasses is key for various technological applications. Here, we a new topological model predicting 

the Young’s modulus of silicate glasses. We show that the Young’s modulus is governed by the 

volumetric density of bond-stretching and bond-bending topological constraints acting in the 

atomic network. The predicted Young’s modulus values offer an excellent agreement with 

molecular dynamics and experimental data over the entire calcium aluminosilicate ternary domain. 

2.2 Introduction 

Discovering new glasses with improved mechanical properties is key to address present 

and future challenges in energy, communication, and infrastructure  [1–4]. Among all the 

mechanical properties that are of interest to glasses, the Young’s modulus (E) plays a critical role 

in the manufacture of glass fibers  [5–7]. More generally, the Young’s modulus of glasses is an 

important engineering property for a large range of applications, including flexible substrates and 

roll-to-roll processing of displays, architectural glazing, ultra-stiff composites, hard discs and 

surgery equipment, or lightweight construction materials  [1,8–10].  

Accelerating the discovery of novel glasses with tailored functionalities requires the 

development of new predictive models that decipher the linkages between glass composition and 

properties  [11]. To this end, several studies have attempted to derive a relationship between glass 

composition and Young’s modulus. Thanks to its elegance and simplicity, the Makishima–
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Mackenzie (MM) model may be the most popular model to date  [12,13]. This model is based on 

the idea that the Young’s modulus of silicate glasses can be expressed as a linear combination of 

the dissociation energies of its oxide constituents, normalized by the atomic packing density. 

Although the predictions offered by the MM model are remarkable accurate considering the 

simplicity of this model, it is essentially an additive model assuming that the contributions of each 

oxide to the Young’s modulus are proportional to their concentrations. However, the Young’s 

modulus often shows a non-linear dependence on composition, which cannot be captured by purely 

additive models  [14,15]. More generally, the failure of the MM model to properly predict the non-

linear relationship between composition and Young’s modulus is likely due to the fact that this 

model does not embed any information about the atomic structure of glasses and the compositional 

dependence thereof  [16]. 

As an alternative route, topological constraint theory (TCT) offers a promising route to 

predict the properties of glasses based on the topology of their atomic network  [17–24]. TCT 

reduces complex disordered atomic networks into simpler mechanical trusses, wherein some nodes 

(the atoms) are connected to each other via some constraints (the chemical bonds). In molecular 

glasses, such constraints comprise (i) the radial 2-body bond-stretching (BS) constraints that keep 

the bond lengths fixed around their average values and (ii) the angular 3-body bond-bending (BB) 

constraints that fix the average values of the interatomic angles. As such, TCT captures the 

connectivity of the glass network while filtering out second-order structural details that do not 

significantly affect macroscopic properties. Based on this framework, glasses are classified as 

flexible, stressed-rigid, or isostatic when the total number of BS and BB constraints per atom nc is 

lower, larger, or equal to 3, respectively, which is the number of degrees of freedom per atom. 

 



31 

 

Within the framework of TCT, glasses can be considered as a network of atoms that are connected 

to each other via some “small springs” (the interatomic mechanical constraints)—so that the 

macroscopic stiffness of glasses should be related to the number of interatomic constraints. Indeed, 

it was shown by Thorpe that the stiffness of model random networks is zero in flexible systems 

(nc < 3) and then scales with nc in stressed-rigid systems (nc > 3)  [25]. A similar relationship was 

observed in amorphous semiconductors  [26–29] and chalcogenide glasses  [16]. However, no 

topological model predicting the stiffness of ionocovalent silicate glasses is available to date. 

Here, based on high-throughput molecular dynamics (MD) simulations of calcium 

aluminosilicate (CAS) glasses, we present a new topological model predicting the compositional 

dependence of the Young’s modulus of silicate glasses. We demonstrate that our topological model 

offers realistic predictions of Young’s modulus values over the entire CAS ternary domain. 

2.3 Simulation Methods 

To establish our conclusions, we conduct some high-throughput MD simulations of 231 

CAS glasses. The chosen compositions homogeneously cover the CAS ternary domain, with 5% 

increments in the mol% concentration of the CaO, Al2O3, and SiO2 oxide constituents. Note that 

some of these systems would likely not exhibit satisfactory glass-forming ability. All the 

simulations are conducted using the Large-scale Atomic/Molecular Massively Parallel Simulator 

(LAMMPS) package  [30]. Each system comprises around 3000 atoms. Since the quality of MD 

simulations mostly relies on that of the underlying forcefield, we adopt here the interatomic 

potential parametrized by Jakse  [31,32], since this potential has been shown to offer a realistic 

description of the mechanical properties of CAS glasses  [15,33–35]. A cutoff of 8.0 Å is used for 

the short-range interactions. The Coulombic interactions are calculated by adopting the Fennell 
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damped shifted force model with a damping parameter of 0.25 Å–1 and a global cutoff of 8.0 

Å  [36]. The integration timestep is 1.0 fs. 

The CAS glasses are prepared by quenching liquids, as described in the following  [37]. 

First, some atoms are randomly placed in a cubic box using the PACKMOL package while using 

a distance cutoff of 2.0 Å between each atom to avoid any unrealistic overlap  [38]. These initial 

configurations are then subjected to an energy minimization, followed by some 100 ps relaxations 

in the canonical (NVT) and isothermal-isobaric (NPT) ensembles at 300 K, sequentially. These 

samples are then melted at 3000 K for 100 ps in the NVT and, subsequently, NPT ensemble (at 

zero pressure) to ensure the loss of the memory of the initial configurations and to equilibrate the 

systems. Next, these liquids are cooled from 3000 to 300 K in the NPT ensemble at zero pressure 

with a cooling rate of 1 K/ps. The obtained glass samples are further relaxed at 300 K for 100 ps 

in the NPT ensemble before the stiffness computation. Note that this quenching procedure is 

slightly adjusted for select compositions. First, a higher initial melting temperature of 5000 K is 

used for the samples wherein the SiO2 concentration is larger or equal to 95 mol%—since these 

glasses exhibit high glass transition temperatures. Second, a faster cooling rate of 100 K/ps is used 

for the samples wherein the CaO concentration is larger or equal to 90 mol%. Indeed, although the 

cooling rate can affect the glass stiffness, the use of a higher cooling rate here is necessary as these 

systems would otherwise tend to crystallize with a cooling rate of 1 K/ps. Once formed and 

equilibrated, the glasses are subjected to a series of 6 deformations (i.e., 3 axial and 3 shear 

deformations along the 3 axes). Their stiffness tensor (and Young’s modulus) is computed from 

the curvature of the potential energy (see Refs.  [15,33,39,40] for more details). Based on Ref.  [15], 

the computed Young’s modulus values are rescaled by a constant factor (0.86) to enhance the 

overall agreement with experimental data. 
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2.4 Topological Model of Young’s Modulus 

