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There is a growing body of literature demonstrating the importance of T cell exhaustion in

regulating and shaping immune responses to pathogens and cancer. Simultaneously, the

parallel development of therapeutic antibodies targeting inhibitory molecules associated

with immune exhaustion (such as PD-1, but also TIGIT, and LAG-3) has led to a

revolution in oncology with dramatic benefits in a growing list of solid and hematologic

malignancies. Given this success in reinvigorating exhausted T cells and the related

anti-tumor effects, there are increasing efforts to apply immune checkpoint blockade to

other exhausted immune cells beyond T cells. One approach involves the reinvigoration

of “exhausted” NK cells, a non-T, non-B lymphoid cell of the innate immune system.

However, in contrast to the more well-defined and established molecular, genetic, and

immunophenotypic characteristics of T cell exhaustion, a consensus on the defining

functional and phenotypic features of NK “exhaustion” is less clear. As is well-known

from T cell biology, separate and distinct molecular and cellular processes including

senescence, anergy and exhaustion can lead to diminished immune effector function

with different implications for immune regulation and recovery. For NK cells, it is unclear if

exhaustion, anergy, and senescence entail separate and distinct entities of dysfunction,

though all are typically characterized by decreased effector function or proliferation. In this

review, we seek to define these distinct spheres of NK cell dysfunction, analyzing how

they have been shown to impact NK biology and clinical applications, and ultimately

highlight key characteristics in NK cell function, particularly in relation to the role

of “exhaustion.”

Keywords: natural killer cells, NK cells, NK dysfunction, NK exhaustion, immune dysfunction

INTRODUCTION

Reinvigorating exhausted cytotoxic CD8T cells through checkpoint blockade therapy targeting
PD-1 and PD-L1 has led to dramatic benefits in a growing list of solid and hematologic
malignancies (Wei et al., 2018). While the understanding of T cell exhaustion has greatly expanded
since initial ground-breaking publications by Moskophidis et al. (1993) and Gallimore et al.
(1998), critical features have remained constant: (1) exhaustion occurs through persistent antigen
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exposure which interferes with standard immune contraction
mechanisms and classic T cell memory formation, and (2)
subsequent effector function is diminished, seemingly because of
the development of the exhausted state (Wherry, 2011; Wherry
and Kurachi, 2015). In contrast to this prototypical model of
T cell exhaustion (which is critically dependent on chronic and
persistent antigen exposure), it is important to acknowledge
that other relevant forms of T cell dysfunction exist, namely
anergy and senescence, and in these states, different stimuli
and pathways are involved producing different manifestations of
dysfunction with variable reversibility.

Given this background, the last several years have witnessed
significant interest in applying checkpoint blockade therapy to
natural killer (NK) cells, primarily to exploit their well-known
anti-tumor functions and similarities to CD8T cells (Narni-
Mancinelli et al., 2011; Sun and Lanier, 2011). Yet, while NK and
CD8T cells share many effector traits, the activation, inhibition,
and generation of effector functions in NK cells is distinct from
cytotoxic T cells, with complex mechanisms involved. Although
there are many similarities between cytotoxic T cells and NK
cells, leading many to hypothesize that NK cells could be targeted
for reversal of “exhaustion” because of these similarities, the
certainty of this approach remains undefined. In this review,
we summarize the evidence for NK exhaustion as well as other
states of dysfunction (including anergy and senescence) and
discuss how these dysfunctional states are similar and different,
highlighting how critical differences exist between NK and T cell
dysfunctional states with implications for clinical application.

NK CELLS AND ANTI-TUMOR EFFECTS

Since the initial descriptions of NK cell activity nearly 50 years
ago (Cudkowicz and Stimpfling, 1964; Cudkowicz and Bennett,
1971) and subsequent identification of a distinct NK lymphocyte
population (Kiessling et al., 1975), NK cells have been pursued as
an anti-tumor therapy due to their ability to kill transformed cells
in an MHC-unrestricted manner. This defining characteristic
of NK cells contrasts with the antigen specificity of cytotoxic
CD8T cells, which mediate MHC-restricted killing following
antigen presentation and T cell priming. Additionally, loss of
MHC-I expression occurs in multiple malignancies and has been
associated with T cell immune evasion (Garrido et al., 1976,
2016; Restifo et al., 1993; Algarra et al., 1997; Garcia-Lora et al.,
2001; Carretero et al., 2008). However, MHC-I downregulation
has also been shown to activate NK cells via the “missing-
self ” hypothesis (Kärre, 2008). These features of NK targeting
further support the concept of using NK cells therapeutically to
augment tumor killing, especially since T cells are often rendered
ineffective by cancer immunoediting, antigen loss variants, and
MHC-I downregulation (Mittal et al., 2014). However, despite
this paradigm that MHC-I positive tumor cells can be targeted
by cytotoxic T cells and MHC-I negative tumor cells can be
eliminated by NK cells, the clinical benefit of NK cell-based
therapy has overall been modest, especially for solid tumors, and
true breakthrough successes have been limited (Suen et al., 2018;
Miller and Lanier, 2019).

Clinical trials using NK cells for the treatment of hematologic
and solid malignancies have been ongoing for decades (Suen
et al., 2018; Hu et al., 2019; Miller and Lanier, 2019). More
recent efforts have focused on the ex vivo activation and
expansion of peripheral NK cells using antigen presenting cells
transfected with co-stimulatory ligands and membrane-bound
cytokines to achieve high numbers of cells for adoptive therapy
(Fujisaki et al., 2009b; Somanchi et al., 2011; Denman et al.,
2012). These approaches were developed with the idea that NK
cells produced in this way are highly functional, and greater
numbers are needed in vivo to obtain a measurable anti-tumor
effect. In addition to the massive expansion using these feeder-
line approaches, these ex vivo NK cells are highly activated
as shown by cytotoxicity assays against a range of tumor
cell lines in vitro (Fujisaki et al., 2009b; Garg et al., 2012).
However, despite impressive in vitro data on NK cytotoxicity
using feeder-line expansion, expanded NK cells using these
techniques tend to lose function quickly in vivo post-adoptive
transfer, consistent with the relatively disappointing results of
clinical trials irrespective of whether autologous or allogeneic
NKs are used (Suen et al., 2018). Results like these have
prompted interest in testing other NK sources, such as in
vitro activated and expanded NK cell lines (e.g., NK-92) as
a lower cost, consistent source of allogeneic cells which may
overcome barriers tomaintaining activation of NK cells following
transfer in vivo. However, despite similarly impressive pre-
clinical data showing high cytotoxicity and significant anti-
tumor effects in vitro (Klingemann et al., 2016; Suck et al.,
2016), results from clinical trials using NK-92 cells have also
been modest (Arai et al., 2008; Tonn et al., 2013). Importantly,
these discrepancies between in vitro and in vivo function of
NK cells highlight several key observations which likely underlie
their unrealized/disappointing clinical potential, namely that
continuous stimulation with cytokines, or target cell activation
results in acute increases in effector function but at the same
time creating a state of cytokine/activating-signal dependence
which then leads to rapid loss of function and survival if these
activating/stimulatory signals are taken away. These fundamental
observations about NK cell dysfunction post-adoptive transfer
have led to intense investigation into strategies to reverse NK
dysfunction in vivo by several different mechanisms, including
overexpression of co-stimulatory molecules, pharmacologic
doses of stimulatory cytokines, and combination with checkpoint
blockade inhibitors (Miller and Lanier, 2019). As use of
checkpoint blockade therapy is ubiquitous and increasingly being
applied to NK-based therapy, a critical assessment of the extent
and mechanisms of NK dysfunction, including exhaustion, is
warranted. Techniques utilized in the expansion and activation
of NK cells (i.e., cytokines, feeder line co-culture, co-stimulatory
molecules) may give rise to heightened activation, but also
dysfunction, and further may lead to NK cells “addicted” to
supraphysiologic stimulatory signals that can never be safely
reproduced in a human recipient following adoptive cell transfer.
These dysfunction pathways likely impact the success (or failure)
of NK-based clinical trials, and a better understanding of the
spectrum of NK dysfunction pathways will allow for improved
clinical application of NK cells, including how and when NK
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cells might respond to checkpoint blockade therapy to reverse
NK “exhaustion.”

