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Abstract

Habits form a crucial component of behavior. In recent years, key computational models have 

conceptualized habits as arising from model-free reinforcement learning (RL) mechanisms, which 

typically select between available actions based on the future value expected to result from each. 

Traditionally, however, habits have been understood as behaviors that can be triggered directly by 

a stimulus, without requiring the animal to evaluate expected outcomes. Here, we develop a 

computational model instantiating this traditional view, in which habits develop through the direct 

strengthening of recently taken actions rather than through the encoding of outcomes. We 

demonstrate that this model accounts for key behavioral manifestations of habits, including 

insensitivity to outcome devaluation and contingency degradation, as well as the effects of 

reinforcement schedule on the rate of habit formation. The model also explains the prevalent 

observation of perseveration in repeated-choice tasks as an additional behavioral manifestation of 

the habit system. We suggest that mapping habitual behaviors onto value-free mechanisms 

provides a parsimonious account of existing behavioral and neural data. This mapping may 

provide a new foundation for building robust and comprehensive models of the interaction of 

habits with other, more goal-directed types of behaviors and help to better guide research into the 

neural mechanisms underlying control of instrumental behavior more generally.

Introduction

A critical distinction exists between behaviors that are directed toward goals and those that 

are habitual. A large and growing body of work indicates that these behaviors depend on 

different sets of computations and distinct underlying neural circuits, suggesting that 

separable goal-directed and habitual systems implement fundamentally different strategies 

for the control of behavior (Balleine & O’Doherty, 2010; Dickinson, 1985; Dolan & Dayan, 

2013; Wood & Rünger, 2016; Yin & Knowlton, 2006). Goal-directed behaviors are 

understood to be driven by consideration of the outcomes that they are likely to bring about 

(i.e. “action-outcome” representations). Habits, on the other hand, are understood to be 

driven by direct links between cues in the environment and the actions that have often 

followed those cues (i.e. “stimulus-response” associations). The same action may be taken 
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under either goal-directed or habitual control in different circumstances: For example, you 

may take a left turn at an intersection because you have determined that turning left will get 

you home fastest given the specific layout of the roads and other relevant circumstances 

(goal-directed) or because that is what you have always done in the past at that intersection 

(habitual).

Several factors determine one’s likelihood of engaging in one type of behavior or another. 

First, habits only arise in familiar contexts, typically developing out of behaviors initially 

undertaken under goal-directed control (i.e., based on expected reward; Wood & Neal, 

2007). Second, habits tend to form most strongly in circumstances where actions are 

repeated very consistently (Dickinson, 1985; Wood & Rünger, 2016). From simple motor 

actions to choices of meals, travel routes and exercise routines, a large body of research has 

demonstrated that behaviors become habitual (i.e.., are faster, more accurate, and less 

susceptible to interference) the more often those behaviors are performed in the presence of 

a particular set of cues (reviewed in Wood & Neal, 2007; Wood & Runger, 2016). Third, the 

nature of one’s environment determines whether and how quickly a habit forms. Habits form 

slowly in environments where different behaviors lead to very different outcomes (Adams, 

1982) and quickly when the environment is relatively unpredictable (Derusso et al., 2010) or 

when behavior is repeated with a high rate of consistency (Lally, van Jaarsveld, Potts, & 

Wardle, 2010). Once a behavior has become a habit, that behavior is rendered inflexible with 

respect to changes in the environment, including those which make the behavior undesirable 

(Adams & Dickinson, 1981; Hammond, 1980).

Together, these findings support a traditional view of the role of habits in instrumental 

control, in which they result from direct (e.g., Hebbian) strengthening of stimulus-response 

associations (Figure 1, left). In contrast to this view, modern computational accounts 

typically model habits as mediated by reinforcement-learning mechanisms, which are 

outcome-sensitive (Figure 1, right). Here, we argue that such computational accounts stand 

in tension with key data on the psychology and neuroscience of habits. We provide a 

computational account instantiating the traditional view of habits and argue that this account 

provides a more parsimonious explanation for the behavioral and neural data.