Our topological model is inspired by that developed by Smedskjaer, Mauro, and Yue, 

wherein hardness is expressed as a linear function of the number of constraints per atom nc  [22,41–

43]. Here, since the Young’s modulus has the dimension of an energy per unit of volume, we 

postulate that E can be expressed in terms of the volumic density of the energy created by each 

constraint. A similar approach was used to refine the original Smedskjaer model to predict 

hardness  [44]. Further, we postulate that the BS and BB constraints do not contribute with equal 

weight to increasing the Young’s modulus, which arises from the fact that BS and BB constraints 

exhibit different free energies and that different types of constraints may be activated under 

different loading conditions  [23,45,46]. Based on these considerations, we propose the following 

model: 

𝐸 = 𝜀BS𝑛BS + 𝜀BB𝑛BB    (Eq. 1) 

where 𝑛BS and 𝑛BB are the volumetric density of BS and BB constraints, respectively, and 𝜀BS and 

𝜀BB are the typical energies of BS and BB constraints, respectively. Note that this model assumes 

that a fictitious glass comprising no BS and BB constraints would have a zero Young’s modulus. 

2.5 Results and Discussion 

2.5.1 Constraints enumeration 

To assess the validity of our topological model, we first enumerate the number of BS and 

BB constraints in CAS glasses as a function of composition. In fully-connected covalent glasses, 

the number of BS constraints created by a given atom is given by r/2, where r is the coordination 

number—where the factor 2 arises from the fact that each BS constraint is shared by two 

atoms  [17]. In turn, the number of BB constraints is usually given by 2r – 3, which corresponds 
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to the number of independent angles that need to be fixed to define the angular environment of the 

atom  [17]. However, due to the existence of ionic non-directional bonds, this counting scheme 

does not always apply to ionocovalent silicate glasses  [46]. As such, to avoid relying on any 

guesses in the enumeration of the constraints, we analyze the structure of the simulated glasses to 

directly extract the number of BS and BB constraints  [19,46,47]. To this end, we compute the 

coordination number of each atom. We then identify the different types of O species present in the 

network, namely, (i) bridging-oxygen (BO), i.e., connected to 2 network formers (Si or Al), (ii) 

non-bridging oxygen (NBO), i.e., connected to only 1 network formers, (iii) “tricluster” oxygen 

(TO), i.e., connected to 3 network formers  [33,48], and (iv) “free oxygen” (FO), i.e., connected 

to 0 network formers (i.e., only connected to Ca atoms)  [33]. 

Table 2.1 summarizes the average number of BS and BB constraints created by each atomic 

species. In details, we find that, as expected, Si atoms systematically create 4 BS and 5 BB 

constraints with their 4 O neighbors—note that, for simplicity, the BS constraints are here fully 

attributed to the cations. Although a small fraction of over-coordinated Al atoms is found in Al-

rich glasses, most of them create 4 BS and BB constraints with their 4 O neighbors. Due to the 

ionic nature of Ca–O bonds, the constraints enumeration is trickier for Ca atoms. First, these atoms 

do not form any well-defined angular environment and, as such, do not create any BB 

constraints  [47]. Second, a statistical analysis between the Young’s modulus and the partial 

coordination number of Ca atoms reveals that Ca atoms only create BS constraints with their 

surrounding NBO and FO atoms  [47]. In turn, Ca atoms do not create any constraints with the 

surrounding BO and TO atoms. This can be understood from the fact that the charge of BO and 

TO atoms is already fully compensated by those of their surrounding Si and Al neighbors, so that 

their interaction with Ca atoms is weaker than that between Ca and NBO or FO atoms. Finally, we 
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find that, as expected, BO create 1 BB constraint, while TO atoms create 3 BB constraints to define 

their trigonal environment. In contrast, due to the ionic nature of Ca–O bonds, NBO and FO atoms 

do not create any BB constraint. These inputs then serve to compute the volumetric densities of 

BS and BB constraints (𝑛BS and 𝑛BB in Eq. 1). 

Table 2. 1 Summary of the average number of bond-stretching (BS) and bond-bending (BB) 

constraints created by each atomic species in (CaO)x(Al2O3)y(SiO2)1–x–y glasses. Note the BS 

constraints are here fully attributed to the cations. The quantities rCa–NBO and rCa–FO refer to the 

average number of non-bridging oxygen (NBO) and free oxygen (FO) atoms around each Ca atom. 

Species Fraction BS BB 

Si 1 – x – y 4 5 

Al 2y 4 5 

Ca x rCa–NBO + rCa–FO 0 

O 2 – x + y - - 

FO  - 0 

NBO  - 0 

BO  - 1 

TO  - 3 
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Figure 2. 1 Ternary diagram showing the volumic density of (a) bond-stretching (BS) and (b) bond-

bending (BB) constraints as a function of composition in the CaO–Al2O3–SiO2 glass system. 

Figure 2.1 shows the volumetric densities of BS and BB constraints as a function of 

composition in the CAS ternary system. Overall, we find that the densities of BS and BB 

constraints primarily depends on the [CaO] – [Al2O3] molar difference. In details, we find that the 

density of BS constraints is minimum when [CaO] = [Al2O3] and increases in the Ca- and Al-rich 

domains. This arises from the fact that both of these domains exhibit a high average coordination 

number—i.e., due to the presence of 6-fold coordinated Ca atoms in Ca-rich glasses and TO atoms 

in Al-rich glasses  [15]. On the other hand, the density of BB constraints presents a significantly 

different compositional dependence as it monotonically with increases [CaO] – [Al2O3] molar 

difference. This arises from the fact that Ca atoms do not create any BB constraints, whereas TO 

atoms contribute to increasing the number of BB constraints in Al-rich glasses. 

2.5.2 Prediction of Young’s modulus 

We then focus on the compositional dependence of the Young’s modulus (E) values 

computed by MD (see Fig. 2.2a). Overall, we observe the existence of two main trends: (i) E tends 

to increase with increasing Al2O3 concentration and (ii) E tends to increase with increasing CaO 



37 

 

concentration. However, we find that the compositional dependence of E is non-monotonic and 

that CaO and Al2O3 exhibit some coupled effects. For example, we find that E increases with 

increases CaO concentration when [Al2O3] = 0 mol%, whereas E decreases with increasing CaO 

concentration when [Al2O3] > 40 mol%. This highlights the fact that E exhibits a non-linear 

dependence on composition—so that additive models are unlikely to offer good predictions for 

this system. 

                

Figure 2. 2 Ternary diagram showing the Young’s modulus values (a) computed by high-

throughput molecular dynamics and (b) predicted by our topological model as a function of 

composition in the CaO–Al2O3–SiO2 glass system. 