DEFINING NK CELL DYSFUNCTION

Dysfunctional NK cells are frequently identified by decreased
expression of typical NK effector functions in a NK population
of interest (such as tumor-infiltrating NK cells) compared to
those of a control population (such as circulating NK cells
in the peripheral blood) from the same host (Carrega et al.,
2008; Carlsten et al., 2009). In general, readouts for NK effector
function include in vitro cytotoxicity assays against target cells as
well as IFNγ and granzyme B production. As these characteristics
are generic markers of a dysfunctional NK cell, different states
of NK dysfunction, such as anergy and exhaustion, become
blurred because there is no established NK phenotype for these
dysfunctional states (Figure 1). A further challenge in defining
the etiology and spectrum of NK cell dysfunction lies in the fact
that a thorough understanding of NK ontogeny and maturation
remain ill-defined in many cases. And although there are
increasing articles and reviews investigating NK cell exhaustion,
there remains controversy as to whether NK cells even undergo
exhaustion (as opposed to other dysfunction processes), and if so,
the phenotypic markers that define an exhausted NK cell. This is
in contrast to T cell development andmaturation states which are
well-characterized and annotated (Crotty and Rafi, 2004; Koch
and Radtke, 2011). These knowledge gaps in some of the basic
understanding of NK cell biology (Caligiuri, 2008) add difficulty
to defining how, why and when NK cell dysfunction occurs.

Induced T cell dysfunction by either exhaustion, anergy or
senescence is believed (in most cases) to protect the host from
adverse autoimmune disease or immunopathology (Schwartz,
2003; Blank et al., 2019). This reinforces the well-known
principle in immunology that the host must balance the anti-
microbial/anti-tumor effects of immune defense with the risks
of immunopathology from an unrestrained immune response.
As virtually all human autoimmune disease is either B- or
T-cell mediated (Davidson and Betty, 2001; Marrack et al.,
2001; Rosenblum et al., 2015), the need for induced NK cell
dysfunction to limit autoimmune disease is much less clear, with
conflicting evidence suggesting both helpful and harmful roles
of NK cells in autoimmunity (Schleinitz et al., 2010). Distinct
from autoimmunity, there does seem to be toxicities associated
with highly activated NK cells as recently described following a
clinical trial of adoptively transferred ex vivo activated NK cells
(Shah et al., 2015), suggesting that mechanisms for activation-
induced NK dysfunction may be beneficial in regards to limiting
host toxicities.

NK CELL EXHAUSTION

Identification and reversal of NK “exhaustion” is a current active
field of investigation at both the basic and translational level
(Table 1). In contrast to seminal studies on T cell exhaustion
which have focused on viral models and human patients with
chronic viral infections, studies investigating NK cell exhaustion

have focused primarily on identifying dysfunctional tumoral-
associated NK cells and applying strategies to reverse NK
exhaustion to augment anti-tumor effects (da Silva et al., 2014;
Beldi-Ferchiou et al., 2016; Seo et al., 2017; Zhang et al., 2018).
However, the contribution of NK cells to the tumor immune
infiltrate is generally considered to be low (Whiteside and
Parmiani, 1994; Halama et al., 2011; Melero et al., 2014), and the
clinical relevance of intra-tumoral NK cells remains incompletely
characterized (Pagès et al., 2010), highlighting the need for a
more thorough understanding of how NK cells home to diverse
solid tumors. In the study from Halama et al., the authors set
out to compare the NK and T cell infiltrate in colorectal cancer
specimens (Halama et al., 2011). Using NKp46 to detect NK cells
via IHC, the authors showed that NK cells were substantial in
normal colonic mucosa, but limited within adjacent adenomas
or carcinomas. A similar trend was detected in liver metastases,
which had significantly less infiltrating NK cells that adjacent
normal liver. Furthermore, the limited NK infiltrate detected had
no correlation with tumor cell HLA class I expression, suggesting
that other mechanisms contribute to the paucity of NK cell
infiltration (Halama et al., 2011).

Regardless of the mechanism by which dysfunction has
occurred, there must be a decrease in some effector function
to label a cell as “dysfunctional.” For NK cells, this includes
reductions in the expression of IFNγ (as shown either by
intracellular staining by flow cytometry or by ELISA detection
of secreted IFNγ), granzyme B, TNFα, CD107a (marker of
degranulation), antibody dependent cell-mediated cytotoxicity
(ADCC) via CD16, or decreased target cell cytotoxicity assays.
In addition to decreased effector function, there should also
be a concordant, subset specific increase in an exhaustion-
associated marker (PD-1, TIGIT, TIM-3, LAG-3, etc.). Some of
the more prominent studies examining NK cell exhaustion have
focused of cancer patients including NK cells from the tumor
microenvironment (Benson et al., 2010; da Silva et al., 2014;
MacFarlane et al., 2014; Beldi-Ferchiou et al., 2016; Seo et al.,
2017; Vari et al., 2018; Zhang et al., 2018; Sun et al., 2019)
and in the context of chronic viral infections or prolonged pro-
inflammatory cytokines (Wiesmayr et al., 2012; Felices et al.,
2018; Alvarez et al., 2019; Zhang et al., 2019). Common to these
reports is the identification of decreased NK effector function to
first identify NK cells as exhausted–most notably IFNγ by flow
cytometry detection. These cells are then shown to have increased
expression of an established exhaustion-associated marker.

As PD-1 is the prototypical T-cell exhaustion marker, many
studies have identified an association of PD-1 expression on
NK cells with exhaustion. However, expression of PD-1 by NK
cells remains controversial, and other studies have demonstrated
TIGIT and to a lesser extent TIM-3 and LAG-3 to bemore critical
NK exhaustion markers. One of the early studies investigating
PD-1 expression on NK cells was in pediatric post-transplant
lymphoproliferative disease (PTLD) (Wiesmayr et al., 2012). This
study noted that peripheral NK cells in patients with PTLD were
phenotypically and functionally distinct from healthy donors
or patients with asymptomatic EBV viremia. In these PTLD
patients, there was decreased NKp46 and NKG2D expression,
while PD-1 expression was increased compared to healthy
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FIGURE 1 | Proposed phenotype and functional changes of NK cells under different dysfunctional states. Specific pro-inflammatory mediators associated with SASP

in NK cells have not been determined. *IFNγ production has been shown to increase in split anergized NK cells. SASP, senescence-associated secretory phenotype.

controls and asymptomatic EBV carriers. The authors also
showed functional differences between NK cells derived from
PTLD patients compared to healthy controls (decreased CD107a,
IFNγ), with augmentation of NK function in PTLD patients
when they were treated with anti-PD-1 in vitro. However, the
authors did not assess for differences in PD-1+ vs. PD-1- NK
subsets, which is important since one would expect PD-1 negative
NK cells in PTLD patients to function similarly to those of
healthy donors. More so, evaluating the effects of anti-PD-1
therapy on PD-1+ and PD-1- subsets would be important to
confirm the specificity of these findings.

