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Abstract 

According to Peña et al. (2002), statistical computations based 
on nonadjacent transitional probabilities of the sort that are 
exploited in speech segmentation cannot be used in order to 
induce existing grammatical regularities in the speech stream. 
In their view, statistics are insufficient to support the 
discovery of the underlying grammatical regularities. In this 
note I argue that a single statistical mechanism can account 
for the data Peña et al. report. 

Keywords: statistical computations; rule-based learning; 
speech segmentation; neural networks. 

Introduction  
Peña et al. (2002) consider whether statistical computations 
based on nonadjacent transitional probabilities of the sort 
that are exploited in speech segmentation (Saffran et al., 
1996) can be used in order to induce existing grammatical 
regularities in the speech stream. To answer this question, 
they designed an experimental paradigm and performed five 
different experiments. The first three are briefly reviewed 
here. Under the light of these experiments Peña et al. 
conclude that statistics are insufficient to support the 
discovery of the underlying grammatical regularities, and 
that their results imply knowledge of rules. Contra Peña et 
al., I shall argue that a single statistical mechanism can 
account for the data they report.  

Peña et al.’s experimental paradigm 
Peña et al.’s experimental paradigm involves asking adult 
subjects to listen to a sequence of trisyllabic artificial words 
for 10 minutes. Words have the form AiXCi and are 
identified on the basis of their nonadjacent transitional 
probabilities, such that the transitional probability between 
any Ai and the following Ci is 1.0; between Ai and the 
intermediate X, and between X and the final Ci is 0.33; and 
between Ci and the next word’s first syllable is 0.5. After 
familiarization, subjects are confronted with two linguistic 
stimuli and asked to offer a judgement as to which stimulus 
is more similar to chunks of the familiarization stream.  
Experiment A 
In experiment A, subjects were familiarized to a continuous 
speech stream as described above. In the test phase, they 
were exposed to a word (AiXCi) and a part-word (XCiAj)1,  
both of them contained in the stream being heard during 
                                                           
1 Part-words can also be of the form CkAiX (see below). 

familiarization. The results reported show that subjects 
favour words over part-words (P < 0.0005; see Peña et al., 
2002, for details). This behaviour backs up the hypothesis 
that statistics alone suffice to segment a linguistic stream, 
since what counts as a word is defined as a function of the 
higher transitional probabilities between specific non-
adjacent items (in this case, between Ai and Ci).  
 
Experiment B 
In experiment B, Peña et al. wanted to know whether 
subjects are simply segmenting the stream by exploiting 
differential transitional probabilities between words and 
part-words, or whether they are also tuning to some more 
abstract underlying grammatical regularity. In order to 
answer this question, after having been familiarized to the 
same speech stream of experiment A, subjects were asked to 
choose between a part-word and what Peña et al. dubbed a 
rule-word. A rule-word is a sequence of three syllables of 
the form AiX*Ci, where X* stands for a familiar syllable 
that occurs in familiarization, although never between Ai 
and Ci. In this way, although a rule-word represents a 
novelty, it is congruent with the structure of actual words by 
means of the preservation of a non-adjacent transitional 
probability of 1.0 between Ai and Ci. This time, 
interestingly, subjects prefer part-words over rule words. 

Under the light of experiments A and B, Peña et al. 
conclude that a “computational mechanism sufficiently 
powerful to support segmentation on the basis of 
nonadjacent transitional probabilities [experiment A] is 
insufficient to support the discovery of the underlying 
grammatical-like regularity embedded in a continuous 
speech stream [experiment B]” (p. 605). 
 
Experiment C 
Peña et al. then introduced a 25-ms subliminal segmentation 
gap between words during familiarization. This time 
subjects manifested preference for rule-words over part-
words, identifying them with above-chance accuracy (P < 
0.0005; see Peña et al., 2002, for details).  

In their view, these results imply knowledge of rules 
insofar as the very notion of an abstract rule-word underlies 
the successful discrimination of rule-words and part-words. 
Thus, they claim: “This seems to be due to the fact that the 
selected items are compatible with a generalization of the 
kind “If there is a [pu] now, then there will be a [ki] after an 
intervening X” (p. 606). 
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Summing up, Peña et al. contend that two different 
computational mechanisms must be responsible for the 
results of experiments A-C: Namely, a statistical mechanism 
for performing speech segmentation (experiment A), and a 
rule-governed mechanism responsible for the induction of 
grammatical structural regularities in the corpus (experiment 
C). 