We now assess the validity of our topological model (Eq. 1). To this end, we conduct a 

polynomial regression using as inputs the volumetric densities of BS and BB constraints (𝑛BS and 

𝑛BB) shown in Fig. 2.1 and as output the simulated E values shows in Fig. 2.2a. This allows us to 

determine the typical energies of BS and BB constraints (𝜀BS and 𝜀BB) as fitting parameters. We 

find 𝜀BS = 2.82 eV and 𝜀BB = 1.78 eV. These values have the same order of magnitude as typical 

interatomic bond energy in silicate glasses. As expected, we find that 𝜀BS > 𝜀BB, in agreement 

with the fact that the free energy of BS constraints is larger than that of BB constraints  [23,46]. A 
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more detailed polynomial regression using each type of constraints as independent inputs does not 

significantly improve the quality of the fit and further suggests that all the BS (and BB) constraints 

contribute to increasing the Young’s modulus with a fairly similar energy “weight” 𝜀. 

Figure 2.2b shows the E values predicted by Eq. 1. Overall, we find that the E values 

predicted by Eq. 1 agree well with the simulated values (see also Fig. 2.3a), although our 

topological model tends to slightly unpredict the Young’s modulus of select calcium aluminate 

glasses on the CaO–Al2O3 joint. Although the simulated values are here used to parameterize the 

𝜀BS  and 𝜀BB  coefficients in Eq.1, it is nevertheless striking that the complex compositional 

dependence of the Young’s modulus of CAS glasses can be well reproduced with only two fitting 

parameters. We also note that our topological model does not keep the memory of the “noise” 

present in the MD data, which suggests that the model is not overfitted. 

As a final validation of our model, Figs. 2.3a and 2.3b show a comparison between the 

Young’s modulus predictions from our topological model (Eq. 1), the simulation data, and 

available experimental data  [49–60] for two joints, viz., [SiO2] = 60% and [CaO] = [Al2O3]. These 

two series specifically aim to investigate (i) the effect of the degree of polymerization of the 

network (i.e., fraction of non-bridging oxygen) and (ii) the effect of network-forming atoms (i.e., 

Si vs. Al) at constant degree of depolymerization (i.e., in fully charge-compensated glasses). 

Overall, we observe a good agreement between simulated data, topological predictions, and 

experimental data. In contrast, we find that the MM model systematically underestimates E and 

does not properly capture the non-linear nature of the Young’s modulus data. Overall, these results 

strongly support the ability of our new topological model to offer reliable predictions of Young’s 

modulus values over the entire CAS ternary domain. 
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Figure 2. 3 (a) Comparison between the Young’s modulus values predicted by our topological 

model (Eq. 1) and computed by molecular dynamics simulations. We obtain a coefficient of 

determination R2 = 0.979 and a root mean squared error (RMSE) of 4.26 GPa. Comparison 

between the Young’s modulus values computed by molecular dynamics simulations, predicted by 

our topological model, and predicted by the Makishima-Mackenzie (MM) model for the series of 

compositions (a) (CaO)x(Al2O3)40–x(SiO2)60 and (b) (CaO)x(Al2O3)x(SiO2)100–2x. The data are 

compared with select available experimental data  [49–60]. 

2.6 Conclusions 

In summary, the results presented herein demonstrate that the Young’s modulus of CAS 

glasses can accurately predict based on the volumetric densities of BS and BB topological 

constraints. As such, topological constraint theory offers a powerful framework to accelerate the 

design of new glass formulations with tailored stiffness. The atomistic origin of the energy 

coefficients 𝜀BS and 𝜀BB and their values for distinct glass families should be investigated in future 

work. 
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Chapter 3. Analytical Model of the Network Topology and Rigidity 

of Calcium Aluminosilicate Glasses 

3.1 Abstract 

Topological constraint theory (TCT) has enabled the prediction of various properties of 

oxide glasses as a function of their composition and structure. However, the robust application of 

TCT relies on accurate knowledge of the network structure and topology. Here, based on classical 

molecular dynamics simulations, we derive a fully analytical model describing the topology of the 

calcium aluminosilicate (CAS) ternary system. This model yields the state of rigidity (flexible, 

isostatic, or stressed-rigid) of CAS systems as a function of composition and temperature. These 

results reveal the existence of correlations between network topology and glass-forming ability. 

This study suggests that glass-forming ability is encoded in the network topology of the liquid 

state rather than that of the glassy state. 

3.2 Introduction 

The calcium aluminosilicate (CAS) system is an archetypical model for alkali-free glasses 

used in display applications [1] and cementitious materials (e.g., cement, fly ash, or slag) [2]. The 

structure and properties of the CAS ternary system have been extensively studied from 

experiments [3–6], atomistic simulations [7–10], and machine learning [11–13]. Indeed, this 

ternary system offers an ideal model to investigate the effects of polymerization (i.e., by varying 

the Ca/Al ratio) and of the network-forming skeleton (i.e., by varying the Al/Si ratio at fixed Ca/Al). 

Since the stoichiometry of CAS and other oxide glasses can be continuously adjusted, there 

exists a largely untapped opportunity to discover new glass compositions featuring desirable 
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properties and functionalities [14,15]. However, the vastness of the accessible compositional space 

renders traditional material discovery approaches (e.g., Edisonian “trial-and-error”) 

inefficient [16]. In that regard, composition-property predictive models can facilitate and 

rationalize the search for new glasses by targeting searches toward promising compositional 

domain  [17,18]. 

To this end, topological constraint theory (TCT) has been a key enabler to develop 

predictive models that relate the composition and structure of glasses to their properties [19,20]. 

Various TCT-based models have been proposed over the past decades to predict glass-forming 

ability, glass transition temperature, liquid fragility, hardness, stiffness, dissolution rate, 

etc. [19,21–28]. The success of TCT is based on the fact that many macroscopic properties of 

disordered materials primarily depend on the topology of the atomic structure, while other 

structural details only have a second-order effect [29]. As such, TCT reduces complex disordered 

atomic networks into simpler structural trusses [22], wherein some nodes (the atoms) are 

connected to each other by some topological constraints (the chemical bonds). In structural glasses, 

topological constraints comprise of the radial two-body bond-stretching (BS) and angular three-

body bond-bending (BB) constraints. The number of constraints per atom (nc) then offers a simple, 

reduced-dimensionality metric that is often correlated with macroscopic properties [22]. 

Importantly, predictions from TCT critically rely on an accurate knowledge of the glass 

structure and connectivity, which is the key to enumerate the number of BS and BB constraints 

created by each type of atoms in the glass network [30]. This is a challenge as the local structure 

of glasses (and hence, the number of constraints) changes as a function of composition. For 

instance, CAS glasses exhibit several structural complexities, e.g., over-coordinated Al 

atoms [5,31–33], tricluster oxygen units [34], free oxygen species [35,36], varying Ca 
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environments [37], etc. All of these features impact the constraints enumeration and, hence, should 

be accounted for in robust topological models. Although such information can be accessed by 

molecular dynamics (MD) simulations of one composition at a time [30], it is not practical to 

systematically conduct MD simulations over large compositional domains considering their high 

computational cost. In addition, discrete models (e.g., relying on a finite, discrete number of MD 

simulations) are not differentiable, that is, they do not allow for the computation of the derivative 

of the number of constraints per atom with respects to composition [38]. This prevents the use of 

gradient-based “inverse design” optimization methods (e.g., to pinpoint glasses with minimum, 

maximum, or tailored rigidity). 