Another important issue that the study byWiesmayr et al., and
other similar studies highlight is the challenge of determining an
NK population to be “positive” when flow cytometric gating is
used and does not delineate distinct populations. This can lead
to wide variability in reported expression because small changes
in flow cytometry gating dramatically alter the percent positive
population. Additional studies in human cancer patients (Benson
et al., 2010; Vari et al., 2018) have also shown PD-1 expression
on NK cells, although interpretation of these studies may be
limited by a wide variation in PD-1 expression in healthy controls
(Vari et al., 2018) and a later finding that a novel antibody
putatively identifying PD-1 on NK cells in multiple myeloma
patients (Benson et al., 2010) appears to bind a separate receptor
rather than PD-1 (Miller and Lanier, 2019).

Using murine models, Hsu et al., identified PD-1 expression
on intra-tumoral NK cells, although these studies did not
correlate PD-1 expression on NK cells with dysfunction (Hsu
et al., 2018). The authors did observe significant variability in

PD-1 expression across tumors (and even within replicates of the
same tumors). For example, in RMA-S tumors (MHC-I negative
lymphoma) PD-1 expression reached as high as 70%, while in
RMA tumors (MHC-I positive lymphoma) expression varied
between 20–50%, 0–60% in CT26 (colon cancer), 0–20% in B16
(melanoma), <5% in C1498 (AML), and 0–25% in 4T1 (breast).
Hsu et al., also demonstrated significant anti-tumor effects when
checkpoint blockade therapy targeting PD-1/PD-L1 pathway was
administered in vivo. Although Hsu et al. do not directly address
whether PD-1+ NK cells represent an “exhausted” subset and
no comparison of the functional capabilities between PD-1+
vs. PD-1- intra-tumoral NK cells is shown, an earlier report
from this group using similar mouse tumor models classified
intra-tumoral NK cells as “anergic” (Ardolino et al., 2014) based
on decreased expression of CD107a and IFNγ pre- and post-
cytokine stimulation in vivo. Importantly, the authors did not
observe NK cell anergy in MHC-I expressing tumors, suggesting
that active inhibitory signaling via MHC-I and Ly49 receptors
prevents exhaustion through tempering or tuning of activating
signals. Interestingly, although PD-1 expression was variable
but detectable by flow cytometry on intra-tumoral NK cells in
this analysis (Hsu et al., 2018), there was no evidence of PD-1
expression on splenic NK cells, suggesting tissue specific effects.
Moreover, these results are in contrast to a separate report from
Quatrini et al., showing PD-1 expression restricted to splenic
NK cells during MCMV infection, with no evidence of PD-1
expression from NK cells isolated from other organs or tissues.
Importantly, this study uncovered a link between glucocorticoid
signaling and the immune response to infection by NK cells.
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TABLE 1 | Summary of key studies examining NK cell exhaustion marker expression in different contexts and populations.

References Species Population Exhaustion

marker(s)

Key findings and significance

Benson et al. (2010) Human Multiple

Myeloma

PD-1 HD: 1.4% ± 0.35

MM: 64% ± 4.4

aFirst paper to show NK PD-1.

Wiesmayr et al. (2012) Human PTLD PD-1 HD: 14% ± 6

PTLD: 36% ± 24

Variable expression of PD-1 on NK cells in

healthy and PTLD patients.

da Silva et al. (2014) Human Melanoma Tim-3

PD-1

Tim-3

HD: ∼20-90%

MD: ∼25-90%

PD-1

HD: <2%

MD: <2%

NK PD-1 absent in healthy and melanoma

patients. Proposes role for Tim-3 in

mediating NK exhaustion in advanced

melanoma.

MacFarlane et al. (2014) Human RCC PD-1 MFI: RCC>HD in

CD56dim subset

Links NK PD-1 and disease stage, but low

PD-1 MFI overall, and differences only

compared to healthy donors.

Beldi-Ferchiou et al.

(2016)

Human Kaposi’s

Sarcoma

PD-1 HD: 0.5% ± 0.08

KS: 4% ± 0.8

Low PD-1 expression overall which could

be explained by subjective nature of flow

cytometry gating.

Pesce et al. (2017) Human CMV+/CMV-

healthy adults

PD-1 NK PD-1 0–10%,

higher in CMV+

Links NK PD-1 to CMV+ serostatus,

although 25% of PD-1- donors were

CMV+.

Hsu et al. (2018) Mouse Intra-tumoral PD-1 bNK PD-1 0-70% 1st study linking anti-tumor effects of

anti-PD-1 therapy to direct NK cell effects.

PD-1 expression on NK cells only

observed in tumors, and expression levels

highly variable across and within tumors.

Lieberman et al. (2018) Human Healthy donors PD-1 Pre-activation ∼5%

Post-activation ∼50%

PD-1 on more functional NK cells, not

exhausted NK cells and only after 12 days

of maximal activation.

Quatrini et al. (2018) Mouse MCMV infection PD-1 MFI: MCMV>UI

(spleen only)

1st paper linking tissue specific expression

of PD-1 on NK cells to glucocorticoids and

neurohormonal axis. Unlike Hsu paper,

PD-1 expression only observed on splenic

NK cells.

Zhang et al. (2018) Human

Mouse

Intra-tumoral TIGIT

PD-1

cMouse tumor-

infiltrating NK:

TIGIT: 50–80%

PD-1: <10%

1st paper showing influence of TIGIT on

intra-tumoral NK cell function. Unlike Hsu

paper, PD-1 expression on intra-tumoral

NK cells consistently <10% across cell

lines (CT26, B16, 4T1).

Alvarez et al. (2019) Mouse MCMV infection

Cytokine treated

PD-1

TIGIT

Tim-3

PD-1
dControl: <10%

Acute: <10%

Chronic: <10%

TIGIT

Control: ∼10%

Acute: 25–40%

Chronic: 10–25%

Tim-3

Control: <10%

Acute: 15–30%

Chronic: <10%

PD-1 low on NK cells from control and

stimulated mice. TIGIT and Tim-3 correlate

with activation, but not maintained with

chronic stimulation. Suggests NKG2D

important in exhaustion phenotype.

a PD-1 therapeutic antibody used in study later found to bind receptor distinct from PD-1.
bVariable across tumor cell lines.
cHuman intra-tumoral NK cell TIGIT expression 10-80%.
dUntreated mice.

PTLD, post-transplant lymphoproliferative disease; RCC, renal cell carcinoma; CMV, cytomegalovirus; MCMV, murine cytomegalovirus; TILs, tumor infiltrating lymphocytes; MFI, mean

fluorescence intensity.

Although the authors did not directly link PD-1 expression to NK
dysfunction, their findings of increased immunopathology in the
spleens of mice with NK-specific PD-1 gene deletion suggested
a novel role for NK cells in the neurohormonal response to

infection and a physiological adaptation of NK dysfunction
(Quatrini et al., 2018).

Other studies have examined exhaustion marker expression
on NK cells in murine models and human cancer patients
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and observed different results regarding the key mediators
of this process. For example, Zhang et al., examined intra-
tumoral NK cells from multiple subcutaneous mouse tumor
models and identified the co-inhibitory receptor TIGIT (T cell
immunoglobulin and ITIM domain) as the critical marker for
dysfunctional NK cells (Zhang et al., 2018). In this and other
papers, PD-1 expression was minimal on NK cells, including
intra-tumoral NK cells. In fact, TIGIT+ NK cells displayed
decreased IFNγ, TNF, CD107a, and TRAIL expression consistent
with decreased effector function. TIGIT blockade reversed NK
dysfunction with superior anti-tumor effects in multiple murine
tumor models.

