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Abstract

Cardiometabolic disorders (CMD) are a growing public health problem across the world. 

Among the known cardiometabolic risk factors are compounds that induce endocrine and 

metabolic dysfunctions, such as endocrine disrupting chemicals (EDCs). To date, how EDCs 

influence molecular programs and cardiometabolic risks has yet to be fully elucidated, especially 

considering the complexity contributed by species-, chemical-, and dose-specific effects. 

Moreover, different experimental and analytical methodologies employed by different studies 

pose challenges when comparing findings across studies. To explore the molecular mechanisms 

of EDCs in a systematic manner, we established a data-driven computational approach to meta-

analyze 30 human, mouse, and rat liver transcriptomic datasets for 4 EDCs, namely bisphenol A 

(BPA), bis(2-ethylhexyl) phthalate (DEHP), tributyltin (TBT), and perfluorooctanoic acid (PFOA). 

Our computational pipeline uniformly re-analyzed pre-processed quality-controlled microarray 

data and raw RNAseq data, derived differentially expressed genes (DEGs) and biological 

pathways, modeled gene regulatory networks and regulators, and determined CMD associations 

based on gene overlap analysis. Our approach revealed that DEHP and PFOA shared stable 

transcriptomic signatures that are enriched for genes associated with CMDs, suggesting similar 

mechanisms of action such as perturbations of peroxisome proliferator-activated receptor gamma 

(PPARγ) signaling and liver gene network regulators VNN1 and ACOT2. In contrast, TBT 

exhibited highly divergent gene signatures, pathways, network regulators, and disease associations 

*Co-corresponding authors: Graciel Diamante, Department of Integrative Biology and Physiology, University of California, Los 
Angeles, Los Angeles, CA 90095, gdiam001@ucla.edu; Xia Yang, Department of Integrative Biology and Physiology, University of 
California, Los Angeles, Los Angeles, CA 90095, xyang123@ucla.edu. 

CRediT authorship contribution statement
Zacary Zamora: Conceptualization, Data curation, Formal Analysis, Methodology, Visualization, Writing – original draft. Susanna 
Wang: Writing – review & editing. Yen-Wei Chen: Methodology. Graciel Diamante: Supervision, Visualization, Writing – review & 
editing. Xia Yang: Conceptualization, Supervision, Writing - review & editing.

Declaration of Competing Interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

HHS Public Access
Author manuscript
Environ Int. Author manuscript; available in PMC 2024 July 01.

Published in final edited form as:
Environ Int. 2024 January ; 183: 108339. doi:10.1016/j.envint.2023.108339.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



from the other EDCs. In addition, we found that the rat, mouse, and human BPA studies showed 

highly variable transcriptomic patterns, providing molecular support for the variability in BPA 

responses. Our work offers insights into the commonality and differences in the molecular 

mechanisms of various EDCs and establishes a streamlined data-driven workflow to compare 

molecular mechanisms of environmental substances to elucidate the underlying connections 

between chemical exposure and disease risks.

Keywords

Cardiometabolic disease; Liver; Transcriptome; Endocrine disrupting chemicals; Meta-analysis; 
Network analysis

1. Introduction

Cardiometabolic disorders (CMDs) such as metabolic syndrome (MetS), obesity, diabetes, 

hypertriglyceridemia, cardiovascular disease (CVD), and non-alcoholic fatty liver disease 

(NAFLD) contribute to a fast-growing health epidemic worldwide and inflict high rates 

of mortality and morbidity (Hurt et al., 2012; Raghavan et al., 2019; Roth et al., 2020). 

Both genetic and environmental factors, as well as the interactions between the two, can 

contribute to CMD predisposition and progression. Among the known cardiometabolic risk 

factors are exposure to endocrine disrupting chemicals (EDCs) (Janesick et al., 2011). EDCs 

are a class of mostly man-made exogenous chemicals that are used in industrial products, 

and many have been observed in human tissue samples such as liver and blood (Papalou et 

al., 2019). EDCs have been shown to alter pathways important in CMDs such as lipid and 

glucose metabolism pathways, PPAR signaling, and steroid hormone biosynthesis (Grün and 

Blumberg, 2007; Casals-Casas et al., 2008; Schug et al., 2011; Alves-Bezerra and Cohen, 

2017; Heindel et al., 2017). However, the risk that environmental factors such as EDCs pose 

on CMD development, and the underlying mechanisms are still not fully understood.

Among the EDCs identified to date, bisphenol A (BPA), bis(2-ethylhexyl) phthalate 

(DEHP), tributyltin (TBT), and perfluorooctanoic acid (PFOA) are of particular interest 

due to their prevalence and capacity to confer CMD. BPA is an estrogenic chemical 

that is used in synthetic polymer goods and as the lining of various food containers 

(Schecter et al., 2010). Notably, BPA has been linked to various cardiometabolic risk 

factors such as hypertension, dyslipidemia, and abdominal obesity (Plourde et al., 2002; 

Benmohammed et al., 2011; Li et al., 2015). DEHP is an anti-androgenic chemical that 

is used in the production of flexible plastics, found in building materials, toys, food 

containers, and present in certain medical devices (Jarfelt et al., 2005; Shea, 2003). Similar 

to bisphenols, human DEHP exposure has been linked to increased body weight, increased 

plasma triglyceride levels, and elevated blood pressure (Mohammad et al., 2018). Marine 

biocides such as tributyltin, are used in paints that are applied to ships and fishing nets 

because of their disinfecting and anti-fouling properties (Ximenes et al., 2017). Despite 

the limited number of epidemiological studies of human exposure to organotins like TBT, 

they are classified as EDCs because TBT and its metabolites have been linked to increased 

adipogenesis and lipid accumulation in mammals and have been found in the blood and liver 
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of humans (Heindel and Blumberg, 2019; Jia et al., 2016; Ronconi et al., 2018). Another 

EDC is PFOA, a chemical used in commercial household products, such as cookware, food 

packaging, cosmetics, and other products that resist heat, oil, stains, and grease (Begley 

et al., 2005). PFOA does not readily break down in the environment, allowing it to easily 

bioaccumulate (Steenland et al., 2010). Moreover, PFOA exposure in mouse and human 

studies has been linked to increased weight, waist circumference, cholesterol levels, and 

prevalence of diabetes (Halldorsson et al., 2012; Fei et al., 2007; Hines et al., 2009; He 

et al., 2018). All these compounds have been observed in human samples (Calafat et al., 

2004; Koch et al., 2006; Antizar-Ladislao, 2008; Calafat et al., 2007). However, there is a 

lack of systematic molecular comparison across EDCs and the similarities and differences 

in the mechanisms that contribute to CMD risks are still not fully understood. Therefore, it 

is important to discern how these chemicals alter important biological pathways and gene 

networks that may lead to CMD development and progression.

Due to the risks that chemicals such as EDCs pose to human health, several research 

programs such as Toxicology in the 21st Century (Tox21) and Toxicity Forecaster (Toxcast) 

have been launched to predict and characterize chemical effects in an efficient and high 

throughput manner (Attene-Ramos et al., 2013; Dix et al., 2007). The goals of these 

initiatives influenced the increase of numerous high-throughput molecular studies using 

transcriptome profiling. Many of these datasets have been deposited into the National 

Center for Biotechnology Information’s (NCBI) Gene Expression Omnibus (GEO), an 

open access international genomics repository that archives various high-throughput data, 

including microarray, RNAseq and other omics datatypes (Barrett et al., 2013). While 

these studies are a valuable resource, the variability in species, dosage, treatment windows, 

platforms/technologies used to generate, analyze, and interpret the data, leaves a fragmented 

picture of the biological effects of these EDCs and makes comparisons across studies and 

chemicals difficult. Harmonizing and meta-analyzing these datasets are a major challenge 

but it is crucial to conduct a systematic investigation of the biological effects within 

and across EDCs to ascertain consistent/different pathways and mechanisms of these 

toxicants. To this end, we developed an analytical workflow to uniformly consolidate and 

process different types of high throughput sequencing data to characterize and compare 

transcriptomic profiles and molecular networks across EDCs. To do this, we 1) streamlined 

and standardized microarray and RNA sequencing data acquisition and processing, 2) 

calculated gene expression changes from individual studies varying in EDC type, species, 

exposure route, sex, and dosage, 3) clustered the studies based on similarity in gene 

expression changes and identified consensus differentially expressed genes (DEGs) for 

each cluster (a group of studies sharing similar gene expression changing patterns) for 

each EDC, 4) conducted weighted key driver analysis to identify potential regulators and 

gene networks induced by EDC exposure, and 5) linked the genes and pathways to CMDs 

based on overlaps between EDC signatures and disease candidate genes. Specifically, we 

meta-analyzed 30 liver transcriptomics studies for BPA, DEHP, PFOA, and TBT deposited 

in GEO, to understand how these EDCs perturb the transcriptome and affect cardiometabolic 

risks. We focused on liver as it is a critical tissue for lipid, glucose, and cholesterol 

metabolism (Maradonna and Carnevali, 2018), xenobiotic biotransformation and clearance 

(Guomao et al., 2016), and CMDs (Monami et al., 2003; Duvnjak et al., 2007). This study 
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will lay the groundwork for the future development of a data-driven toxicogenomic database 

to better understand the toxicity and disease associations of other EDCs and environmental 

substances.