Here, to address these challenges, we present a fully analytical model describing the 

network topology of CAS glasses over the entire CAS ternary domain. This model is informed and 

validated by a series of classical MD simulations, but, importantly, offers a pathway to 

continuously predict the properties of CAS glasses as a function of their compositions without the 

need for any systematic MD simulation.  

This paper is organized as follows. Section II describes the MD simulations used in this 

study. We then introduce our analytical topological model for CAS glasses in Sec. III. In Sec. IV, 

we discuss the obtained rigidity diagrams of the CAS ternary system. Finally, we establish some 

conclusions in Sec. V. 

3.3 Methods 

To establish our analytical model, we first conduct MD simulations of 231 CAS glasses 

using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) package 

[13,15,16]. The chosen compositions homogeneously cover the entire CAS domain, with 5% 
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increments in the mol% concentration of the CaO, Al2O3 and SiO2 oxide constituents. Note that 

some of these CAS glasses do not exhibit satisfactory glass-forming ability in practice, but they 

all can be generated by MD due to the use of a high cooling rate. Each glass sample comprises 

around 3000 atoms. Here, we adopt the interatomic potential parametrized by Jakse [8], which has 

been reported to offer good results in agreement with experiment data [34,40,41] and applied for 

several previous studies [11,42]. A cutoff of 8.0 Å is used for the short-range interactions. The 

Coulombic interactions are calculated by adopting the Fennell damped shifted force field model 

with damping parameter of 0.25 Å−1 and a global cutoff of 8.0 Å [43]. We keep the integration 

timestep as fixed as 1.0 fs. 

We generate the CAS glass samples using the conventional melt-quench method, as 

described in the following [44]. First, atoms are randomly placed in a cubic box using PACKMOL 

with a distance cutoff of 2.0 Å between each pair of atoms to avoid any unrealistic overlap [45]. 

These initial configurations are then subjected to an energy minimization process, followed by 100 

ps relaxations in the canonical (NVT) and isothermal-isobaric (NPT) ensembles at 300 K, 

sequentially. These samples are then fully melted at 3000 K for 100 ps in the NVT and, 

subsequently, NPT ensemble (at zero pressure) to ensure the loss of the memory of the initial 

configurations and to equilibrate the systems. Next, these liquids are cooled from 3000 K to 300 

K in the NPT ensemble at zero pressure with a cooling rate of 1 K/ps. The obtained glass samples 

are further relaxed at 300 K for 100 ps in the NPT ensemble.   

Note that this quenching procedure is slightly adjusted for the following select 

compositions: (1) a higher initial melting temperature of 5000 K is used for the samples wherein 

the SiO2 concentration is larger or equal to 95 mol%—since these glasses exhibit high glass 
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transition temperatures, and (2) a faster cooling rate of 100 K/ps is used for the samples wherein 

the CaO concentration is larger or equal to 90 mol%. Indeed, although the cooling rate can affect 

the glass structure, the use of a higher cooling rate here is necessary as these systems would 

otherwise tend to crystallize with a cooling rate of 1 K/ps. The coordination number of each atom 

is computed by enumerating the number of neighbors present in its first coordination shell—

wherein the radius cutoff is defined as the minimum after the first peak of the partial pair 

distribution function (i.e., 2.00, 2.35, and 3.05 Å for Si—O, Al—O, and Ca—O, respectively). 

3.4 Topological model of calcium aluminosilicate glasses 

3.4.1 Polymerization and depolymerization of the aluminosilicate network  

3.4.1.a Effect of Ca and Al atoms on topology 

To establish our topological model of CAS glasses, we take as a reference the structure of 

glassy silica (SiO2), wherein all the Si and O atoms are 4- and 2-fold coordinated, respectively—

that is, all the O act as bridging oxygen (BO) atoms bonded to two network formers [14]. Starting 

from this reference structure, we then describe the competitive effects of Ca and Al atoms: (i) each 

Ca atom consumes 2 BOs and, in turn, creates 2 non-bridging oxygen (NBO) atoms [46], whereas, 

in contrast, (ii) each Al atom consumes 1 NBO and creates 1 BO [14]. These well-known effects 

arise from the following mechanisms. On one hand, when added to pure SiO2, Ca2+ cations act as 

network modifiers as they tend to depolymerize the atomic network by breaking some Si–O–Si 

inter-tetrahedral joints and, in turn, charge-compensating pairs of negatively-charged NBOs [46]. 

On the other hand, starting from a calcium silicate glass, newly-added Al atoms act as network 

formers and tend to repolymerize the network by using available Ca2+ cations to charge-

compensate negatively-charged 4-fold coordinated AlO4 units [47–50]. This effectively increases 

the network connectivity since the Ca cations that are used as charge compensators do not create 
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any NBO any longer. Based on this model, the number of BO (NBO) and NBO (NNBO) are expressed 

as: 

 𝑁BO = 𝑁O − 2 × 𝑁Ca + 𝑁Al (Eq. 1) 

 𝑁NBO = 2 × 𝑁Ca − 𝑁Al (Eq. 2) 

where 𝑁BO , 𝑁NBO , 𝑁O , 𝑁Ca , and 𝑁Al are the number of BO, NBO, total oxygen, calcium, and 

aluminum atoms, respectively. Note that these equations are not valid for all CAS compositions. 

In detail, mechanism (i) can hold until the added Ca atoms exhaust all the BOs present in the 

network, that is, for 𝑁BO ≥ 0, while mechanism (ii) remains possible until the added Al atoms 

consume all the NBOs present in the network, that is, for 𝑁NBO ≥ 0. In the following sections, we 

discuss the cases of the Ca-rich regime (i.e., when mechanism (i) is no longer possible) and Al-

rich regime (i.e., when mechanism (ii) breaks down). 

3.4.1.b Ca-rich regime: formation of free oxygen atoms 

We then focus on the Ca-rich regime (i.e., wherein 𝑁BO would become negative assuming 

that Eq. 1 would continue to hold) and discuss the effect of Ca atoms on the network topology in 

this compositional domain. In this domain, the network becomes fully depolymerized, that is, there 

is no remaining BO and all Si and Al polytopes are isolated from each other. In this regime, our 

MD simulations suggest that the excess of Ca atoms results in the formation of free oxygen (FO) 

atoms [Fig. 3.2(a)], that is, O atoms that are not connected to any Si or Al network former [42]. 