One of the initial descriptions of TIGIT highlighted the
ubiquity of TIGIT expression on healthy NK cells and its ability
to bind ligands PVR (CD155) and PVRL2 (CD112) (Stanietsky
et al., 2009). In this study TIGIT ligation was associated with
decreased NK cytotoxicity. These ligands can be expressed on
tumor cells and elicit an inhibitory signal to tumor-infiltrating
NK cells (Sanchez-Correa et al., 2019). TIGIT+ NK cells may
also be inhibited within the tumor microenvironment by MDSCs
expressing the cognate ligands (Sarhan et al., 2016), thus making
TIGIT a potentially prominent inhibitory receptor through
various mechanisms. Earlier work on TIGIT and T cells showed
that TIGIT expression did not have cell-intrinsic effects (Yu et al.,
2009), but was based on CD226 interactions and ligand binding
(Johnston et al., 2014). It has not been definitively determined
if TIGIT expression marks intrinsically dysfunctional NK cells
or if ligand binding is required for inhibitory effects, however
expression of the inhibitory receptor TIGIT appears prominent
both on human and mouse NK cells with potentially important
clinical benefits.

Other investigators examining NK cell exhaustion have
identified other markers of exhausted NK cells distinct from PD-
1 and TIGIT. For example, a study in melanoma patients found
a correlation between peripheral NK expression of TIM-3 and
disease stage (da Silva et al., 2014), suggesting cancer progression
and greater burden of disease induced NK exhaustion via
increasing TIM-3 expression. Notably, these authors observed
limited to no expression of PD-1 on NK cells (≤2%) and found
no difference in PD-1 expression betweenmelanoma patients and
healthy donors. A more recent study utilizing CyTOF to analyze
infiltrating immune cells in non-small cell lung cancer patients
similarly detected virtually no PD-1 expression on intra-tumoral
NK cells from 20 separate donors (Datar et al., 2019). Taken
together, these studies highlight discrepancies in the evidence for
and against exhaustion marker expression in NK cells, including
PD-1. In addition, since these studies focus on cell surface marker
expression (since this is usually viewed as mechanism to target
NK cells therapeutically), there is less in-depth assessment of how
expression of these markers is contributing to NK function or
dysfunction and whether expression of these markers is adaptive,
maladaptive, or potentially both.

Indeed, some studies have examined how stimulation of NK
cells can both augment function and induce dysfunction, often
simultaneously. For example, Alvarez et al. (2019) evaluated
the occurrence of NK cell exhaustion after chronic stimulation
(using viral and cytokine models) and proposed a paradigm

of NK cell exhaustion similar to T cell/LCMV exhaustion.
Specifically, the authors noted that prolonged cytokine exposure
with IL-15 for >5 days or following MCMV infection stimulated
sustained NK cell proliferation which then lead to decreased
Ki67, IFNγ, and granzyme B expression. These exhausted NK
cells were characterized by increased expression of KLRG1,
decreased expression of cytotoxicity trigger NKG2D, and
decreased expression of transcription factor Eomes. In keeping
with discrepancies in identifying consistent markers of NK
exhaustion, Alvarez et al., detected <5% expression of PD-1 on
murine NK cells. Similarly, the finding of decreased expression
of Eomes on exhausted NK cells was also discrepant to the classic
phenotype of exhausted CD8+ T cells where Eomes expression is
increased (Buggert et al., 2014).

Cytokine-based induction of NK dysfunction was also
investigated by Felices et al. (2018) who detected differences in
human NK cell responses when exposed to either continuous or
intermittent IL-15. Though the authors did not define a clear
phenotype of exhausted NK cells, they did identify significant
differences in expression of CD107a, IFNγ, and NK cytotoxicity.
The authors also showed that continuous IL-15 increased NK
proliferation and decreased survival, secondary to alterations in
NK cell metabolism induced by cytokine exposure which were
partially mitigated by mTOR inhibition. While continuous IL-15
exposure appeared to induce an exhausted state in the work by
Felices et al., combinations of IL-12, IL-15, and IL-18 were able
to generate cytokine-induced memory NK cells (Cooper et al.,
2009; Romee et al., 2012). It is currently unclear how the different
cytokines act in concert to generate a functionally improved NK
cell, while acting individually they appear to induce dysfunction.
This suggests significant context-dependent effects from cytokine
exposure as well as a narrow window between augmentation of
function and induction of dysfunction.

Notably, IL-15, in addition to other cytokines (Cooper et al.,
2009; Romee et al., 2012), also has been linked to the generation
of memory-like NK cells and is necessary for the de novo
generation of NK cells (Caligiuri, 2008). However, key papers
have also highlighted the detrimental effects of IL-15 on NK
cell malignant degeneration in the context of prolonged pro-
inflammatory exposure. For example, Fehniger et al., showed that
IL-15 transgenic mice develop fatal leukemia from NK and/or
CD8T cell infiltration (Fehniger et al., 2001) and in vitro studies
from the same group observed that LGL leukemia can be induced
from prolonged culture of human NK cells with IL-15, though
this was on the order of >6 months exposure (Mishra et al.,
2012). While neither of these studies investigated NK exhaustion
or dysfunction in these contexts, they do provide evidence for
the detrimental effects of prolonged cytokine exposure and the
resulting dysfunction that can be attributed to exhaustion when
examined under the appropriate lens.

Similar to the paradigm that T cell PD-1 expression
can represent both early activation and exhaustion following
prolonged antigen exposure depending on the kinetics of TCR
engagement (Ahn et al., 2018), it has also been proposed that
PD-1 expression on NK cells may delineate the most activated
NK cells following in vitro stimulation (Lieberman et al.,
2018). In these experiments, human NK cells were expanded
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using membrane bound-IL-15 and 4-1BBL transfected K562
cells supplemented with rhIL-2 and shown to upregulate PD-
1. The PD-1+ NK subset (∼30–70% by day 12, regardless of
CD56bright or CD56dim expression) was also shown to have
increased expression of the activation marker CD69. Along
with the increase in PD-1 expression seen over 12 days of
in vitro culture, these authors also observed decreased Tbet
expression and increased Eomes expression on NK cells as shown
by RNA analysis (although PD-1 mRNA was not assessed).
Importantly, the interpretation of flow cytometric results such
as those by Lierberman et al., using median fluorescence
intensity (MFI) assessed at different time points is difficult.
Unlike using the endpoint of percent positive cells (for marker
expression) compared to control populations using fluorescence
minus one (FMO) or isotype antibodies, the use of MFI as
a readout of marker expression is susceptible to changes in
light scattering properties across conditions and reagents (Vitale
et al., 1989; Zamai et al., 1998). As a result, comparing MFI
across time and experiments can introduce error as differences
in treatment, internal controls and/or flow cytometric parameters
may significantly alter the baselines and variance among samples.
This is especially true as NK cells increase in size and granularity
with activation (Zarcone et al., 1987).