Popular computational models of habits commonly appeal to Thorndike’s “Law of Effect,” 

which holds that an action that has been followed by rewarding outcomes is likely to be 

repeated in the future (Thorndike, 1911). Modern reinforcement learning (RL) has 

elaborated this law into a set of computational algorithms, according to which actions are 

selected based on cached values learned from previous experience (Daw, Niv, & Dayan, 

2005; Dolan & Dayan, 2013; Sutton & Barto, 1998). This class of computations focuses 

only on potential rewards, ignoring all reward-unrelated elements of one’s environment 

(discussed below); it is therefore referred to as “model-free” RL. This formulation for habits 

has become so prevalent that the terms “habit” and “model-free” are now used 

interchangeably in much of the computational literature (Dolan & Dayan, 2013; Doll, 

Simon, & Daw, 2012). Equating these terms, however, carries a critical assumption: that 

habits are driven by a reward-maximization process (i.e., a process that depends directly on 

potential outcomes).
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Model-free algorithms typically operate by learning the expected future reward associated 

with each possible action or state, relying crucially on these value representations. This idea, 

that habits are value-based, strains against traditional interpretations of habits as stimulus-

response (S-R) associations that are blind to potential outcomes (Dickinson, 1985; Hull, 

1943; James, 1890). The latter, value-free definition for habits drove the development of 

critical assays that have been used to discriminate between actions that are habitual versus 

goal-directed (i.e., outcome-sensitive), testing whether an animal continues to pursue a 

previous course of action when that action is no longer the most beneficial (Adams & 

Dickinson, 1981; Hammond, 1980). Such a value-free formulation of habits aligns well with 

Thorndike’s second law, the “Law of Exercise.” This law holds that an action that has been 

taken often in the past is likely to be repeated in the future, independent of its past 

consequences; in other words, it describes habits as a form of perseveration. This category of 

value-free habits has been maintained in modern theorizing on habits, where it has been 

referred to as “direct cuing” of behavior, as distinct from value-based forms of habits 

(“motivated cueing”; Wood & Neal, 2007; Wood & Rünger, 2016). A similar mechanism 

also appears in neural models of learning in cortico-basal ganglia circuits, which posit that 

behaviors initially acquired via reward sensitive plasticity in the basal ganglia can be 

rendered habitual via Hebbian cortico-cortical plasticity (O’Reilly and Frank 2006; Ashby et 

al. 2007; Ashby et al. 2010)

Here, we present a computational implementation of the Law of Exercise and show that it 

offers an alternative to model-free RL as a mechanism for habits, one that retains ideas about 

the nature of habits that have developed within other areas of psychology and neuroscience 

(Graybiel, 2008; James, 1890; Wood & Rünger, 2016). This value-free habit mechanism 

accounts for key findings in the animal learning literature that dissociate habitual and goal-

directed actions, namely the tendency for an animal to continue performing a previously 

learned action when that action is no longer predictive of the reinforcing outcome 

(contingency degradation; Hammond, 1980) or when the predicted outcome ceases to be 

desired by the subject (outcome devaluation; Adams & Dickinson, 1981). In addition, this 

model provides what is, to our knowledge, the first computational account of the difference 

in rate of habit formation under variable-interval and variable-ratio schedules of 

reinforcement (Adams, 1982; Dickinson, 1985; Gremel & Costa, 2013). Furthermore, a 

value-free habit mechanism explains a variety of other behavioral phenomena in which 

responses are facilitated by simple repetition (i.e. perseveration Aarts, Verplanken, & van 

Knippenberg, 1998; Akaishi, Umeda, Nagase, & Sakai, 2014; Akam et al., 2017; Balcarras, 

Ardid, Kaping, Everling, & Womelsdorf, 2016; Bertelson, 1965; Cho et al., 2002; Gold, 

Law, Connolly, & Bennur, 2008; Gore, Dorris, & Munoz, 2002; Jung & Dorner, 2018; Kim, 

Sul, Huh, Lee, & Jung, 2009; Lau & Glimcher, 2005; D. Lee, McGreevy, & Barraclough, 

2005; Padoa-Schioppa, 2013; Riefer, Prior, Blair, Pavey, & Love, 2017)

In addition to reformulating the computational underpinnings of habits, we will show that 

our model offers a critical realignment to prevailing models of instrumental control. 