This echoes previous experimental findings that also suggested the existence of FOs [35,36,51]. 

Based on this observation, we describe the number of FO atoms according to the following 

model. First, we assume that, in this regime, all the Si and Al atoms remain 4-fold coordinated and, 

hence, they are each surrounded by 4 NBOs. The number of NBOs is then given by: 
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 𝑁NBO = 4 × (𝑁Si + 𝑁Al) (Eq. 3) 

We then assume that all the remaining O atoms act as FOs, whose number is given by: 

 𝑁FO = 𝑁O − 𝑁NBO (Eq. 4) 

3.4.1.c Al-rich regime: formation of 5-fold aluminum and tricluster oxygen atoms 

Next, we focus on the Al-rich regime (i.e., 2𝑁Ca < 𝑁Al , wherein 𝑁NBO  would become 

negative assuming that Eq. 2 would continue to hold) and discuss how additional Al3+ cations 

impact the atomic structure of CAS glasses. In this domain, the glass compositions are 

peraluminous, that is, they exhibit an excess number of Al atoms as compared to the ones that are 

needed to charge-compensate all the calcium atoms in the glass (i.e., 𝑁Al = 2𝑁Ca) [46]. In this 

regime, all the AlO4 tetrahedral units cannot be charge-compensated any longer due to the deficit 

of Ca cations. From this point, two possible mechanisms have been suggested to occur: (i) some 

Al atoms become overcoordinated (i.e., with a coordination number larger than 4) and (ii) some 3-

fold coordinated triclusters oxygen (TO) atoms (i.e., O atoms that are connected to 3 Si or Al 

network formers) tend to form [34,52,53]. We now discuss these two behaviors. 

First, previous experiments [5,31–33] and simulations [11,42] have suggested that some 

excess Al atoms become overcoordinated, that is, they become 5- or 6-fold coordinated. Neuville 

et al. reported the existence of a small fraction (< 3%) of 6-fold coordinated aluminum (AlVI) at 

very high Al/Ca ratios, in agreement with our MD simulations [11]. However, here, considering 

that independently predicting the fractions of both 5- and 6-fold coordinated Al atoms would be 

ill-defined based on the present assumptions, we assume that the fraction of 6-fold coordinated Al 

is small enough to be neglected—that is, we assume that, in this regime, all the overcoordinated 

Al atoms are 5-fold coordinated. 
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Figure 3. 1 Predicted (from the analytical model) and computed (from molecular dynamics 

simulations) numbers of 5-fold Al atoms per formula unit of glasses as a function of composition. 

shows the composition dependence of the number of predicted and computed 5-fold Al atoms per 

formula unit of glass for (CaO)x(Al2O3)y(SiO2)1–x–y, as a function of [Al2O3] – [CaO] (since this 

metric is found to be the most influential overall). As expected, we find that the number of 

overcoordinated Al remains nearly zero as long as there is no deficit of Ca cations (i.e., 2𝑁Ca >

𝑁Al). However, even in this regime, we nevertheless note that our MD simulations suggest the 

existence of a small fraction (less than 5%) of 5-fold coordinated Al, which echoes previous 

experiments [5,54]. This small fraction is neglected from our model thereafter. We then find that 

the computed number of 5-fold coordinated Al atoms scales fairly linearly with the number of 

excess Al atoms (i.e., 𝑁Al − 2𝑁Ca), which suggests that the number of overcoordinated Al is 

proportional to the number of excess Al atoms. Based on this observation, we model the number 

of 5-fold coordinated Al atoms (𝑁AlV ) as: 

 𝑁AlV = 𝛼(𝑁Al − 2 × 𝑁Ca) (Eq. 5) 

where 𝛼 is an empirical factor that captures the fraction of excess Al that eventually becomes over-

coordinated. Here, based on our MD results, we assume that a quarter of the excess Al atoms 

become overcoordinated (i.e., 𝛼 = 1/4), which yields a good match between MD simulations and 

the present analytical model (see Figure 3. 1). This specific value of 𝛼 here is chosen based on the 

fact that, even though it slightly overestimates the number of 5-fold coordinated Al atoms, it 

partially compensates for the fact that our model is neglecting 6-fold coordinated Al atoms (see 

below). 
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Figure 3. 1 Predicted (from the analytical model) and computed (from molecular dynamics 

simulations) numbers of 5-fold Al atoms per formula unit of glasses as a function of composition. 

Note that several CAS glass compositions are associated with the same [Al2O3] – [CaO] value. 

The fact that the number of 5-fold coordinated Al atoms is lower than the number of excess 

Al atoms (i.e., that are not charge-compensated by Ca atoms) suggests that there is another charge 

compensation mechanism at play in the Al-rich regime, namely, through the formation of TO 

atoms. Indeed, our MD simulations show the existence of such TO species, which echoes previous 

experiments and simulations [34,52,53]. We model the number of TO atoms as follows.  

To determine the fraction of TO atoms in the glass, we first calculate the total excess 

negative charge of all 4- and 5-fold coordinated Al atoms that are not charge-compensated by Ca 

atoms and subsequently determine the number of TO atoms that is needed to counterbalance the 

excess negative charge. We first calculate the excess negative charge of AlO4 and AlO5 units by 

assuming that all the O atoms take the form of BOs in these polytopes (i.e., each O contributes a 

charge of –1 to the central Al). This analysis yields an overall local charge of –1 and –2 for AlO4  

and AlO5 units, respectively, so that the total excess negative charge is  
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(𝑁AlIV − 2 × 𝑁Ca) + 2 × 𝑁AlV, where 𝑁AlIV is the number of 4-fold coordinated Al atoms. In turn, 

replacing a BO by a TO in the Al polytopes increases the local charge by +1/3 since a BO 

contributes a charge of –1 to the central Al (i.e., –2/2), whereas a TO only contributes a charge of 

–2/3 since it is shared by three Si or Al polytopes [55]. Altogether, since a TO is connected to 3 

distinct polytopes, the overall increase in charge resulting from the transformation of a BO into a 

TO is equal to +1 (i.e., 3 × 1/3). Based on this, the number of TO atoms that is needed to 

counterbalance the excess negative charge of the Al atoms is then given by: 

 𝑁TO = 𝑁AlIV + 2 × 𝑁AlV − 2 × 𝑁Ca (Eq. 6) 

where 𝑁TO is the number of TO atoms. Since our model assumes the existence of only 4- and 5-

fold coordinated Al atoms in the Al-rich regime, Eq. 6 can be converted into: 

 𝑁TO = 𝑁Al − 2 × 𝑁Ca + 𝑁AlV (Eq. 7) 

We then assume that all the remaining O atoms act as BOs in Al-rich regime, whose number is 

given by: 

 𝑁BO = 𝑁O − 𝑁TO (Eq. 8) 