Though controversies exist in defining exhausted NK cells and
identifying exhaustion-specific markers on NK cells, there is a
lack of investigation into the beneficial role of NK exhaustion.
With limited evidence for direct NK-mediated autoimmunity,
it is more likely that upregulation of exhaustion markers
may serve to limit toxicity under certain highly activating
conditions or limit immunopathological effects mediated by
other cell types. This has been recently examined in the context
of viral hepatitis and autoimmune cholangitis. In the viral
hepatitis study, it was determined that liver resident NK cells
express PD-L1 to bind and inhibit T cells (via PD-1) to limit
immunopathology from anti-viral T cells, while leading to
decreased viral clearance and persistence (Zhou et al., 2019).
Similarly, a study investigating autoimmune cholangitis showed
that liver resident NK cells inhibit CD4T cells to limit the
severity of autoimmune cholangitis, and loss of liver resident
NK cells worsens the disease (Zhao et al., 2019). Distinct from
immunopathology, however, PD-L1 has also been shown to be
induced on NK cells by tumors and augmentable by anti-PD-
L1 therapies for an anti-tumor effect (Dong et al., 2019). While
only PD-L1 on NK cells has been implicated in these studies, it
is probable that other exhaustion markers may be upregulated on
NK cells to limit NK-specific toxicities, or to indirectly limit T
cell-mediated immunopathology.

OTHER DYSFUNCTIONAL STATES

In recent years immune exhaustion has received the most
attention due to the ability to identify exhausted T cells (based
primarily on PD-1 expression) and the ability to antagonize
PD-1 signaling using therapeutic antibodies with well-publicized
clinical benefits. However, other states of cellular dysfunction
have also been described and characterized, notably anergy and

senescence, as well as deprivation and suppression, which are
critical to immune cell function.

ANERGY

In the broadest sense, T-cell anergy represents a state of
intrinsic functional inactivation (Schwartz, 2003). Schwartz (who
provided some of the initial descriptions of T-cell anergy)
divided the term into two categories—clonal anergy and adaptive
tolerance. Both states are characterized by decreased proliferation
and decreased IL-2 production, but clonal anergy derives from
insufficient activation and appears to occur in mature T cells,
while adaptive tolerance occurs secondary to insufficient co-
stimulation of naïve T cells (Schwartz, 2003; Chiodetti et al.,
2006). Further evaluation of these anergic states identified
distinct biochemical pathways associated with clonal anergy and
adaptive tolerance, respectively (Chiodetti et al., 2006). Despite
these differences, it is critical to understand that both states
appear to have evolved as a tolerance mechanism aimed at
limiting autoimmunity, thus attempts to reverse anergy (as has
been pursued for exhaustion) are liable to prove detrimental
while potentially also yielding minimal benefit.

Should NK cells follow the same paradigm set forth by T
cells, then anergy may occur following an insufficient activating
signal (adaptive tolerance) or following a strong stimulus without
adequate co-stimulation (clonal anergy). A sequential signaling
model for NK cells analogous to naïve T-cell activation was
recently proposed by Vidard et al., Here, the authors described
a three-signal sequence required for maximal NK cell activation
and proliferation (Vidard et al., 2019). The authors showed that
maximal NK proliferation required NK-aAPC contact, CD137
(4-1BB) activation, and cytokine (IL-2, IL-15, IL-21) signaling.
Once removed from maximally activating conditions, cytokine
alone was capable of maintaining cytotoxic function against
target cells as evidenced both by target cell lysis and NK cell
IFNγ production (Vidard et al., 2019). Hypothesizing a similar
mechanism to T cells, NK cells would thus become “anergic”
if CD137 signaling is absent at the time of NK-aAPC contact,
which may be the case when NK cells are within the tumor
microenvironment where NK cells contact MHC-I negative
tumor cells andmay receive IL-2 and/or IL-15 cytokine signaling,
without ligation of CD137, which is typically provided by antigen
presenting cells. This sequence of events is supported by Ardolino
et al., who showed reversal of NK cell anergy on intra-tumoral
NK cells when exogenous IL-12 and IL-18 was given systemically
(Ardolino et al., 2014). Overall, although these data support the
concept of NK cell anergy via inadequate 3-signal activation, it
is difficult to differentiate reversal of NK anergy in these models
from de novo activation of resting NK cells by cytokine exposure,
a process that has been well-established for the generation of
lymphokine activated killer (LAK) cells (activated NK and CD8T
cells) and successfully used in clinical trials (Rosenberg, 1985,
2014; Rosenberg et al., 1985, 1987) as well as for generation of
cytokine-induced memory NK cells, as discussed above.

Also comparable to T cell anergy (Otten and Germain,
1991), other groups have identified “split anergy” in NK cells
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(characterized by simultaneous loss of one specific function, with
corresponding gain of a separate effector function) (Jewett and
Bonavida, 1996; Jewett et al., 1996, 1997, 2006; Tseng et al.,
2015). As per the extensive work by Jewett and Bonavida,
NK cell “split anergy” occurs following ligation of CD16 and
is typically characterized by the subsequent loss of CD16
expression with gain of cytokine secretion abilities. The beneficial
effects of NK split anergy appear to be increased control
of cancer stem cells (CSCs) through induction of target cell
differentiation (Tseng et al., 2014, 2015), which is consistent
with other studies that have observed NK cell targeting of CSCs
(Ames et al., 2015; Luna et al., 2017).

The advent of cytokine therapy and other monoclonal-
based immunotherapeutics for cancer has created a situation
for T cells that may have otherwise never been encountered in
nature—that is out of sequence signal 3. This novel scenario
and its downstream consequences were previously investigated
by multiple labs independently and a novel, anergy-like T-cell
dysfunction was identified (Urban andWelsh, 2014; Sckisel et al.,
2015). To date, these adverse effects have not been identified
in NK cells, and pro-inflammatory cytokines have consistently
been shown to enhance NK effector function and proliferation
(Biron et al., 1999), though not to a maximal effect as illustrated
by Vidard et al. (2019). However, key aspects of anergy have
been observed/invoked in the context of licensing as NK cells
develop additional immunoregulatory mechanisms to balance
appropriate target recognition with tolerance. In this context,
these features of anergy likely have host benefits in the context
of NK cell maturation and function and highlight another key
difference between NK cells and T cells as resting NK cells
can kill target cells provided appropriate positive signals are
provided and steady-state inhibitory signals are removed (Orr
and Lanier, 2010). Interestingly, in studies investigating the
topic of NK tolerance, cytokines previously described in NK
memory and anergy studies (such IL-12 and IL-18) were also
capable of restoring NK function in unlicensed NK cells (Orr
and Lanier, 2010), and unlicensed (tolerant, hyporesponsive) NK
cells were shown in a related study to predominate in the NK
response to MCMV (Orr et al., 2010). These findings regarding
overlap between NK tolerance and anergy add complexity to our
understanding of whether NK dysfunction is helpful or harmful
to the host.

SENESCENCE

The universal phenomenon of replicative senescence (and
cellular aging) appears related to shortening of telomeres, the
eventual recognition of genomic DNA as double-strand breaks,
the implementation of repair machinery, and the ultimate arrest
of the cell cycle to halt replication and prevent compounding
of genomic instability (Campisi, 2013). Senescent T cells are
observed in both aged humans and after prolonged in vitro
culture (Spaulding et al., 1999), and they are phenotypically
characterized by decreased CD28 expression (Effros et al.,
1994). Functionally, senescent T cells have decreased replicative
ability (Spaulding et al., 1999), are associated with increased

production of pro-inflammatory cytokines TNFα and IL-1
(Dayan et al., 2000), several proteases (Callender et al., 2018),
and reduced apoptosis (Spaulding et al., 1999). In contrast to
other forms of immune cell dysfunction, senescence appears to
be a universal byproduct of prolific replication and not a direct
result of antigen-specific stimulation or other stimulatory or
inhibitory conditions. Characterization of NK senescence has
not been specifically elucidated, but given the universality of
cellular senescence, it is presumed that senescent NK cells are
also associated with a pro-inflammatory senescence-associated
secretory phenotype (SASP) and decreased proliferative capacity.
As senescence results from continued proliferation, techniques
to generate high numbers of NK cells for therapy may induce
senescence and promote dysfunction.