Subliminal segmentation gaps 
In a footnote, however, although they consider a potential 
rejoinder according to which a single statistical mechanism 
may be responsible for the induction of the structural 
regularity in experiment C, they dismiss that alternative. As 
I shall try to show in what follows there’s a 
misunderstanding in Peña et al.’s line of reasoning that 
invalidates the conclusion they reach. Let’s first of all 
rescue their whole footnote into the main text for clarity’s 
sake: 
 
“Participants might have included the gaps as separate 
elements for computing transitional probabilities. As a 
result, they may have preferred rule words, not because they 
extracted the structure of the stream, but because they 
computed probabilities over syllables, pauses, and absence 
of pauses in the stream and the test items. Thus participants 
may have analyzed the rule words in the test as having the 
structure #A1X*C1# and the part words as having the 
structure #XC2@A3# (where # indicates a pause and @ the 
absence of a pause). In this case, the transitional 
probabilities between adjacent elements would favor rule 
words over part words and no sensitivity to the structure of 
the rule words would be needed to prefer rule words. This 
hypothesis makes a prediction that has not been confirmed 
in a control experiment. Though in experiment [C] the test 
items do not contain pauses, in this control experiment we 
tested participants (n = 14) with items including the pauses. 
Thus, participants compared rule words with structure 
#A1X*C1# to part words with structure #XC2#A3#. In this 
case, the presence of the pause in the part words makes the 
transitional probability of the part word higher than that of 
the rule word. Therefore, if pauses counted as separate 
events in the computation, participants should favor the part 
words over the rule words. Nevertheless, contrary to this 
prediction, participants still preferred rule words to part 
words” (fn. 27, p. 607). 
 

In effect, there is no principled reason to exclude the 
possibility that subliminal segmentation gaps can be 
exploited statistically. Notice that the very fact that these 
gaps are subliminal doesn’t prevent them from carrying 
potentionally relevant information. It simply means that 
their presence is not available to conscious access. As a 
matter of fact, as Peña et al. well observe, they must carry 
the critical piece of information for the mastery of structural 
induction since the inclusion of the gaps is the one and only 
difference between experiment B, where the part-word is 

preferred, and experiment C, where the rule-word is 
favoured.  

Thus, Peña et al. consider the prediction that subjects 
would choose rule-words (#A1X*C1#) over part-words 
(#XC2@A3#), once we consider “probabilities over 
syllables, pauses, and absence of pauses in the stream and 
the test items”, since “[t]ransitional probabilities between 
adjacent elements favours rule words over part words” 
(emphasis added). 

Non-adjacent transitional probabilities 
The problem with this comment is that no reason is offered 
as to why the only transitional probabilities to be computed 
must be those between adjacent elements in the speech 
stream. They arbitrarily assume that a statistical learning 
mechanism can only be sensitive to immediately adjacent 
patterns. However, there’s no reason not to believe that such 
mechanisms can be sensitive to higher order (i.e., non-
immediately adjacent) regularities. This is so, especially 
since Peña et al.’s experimental setting was precisely 
designed by constructing a lexicon mainly characterized in 
terms of nonadjacent transitional probabilities; probabilities 
which, as they themselves acknowledge, are the cornerstone 
of the segmentation task in experiment A: “[We] explore 
whether participants can segment a stream of speech by 
means of nonadjacent transition probabilities, and we also 
ask whether the same computations are used to promote the 
discovery of its underlying grammatical structure” (pp. 604-
605; emphasis added). 

One first hurdle before we can decide whether the 
experimental results of Peña et al. point towards a non-
statistical route, is to specify exactly what it is that we are 
comparing in terms of probability. Since, they simply 
comment that adjacent transitional probabilities for rule-
words are higher than for part-words, but do not especify 
which generalizations support that choice, it is not clear how 
neat the prediction of their working hypothesis is. 

We may then ask which test items subjects “should” 
choose once both adjacent as well as nonadjacent 
transitional probabilities are considered. Table 1 shows 
(adjacent and nonadjacent) transitional probabilities 
between syllables in the familiarization stream, and the 
corresponding probability values. By taking into account 
these probabilities, we can see if Peña et al.’s comments in 
footnote 27 are justified. 