3.4.1.d Comparison between analytical model and MD simulations 

To validate the ability of our analytical model to offer accurate predictions of the degree 

of connectivity in the CAS glasses, we now compare the oxygen species fractions (i.e., in order of 

increasing connectivity: FO, NBO, BO, and TO) predicted by our model with those computed by 

MD simulations. Error! Reference source not found. 3.1 summarizes the predicted fractions for e

ach oxygen species as a function of the molar fractions of CaO and Al2O3 (x and y respectively) 

following the unit formula (CaO)x(Al2O3)y(SiO2)1–x–y. Equations are provided for: (1) “fully-

depolymerized regime,” i.e., wherein all BOs are consumed by Ca atoms, so that the glass network 
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only comprises of FO and NBO atoms (i.e., (𝑦 −  𝑥) ≤  −2/3), (2) “partially-depolymerized 

regime,” wherein the network only contains NBO and BO atoms (i.e., −2/3 ≤ (𝑦 − 𝑥) ≤ 0), and 

(3) “fully-polymerized regime,” wherein the network only contains BO and TO atoms (i.e., 0 ≤

(𝑦 − 𝑥)). 

Table 3. 1 Summary of the predicted fractions of oxygen species in (CaO)x(Al2O3)y(SiO2)1–x–y 

glasses, where 𝑥 and 𝑦 represent the mole percent of [CaO] and [Al2O3], respectively. 𝑓FO, 𝑓NBO, 

𝑓BO, and 𝑓TO are the fractions of free oxygen (FO), non-bridging oxygen (NBO), bridging oxygen 

(BO), and tricluster oxygen (TO) atoms, respectively. Equations are separated into three distinct 

compositional regimes as discussed in the text. 

 

Fully-depolymerized 

regime 

Partially-depolymerized 

regime 

Fully-polymerized  

regime 
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condition: 
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2 + (𝑦 − 𝑥)
 0 0 
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2 + (𝑦 − 𝑥)
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 0 

𝑓BO 0 
2 + 3(𝑦 − 𝑥)

2 + (𝑦 − 𝑥)
 

4 − 3(𝑦 − 𝑥)

4 + 2(𝑦 − 𝑥)
 

𝑓TO 0 0 
5(𝑦 − 𝑥)

4 + 2(𝑦 − 𝑥)
 

 

 



55 

 

Error! Reference source not found. shows the comparison between predicted (by our a

nalytical model) and computed (by MD simulations) fractions for the oxygen species (a) FO, (b) 

NBO, (c) BO, and (d) TO as a function of [Al2O3] – [CaO]. We first note that our analytical model 

offers good predictions of FO, NBO, BO, and TO over the entire CAS domain, both in terms of 

trend and magnitude. Then, we also note that our analytical model solely depends on the 

competition between [Al2O3] and [CaO] atoms (i.e., “y – x”, see Table 3.1) and, hence, does not 

fully capture the variations in the fractions of oxygen species at a fixed value of “y – x.” The 

deviations between model and MD simulations are mostly observed at the vicinity of the 

transitions between compositional regimes, namely, near the fully-compensated (i.e., 𝑦 − 𝑥 = 0) 

and fully-depolymerized domains (i.e., 𝑦 − 𝑥 = −2/3) Such discrepancies can be attributed to the 

fact that, for the sake of simplification, our model assumes that only two types of oxygen species 

can coexist at the same time, while experiments [35,51,53] and MD simulations [34,42] suggest 

that more than two species can simultaneously coexist in the network. Nevertheless, despite these 

simplifications, our model offers a realistic description of the overall degree of connectivity of the 

glass, which is key to analytically predict the number of constraints per atom in the network (see 

Sec. IV). 
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Figure 3. 2 Predicted (from the analytical model) and computed (from molecular dynamics 

simulations) fractions of each type of oxygen species as a function of composition: (a) free oxygen 

(FO), (b) non-bridging oxygen (NBO), (c) bridging oxygen (BO), and (d) “tricluster” oxygen (TO).  

3.4.2 Connectivity of the network modifiers 

 We now discuss how the local connectivity of the network-modifying atoms (i.e., Ca atoms) 

is varying as a function of the glass composition. The analytical model described in the following 

aims to predict the partial coordination numbers of Ca atoms, that is, the average number of FO, 

NBO, BO, and TO around each Ca atom—which is critical to inform our topological model (see 

Sec. IV). 
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To establish our model of Ca connectivity, we take an alternative viewpoint and start by 

describing the average number of Ca around each type of O species. Indeed, based on the analysis 

of our MD simulations, we find that the average number of Ca atoms around FO, NBO, BO, and 

TO atoms remains fairly constant and barely depends on glass composition. The average FO–Ca, 

NBO–Ca, BO–Ca, and TO–Ca partial coordination numbers (𝑟̅XO−Ca, wherein XO refers to a given 

O species) are equal to 5.5, 3.0, 0.78, and 0.12, respectively. This trend (i.e., 𝑟̅FO−Ca > 𝑟̅NBO−Ca >

𝑟̅BO−Ca > 𝑟̅TO−Ca) can be understood from the fact that, starting from an isolated FO, the addition 

of each O–Si or O–Al bond (i) reduces the need for the negative charge of O atoms to be 

compensated by the nearby presence of a Ca cation and (ii) occupies some space around the central 

O, which prevents the accumulation of Ca neighbors. These partial coordination numbers can also 

be understood as a degree of “affinity” between Ca atoms and O species, wherein Ca cations are 

preferentially located in the vicinity of FO atoms and almost fully avoid TO atoms. 

The knowledge of the XO–Ca partial coordination numbers then allows us to determine 

the Ca–XO coordination numbers (𝑟Ca−XO) by expressing the total number of Ca–XO bonds 

(𝑁Ca−XO) in two different ways as: 

 𝑁Ca−XO =  𝑁Ca × 𝑟Ca−XO = 𝑁XO × 𝑟XO−Ca (Eq. 9) 

where 𝑁XO is the number of XO atoms (where XO = FO, NBO, BO, and TO). As an additional 

refinement of the model, we add a scaling coefficient 𝛽  to ensure that the total average 

coordination number of Ca cations (i.e., the sum of all the partial Ca–XO coordination numbers) 

remains equal to 6 throughout the entire CAS compositional domain [56]: 

 𝑟Ca−XO =  𝛽
𝑁XO × 𝑟̅XO−Ca

𝑁Ca
 (Eq. 10) 
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where 𝛽 can be expressed as: 

  𝛽 =  
6

 ∑ (𝑟̅XO−Ca × 𝑁XO)/ 𝑁CaXO

 (Eq. 11) 

where the summation spans over all the O species (XO = FO, NBO, BO, and TO). 