Understanding the lifespan of the cell is critical to gaining
an understanding of NK senescence, though this is challenging
as the lifespan of an NK cell is not clearly defined. Estimates
of the in vivo half-life of murine NK cells are ∼7–10 days
(Yokoyama et al., 2004), and possibly<10 days in humans (Nayar
et al., 2015), though this view has been expanded by advances
in cell identification and barcoding techniques in non-human
primates showing unique developmental pathways of NK subsets
(Wu et al., 2014) and prolonged persistence (months) of specific
NK clones (Wu et al., 2018). In vitro, this can be markedly
manipulated, but the limit of healthy, normal human NK cells
to grow in culture appears to be ∼15 weeks (Fujisaki et al.,
2009a). In mice, in vitro proliferation of healthy NK cells is ∼7–
10 days before apoptosis-associated changes occur, though NK
cells derived from P53 knockout mice have been cultured for
over 1 year under specific conditions (Karlhofer et al., 1995).
Fujisaki et al. (2009a) augmented this limit by culturing healthy
human NK cells in the presence of the transfected K562 cell line
bearing membrane bound 4-1BBL and IL-15, supplemented with
10 IU/mL IL-2. Using this system, healthy NK cells were able
to undergo 15 weeks of culturing and 20 population doublings
before losing replicative ability and dying despite continued
stimulation.WhenNK cells were transfected with theTERT gene,
replicative ability was restored, and cells could now be cultured
almost 160 weeks with continued cytotoxicity. Transfected NK
cells, however, were not able to grow autonomously in NSG
mice and still eventually developed senescence in vitro, though
at a much later time point compared to the non-transfected
population (Fujisaki et al., 2009a). Additional studies using
similar transfected K562 cells with membrane bound IL-21
(rather than IL-15) showed superior expansion of human NK
cells compared to membrane bound IL-15 K562 cells (Denman
et al., 2012). NK cells expanded with the IL-21-bearing K562
cell line exhibited increased telomere length which may be
related to differences in STAT signaling and TERT regulation.
These studies highlight that under ideal, highly activating and
stimulatory conditions, healthy human NK cells are most limited
by senescence at much later time points than believed to occur
in vivo, but not by other mechanisms of dysfunction (i.e.,
exhaustion). The reason for this is unclear as prior reports
would suggest that continuous cytokine exposure can induce
NK cell exhaustion. It is critical to note that ex vivo expansion
using the transfected K562 cell line utilizes membrane bound
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ligands, particularly 4-1BBL, which is not present in other studies
utilizing exogenous cytokine alone. Although membrane-bound
ligands may be more physiologic, it does not reflect the clinical
usage of exogenous cytokine (IL-2 or IL-15) that may induce
distinct immunologic effects. Perhaps these supraphysiologic
conditions overcome any inhibitory mechanisms NK cells
attempt to implement or alternatively there are no ligands present
to bind and send inhibitory signals to the NK cells.

The phenotype of senescent NK cells has also been
investigated using a similar in vitro expansion system based on
transfected K562 cells bearing membrane bound 4-1BBL and IL-
21 supplemented with 100 U/mL IL-2 (Streltsova et al., 2018).
These authors noted that following prolonged culture for 2–8
weeks, NK cell expression of inhibitory receptor NKG2A was
increased and maturation marker CD57 was lost. However, there
was no difference in IFNγ production or NK cell cytotoxicity
against target cells between CD57 positive and negative subsets,
and it was unclear if there was a proliferation difference between
the CD57 subsets, which would be a hallmark of senescent
cells. In prior work evaluating the CD57 subsets, Lopez-Verges
et al., identified critical differences between these cell populations
when differentiating the mature CD3-CD56dim NK cells between
CD57+ and CD57- (Lopez-Vergès et al., 2010). The authors
found that CD57+ NK cells proliferated less when exposed to
either cytokine or target cells, although the CD57+ NK cells had
greater expression of IFNγ and greater cytotoxicity with CD16
stimulation. The authors also observed that IL-2 induced CD57
expression on ∼30% of NK cells after 5 days in culture. With
the co-culture NK expansion system (transfected K562-mbIL15-
41BBL feeder cells with IL-2), they also showed that the CD57-
subset exhibited increased proliferation compared to the CD57+
NK cells (Lopez-Vergès et al., 2010). These findings suggest that
over the course of extended ex vivo NK expansion the more
proliferative CD57- NK cells will disproportionately expand and
outcompete the CD57+ population and result in a CD57- NK
cell product. Given these results, a definitive phenotype of NK
senescence has not been achieved and functional consequences
of NK senescence are not clearly established.

The in vivo implications of aging on NK-cell senescence
and resultant function has also been reviewed (Hazeldine and
Lord, 2013) with hypothesized consequences such as increased
viral infections, decreased anti-microbial functions and increased
malignancies. Gounder et al., showed in healthy humans an
age-dependent loss of total peripheral lymphocytes, but relative
increases in the NK cell compartment, suggesting that NK
cells were less susceptible to the effects of aging, particularly
senescence. However, NK cells from younger donors expanded
to a greater extent than those from older donors using IL-
2-based in vitro stimulation, highlighting that NK cells were
still susceptible to age-related dysfunction (Gounder et al.,
2018). Murine studies have also shown age-related differences
in NK cells (Beli et al., 2014; Nair et al., 2015), with one
study showing decreased total and mature NK cells in the
peripheral tissues in older mice aged 15–18 months, and an
accumulation of mature NK cells within the bone marrow
of these aged mice compared to younger mice aged 6–8
weeks (Beli et al., 2014).

Separate from their well-established anti-viral and anti-tumor
effects, NK cells are also prominent within the gravid uterus
early in gestation (Moffett-King, 2002) and senescence may
have a beneficial role. These unique uterine NK cells have a
proposed role in remodeling uterine vasculature to augment
fetal circulation (Rajagopalan and Long, 2012; Rätsep et al.,
2015). There is also evidence that this effect is mediated by
persistent signaling and induction of a senescent phenotype
in NK cells (Rajagopalan and Long, 2012). In their study,
Rajagopalan and Long showed that persistent NK cell signaling
via CD158d interactions with HLA-G induced a DNA damage
response pathway which lead to senescent NK cells with a
senescence-associated secretory phenotype and resultant effects
on vascular remodeling (Rajagopalan and Long, 2012). This
contrasts with the hypothesis that senescence is strictly the end-
result of cellular replication and suggests that the induction of
a senescent phenotype may be intentional and programmed in
specific situations, such as providing marked benefit to the host
and fetus during gestation.

DEPRIVATION, INACTIVATION, AND
SUPPRESSION

The essential role for cytokines in the survival and maintenance
of NK cells has been well-established (Carson et al., 1997;
Lindemann et al., 2003). Moreover, withdrawal of cytokine IL-
15 has been shown to lead to rapid NK cell apoptosis within 24 h
of withdrawal (Huntington et al., 2007). For NK cells activated
and expanded using the co-culture system (feeder cells with
cytokine typically IL-2 at 100 IU/mL), it seems likely that NK
cells undergo rapid apoptosis following adoptive cell transfer
into a host that does not provide these robust activating signals
in vivo which occur in vitro. These phenomena are similar to
cytokine deprivation which has been proposed to be the critical
mechanism for regulating T cell contraction following effector T
cell expansion (Vella et al., 1998; Strasser and Pellegrini, 2004;
Yajima et al., 2006; Fischer et al., 2008). Though this hypothesis
has been challenged (Prlic and Bevan, 2008), it clearly highlights
the critical role for cytokine deprivation in shaping immune
cell compartments. As NK cells are also intensely dependent on
cytokines for survival, proliferation, and activation signals, it is
likely that cytokine deprivation plays a major role in regulating
NK cells and may be responsible for the underwhelming results
of clinical trials using ex vivo activated and expanded NK cells.