Let us first take the rule-word #PUBEKI# and the part-
word #RAKI@BE#. According to Peña et al., a choice 
based on the computation of adjacent transitional 
probabilities should favour the rule-word. Their prediction 
is correct. Notice that whereas the rule-word #PUBEKI# is 
backed up by predictions 1 and 4 in table 1 (summed 
transitional probabilities = 1.5), the part-word #RAKI@BE# 
is only backed up by prediction 3 (which has a transitional 
probability of 0.33). 
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Table 1:  Some adjacent and nonadjacent transitional 
probabilities between syllables/pauses extracted from Peña 

et al.’s (2002) familiarization stream, and their 
corresponding probability values. 

 
Familiarization stream:  
 
.....#PURAKI#BELIGA#TAFODU#PUFOKI# 
TALIDU#BERAGA#TARADU#..... 
Predictions between 
adjacent items 

Transitional 
probability 

 
1. # predicts PU 

 
0.5 

 
2. PU predicts RA 

 
0.33 

 
3. RA predicts KI 

 
0.33 

 
4. KI predicts # 

 
1.0 

 
5. # predicts BE 

 
0.5 

 
6. BE predicts LI 

 
0.33 

Predictions between non 
adjacent items 

Transitional 
probability 

 
7. # _ predicts RA 

 
0.33 

 
8. # _ _ predicts KI 

 
0.33 

 
9. # _ _ _ predicts # 

 
1.0 

 
10. # _ _ _ _ predicts BE 

 
0.5 

 
11. PU _  predicts KI 

 
1.0 

 
12. PU _ _ predicts # 

 
1.0 

 
13. PU _ _ _ predicts BE 

 
0.5 

 
14. RA _ predicts # 

 
1.0 

 
15. RA _ _ predicts BE 

 
0.5 

 
16. KI _ predicts BE 

 
0.5 

 
17. # _ predicts LI 

 
0.33 

 
18. KI _ _ predicts LI  

 
0.33 

 
What happens then in Peña et al.’s control experiment 

when test items include segmentation gaps? They contend 
that the transitional probability of the part-word 
(#XC2#A3#) is higher than that of the rule-word 
(#A1X*C1#). Table 2 shows that their claim is correct only 
if adjacent transitional probabilities are computed 

exclusively. Once nonadjacent transitional probabilities are 
taken into account, the transitional probability of the rule-
word becomes higher than that of the part-word. This means 
that participants in the control experiment may be 
computing statistical information about segmentation gaps. 
The prediction would be that they should favour rule-words 
over part-words, which is exactly what happens in Peña et 
al.’s control experiment. Therefore, statistical computations 
can, not only perform speech segmentation, but also 
promote the discovery of the underlying structural 
regularities in the corpus. 

 
Table 2:  Adjacent and nonadjacent transitional probabilities 

for part-word #RAKI#BE# and for rule-word #PUBEKI# 
 

Experiment 
C 

Predictions 
between 
adjacent 
items 
supporting 
test 
preferences 

 

  Summed 
probabilities 

Rule-word 
#PUBEKI# 

1, 4 1.5 

Part-word 
#RAKI#BE# 

3, 4, 5 1.83 

   
 Predictions 

between 
non- 
adjacent 
items 
supporting 
test 
preferences 

 

Rule-word 
#PUBEKI# 

8, 9, 11, 12 3.33 

Part-word 
#RAKI#BE# 

14, 15, 16 2 

   
 TOTAL adjacent + 

nonadjacent 
probability 
based 
predictions  

Rule-word 
#PUBEKI# 

 4.83 

Part-word 
#RAKI#BE# 

 3.83 

 
On the other hand, part-words may be of two different 

types. They can be constructed by taking the last two 
syllables of a word and the first one of the next word 
(XCiAj), or by joining the last syllable of a word and the 
first two syllables of the next word (CkAiX). Peña et al. 
only consider part-words of the first sort. But the 
aforementioned results can be consistently extended to the 
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second sort of part-words. As table 3 shows, were we to 
insert segmentation gaps in part-words of the second sort 
(#KI#BELI#), predictions would still favour rule-words 
over them in statistical terms. 

 
Table 3:  Adjacent and nonadjacent transitional probabilities 

for part-word (type 2) #KI#BELI#. 
 