2. Materials and Methods

2.1 Dataset Identification and Curation

GEO was queried for various chemical names for the four EDCs of interest to capture 

all potential transcriptomic profiles. This search encompassed both in vitro and in 
vivo datasets to ensure full data coverage and notably, some GSE accession numbers 

contained broadscale profile surveys with multiple EDCs studied. BPA terms queried 

included: “Bisphenol A”, “4,4’-propane-2,2-diyldiphenol”, “BPA”. DEHP terms queried 

included: “Bis(2)ethylhexyl phthalate”, “Di-sec octyl phthalate”, “DEHP”. TBT queried 

terms included: “bis(tributyltin)oxide”, “TBTO”, “Tributyltin”, “TBT”. PFOA queried terms 

included: “perfluorooctanoic acid”, “perfluorooctanoate”, “PFOA”. The resulting datasets 

were curated to meet the following criteria for inclusion (Fig. 1A): 1. Publicly available in 

GEO; 2. Transcriptome data including both RNASeq and microarray (single channel) data 

types; 3. Datasets derived from humans, mice, and rats; 4. Data derived from liver tissue 

(including various in vitro hepatocyte cell lines); 5. Appropriate sample size (n ≥ 3/group); 

6. Not a transgenerational or a prenatal longitudinal exposure study; 7. Not a duplicate of 

another study (subseries/superseries). Lastly, all GEO transcriptomic profiles accessible at 

the end of July 2021 were considered.

2.2 Downloading and Processing Transcriptome Profiles

Microarray datasets were directly downloaded from GEO via the R (v 4.1.2) package 

GEOquery (v 2.62.2) (Davis and Meltzer, 2007; R Core Team, 2019). The meta-data 

containing the descriptive information of the overall experiments and individual samples 

was obtained, and cell lines/tissues were reannotated using the Brenda Tissue Ontology to 

consolidate liver tissue terms (Gremse et al., 2011). Microarray data submitted to GEO have 

previously been pre-processed and quality controlled, therefore, the resulting expression 

matrices were only checked for normalization and processed using log2 transformation if 

not normalized for further downstream analysis.

The raw RNAseq datasets were downloaded from the Sequence Read Archive (SRA), 

quality checked, and processed in the Anaconda environment (Leinonen et al., 2011; 

Anaconda Software Distribution, 2020). To summarize, we used the parallel-fastq-dump 

wrapper to retrieve FASTQ files from SRA (Valieris, 2020). We then conducted quality 

control on the FASTQ files using Trim Galore (v 0.6.6) and Cutadapt (v 2.1.0) (Krueger, 

2020; Martin, 2011; Andrews, 2010). In brief, the Trim Galore wrapper was used to trim 3’ 

end of reads with low quality base-calls, then Cutadapt removed adaptor sequences (12-13bp 

based on adaptor used). After trimming, short read sequences (<20bp) were filtered from the 

data. The binary package Salmon (v 1.3.0) was then used to map the sequencing reads to 

the appropriate reference genomes (human genome build GRCh38.p13, mouse genome build 

GRCm39, and rat genome build Rnor_6.0) and to quantify the mapped reads (Patro et al., 

2017). The R package Tximport (v 1.22.0) was then used to import and summarize Salmon 
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quantification results (Soneson et al., 2015). Lastly, we filtered out transcripts with 1< mean 

counts across replicates.

2.3 Differential Gene Expression Analysis and Clustering of Transcriptome Signatures

Differential gene expression analysis was performed using gold-standard tools appropriate 

for the different data types (Schurch et al., 2015): Linear Models for Microarray Data 

(LIMMA; v 3.50.3) was used for microarrays and DESeq2 (v 1.34.0) was used for RNAseq 

data to determine change in expression of genes, or “gene signatures” (Ritchie et al., 2015; 

Love et al., 2014). For studies with multiple doses, each dose was treated as a separate 

dataset to derive dose-specific gene signatures. To assess the similarity of global gene 

expression changes across studies, the log fold change (logFC) values of all genes between 

treatment group and control group were correlated across datasets using the Spearman rank 

option in the “cor” function in R. Genes were treated according to complete observations 

method, where genes with missing values (i.e. “NA”) were removed when computing 

correlation coefficients, leaving thousands to over 10,000 remaining transcripts depending 

on the data platforms between pairs of studies. Higher positive correlation coefficients 

indicated better agreement and higher negative correlation coefficients indicated opposite 

changes between pairs of datasets. The ComplexHeatmap package (v 2.10.0) was then used 

to cluster and plot the resulting Spearman correlation coefficients across datasets to visualize 

the similarity in gene signature patterns of different studies using the hierarchical clustering 

algorithm (Gu et al., 2016). For each EDC, we identified clusters of signatures with highly 

similar transcriptome responses (i.e., positive correlation coefficients). We then validated 

and determined the number of clusters using the Dunn Index from the package clValid (v 

0.7) (Brock et al., 2008). The Dunn Index is calculated as the lowest intercluster distance 

divided by the highest intracluster distance, thus the cluster number with the higher Dunn 

Index was used unless Spearman correlation was negative.

For each cluster of studies sharing similarities in gene signatures, we then conducted meta-

analysis across the studies in the given cluster to derive consensus DEGs using the Robust 

Rank Aggregation package (v 1.2.1) (Kolde et al., 2012), which allows for identification 

of DEGs perturbed by an EDC across studies that vary in species, dosage, and sample 

size but share similar gene expression changes. Rank aggregation was performed separately 

for both up-regulated and down-regulated genes and was used to identify consensus DEGs 

across studies in each cluster at a Bonferroni-adjusted p-value of <0.01. To compare DEGs 

between study clusters, the package GeneOverlap (v 1.3.0) was then used to determine if 

gene overlaps between cluster DEGs were significant using Fisher’s exact test (Shen, 2014), 

with the corresponding fold enrichment calculated using the following formula:

O/ A × B /N

Where O is the number of overlapping genes, A is the number of genes in group 1, B is the 

number of genes in group 2, and N is the total number of unique genes expressed across 

datasets (16,900).
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2.4 Pathway and Disease Gene Enrichment Analysis

To better understand the biological processes represented by the cluster specific DEGs, 

pathway enrichment analysis was performed. Kyoto Encyclopedia of Genes and Genomes 

Pathway (KEGG) was used to functionally annotate the cluster DEGs (Kanehisa and Goto, 

2000). We matched orthologous gene symbols of mice and rats to humans from the HGNC 

consortium to ensure consistency in pathway enrichment across species (Tweedie et al., 

2021). Similarly, after mapping RNAseq dataset transcripts to their respective reference 

genomes, mouse and rat gene symbols were converted to human symbols. Enrichment 

analysis was then performed on the significant up and down-regulated DEGs separately 

utilizing the “enrichR” package (Xie et al., 2021). Pathways were considered significant at 

FDR<0.05.

To assess the association of the DEGs of each signature cluster with various diseases, 

disease-associated genes from DisGeNET were evaluated for overlap with DEGs using 

enrichR and associations with an FDR<0.05 were considered significant (Pinero et al., 

2015).