In particular, clinical trials with ex vivo expanded NK
cells have shown limited NK engraftment following adoptive
transfer. For example, in a phase II trial using IL-2 activated
allogeneic NK cells transferred into lymphodepleted recipients
with recurrent ovarian or breast malignancies (n = 20), post-
transfer subcutaneous IL-2 administration (107 units, 3×/week
for 2 weeks) led to in vivo NK expansion in only a single
patient (expansion defined as ≥100 donor NK cells/µL whole
blood at day 14). In this patient, adoptively transferred NK cells
reached 40% of the lymphocyte pool by day 7 post-transfer,
but then decreased to 4% of the lymphocyte pool by day 14
(Geller et al., 2011). Similar results regarding loss of donor NK
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cells were observed in a more recent study in AML patients
(Romee et al., 2016). Allogeneic, haploidentical NK cells were
activated ex vivo with IL-12, IL-15 and IL-18 then transferred
into patients with AML. Patients received subcutaneous IL-2 (106

IU/m2 every other day for six doses), and a similar loss of donor
NK cells was observed, with most recipients having undetectable
donor NK cells by days 14–21 post-transfer. The duration of
NK engraftment appear even more challenging for NK-92-based
clinical trials as reported from a small trial for hematologic
malignancies (Williams et al., 2017). Of the patients who were
evaluated for post-transfer NK-92 detection, most transferred
cells were lost after 15min, and circulating NK-92 cells were
undetectable by 6 h post-transfer. These trials underscore the
common challenge of maintaining NK cell engraftment and
persistence following adoptive cell transfer of pre-activated or
expanded NK cells that appear dependent on cytokines. Future
directions for limiting the in vivo dependence of NK cells
of supraphysiologic levels of cytokine may include methods
to “wean” activated NK cells from cytokine prior to transfer,
inhibitory blockade in vivo or genetically engineering expanded
NK cells to make IL-15 or other stimulatory cytokines.

Inactivation of NK cells in specific contexts can alter
functional readouts that are used for identification of
dysfunctional states. This can be the case for the activating
immunoreceptor NKG2D, a key mediator of NK-cell target
recognition (Raulet, 2003). Initially shown on NK and T cells
to be activated through stress-inducible MICA (Bauer et al.,
1999), NKG2D recognizes MHC-I-related ligands that are
rarely expressed on normal cells, but upregulated on “stressed”
cells, resulting from viral infections or transformation (Raulet,
2003). These ligands, which are present in both human and
mouse, are also able to induce functional changes on the NK
cell upon NKG2D binding. When expressed on stressed cells,
these ligands act as a target for NK cell killing, but these ligands
have also shown to be shed from tumors to act as a decoy for
NKG2D-targeting. These shed NKG2D ligands have been shown
to negatively affect the effector function of both T cells (Groh
et al., 2002) and NK cells (Song et al., 2006). In the work by Song
et al., the authors detected soluble NKG2D ligands from gastric
cancer cell lines that caused loss of NKG2D expression on NK
cells, leading to a decrease in NK target cell lysis in cytotoxicity
assays (Song et al., 2006). The influence of soluble NKG2D
ligands has been complicated by further work showing an
opposite effect in knockout and transgenic mouse models (Deng
et al., 2015). In their work, Deng et al., found that shed MULT1
increased NKG2D expression on NK cells and increased effector
function resulting in in vivo rejection of tumor. These results
complicate interpretation of intra-tumoral NK cell function as
these shed NKG2D ligands clearly alter cytotoxic capability, a
critical readout for NK cell function.

Lastly, another mechanism which mediates NK dysfunction
is by extrinsic suppressive signals that NK cells may be exposed
to, particularly in the tumor microenvironment. The effects
of TGF-β on NK suppression has been extensively described
(Batlle and Massagué, 2019) and is one of the most well-
established NK inhibitory cytokine/growth factors in the tumor
microenvironment (Bellone et al., 1995; Bergmann et al., 1995;

Zaiatz-Bittencourt et al., 2018). In fact, inhibition of NK cells by
TGF-β has been shown in multiple pre-clinical models (mouse
and human, in vitro and in vivo) (Li et al., 2009; Zaiatz-
Bittencourt et al., 2018). These effects may greatly confound data
examining intra-tumoral NK cell dysfunction as the extensive
direct and indirect effects of TGF-β may be difficult to control
for. Additionally, the source of TGF-β can be diverse (tumor,
Tregs, macrophages, MDSCs, etc.) and the heterogeneity of
infiltrating immune cells could proportionately alter TGF-β
concentrations within tumor models and increase NK cell
dysfunction. Additional work has shown the impact of MDSCs
on NK cell function (Sarhan et al., 2016). Specifically, this
group showed that the memory-like adaptive human NK cells
express lower TIGIT and are thus less susceptible to MDSC-
mediated inhibition through CD155/TIGIT binding. These data
highlight the diverse mechanisms of NK dysfunction in the
tumor microenvironment and the interplay between suppressive
cells, inhibitory receptors, and NK effector function, and the
challenges in identifying the etiology of NK dysfunction.

NK CELLS IN ADAPTIVE IMMUNITY

While the classical definition of NK cells as non-T, non-B
lymphoid cells of the innate immune system (Vivier et al.,
2011) remains true, it has become increasingly evident that
NK cells also possess specific traits of the adaptive immune
system such as antigen specificity and memory recall (Sun
et al., 2009; Vivier et al., 2011; Cerwenka and Lanier, 2016).
The capacity of NK cells to recognize specific antigens (e.g.,
m157 in murine CMV) and display enhanced function when
specific antigens are re-encountered, suggest, circumstantially at
least, that immune checkpoints may also be operative in NK
cells in order to limit autoimmunity and immunopathology, as
this is one of the key proposed evolutionary roles for T cell
exhaustion. However, the well-defined sequential activation steps
required for generation of effector and memory populations in
T cells are unidirectional in nature (Smith-Garvin et al., 2009),
and T cells require antigen presentation and priming to occur
before they are capable of an effector response. In contrast,
NK cells are capable of target cell killing from a baseline state,
given the presence of adequate activating signals and lack of
inhibition, and unlike T cells they can more easily alternate
between resting and activated states. Thus, the plasticity and
potential for bidirectionality among resting and activated states
likely impacts the expression of checkpoint/inhibitory markers
(Lanier, 2008), and since NK cells are shorter-lived immune
cells that can oscillate between resting and activated states, the
benefit of exhaustion marker upregulation on these cells seems
less necessary for appropriate immuno-regulation.