According to this prevailing computational framework (Figure 1, right), an equivalence 

between habitual control and model-free RL computations is paralleled by an equivalence 

between goal-directed behavior and another set of RL computations, referred to as “model-

based” RL (Daw et al., 2005; Dolan & Dayan, 2013). Model-based RL guides behavior 
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through an internal model of the environment that is used to estimate values for each action. 

This internal model of the environment includes both the expected likelihood of 

transitioning between environmental states and the expected rewards for each action. A 

substantial theoretical and empirical literature has been built around the idea that the 

habitual/goal-directed distinction can be equated with the model-free/model-based 

distinction from RL, and this presumed equivalence has been used to glean insights into 

complex decision-making phenomena, such as addiction (Lucantonio, Caprioli, & 

Schoenbaum, 2014; Redish, Jensen, Johnson, & Kurth-Nelson, 2007), impulsivity (Kurth-

Nelson, Bickel, & Redish, 2012; Rangel, 2013), compulsivity (Gillan, Kosinski, Whelan, 

Phelps, & Daw, 2016; Gillan, Otto, Phelps, & Daw, 2015), and moral judgement (Buckholtz, 

2015; Crockett, 2013; Cushman, 2013). By replacing model-free RL with a value-free 

mechanism, our model forces a critical realignment of this prevailing framework, thereby 

prompting a deeper consideration of how the computations and circuitry for model-free and 

model-based reinforcement learning might share more commonalities than differences.

Methods

Computational Model

As proof of concept, we implemented the proposed mechanisms for habitual and goal-

directed control in a computational model. This model contains three modules: a goal-

directed controller, a habitual controller, and an arbiter (Figure 2). The goal-directed 

controller is sensitive to outcomes, selecting actions that are likely to lead to outcomes that 

have high value. Here, we instantiate it using a model-based reinforcement learning 

algorithm. The habitual controller, on the other hand, is sensitive only to the history of 

selected actions. It tends to repeat actions that have frequently been taken in the past (e.g., 

because they were selected by the goal-directed controller), regardless of their outcomes. 

The arbiter weights the influence of each of these controllers on behavior, tending to favor 

goal-directed control when action-outcome contingency is high, and to favor habitual control 

when habits are strong.

Habitual Controller—The habitual controller is sensitive only to the history of selected 

actions, and not to the outcomes of those actions. This action history is tracked by a matrix 

of habit strengths, Ht, in which Ht(s,a) acts as a recency-weighted average of how often 

action a was taken in state s prior to timepoint t. Initial habit strength H0 is set to zero and 

updated after each trial according to the following equation:

Ht + 1 st, ∗ = Ht st, ∗ + αH at − Ht st, ∗ 1

where st is the current state, Ht(st,*) is the row of Ht corresponding to st, αH is a step-size 

parameter that determines the rate of change, and at is a row vector over actions in which all 

elements are zero except for the one corresponding to at, the action taken on trial t. Note that 

the particular environments simulated in this paper all include only a single state, so for this 

and all subsequent equations we will drop the indexing by s, and consider H to be a vector 

over actions:
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Ht + 1 = Ht + αH at − Ht 2

For a full version of the model suitable for environments with multiple states, see equations 

in Appendix A.

Goal-Directed Controller—The goal-directed controller is composed of a model-based 

RL agent, sensitive not only to the actions taken, but also to their outcomes. In contrast to 

traditional reinforcement-learning methods, this agent does not consider “common currency” 

reward, but rather learns separately about reinforcers of different types. It maintains an 

estimate, Rt of predicted immediate reinforcement, in which Rt(a,m) gives the agent’s 

expectation at timepoint t of the magnitude of reinforcer type m, that will follow from action 

a. Initial reinforcement expectation R0 is set to zero, and after each trial, the agent updates 

these quantities according to the following equations (Sutton & Barto, 1998):

Rt + 1 at, m = Rt at, m + αR rt(m) − Rt at, m 3

where at is the current action, rt(m) is the magnitude of the reinforcer of type m received 

following that action, and αR is a step-size parameter which governs the rate of learning. 