2.5 Weighted Key Driver Analysis (wKDA) of DEGs

To identify potential gene regulatory networks and key drivers (KDs) that regulate the DEGs 

from EDCs, we used Mergeomics and a previously constructed liver-specific Bayesian 

network to conduct wKDA (Shu et al., 2016; Ding et al., 2021). Up- and down-regulated 

DEG sets for each EDC cluster were separately used for wKDA analysis. Genes whose 

subnetworks were enriched for cluster specific up- or down-regulated DEGs with an 

FDR<0.05 were considered significant KDs. The top 5 KDs for each DEG set and their 

subnetworks were visualized using Cytoscape (Shannon et al., 2003).

3. Results

3.1 Curated liver transcriptome datasets were primarily from adult, male, rodents

A total of 30 transcriptome liver datasets passed our selection criteria for inclusion (Table 

1), including 11 for BPA, 9 for DEHP, 4 for TBT, and 6 for PFOA. Using the 30 studies, 

we derived 45 gene signature responses across the EDCs. The majority of these studies were 

conducted using adult rodent males, with only nine signatures from females which were 

limited to in vitro study designs. Overall, species- and sex-coverage for the EDCs examined 

was uneven.

3.2 Clustering based on similarities across chemical gene signatures reveals lower study 
heterogeneity for DEHP and PFOA but higher variability for BPA and TBT studies

To determine the similarities and differences in liver gene responses to EDC exposures 

across studies, Spearman correlations of the log fold change (logFC) of liver genes between 

treatment and control groups of each study were calculated against the logFC values from 

each of the other studies to assess similarity in gene expression changing patterns between 

studies. Hierarchical clustering was then applied to the correlation coefficients to define 

studies with similar gene expression changes upon EDC exposures. Clusters were confirmed 

using the Dunn index (Supplementary Table 1). Notably, many PFOA studies involving 
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different species, doses, and exposure routes showed positive correlation between the 

signatures, suggesting consistency in the gene expression changes (Fig. 2). It is important 

to note that the PFOA studies (PFOA_13044 and PFOA_9786) that showed the highest 

correlation were derived from a single research group. However, we note that additional 

PFOA studies (e.g. PFOA_14712 and PFOA_119441) also showed positive correlation with 

the other PFOA studies. Similarly, a majority of DEHP studies also showed consistent gene 

expression responses to DEHP. Interestingly, PFOA and DEHP studies are intermingled 

in the largest cluster in Figure 2, suggesting similarities between the two EDCs in their 

gene response signatures. In contrast, for BPA and TBT, only a few studies showed clear 

clustering patterns, meaning that gene expression changes across studies were not strongly 

correlated (Fig. 2). The few BPA or TBT studies that showed better concordance were 

mostly among datasets generated from dose-response curves within the same study. These 

results indicate that the downstream effects of PFOA and DEHP are more stable and 

consistent across studies despite differences in study designs, whereas the gene expression 

changes induced by BPA and TBT are less consistent between studies and more specific 

to individual study designs. Our cross-EDC comparisons also revealed high similarities 

between PFOA and DEHP in terms of liver gene expression responses which were distinct 

from both BPA and TBT.

Next, we focused on each EDC to evaluate the influence of various study parameters 

such as species, exposure route, and dosage and to define study clusters that share 

similar transcriptomic responses to EDCs (Figure 3). Of note, the GSE19662 dataset 

for three chemicals (BPA, DEHP, PFOA) correlated with each other but not with their 

respective EDCs (Figure 2) despite the robust correlations observed across other DEHP and 

PFOA signatures, suggesting GSE19662 is an outlier. Therefore, we excluded datasets in 

GSE19662 from downstream analysis. Hierarchical clustering of BPA studies based on gene 

signature similarity revealed two major clusters. The first cluster named “BPA Human” was 

composed of two human female in vitro studies of various BPA doses (Table 2), while the 

second cluster named “BPA Rat” was composed of four rat studies of different doses, all of 

which were adult males exposed to BPA via oral gavage (Fig. 3A). Six BPA studies from 

different species, exposure route, and dosages did not show strong correlations with other 

signatures. These results again suggest highly variable liver responses to BPA. For DEHP, 

apart from the lone human study (GSE28878) and a single rodent study, all other studies 

clustered into a single group and was termed “DEHP All” (Fig. 3B). The TBT studies 

yielded a single “TBT Human” cluster, which was composed of a single female in vitro 
study at multiple doses (GSE86259), while the other TBT studies did not correlate well 

with each other (Fig. 3C). The PFOA studies clustered into a single group termed “PFOA 

All”, except an in vitro rat study (Fig. 3D). Altogether the transcriptome signatures yielded 

5 clusters (Table 2), with BPA and TBT clusters segregated by study design, whereas DEHP 

and PFOA clusters were inclusive of studies from varying study designs. We focus on these 

identified clusters in the following analysis since they represent the reproducible signatures 

for the 4 EDCs.
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3.3 Differentially expressed gene (DEG) and clustering analyses suggest higher 
similarities between PFOA and DEHP signatures and species-specific EDC effects

Next, we derived a consensus list of DEGs for the 5 clusters identified using a rank-based 

aggregation method which mitigates the issues of heterogeneous study designs and hence, 

differences in statistical power across studies in each cluster. We identified 2,170 DEGs 

for the BPA Human cluster; 1,353 DEGs for the BPA Rat cluster; 1,521 DEGs for the 

DEHP All cluster; 1,826 DEGs for the TBT Human cluster; 2,284 DEGs for the PFOA All 

cluster at Bonferroni-adjusted p<0.01 (Fig. 4A; full list of DEGs in Supplementary Table 

2). Many of the DEGs were unique to each cluster, indicating different liver molecular 

signatures between EDCs especially when considering the directionality of the DEGs 

(up-regulated DEGs shown in Fig. 4B and down-regulated DEGs shown in Fig. 4C). To 

assess the significance of DEG overlaps between clusters, we used Fisher’s exact test in 

the GeneOverlap package. The most significant DEG overlaps were between the DEHP All 

and PFOA All clusters for both the up- (p = 4×10−236 ; fold enrichment = 7.1; Fig. 4D) 

and down-regulated DEGs (p = 4×10−144; fold enrichment = 5.6, Fig. 4E). Despite having 

the smallest number of DEGs among all clusters, the BPA Rat cluster yielded significant 

overlapping DEGs in both directions with the DEHP and PFOA All clusters, whereas the 

BPA Human cluster showed significant overlap with the DEHP All and PFOA All clusters 

among the down-regulated DEGs only. Between the two BPA clusters (BPA Rat vs BPA 

Human), significant overlap was found only for the up-regulated DEGs (p = 4×10−4 and fold 

enrichment = 1.5). Significant gene overlaps were found among rodent clusters (BPA Rat, 

DEHP All, and PFOA All) and human clusters (BPA Human and TBT Human) (Fig. 4E). 

Taken together, the pattern of cluster DEG overlaps suggests higher similarities between 

PFOA and DEHP signatures and species-specific EDC effects.

3.4 DEGs of EDC clusters were enriched for diverse pathways

To better understand the biological functions of the DEGs, we carried out pathway 

enrichment analysis of cluster DEGs (Table 3; full list of enriched KEGG pathways in 

Supplementary Table 3). For both BPA Rat and Human clusters, cell cycle and DNA 

replication were down-regulated, while steroid biosynthesis was up-regulated (Table 3). 

Both BPA clusters also yielded pathways that are downstream of ER signaling, such 

as AMPK (up-regulated) and PI3K (down-regulated) pathways (Supplementary Table 

3). Additionally, the Rat BPA cluster was enriched in pathways involved in immune 

response such as adipocytokine signaling (up-regulated) and cytokine-cytokine receptor 

interactions (down-regulated). For the DEHP cluster, the top up-regulated pathways included 

PPAR signaling, fatty acid metabolism/degradation, lipid metabolism, while down-regulated 

pathways included pentose and glucuronate interconversions and chemical carcinogenesis 

(Table 3). The PFOA All cluster up-regulated DEGs were enriched for lipid metabolism, 

PPAR signaling, and fatty acid metabolism/degradation (Table 3). The top up-regulated 

pathways in the TBT Human cluster included the AGE-RAGE signaling pathway in 

diabetes, small cell lung cancer, and proteoglycans in cancer; down-regulated pathways 

included DNA replication, and P53 signaling (Table 3). Of note, the TBT Human cluster 

also showed enrichment for pathways of other diseases such as lupus, measles, and 

alcoholism (Table 3).
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Comparison across the four EDCs revealed a small number of broad overlapping pathways, 

including the general “metabolic pathways” term, terpenoid backbone biosynthesis, and P53 

signaling (Fig. 5A; Table 3). However, there was high agreement in the enriched pathways 

identified for PFOA and DEHP clusters in both the up- and down-regulated DEGs (Fig. 5B-

C). Specifically, complement/coagulation cascade and steroid hormone biosynthesis were 

down-regulated (Fig. 5C), while PPAR signaling, peroxisome, and fatty acid metabolism/

degradation were up-regulated (Fig. 5B). We also observed other PPAR-related genes such 

as PPARγ coactivators PPARGC1A and PPARGC1B as DEGs (Supplementary Table 2). 