Part-word 
(type 2) 

Predictions 
between 
adjacent 
items 
supporting 
test 
preferences 

 

  Summed 
probabilities 

#KI#BELI# 4, 5, 6 1.83 
   
 Predictions 

between 
non- 
adjacent 
items 
supporting 
test 
preferences 

 

#KI#BELI# 16, 17, 18 1.16 
   
 TOTAL adjacent + 

nonadjacent 
probability 
based 
predictions 

#KI#BELI#  2.99 
 

Grammatical induction in SRNs 
In order to back up empirically these results, I run a series of 
connectionist simulations that illustrate the exploitation of 
statistically-driven information. Following Elman (1990), I 
trained a simple recurrent network (SRN) on a prediction 
task to test if it could generalize to novel rule-words in the 
line of Peña et al.’s experiments A, B and C, and their 
control experiment.  

Stimuli 
Familiarization corpus 
The familiarization corpus consisted of the same strings of 
syllables used by Peña et al. (table 1). The corpus thus 
consisted of CV syllables formed by concatenating all legal 
combinations of consonants and vowels. CV syllables were 
encoded in a localist way.  

Network architecture and Task 
The network had 10 input and output units, and 3 units in  

both the hidden and context layers. In the familiarization 
phase the network was fed with 5,000 syllable tokens. The 
task was to predict the next item in the sequence.2 

 

Output layer (10U) 

Hidden layer (3U) 

Context layer (3U) 
Input layer (10U) 

Figure 1: Architecture of SRN used to illustrate the 
exploitation of statistically-driven information. (the dashed 

line represents a copy connection). 
 

Results 
To confirm the robustness of the results, 5 extended test 
corpora were created to investigate the predictions of Peña 
et al: (i) words; (ii) part-words of type 1 (XCiAj); (iii) part-
words of type 2 (CkAiX); (iv) rule-words; and (v) part-
words that include segmentation gaps in between of the sort 
considered in footnote 27 of Peña et al., (2002). With the 
weights from the familiarization phase frozen, networks 
were tested on these five corpora. Figures 2-6 show 
differences in prediction root-mean-square (rms) error on 
test items for all five corpora.3 
 

Part-words type 1 
(XCiAj) Words

 

 
 

 
Figure 2: Network performance (RMS error) on words 

versus “type 1” part-words (XCiAj). 
 

                                                           
2 SRNs were trained with a learning rate of 0,1 during habituation.  
3 Although calculating error measures of probability-based 
predictions against likelihood vectors would have been more 
informative, for current purposes sum_rms values suffice. 

 770



 
 

Figure 3: Network performance (RMS error) on words 
versus “type 2” part-words (CkAiX). 

 

 
 

Figure 4: Network performance (RMS error) on “type 1” 
part-words (XCiAj) versus rule-words with structure 

#A1X*C1#. 
 

 
 

Figure 5: Network performance (RMS error) on “type 2” 
part-words (CkAiX) versus rule-words with structure 

#A1X*C1#. 
 

If the network has abstracted the structural regularities 
that underlie the familiarization corpus, prediction errors in 

congruent patterns should be smaller. This prediction is 
confirmed (figs. 2-6). The results of this simulation show 
that simple recurrent networks can generalize the abstract 
patterns embodied in their training set and gain an 
advantage in processing subsequent patterns of the same 
grammatical type (i.e., rule-words).  

Part-words type 2
(CkAiX) 

Words

 

  
#radu#be# Rule-words 

 

  

Part-words type 1 
(XCiAj) Rule-words

 
Figure 6: Network performance (RMS error) on rule-words 

with structure #A1X*C1# and part-words with structure 
#XC2#A3# (see fn. 27 from Peña et al., 2002, above).  

 

 Conclusion  
The results reported here show that frequency and 
distributional properties in the corpus not only serve to 
segment statistically the data into its constitutive legal 
words, but also to explain the choices made by subjects that 
apparently involve manipulation of non-statistical 
information. 

In this way, statistical computations based on nonadjacent 
transitional probabilities of the sort that are exploited in 
speech segmentation (Saffran et al., 1996) may be used in 
order to induce existing grammatical regularities in the 
speech stream.4   Part-words type 2 

(CkAiX) The arguments offered here don’t attempt to show that 
this indeed is the case, but rather to illustrate that this is an 
option that cannot be discarded beforehand. 

Rule-words
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