 

 shows a comparison between the calculated (i.e., by our analytical model) and computed 

(i.e., by MD simulations) values of the (a) Ca–FO, (b) Ca–NBO, (c) Ca–BO, and (d) Ca–TO partial 

coordination numbers as a function of [Al2O3] – [CaO]. Despite relying on simple assumptions, 

our model yields realistic predictions, both in terms of trend and magnitude. Similar to Error! R

eference source not found., we observe that most of the deviations between our model and MD 

simulations occur in the vicinity of the transitions between the fully-compensated and fully-

depolymerized domains—again a consequence of the fact that our model only assumes that at most 

two types of oxygen species can coexist at the same time. Finally, we note that the computed Ca–

XO partial coordination numbers exhibit some slight variations at fixed value of [Al2O3] – [CaO], 

which is not accounted for by our model. Nevertheless, it is notable that the present analytical 

model can capture fairly well the non-monotonic and non-linear evolution of the local connectivity 

around Ca atoms while only relying on simple assumptions regarding the relative affinity of FO, 

NBO, BO, and FO atoms for Ca cations. 
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Figure 3. 3 Predicted (from analytical model) and computed (from molecular dynamics simulations) 

values of the (a) Ca–FO, (b) Ca–NBO, (c) Ca–BO, and (d) Ca–TO partial coordination numbers 

of Ca atoms as a function of composition. 

3.5 Rigidity diagram of the calcium aluminosilicate ternary system 

3.5.1 Glassy state 

We use the topological inputs presented in Sec. III to determine the state of rigidity of CAS 

glasses (i.e., flexible, isostatic, or stressed-rigid) as a function of temperature and composition by 

enumerating the number of radial BS and angular BB constraints per atom based on the 
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coordination number of each atom, as described in the following. We first focus on the glassy state 

(i.e., low temperature). Table 3.2 summarizes the average number of BS and BB constraints 

created by each individual species in the glassy state. Note that, for simplicity, all the BS 

constraints are fully attributed to the cations (rather than being equally shared by cations and 

oxygen atoms). As expected, Si atoms systematically create 4 BS constraints with their 4 O 

neighbors, as well as 5 BB constraints (i.e., the minimum number of independent angles that need 

to be fixed to define the SiO4 tetrahedron) [57]. In contrast, Al atoms exhibit a varying coordination 

number (i.e., 4 or 5 herein), so that the number of BS constraints created by Al atoms is given by 

their coordination number. Similar to Si atoms, 5 BB constraints are attributed to 4-fold Al atoms. 

However, we assume that 5-fold coordinated Al atoms do not create any BB constraints since they 

exhibit an unstable deformed octahedral angular environment [52,58,59]. The enumeration of the 

topological constraints created by Ca atoms requires more attention considering the ionic nature 

of Ca–O bonds. First, since ionic Ca–O bonds are non-directional, Ca atoms do not exhibit any 

well-defined angular environments and, as such, do not create any BB constraints [57]. Second, 

since BO and TO atoms are already fully charge-compensated by their Si or Al neighbors, we 

assume that Ca atoms only create strong BS constraints with their surrounding FO and NBO 

neighbors. Finally, each BO atom creates 1 BB constraint (e.g., to maintain Si/Al–O–Si/Al angles 

fixed around their average values), while each TO atom creates 3 BB constraints to define its 

trigonal environment [30]. In contrast, FO and NBO atoms do not create any BB constraint due to 

the non-directional nature of ionic Ca–O bonds. These inputs then serve to compute the number 

of BS and BB constraints for each glass composition.  
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Table 3. 2 Summary of the number of radial bond-stretching (BS) and angular bond-bending (BB) 

constraints created by each atomic species in calcium aluminosilicate glasses (at low temperature). 

For Al and O atoms, the BS and BB constraints are distinguished in terms of their coordination 

numbers. Note that the constraints created by Ca atoms depend on the type of O atoms they are 

connected to. 

 Glassy state 

Species BS BB 

Si atoms 4 5 

Al atoms   

4-fold Al 4 5 

5-fold Al 5 0 

Ca–O bonds    

         Ca–FO 1 / 

         Ca–NBO 1 / 

         Ca–BO 0 / 

         Ca–TO 0 / 

O atoms   

FO / 0 

NBO / 0 

BO / 1 

TO / 3 

 

Figure 3.4 presents the number of radial BS, angular BB, and total (BS+BB) number of constraints 

per atom (nc) as a function of [Al2O3] – [CaO] for the entire CAS domain. The results obtained 

from our analytical topological model are compared with those obtained by MD simulations. We 

first note that the number of BS constraints per atom decreases upon increasing [Al2O3] – [CaO], 
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shows a minimum at [Al2O3] = [CaO], and then subsequently increases [Fig. 3.4(a)]. The initial 

decrease in the number of BS constraints per atom primarily arises from the high number of BS 

constraints created by Ca atoms at low [Al2O3] – [CaO], wherein most of the Ca atoms create 6 

BS constraints with their surrounding NBO and FO atoms—thereby resulting in a glass that 

exhibits a large average coordination number. The average coordination number then decreases as 

Ca atoms get replaced by Al atoms. However, when [Al2O3] > [CaO], the increase in the fraction 

of 5-fold Al and TO atoms eventually results in an increase in the number of BS constraints per 

atom upon increasing [Al2O3] – [CaO]. We then observe that the number BB constraints per atoms 

monotonically increases upon increasing [Al2O3] – [CaO] [Fig. 3.4(b)]. This can be understood 

from the fact that atomic species which do not create any BB constraints (i.e., Ca, NBO, and FO) 

gradually disappear upon increasing [Al2O3] – [CaO].  

Altogether, we find that the total number of constraints per atom remains fairly constant 

(around nc = 3) when [Al2O3] < [CaO] and notably increases when [Al2O3] > [CaO] [Fig. 3.4(c)]. 

This indicates that, at [Al2O3] < [CaO], the decrease in the number of BS per atom is perfectly 

balanced by the increase in the number of BB per atom. This behavior agrees with previous 

findings obtained in densified silicate glasses, wherein the number of BB constraints was found to 

adapt to the number of BS constraints [60]. This behavior was attributed to a self-organization 

mechanism, wherein weaker angular constraints form or break in response to variations in the 

number of stronger radial constraints to ensure that the glass remains isostatic (nc = 3) [61,62]. 

Importantly, we find that our analytical topological model matches well with MD results. 

Note that, although the fractions of oxygen species (Fig. 3.2) and the Ca–O partial coordination 

numbers (Fig. 3.3) solely depend on [Al2O3] – [CaO], the resulting number of constraints also 
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depends on [SiO2] (which explains why the outcome of our model is represented as hatched areas 

in Fig. 3.4 rather than as a single line).  