Taken together, although all the chemicals had limited overlap, our analysis suggests some 

general mechanisms are shared between the analyzed EDCs.

There were also numerous enriched pathways that were unique to each EDC, especially 

among the down-regulated pathways. For BPA, unique pathways included FoxO signaling 

and HIF-1 signaling, pathways critical in cellular processes and glucose metabolism (Fig. 

5C). Interestingly, DEHP down-regulated the type II diabetes mellitus KEGG pathway, and 

up-regulated glutathione metabolism, a protective pathway that has roles in antioxidant 

defense and nutrient metabolism (Supplementary Table 3). Unique pathways for PFOA 

included up-regulation of genes involved in non-alcoholic fatty liver disease and oxidative 

phosphorylation (Supplementary Table 3). Among the top pathways unique to the TBT 

Human cluster are cancer-related pathways (Table 3; Supplementary Table 3). These unique 

pathways support disparate effects across EDCs.

3.5 Network modeling identifies overlapping key drivers (KDs) for DEHP and PFOA 
clusters and their subnetworks

In order to identify potential regulatory genes or KDs that drive EDC-induced transcriptomic 

alterations, significant DEGs within each cluster were subject to weighted key driver 

analysis (wKDA) using a Bayesian gene regulatory network previously constructed from 

tens of human and mouse liver datasets (Shu et al., 2016). Tens to hundreds of KDs at 

FDR<0.05 were identified for the DEGs of individual EDC clusters (top 5 KDs listed in 

Table 3 and illustrated in Fig. 6A-B; full KD list in Supplementary Table 4): BPA Human – 

30 KDs (13 down and 17 up), BPA rat – 134 KDs (48 down and 86 up), DEHP All – 311 

KDs (88 down and 223 up), PFOA All – 509 KDs (283 down and 226 up), and TBT Human 

– 23 (17 down and 6 up).

Although there were no KDs shared across all 5 EDC clusters, there was significant overlap 

between the DEHP and PFOA clusters (210 overlapping KDs) which is in agreement with 

the similarities observed at the DEG and pathway levels. Among KDs shared between 

DEHP and PFOA All clusters were genes involved in blood clotting/coagulation such as 

SERPINF2 and VTN (Fig 6B), the fatty acid oxidation gene ACOT2, lipid metabolism 

genes ALDH3A2 and VNN1, and a peroxisome biogenesis and PPAR signaling gene 

PEX11A (Fig 6A). All these genes and pathways are highly relevant to CMDs. The top 

unique KDs for the DEHP All cluster included AKR1D1, C9, EHHADH, while the top 

unique KDs for PFOA All cluster included CFI, PLG, and ECI1. Although there were 

EDC-specific top KDs between the two clusters, some KDs have largely overlapping 

biological roles; C9 (DEHP KD), CFI and PLG (PFOA KDs) play roles in the immune 
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system response; EHHADH and ECI1 are involved in lipid metabolism and PPAR signaling 

(Fig. 6A-B). These results further suggest that these two EDCs affect related pathways and 

potentially similar mode of action due to the high number of overlapping KDs.

Between BPA and the other EDCs, KDs were mostly shared with PFOA (55), however 

the majority belonged exclusively to BPA (79). To compare the effects of BPA on human 

versus rats, we examined the KDs and their associated functions from the 2 clusters. Top 

KDs for the BPA Human cluster included cell cycle/mitosis genes MCM6 and CDCA8; 
glucose and cell metabolism genes DCXR, IGFBP1, and GPSN2; cholesterol and sex steroid 

biosynthesis genes FDFT1, HMGCR, HSD17B7 and IDI1; and ALG5, which is involved 

in glucosyltransferase activity (Fig. 6A-B). The top KDs identified for the BPA Rat cluster 

included cell cycle/proliferation genes CCNA2, MKI67, RACGAP1, CDCA8, CDC20, and 

BTG2 (Fig. 6A-B) as well as CEBPD, which has been shown to have a role in immune 

response and inflammation. Our analysis revealed direction-specific overlaps in the top KDs 

for the BPA clusters, where glucose and cholesterol metabolism genes such as ACAT2, 
FDFT1, and IGFBP1 (Fig. 6A-B) were shared up-regulated KDs. However, no KDs were 

shared for the down-regulated DEGs. The highly significant enrichment of KDs in the cell 

cycle pathway of the BPA Rat cluster further suggest BPA plays a role in proliferation and 

has the potential to cause cancer in rodents such as liver carcinoma and neo-plasms (Gao et 

al., 2015). Moreover, the functions of KDs influenced by BPA in the human cluster suggests 

a variety of biological pathways altered, not just cell-cycle/proliferation. The limited overlap 

in KDs between BPA Human and Rat clusters highlight species differences in the genes 

responsive to BPA, coupled with the low agreement among mouse studies and between 

species, suggests BPA-exposure effects may be difficult to translate from rodents to humans.

The TBT cluster showed highly divergent KDs from the other EDC clusters, and the top 

KDs were mostly unrelated to metabolism. Only one gene, LPIN1, was involved with lipid 

metabolism (Fig. 6A). The other KDs had roles in cell organization and cell-to-extracellular 

matrix interactions, such as NID1, PHLDB1, TAGLN2 (Fig. 6B). Furthermore, KDs 

involved in cell cycle and cell differentiation were the most overrepresented such as HSPB1, 

TUBB6, MCM6, and C8orf4. These KDs are largely associated with various cancers such 

as liver carcinoma, squamous cell carcinoma, etc. (Nagaraja et al., 2012; Jiang et al., 2020; 

Liu et al., 2018; Sunde et al., 2004). KDs with other roles included JUN and RGS16, which 

participate in hepatocyte growth signaling and GTPase activator activity, respectively (Fig. 

6A-B; Behrens et al., 2002; Derrien and Druey, 2001).

Overall, our wKDA indicated highly similar liver KDs genes for PFOA and DEHP 

involved lipid, PPAR, coagulation, and immune pathways; relatively unique KDs for the 

BPA involved cholesterol and steroid pathways; several unique TBT KDs involved in cell 

cycle, growth, and cell-cell signaling. Additionally, BPA studies showed between-cluster 

differences in the KDs, and subnetworks potentially driven by species or sex-specific effects, 

with more metabolic KDs reflected in the network for the BPA Human cluster versus more 

cell cycle-related KDs in the BPA Rat cluster.
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3.6 EDC cluster DEGs except DEGs of the TBT cluster are enriched for CMD-associated 
genes

To identify the genes that potentially contribute to EDC-induced CMDs, we assessed the 

overlap of the EDC cluster gene signatures with genes exhibiting genetic association with 

6 CMDs (obesity, diabetes, CVD, MetS, hypertriglyceridemia, NAFLD) extracted from 

human genome-wide association studies (GWAS) curated by DisGeNET (Supplementary 

Table 5). Both up- and down-regulated DEGs for the DEHP and PFOA All clusters yielded 

associations with all 6 CMDs. For BPA, only the down-regulated DEGs for the BPA Human 

cluster and mainly the up-regulated DEGs for the BPA Rat cluster showed significant 

enrichment for CMD genes. Interestingly, the TBT Human cluster (both down- and up-

regulated genes) and the BPA Human up-regulated genes did not exhibit any associations 

with the selected CMDs.