MEMORY NK CELLS AND DYSFUNCTION

In addition, the lifespan of NK cells is critically important to
the debate regarding NK exhaustion as only long-lived immune
cells would theoretically be worth the evolutionary investment
of synthesizing and upregulating exhaustion markers to regulate
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chronic immune stimulation. Compared to T cells, the lifespan
of an NK cell is proposed to be much shorter, although this
topic remains an area of significant debate due to differences
between humans and mouse models. Fundamental advances in
the understanding of NK cell biology have been generated from
mouse models (Sungur and Murphy, 2013), and while these
advances have improved understanding of human NK cells,
there are critical species differences that limit the application
of murine data to human application, opening the door for
novel immunocompetent models to study NK biology (Park
et al., 2016; Canter et al., 2017). One of the most critical
differences between mouse and human NK cells concerns the
lifespan of an NK cell and the putative, long-lived “memory”
NK cell. Early evidence for a memory response by NK cells
was put forth by O’Leary et al. (2006) who identified contact
hypersensitivity to a hapten upon re-exposure 4 weeks after the
initial sensitization. This “recall” response was maintained in
T- and B-cell deficient mice (Rag2−/−) but lost in mice devoid
of all lymphocytes (Rag2−/−Il2rg−/−), thereby implicating NK
cells in the mechanism. This concept was further developed in
studies evaluating the influence of NK cells on early anti-viral
responses and post-vaccine re-exposure responses (Horowitz
et al., 2010a,b, 2012). Initial data showed the importance of
NK cells in responding to the early malaria infection (within
12–18 h), responses which were dependent on CD4-derived IL-
2 (Horowitz et al., 2010b). This phenomenon was exploited in
post-vaccine NK recall responses which were also dependent
on IL-2 produced from antigen-specific memory CD4T cells
(Horowitz et al., 2010a). These data were corroborated in
humans immunized against malaria (Horowitz et al., 2012).
The concept of intrinsic memory NK cells was expanded in
a seminal paper by Sun et al. (2009) who showed an antigen
specific memory response of Ly49H+ NK cells after murine
cytomegalovirus (MCMV) infection, including after adoptive
transfer of MCMV-exposed Ly49H+ NK cells into MCMV
non-exposed recipients. The authors demonstrated that these
transferred NK cells remained in the recipient for up to 70
days and could respond better than naïve NK cells following
anti-NK1.1 stimulation in vitro with increased IFNγ expression.
Similarly, adoptive transfer of Ly49H+ memory NK cells into
DAP12-deficient neonatal mice also produced improved survival
among the recipient mice following MCMV infection in vivo.
These observations from murine studies indicate that long-lived
memory NK cells occur in specific settings, and these memory
NK cells can exhibit superior effector function without evidence
for dysfunction as might be suspected for a longer-lived immune
effector cell. In fact, although studies addressing this question
are relatively limited to date, there are currently no reports
demonstrating increased susceptibility to dysfunctional states
(exhaustion, anergy, or senescence) in murine memory NK cells.

The proposed human correlate to the mouse Ly49H+

memory NK cell is the “adaptive” NK cell characterized by
NKG2C expression which is proposed to expand following
human CMV exposure and recognize target cells via binding of
HLA-E (Gumá et al., 2004; O’Sullivan et al., 2015). Work by Jeff
Miller’s group at U. of Minnesota has showed that allogeneic
hematopoietic cell transplant (HCT) recipients who experience
CMV reactivation have a preferential expansion of NKG2C+

NK cells, with increased effector functions of this subset
(Foley et al., 2012b). An additional study showed upregulation
of NKG2C expression following HCT into CMV seropositive
recipients (Foley et al., 2012a). However, the importance of
NKG2C as a marker of memory NK cells has been challenged by
observations that humans who carry homozygous null mutations
for NKG2C do not appear to have any demonstrable viral-specific
consequences in their immune responses from loss of NKG2C
expression, although compensatory mechanisms have been
proposed (Liu et al., 2016). Given the interaction between NK
cells and CMV, Pesce et al., examined NK cell phenotype among
CMV seropositive and seronegative subjects. They showed that
only NK cells from CMV seropositive individuals expressed PD-
1 (∼25% of cells) vs. 0% in seronegative subjects (Pesce et al.,
2017).While the authors noted several phenotypic and functional
differences between PD-1+ and PD-1- NK cells from healthy
donors, it was notable in this study that 199 of 200 healthy donors
had PD-1 expression ≤10%. Other groups have also examined
NKG2C+ expression as a surrogate for long-lived adaptive NK
cells. Merino et al., reported that NKG2C+ NK cells upregulate
checkpoint receptors PD-1 and LAG-3 following prolonged
NKG2C agonist activity (Merino et al., 2019). In their study,
the authors showed that IL-15 combined with anti-NKG2C
signaling led to LAG-3 upregulation, and the LAG-3+NKG2C+
NK cells were less functional as determined by decreased IFNγ

expression and diminished cytotoxicity following co-culture with
the erythroleukemia cell line and prototypical NK target, K562.
Notably, these endpoints of dysfunction are the same features
classically associated with T cell exhaustion. Also of note, in
contrast to the results obtained by Pesce et al. (2017), Merino
et al., detected no PD-1 expression onNKG2C+ or NKG2C- cells
at baseline. And while anti-NKG2C and IL-15 led to increased
PD-1 expression on the NKG2C+ NK cells only, it appears the
NK2GC+NK cells only represented≤5% of the total NK cells in
the in vitro assay (Merino et al., 2019).

Another important point is that the results from murine and
human studies investigatingmemory/adaptive NK cells appear to
show conflicting evidence regarding the extent of NK dysfunction
and exhaustion. Data from mouse models suggests that memory
NK cells exhibit superior responses compared to naïve NK cells
as seen by increased IFNγ and improved survival with infection,
suggesting a lack of dysfunction or exhaustion. In contrast,
data from human studies suggest that adaptive NK cells are the
principal NK cell subset susceptible to exhaustion as seen by
increased PD-1 and LAG-3 expression and decreased functional
effects. Ultimately, NKG2C+ NK cells appear to be a minority of
peripheral NK cells and are lacking in humans with homozygous
null mutations, with no apparent adverse effects. However, the
therapeutic potential of expanded NKG2C+ NK cells remains
to be determined, as CMV exposure is known to alter the KIR
repertoire with long-lasting alterations in the inhibitory and
activating KIR profile (Béziat et al., 2013).

Apart from antigen-induced memory NK cells, other recent
studies suggest that human (Romee et al., 2012) and mouse
(Cooper et al., 2009) memory NK cells can be induced solely by
cytokine exposure, and that these cytokine-induced memory NK
cells can be exploited to elicit meaningful anti-leukemia effects in
cancer patients (Romee et al., 2016). Notably, however, although
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an NK “memory” phenotype is postulated as the mechanism of
action in a clinical trial using cytokine-stimulated memory NK
cells, this conclusion is limited by data showing that transferred
NK cells following ex vivo cytokine expansion (and “memory”
formation) rapidly disappear from the recipients’ peripheral
blood by day 7–14 post-transfer (Romee et al., 2016). While the
concept of memory NK cell induction by cytokine signaling alone
is intriguing and warrants further investigation, an examination
of the significance of this subset of NK cells is hindered by
observations showing that this NK cell subset does not persist
beyond a maximum of 21 (Romee et al., 2012) or 22 (Cooper
et al., 2009) days post-transfer. Although exhaustion or other
manifestations of dysfunction may underlie their limited lifespan
in vivo (as observed with other NK cellular therapies), a formal
assessment for exhaustion or dysfunction parameters have not
been performed.

CONCLUSION

Characterizing and differentiating between anergy, exhaustion
and senescence has led to critical discoveries in the biology of
T cell dysfunction, most notably the reversal of exhaustion with
blocking antibodies which can lead to dramatic clinical anti-
tumor benefits. As the same paradigm is being applied to NK cells

through application of checkpoint blockade therapy, including
both PD-1 and PD-L1 inhibitors, it is critical to delineate when,
how, and why anergy, exhaustion and senescence of NK cells
occurs in order to better understand their complex biology and
thus fully realize the potential of NK-based therapies.
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