The resulting rigidity diagram for the CAS ternary system is shown in Fig. 3.5(a). We note 

that CAS glasses are found to be systematically rigid (i.e., isostatic or stressed-rigid, nc ≥ 3) 

irrespectively of composition. Notably, the ternary map of the number of constraints per atom 

closely mimics that of the Young’s modulus of CAS glasses [11], which supports the present 

constraint enumeration—since the Young’s modulus has been shown to depend on the density of 

BS and BB constraints [42]. The increase in the rigidity of CAS glasses upon increasing [Al2O3] 

– [CaO] also echoes the corresponding increase in glass transition temperature that is observed 

experimentally [63,64]. Overall, our model offers an accurate description of the atomic structural 

rigidity for CAS glasses while remaining analytical. 

 

Figure 3. 4 Predicted (from analytical model) and computed (from molecular dynamics simulations) 

(a) number of bond-stretching (BS), (b) number of bond-bending (BB), and (c) total number of 

constraints per atom (nc) as a function of composition.  
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3.5.2 Liquid state 

Next, we discuss how temperature may affect the rigidity diagram of the CAS ternary 

system. To this end, we adopt temperature-dependent constraint theory, wherein each constraint 

can be intact (at low temperature, i.e., in the glassy state) or thermally-broken (at high temperature, 

i.e., in the liquid or supercooled liquid state) based on the competition between the constraints’ 

free energy and available thermal energy [65–67]. In the following, rather than relying on 

unproven guesses regarding the temperature at which constraints break, we simply discuss how 

the breaking of each type of constraint affects the rigidity diagram of the CAS ternary system (i.e., 

the location of the flexible and stressed-rigid domains). 

In the following, we discuss the successive effects of the breaking of (a) O–Al–O BB 

constraints, (b) Ca–FO constraints, and (c) BO and TO BB constraints—wherein these constraints 

are tentatively ranked from the weakest to the strongest, that, these constraints are ranked in terms 

of the temperature at which they are expected to break. This ranking is based on the following 

observations. First, the angular BB constraints associated with 4-fold Al atoms have been 

suggested by many studies to be notably weaker than those associated with Si atoms [27,28,68–

71]. This has been attributed to the fact that the nearby presence of a charge-compensating cation 

tends to destabilize the angular environment of 4-fold coordinated Al atoms [28]. Second, ionic 

Ca–FO constraints are expected to exhibit a low bond energy and, hence, to break at low 

temperature [66]. Finally, the BB constraints of BO and TO atoms (referred to as γ constraints) 

have been noted to break at low temperature [66,67]. It is worth nothing that this ranking is only 

tentative, and more work is clearly needed to carefully determine the onset temperature at which 

each type of constraint breaks (and ranking thereof). 
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Figure 3.5 shows how the successive breaking of each type of constraint affects the rigidity 

diagram of the CAS ternary system. We first note that the breaking of the BB of the Al atoms 

drastically affects the rigidity diagram and results in the appearance of a flexible domain (nc < 3) 

in the SiO2-poor and CaO-rich regions [Fig. 3.5(b)]. This suggests that CAS systems may exhibit 

a composition-driven rigidity transition (i.e., from flexible, nc < 3, to stressed-rigid, nc > 3) in this 

range of temperature. The subsequent breaking of the Ca–FO BS constraints plays, overall, a more 

minor effect, but drastically reduces the rigidity of CaO-rich compositions [Fig. 3.5(c)]. Finally, 

the breaking of the BO and TO BB constraints causes all the compositions to become flexible—at 

the notable exception of pure SiO2, which becomes isostatic [Fig. 3.5(d)]. 

Interestingly, these ternary rigidity diagrams offer useful insights into the possible origin 

of the glass-forming ability of CAS systems. First, at the highest temperature considered herein 

[Fig. 3.5(d)], SiO2 becomes perfectly isostatic (nc = 3). This agrees with the excellent glass-

forming ability of SiO2 [19,30]. It should be noted that SiO2 exhibits a high glass transition 

temperature, so that, unlike other silicate glasses, the topological origin of its glass-forming ability 

should indeed be assessed at high temperature (i.e., wherein the BB constraints of the BO atoms 

are thermally broken). The state of rigidity of the CAS ternary system at moderate temperature 

[Figs. 3.5(b) and 3.5(c)] also exhibits some correlations with glass-forming ability [72,73]. First, 

CaO-rich systems are highly flexible (nc < 3) and, hence—following Zachariasen’s 

viewpoint [74]—do not have the ability to form an extended 3-dimensional rigid network to 

prevent crystallization. In contrast, Al2O3-rich glasses are highly stressed-rigid (nc > 3). This may 

explain their low glass-forming ability, since the network does not exhibit enough structural 

flexibility to form a random (non-crystalline) network. The fact that SiO2-rich calcium silicate 

glasses are stressed-rigid also echoes the fact that such glasses tend to phase-separate [3,72]. It is 
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also notable that the position of the isostatic boundary on the CaO–SiO2 joint (around 

(CaO)50(SiO2)50) corresponds to the compositional domain wherein calcium silicate glasses exhibit 

maximum glass-forming ability [75]. Altogether, these results suggest that it is the rigidity at finite 

temperature (i.e., in the supercooled liquid state) rather than at low temperature (i.e., in the glassy 

state) that governs the glass-forming ability of silicate glasses. 
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Figure 3. 5 Ternary plots presenting the number of (1) radial bond-stretching (BS), (2) angular 

bond-bending (BB), and (3) total number of constraints (nc) per atom predicted by our analytical 

topological model. The constraints enumeration is conducted at (a) room temperature (glassy state), 

(b) the temperature at which O–Al–O BB constraints break, (c) the temperature at which Ca–FO 

(a) Room temperature

(b) Temperature at which BB of Al break

(d) Temperature at which BB of O break

(c) Temperature at which Ca—FO break 
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BS constraints break, and (d) the temperature at which BO and TO BB constraints break. The solid 

black line in the nc ternary maps (b3 and c3) indicates the location of the flexible-to-rigid transition 

(i.e., at nc = 3). 

3.6 Conclusion 

This work establishes a sound model describing the network topology of CAS glasses as a 

function of their compositions. It is important to note that, although this model is informed and 

validated by MD simulations, it remains fully analytical and, hence, can bypass MD simulations 

to offer predictions of the topology of a given CAS glass based on the sole knowledge of its 

composition. Indeed, this model provides a direct access to the state of rigidity (flexible, isostatic, 

or stressed-rigid) of CAS glasses as a function of composition and temperature regime (which 

dictates if a certain constraint species is thermally active or not). The obtained temperature-

dependent ternary rigidity diagrams reveal the existence of correlations between network topology 

and glass-forming ability—wherein highly underconstrained (flexible) and highly overconstrained 

(stressed-rigid) systems exhibit low glass-forming ability, while, in turn, optimally-constrained 

glasses (isostatic) feature maximum glass-forming ability. Importantly, this study suggests that 

glass-forming ability is encoded in the network topology of the liquid state rather than that of the 

glassy state. 
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