Obesity- and diabetes-associated genes were the most over-represented among the DEGs 

of all the EDC clusters, with several disease genes also identified as KDs in our network 

analysis (e.g., PEX11A, VTN; Fig. 7A-B). CVD-associated genes were enriched among the 

down-regulated DEGs of all EDC clusters (Fig. 7B) as well as the up-regulated DEGs of 

the BPA Rat cluster (Fig. 7A). Several of these CVD-related genes were also among the top 

KD networks for both BPA clusters, such as FDFT1, and IGFBP1. MetS-related genes were 

also enriched among the DEGs of the chemicals analyzed. Several of these MetS genes were 

also network KDs for PFOA (ACOT2, PLG, and VTN), DEHP (VTN and ACOT2), BPA 

Human (DCXR), and BPA Rat (CEBPD, FASN, FDFT1, IGFBP1, and MKI67). NAFLD 

genes were enriched among the down-regulated genes of the BPA Rat cluster as well as 

both down- and up-regulated DEGs of DEHP and PFOA all clusters. Hypertriglyceridemia 

genes were enriched among the up-regulated DEGs of DEHP and the down-regulated DEGs 

of PFOA. Previous studies have shown BPA, DEHP, and TBT to be highly associated with 

metabolic diseases (obesity, diabetes, MetS, etc.); however, we did not identify any genetic 

associations for CMD in the TBT Human gene set (Feninchel et al., 2013; James-Todd et al., 

2016; Freitas-Lima et al., 2018). PFOA studies have yielded inconsistent associations with 

CMDs (Christensen et al., 2019), however here we show prominent CMD gene enrichment 

in the DEGs of the PFOA All cluster.

Previous studies have also identified all four chemicals to be carcinogenic due to their 

ability to enhance cell proliferation as EDCs (Soto and Sonnenschein, 2010; Kumar et al., 

2020). Notably, several significant cancer-related associations were observed for the DEGs 

of each cluster. BPA Rat DEGs were enriched for lymphoma adenocarcinoma genes; BPA 

Human DEGs for breast and prostate carcinoma genes; DEHP All and PFOA DEGs for 

liver neoplasms and carcinoma genes; TBT Human DEGs for genes involved in neoplasms 

of lung and prostate (Supplementary Table 5; Fig. 7B). These results affirm the chemicals’ 

capacities to promote cancer pathogenesis. In addition, our results provide molecular support 

for the association of the various EDCs with six different CMDs based on the significant 

overlap between genes perturbed by EDCs and CMD-associated genes.
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4. Discussion

Several studies have examined EDCs and their relationships with CMDs, however some 

chemicals presented volatile responses and the molecular mechanisms were unclear. In 

our current study, we devised a new computational pipeline to uniformly meta-analyze 

30 RNAseq and microarray datasets from four different EDCs ubiquitously found in 

humans. The datasets were from liver tissue across three mammalian species, with a 

variety of exposure conditions. Using DEG, pathway, and network analyses, we evaluated 

similarities and differences between EDCs and identified key drivers that potentially mediate 

EDC-induced molecular perturbations in pathways and networks that affect CMD risk 

and development (Table 3). DEHP, PFOA, and BPA all showed significant perturbations 

in metabolic pathways and CMD associations. In contrast, TBT-affected liver genes 

were the most dissimilar compared to the signatures of the other EDCs and did not 

show significant overlap with CMD-associated genes. Our meta-analysis was also able to 

recapitulate the known oncogenic biology and pathways induced by these chemicals, such 

as cancer/cell cycle-related pathways and cancer associations such as liver cancer/neoplasms 

(Supplementary Table 3 and 5). Overall, our analysis gave insights into shared and chemical-

specific molecular actions of EDCs that provide a more comprehensive evaluation of the 

MOA of EDCs in the liver.

Our meta-analysis across chemicals (Fig. 2) results suggests that the comparability across 

studies differ between EDCs and it is easier to derive MOAs for DEHP and PFOA than 

for TBT and BPA. In the case of DEHP and PFOA, fewer studies departed from their own 

chemical categories. It is plausible that the MOAs of each of these chemicals are more 

robust and consistent even with different study designs and conditions. Studies from these 

two chemicals also showed between-chemical mixing clustering in our analysis (Fig. 2). 

This potentially indicates that these two chemicals share a more similar MOA. Indeed, our 

DEG, pathway and network analyses revealed shared MOA including PPAR signaling and 

fatty acid metabolism/degradation which agree with previous reports (Casals-Casas, et al., 

2008; Rosen et al., 2008; Huang and Chen, 2017). We speculate that the few DEHP and 

PFOA studies that did not cluster with their own chemical categories are potentially due 

to technical issues. In contrast, the BPA and TBT studies showed high variability between 

studies, between species, and between doses, making it challenging to infer their MOA. 

Many factors can contribute to this observation, some biological and some technical. One 

biological reason is that activity and effects of BPA and TBT are more complex and dynamic 

(Marmugi et al., 2012; Rodrigues-Pereira et al., 2022). In regards to BPA, it has been 

noted that there is high variability between studies and its exact MOA is still controversial. 

Recently, the Clarity-BPA project and other studies assessing dose-responses curves showed 

that several tissue types, including liver, have non-monotonic dose responses (e.g. U and 

W shape dose-response curves) to BPA (Heindel et al., 2020; Lagarde et al., 2015). Taken 

together, the lack of consistency or clustering in our comparative analysis across BPA 

studies agreed with the well-documented variability in the literature, supporting that the 

MOA of BPA is more specific to individual exposure conditions and likely inconsistent 

between conditions. In the case of TBT, the small number of studies makes it challenging to 

propose the cause of the poor clustering across studies or draw conclusions about its MOA. 
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One potential biological factor underlying the poor consistency across TBT studies could 

be dose differences, as we note in Fig. 2, four in vitro signatures within the dose range of 

0.3uM-10uM clustered together, whereas the other two remaining signatures that did not 

cluster well reflected a significantly lower dose of 0.02nM and a very high in vivo dose of 

200mg/kg/d. Previously, studies using zebrafish as a model have suggested that sub-acute 

TBT exposures promote metabolic dysfunction only at higher doses, especially those which 

are considered cytotoxic (Heindel and Blumberg, 2019; Martinez et al., 2020). Our study 

would cautiously support this claim, as the lone high-dose study happened to cluster with 

the DEHP and PFOA studies (Fig. 2), which were particularly associated with metabolic 

alterations.

Our analytical pipeline provided further insights on the molecular pathways and potential 

regulators involved in the perturbations induced by each of the EDCs that contribute to 

disease risk. It has been shown that the effects of EDCs like BPA are dependent on model 

organism, sex, tissue, and age, and that the liver is the organ most susceptible to EDC 

exposure (Cimmino et al., 2020; Le Magueresse-Battistoni et. al., 2018; Shu et al., 2019; 

Diamante et al., 2021). BPA is metabolized and cleared by humans at a faster rate compared 

to rodents, while fecal excretion of BPA by rodents allows enterohepatic recirculation 

to result in prolonged BPA exposure (Völkel et al., 2002). There are also distinct sex-

differences in BPA glucuronidation rates, with female rats having higher levels of clearance 

enzyme activity (Takeuchi et al., 2004). Our analysis was able to uniformly process data 

from different model organisms, doses, and sex, and therefore able to make comparisons and 

uncover potential species or sex specific effects of BPA. Our results showed high diversity of 

KEGG pathways (cancer, immune and metabolism pathways represented), disparate CMD 

associations, and divergent top KDs between Human and Rat BPA clusters which support 

a more volatile BPA response and may underlie the controversies regarding BPA safety in 

previous studies (Vogel, 2009). Additionally, previous studies indicate that BPA can bind to 

estrogen receptors and influence biological processes such as cell proliferation and apoptosis 

(Gao et al., 2015; Can et al., 2005). Our study did not yield the ER-signaling pathway as 

significantly enriched; however, previous findings have shown that non-classical ER-alpha 

signaling can be mediated by membrane localized ERs (Björnström and Sjöberg, 2005). 

This signaling rapidly activates ER-signaling-related pathways, such as those observed in 

both BPA Rat and Human clusters (e.g., PI3K-, AMPK-signaling; Table 3). Our CMD 

association analysis also revealed divergent responses between species: the human cluster 

yielded more CMD associations in the down-regulated gene set and the rat cluster yielded 

more associations with CMDs in the up-regulated gene set. In addition, we identified KDs 

from the BPA clusters (Fig. 3A) that were associated with CMDs: for the BPA Human 

cluster, KD DCXR was associated with only obesity while the BPA Rat cluster KDs CEBP, 

FASN, FDFT1, IGFBP1, and MKI67 were associated with all the CMDs evaluated. Taken 

together our study suggests that BPA exposure is a greater CMD risk factor in rat male 

models, and that the nuances of species-specificity in BPA exposure studies should be 

considered when extrapolating to human health.

In addition to its endocrine disrupting effects, TBT has also been linked to obesity, NAFLD, 

tumor development and cancer progression (Casey et al., 2015; Katz et al., 2020). Our study 

supports the oncogenic capacity of TBT in human cell lines by uncovering several enriched 
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cancer-related pathways that were unique to the TBT-induced DEGs, including small cell 

lung cancer, and proteoglycans in cancer. TBT has been linked to altered adipogenesis, 

increased lipid accumulation (Heindel and Blumberg., 2019; Jia et al., 2016) and has been 

indicated as an agonist for classic lipogenic pathways such as PPARγ and RXR (retinoic 

x receptor) in adipose, liver, and pancreas (Le Maire et al., 2009; Bertuloso et al., 2015). 

Interestingly, the DEGs from the TBT-treated female human cell lines only revealed the 

AGE-RAGE signaling pathway and the KD LPIN as relevant to metabolism and did not 

show significant overlap with genes associated with CMDs. It is important to note the 

TBT Human cluster (Fig. 3C) is from a single study at multiple doses which could induce 

potential biases. Though studies with transcriptome responses to TBT remain limited, our 

analysis suggests TBT’s previously reported adipogenic effects are likely not mediated 

through liver tissue and that TBT is a potent carcinogen.

The myriad of health effects of DEHP have been well documented (James-Todd et al., 

2016; Jaimes et al., 2017; Rowdhwal and Chen 2018), and our analysis of DEHP-exposed 

liver confirmed diverse disease associations and pathways, such as chemical carcinogenesis, 

metabolic dysfunction, and immune system perturbations (Supplementary Table 3 and 5). 

Notably, numerous metabolic pathways including, fatty acid metabolism/degradation, steroid 

biosynthesis, and PPAR signaling were enriched in both up- or down-regulated DEGs, 

suggesting a complex and broad mis-regulation of metabolic sub-pathways. Furthermore, 

KDs identified for DEHP have roles in both immune response (C9, SERPINF2, VTN) and 

metabolism (EHHADH, PEX11A, VNN1, ACOT2). Disease association analysis further 

supported the capacity of DEHP to be a CMD-inducing chemical, as DEHP DEGs were 

significantly enriched for diabetes and MetS genes. More importantly, several of them were 

identified as network KDs such as VNN1 and ACOT2. Despite the heterogeneity of dose 

and exposure route in the study design, all but one DEHP transcriptomic study showed 

profiles that converged on a consensus signature (Fig. 3B), indicating that liver responses to 

DEHP were robust and reproducible across multiple conditions.

Prior studies have claimed that PFOA exposure leads to numerous health problems, such 

as metabolic, reproductive, immunological, developmental effects and cancer in humans, 

mice, and rats (Barry et al., 2013; Vieira et al., 2013; Filgo et al., 2014; Fenton et al., 

2021). Disease gene set enrichment analysis associations revealed prominent liver diseases 

(e.g., NAFLD, cirrhosis, liver carcinoma; Supplementary Table 5). Additionally, previous 

rodent and human studies have demonstrated the ability of PFOAs to alter liver metabolic 

health via pathways such as cholesterol metabolism, PPAR activation, and fatty acid 

oxidation (Fletcher et al., 2013; Li et al., 2017). Indeed, our pathway analysis showed up-

regulation of many of these metabolism-related pathways. Furthermore, our wKDA yielded 

regulatory genes (ACOT2, PEX11A, ECI1, and VNN1) and metabolic pathways (fatty acid 

metabolism, PPAR signaling, starch and sucrose metabolism) regardless of species. PFOA 

DEGs were also enriched for CVD, diabetes, MetS, and obesity associated genes, and 

several were also KDs (ACOT2, VNN1, and PLG). We hypothesize that these genes are 

potential mediators of PFOA-induced CMD and could serve as potential targets for further 

experimental validation.

Zamora et al. Page 14

Environ Int. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



All the EDCs in this current study have been reported to act as PPAR and RXR agonists 

(Huang and Chen, 2017). PPARα is highly expressed in the liver and regulates lipid 

and fatty acid metabolism, while also playing an important role in immune response 

(macrophage/monocytes); PPARγ is mainly expressed in adipose tissue (exhibits low 

expression in the liver to facilitate lipid uptake) and its activation improves insulin sensitivity 

and glucose homeostasis as well as regulate adipocyte differentiation (Tyagi et al., 2011). In 

our meta-analysis across 30 studies, only the DEGs of the DEHP All and PFOA All clusters 

(Fig. 3B& D) yielded PPAR signaling as a significant pathway and PPARγ coactivators as 

DEGs. It has been indicated that EDCs with stronger estrogenic potential were less likely 

to activate PPARγ (Riu et al., 2011; Faulds et al., 2012). Indeed, general PPAR signaling 

pathway was not enriched in the BPA clusters; however, key BPA DEGs that have roles 

associated with PPAR signaling were observed (PPARγ in the BPA Human cluster and 

RXR in both the Human and Rat clusters). Additionally, the clusters were enriched for 

the adipocytokine signaling pathway, where it has been reported that adipocytokines such 

as adiponectin, are stimulated by PPARγ signaling and can modulate PPARα signaling 

(Yamauchi et al., 2007; Fujita et al., 2008; Corrales et al., 2018). Thus, the complex 

interplay of the two main PPAR isoforms and their signaling cascades could be driving 

the differences in liver pathways and disease associations between the EDC clusters. 

Specifically, DEHP and PFOA may be greater disruptors of PPAR pathways through PPARγ 
coactivators (PPARGC1A/B; Oberkofler et al., 2003; Léveillé et al., 2020) compared to BPA 

and TBT in the liver. Interestingly, the KD VNN1 shared between PFOA and DEHP is a 

PPARγ antagonist and may serve as a potential target for future studies of CMD therapies 

due to its role in hepatic gluconeogenesis and steatosis (Berruyer et al., 2006; Bartucci et 

al., 2019). Taken together, our data support the involvement of PPAR signaling in DEHP and 

PFOA effects in the liver, whereas the CMD-promoting effects of BPA and TBT exposures 

may be mediated through other mechanisms of action or through different tissue types.

Our systematic analysis was able to process diverse datasets and generate consensus 

DEGs utilizing a new approach to overcome study heterogeneity to robustly detect 

DEGs, regulatory genes (KDs), pathways, and networks involved in EDC-induced CMD. 

Additionally, our pipeline allowed us to identify and exclude datasets that are highly 

distinct from other studies and therefore likely outliers. Utilizing a large number of 

studies enhances the reproducibility of our findings and studying multiple chemicals across 

species also enables the discovery of similarities and differences across EDCs and species 

to facilitate comparative toxicology. In addition, the current study is a meta-analysis of 

transcriptomic data independent of phenotypic evaluation due to the missing phenotypic 

data in many of the studies. This highlights the need to coordinately submit phenotypic 

data and the associated publications along with omics datasets to GEO to enable phenotype-

anchored molecular analysis. In our study, to overcome this we systematically conducted a 

functional and disease annotation of our gene signatures through pathway enrichment and 

disease-association analysis, and our results inferred the potential functional and phenotypic 

endpoints reflected by the gene signatures.

It is important to note several limitations of the current study. First, our meta-analysis is 

limited by the coverage of the existing datasets in GEO, which do not evenly cover both 

sexes, range of doses, exposure routes, and species across EDCs. Secondly, technical factors 
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such as different profiling platforms and differences in reference genome versions used 

for microarray probe annotation may confound our findings. Given that microarrays and 

their probe annotations accessible from GEO can be based on different genome versions, 

we acknowledge that differences in gene annotation may lead to missing transcripts that 

can be compared between datasets. Future efforts to re-annotate the different microarray 

platforms to a common gene annotation version will mitigate this concern. However, 

we note that without explicitly re-annotating probes across microarrays, the overlapping 

transcripts between datasets ranged from thousands to over ten thousand, which could still 

provide reasonable estimates for the overall correlative relationships and pathway/network 

level comparisons. We also observed that the BPA Human cluster was derived from two 

datasets from the same lab, and other BPA studies clustered poorly. The stratification of 

BPA studies may likely be the result of differences in technical factors as well as biological 

factors (species/exposure/sex differences), and our current study cannot tease these apart. 

However, the “DEHP All” and “PFOA All” clusters (Fig. 3B&D) incorporated varying 

technical and design factors, such as profiling platforms (microarray and RNAseq), species 

(mouse and rat), and exposure route (diet, drink, and oral gavage). Therefore, technical 

factors did not appear to be a major confounding factor in our findings at least for DEHP 

and PFOA, which may be extrapolated to BPA studies. However, caution is required to 

interpret the findings on BPA due to the difficulties in separating technical from biological 

factors. Thirdly, we focused only on studies whose gene signatures showed similarity and 

formed clusters with other studies in our meta-analysis of DEGs, and excluded those that 

did not cluster with others. These studies that were excluded could either be outliers with 

poor reproducibility, or capture unique EDC biology, which warrants further investigation. 

Fourth, although both exposure dose and window have a great impact on the magnitude of 

transcriptome alteration (Golestanzadeh et al., 2019), we did not analyze transgenerational 

or pre-natal longitudinal exposure studies. In addition, further experiments are needed to 

validate the key genes identified in our network analysis and their role in CMD risk and 

development. Lastly, we only examined the liver in the current study due to limited studies 

of other metabolic tissues (e.g., adipose, pancreas, skeletal muscle) in the EDC field, but we 

acknowledge the importance of other organs in CMD.

Conclusion

Our meta-analysis of 30 high throughput studies across four chemicals in three mammalian 

species offers unique insights into the functional changes associated with exposure to a 

select set of EDCs. We also analyzed key regulatory genes and pathways in the liver to 

identify those that potentially drive EDC-induced CMD risk. Despite inherent variations 

in study designs across the datasets, we found that DEHP and PFOA had significantly 

overlapping gene signatures. By contrast, BPA liver signatures were highly variable, and 

TBT had the most divergent profile compared to the other EDCs. The shared and chemical-

specific genes, pathways, networks, and regulators identified from our study provide 

comprehensive insights into the molecular actions of EDCs in the liver and facilitate 

future mechanistic and translational studies. The bioinformatics workflow established by 

the current study will be used in a new toxicogenomics database, ToxiOmics, that we 
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are developing to study a broad range of environmental toxicants and tissues to better 

understand their influence on complex human diseases such as CMDs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. Overall data curation workflow and analysis pipeline.
(A) Criteria and selection workflow of GEO transcriptome datasets included in the study. 

(B) Meta-analysis pipeline for both microarray and RNAseq data types.
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Fig. 2. Clustering analysis of EDC gene signatures across studies.
Correlogram of gene signatures of EDCs based on hierarchical clustering using Spearman’s 

rank correlation of the log fold changes (logFC) of expressed genes between treatment 

and control groups in liver transcriptome across all EDC studies examined in the current 

study. Color of the heat map indicates Spearman’s rank correlation coefficients, where red 

tones represent positive correlations and blue tones represent negative correlations. Below 

the cluster map, different factors such as chemical type, species, exposure route, sex, age, 

technical platform for transcriptome profiling, and lab/group (labeled by the last name of the 

first author) that carried out the studies are indicated by color bars.
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Fig. 3. Cluster analysis for each EDC based on similarity in gene signatures defines main EDC 
study clusters.
(A-D) Correlograms generated via the hierarchical clustering of gene signatures of EDCs 

based on Spearman’s rank correlation coefficients of transcriptome response (logFC) 

between treatment and control groups for BPA (A), DEHP (B), TBT (C), and PFOA 

(D). Studies were labeled using the GSE accession number and dose. Color of the heat 

map indicates Spearman’s rank correlation coefficients where red tones represent positive 

correlations and blue tones represent negative correlations. Outlined signatures represent 

identified EDC clusters used for downstream analysis; 1) Green dashed lines represent 

PFOA All, 2) Navy dashed lines represent DEHP All, 3) Black dashed lines represent BPA 
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Human, 4) Brown dashed lines represent BPA Rat, 5) Gray dashed lines represent TBT 

Human. Below the cluster map, different factors such as chemical type, species, exposure 

route, sex, age, technical platform for transcriptome profiling, and lab/group (labeled by the 

last name of the first author) that carried out the studies are indicated by color bars.
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Fig. 4. Comparison of differentially expressed genes (DEGs) across different EDC clusters.
(A-C) Venn diagram of total DEGs (A), up-regulated DEGs (B), and down-regulated 

DEGs (C) at Bonferroni-adjusted p-value < 0.01. DEGs shared among all clusters (in the 

center) and top KDs shared are labeled. (D and E) Heatmaps illustrating the significance 

of DEG overlaps between clusters for up-regulated DEGs (D) and down-regulated DEGs 

(E). Fisher’s exact test was used to calculate p-values. Color gradient is based on fold 

enrichment values between clusters. Number values indicate significant overlaps at p<0.05. 

N.S. indicates no significance and ▲ indicates comparison already performed.
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Fig. 5. Comparison of enriched KEGG pathways among EDC study clusters.
(A-C) Upset plot of significant KEGG pathways (FDR<0.05) enriched for total DEGs (A), 

up-regulated DEGs (B) and down-regulated DEGs (C). Horizontal bars (set size) indicate 

total number of pathways for each cluster in each plot. In the upset plots, dots point to the 

specific EDC clusters for which the vertical bars for pathway counts are shown, and vertical 

lines between dots represent the intersections between two or more clusters. Terms labeled 

in red indicate metabolic pathways of interest.
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Fig. 6. Network analysis identified KDs potentially contributing to EDC-induced gene expression 
changes.
(A and B) Network of top 5 KDs (FDR < 0.05) derived from up-regulated DEGs (A) 

and down-regulated DEGs (B) for each EDC cluster. Liver Bayesian network was pre-

constructed using a set of human and mouse liver datasets, as reported in Shu et al. 2016. 

Network genes are represented as small circular nodes, and KDs as medium/large circular 

nodes. Fill color indicates DEGs for specific EDCs at a Bonferroni-adjusted p-value < 0.01. 

(A) Top 5 KDs for BPA Human - FDFT1, HMGCR, HSD17B7, IDI1, ALG5; BPA Rat 

- BTG2, CEBPDFASN, FDFT1, IGFBP; DEHP All - ACOT2, ALDH3A2, EHHADH, 
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PEX11A, VNN1; TBT Human - LPIN1, C8orf4, JUN, MCM6, RGS16; PFOA All - 

ACOT2, ALDH3A2, PEX11A, VNN1, ECI1. (B) Top 5 KDs for BPA Human - CDCA8, 

DCXR, GPSN2, IGFBP1, MCM2; BPA Rat - CCNA2, MKI67, RACGAP1, CDCA8, 
CDC20; DEHP All - C9, SERPINF2, VTN, AKR1D1, ITIH3; TBT Human - HSPB1, NID1, 
PHLDB1, TUBB6, TAGLN2; PFOA All – CFI, ITIH4, PLG, SERPINF2, VTN.
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Fig. 7. Overlap between EDC cluster DEGs and CMD-associated genes
(A and B) Heatmap showing significance of overlap between up-regulated DEGs (A) and 

down-regulated DEGs (B) with disease-associated genes for CMDs in the DisGeNET 

database. Color indicates significance of associations, CMDs with FDR<0.05 were 

considered significant (pink and red colors).
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Table 1.
Characteristics of datasets included in our meta-analysis.

GSE numbers in bold indicate RNA-Seq data. Species (Sp.) are abbreviated as follows human (Hs), rat (Rn) 

and mouse (Mm). Routes of exposure (Exp. Route) are abbreviated as follows in vitro (IV), oral gavage (OG), 

diet or drink (DD-C for chemicals added in the chow or DD-W when added in the drinking water). Italicized 

values in the dose per body weight (Dose/bw) column indicate in vitro studies for which no dose/bw are 

available. Exposure periods (Exp. Period) are denoted as hours (h), days (d), weeks (w), months (m). Sexes are 

abbreviated as male (M) and female (F). n is the study sample size/group.

GSE # EDC Sp. Exp. 
Route Dose/bw Exp. Period Sex Age n/group Citation

69844 BPA Hs IV 1,10,100μM 6h F Adult 3 De Abrew et al., 2016

69850 BPA Hs IV 1,10,100μM 6h F Adult 3 De Abrew et al., 2016

59923 BPA Rn OG 100,610mg/kg/d 1,3,5d M Adult 3 DrugMatrix Database

8251 BPA Rn OG 610mg/kg/d 5d M Adult 3 Fielden et al., 2007

8858 BPA Rn OG 100,610mg/kg/d 0.25,13,5d M Adult 3 Natsoulis et al., 2008

57815 BPA Rn OG 100,610mg/ kg/d 1d M Adult 3 Gusenleitner et al., 2014

130434 BPA Rn DD-C 50µg/kg (3 
exposures) 3d M Adult 3 Treviño et al., 2020

19662 BPA Rn IV 10ppm 24h M Adult 3 Deng et al., 2010

43977 BPA Mm DD-C 5,000mg/kg/d 7d M Adult 4 Melis et al., 2014

26728 BPA Mm DD-C 50,5000μg/kg/d 28d M Adult 6 Marmugi et al., 2012

44088 BPA Mm IV 10μM 24h M Adult 4 Schaap et al., 2015

28878 DEHP Hs IV 10mM 24h M Adolescent 3 Magkoufopoulou et al., 2012

2303 DEHP Rn OG 20g/kg 48h M Adult 5 Jolly et al., 2005

57815 DEHP Rn OG 1000mg/kg/d 3,5d M Adult 6 Gusenleitner et al., 2014

19662 DEHP Rn IV 1ppm 24h M Adult 3 Deng et al., 2010

40337 DEHP Rn IV 250,1000μM 24,48h M Adult 10 De Abrew et al., 2015

43977 DEHP Mm DD-C 6,000mg/kg/d 7d M Adult 4 Melis et al., 2014

121057 DEHP Mm OG 2500mg/kg/d 28d M Adult 6 Li et al., 2020

55733 DEHP Mm OG 1150mg/kg/d 2-72h M Adult 12 Currie et al., 2005

18564 DEHP Mm OG 1150mg/kg/d 4d M Adult 4 Ren et al., 2010

86259 TBT Hs IV 2,6,10μM 2h F Adult 3 Tu et al., 2016

28878 TBT Hs IV 0.02nM 12,24,48h M Adolescent 3 Magkoufopoulou et al., 2012

43977 TBT Mm DD-C 200mg/kg/d 7d M Adult 4 Melis et al., 2014

44088 TBT Mm IV 0.3μM 24h M Adult 4 Schaap et al., 2015

14712 PFOA Rn OG 20mg/kg/d 3d M Adult 3 Ren et al., 2009

19662 PFOA Rn IV 30ppm 24h M Adult 3 Deng et al., 2010

13044 PFOA Mm DD-W 1,3,5,10mg/kg/d 17d M Adult 5 Rosen et al., 2007

9796 PFOA Mm OG 1,3mg/kg/d 7d NA Fetal 4 Rosen et al., 2008

9786 PFOA Mm OG 3mg/kg/d 7d M Adult 4 Rosen et al., 2008

119441 PFOA Mm OG 1mg/kg/d 8w M Adult 4 Li et al., 2019

Environ Int. Author manuscript; available in PMC 2024 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zamora et al. Page 36

Table 2.
Study characteristics and number of differentially expressed gene (DEGs) at Bonferroni-
adjusted p<0.01 of major EDC gene signature clusters.

In vitro (IV), oral gavage (OG), diet or drink (DD).

Major signature clusters BPA Human BPA Rat DEHP All TBT Human PFOA All

Species Human (6) Rat (7) Mouse (4)
Rat (4)

Human (3) Mouse (8)
Rat (1)

Technical platform Affymetrix (6) Codelink (5)
Affymetrix (2)

Affymetrix (7)
RNAseq (1)

Affymetrix (3) Affymetrix (6)
Applied Biosystems (2)
RNAseq (1)

Exposure Route IV (6) OG (7) IV (2)
DD (1)
OG (5)

IV (3) DD (4)
OG (5)

Dosages 1uM-100uM 100mg-610mg 250-1000μM (IV)
6000ppm (DD)
1000mg-20g(OG)

2-10uM 1-20mg

Sex Female (6) Male (7) Male (8) Female (3) Male (7)
N/A (2)

Age Adult (6) Adult (7) Adult (8) Adult (3) Adult (7)
Fetal (2)

Down-regulated DEGs 1100 672 717 969 1189

Up-regulated DEGs 1070 681 804 857 1095

Total DEGs 2170 1353 1521 1826 2284
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Table 3.
Summary of top key drivers (KDs), CMD DisGeNET associations, and KEGG pathways 
of major EDC clusters.

Significance was determined using FDR < 0.05 as a cutoff. Specific sub-pathways for the “Metabolic 

pathways” are indicated in parenthesis.

Cluster Top 5 KEGG Pathways Top 5 KDs Total KDs CMD DisGeNET Associations

BPA Human

Down Metabolic Pathways (amino acid and carbohydrate 
metabolism)
Biosynthesis of Amino Acids
HIF-1 signaling pathway
Cell cycle Carbon metabolism

CDCA8
DCXR
GPSN2
IGFBP1
MCM2

 13 Obesity
Diabetes
CVD
MetS

Up Terpenoid backbone biosynthesis
Ribosome
Steroid Biosynthesis

FDFT1
HMGCR
HSD17B7
IDI1
ALG5

 17 N/A

BPA Rat

Down Cell cycle
DNA replication
Steroid hormone biosynthesis
Cytokine-cytokine receptor interaction
HTLV-I infection

CCNA2
MKI67
RACGAP1
CDCA8
CDC20

 48 Obesity
Diabetes
CVD

Up Steroid biosynthesis
Adipocytokine signaling pathway
Terpenoid backbone biosynthesis
Mineral absorption
Metabolic pathways (lipid metabolism)

BTG2
CEBPD
FASN
FDFT1
IGFBP1

 86 Obesity
Diabetes
CVD
MetS
NAFLD

DEHP All

Down Complement and coagulation cascades
Steroid hormone biosynthesis
Pentose and glucuronate interconversions
Metabolic pathways (lipid metabolism)
Chemical Carcinogenesis

C9
SERPINF2
VTN
AKR1D1
ITIH3

 88 Obesity
Diabetes
CVD
MetS
NAFLD

Up Metabolic pathways (amino acid, carbohydrate, and lipid 
metabolism)
PPAR signaling pathway
Peroxisome
Fatty acid metabolism
Fatty acid degradation

ACOT2
ALDH3A2
EHHADH
PEX11A
VNN1

 223 Obesity
Diabetes
MetS
NAFLD
Hypertriglyceridemia

PFOA All

Down Complement and coagulation cascades
Metabolic pathways (carbohydrate and lipid metabolism)
Staphylococcus aureus infection
Steroid hormone biosynthesis
Starch and sucrose metabolism

CFI
ITIH4
PLG
SERPINF2
VTN

 283 Obesity
Diabetes
CVD
MetS
NAFLD
Hypertriglyceridemia

Up Metabolic pathways (amino acid and lipid metabolism)
Peroxisome
Fatty acid degradation
Fatty acid metabolism
PPAR signaling pathway

ACOT2
ALDH3A2
PEX11A
VNN1
ECI1

 226 Obesity
Diabetes
MetS
NAFLD

TBT Human

Down Protein processing in ER
Small cell lung cancer
Proteoglycans in cancer
AGE-RAGE signaling pathway in diabetic complications
Measles

HSPB1
NID1
PHLDB1
TUBB6
TAGLN2

 17 N/A
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Cluster Top 5 KEGG Pathways Top 5 KDs Total KDs CMD DisGeNET Associations

Up Systemic lupus erythematosus
Alcoholism
p53 signaling pathway
DNA replication

LPIN1
C8orf4
JUN
MCM6
RGS16

 6 N/A
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