The full model, suitable for environments with multiple states, includes equations for 

learning about the state transitions, as well as for estimating the expected future value 

associated with each action using planning (see Appendix A). In environments with only one 

state, the expected value for each action Q(a) is based on the expected immediate 

reinforcement of each type, as well as the agent’s utility for reinforcers of each type:

Q(a) = ∑
m

U(m) ⋅ R(a, m) 4

where U(m) is a utility function giving the value that the agent assigns to reinforcers of each 

type m. This value is typically unity for reinforcers designated “food pellets”, 0.1 for 

reinforcers designated “leisure”, and −1 for reinforcers designated “effort”, unless otherwise 

noted (see Simulation Three: Outcome Devaluation).

Arbiter—The arbiter governs the relative influence of each controller on each trial. It 

computes an overall drive D(a) in favor of each action, a, as a weighted sum of the habit 

strength H(a) and the goal-directed value Q(a).

D(a) = w ⋅ θh ⋅ H(a) + (1 − w) ⋅ θg ⋅ Q(a) 5
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Where θh, and θg are scaling parameters, and w is a weight computed on each trial by the 

arbiter to determine the relative influence of each controller (see Equation 9). The model 

then selects actions according to a softmax on D:

π(a) = eD(a)

∑a′e
D a′ 6

To determine the appropriate weight w, the arbiter computes two quantities, the action-
outcome contingency (g) and the overall habitization (h), which promote goal-directed and 

habitual control, respectively. Action-outcome contingency is a measure of the extent to 

which the expected outcome received varies according to the action that is performed. Here, 

we quantify action-outcome contingency for a particular reinforcer m, conditional on a 

particular policy π with the following equation:

g(m) = R − R 2 = ∑
a

π(a) R(a, m) − ∑
a′

π a′ R a′, m
2
, 7

which reflects the degree of variation in expected outcome for that reinforcer, based on the 

available actions and the policy. The measure g is minimal when all actions have the same 

expected outcome and increases as the outcomes associated with some actions are 

increasingly distinct from the outcomes associated with other actions. Note that this measure 

considers the degree to which average expected outcome varies with action. It does not 

consider the degree to which particular outcomes vary conditional on particular actions (e.g., 

an environment in which one action led to one pellet with certainty and another led to two 

pellets with 0.5 probability would be rated as having zero action-outcome contingency 

because the average outcome is identical for both actions). In our simulations, we include 

two types of reinforcers: “food pellets” and “leisure”. Because leisure is not a true outcome 

in the environment, we compute g(m) with respect to food pellets only, and drop the index 

by reinforcer type, considering g to be a scalar in future equations.

The arbiter also computes an analogous quantity for the habitual controller, which we term 

“overall habitization” h:

h = ∑
a

H(a) − mean H(a)
2

. 8

The overall habitization h is minimal when no action has a large habit strength, or when all 

action have approximately equal habit strengths. It is maximized when one or a few actions 

have much larger habits strengths than the others. The arbiter then computes the mixing 

weight w on the basis of these two quantities:
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w = 1
1 + e

wg ⋅ g − wh ⋅ h + w0
9

where wg and wh are scaling parameters controlling the relative strengths of the goal-

directed and habitual systems, w0 is a bias parameter, which shifts control toward the goal-

directed system. Note how g is no longer dependent on reinforcer type because all 

simulations in this paper contain only one type of reinforcer other than leisure. This 

calculation represents a push-pull relationship whereby goal-directed control is facilitated to 

the extent that the action-outcome contingency is high, whereas habits are facilitated to the 

extent that habitization is large. Figure 3 provides an intuition for how each of the values 

described above evolves in a setting where the more valuable of two actions reverses at some 

point in a session.

Simulated Task Environments

Simulation 1: Reversal Learning

To illustrate the behavior of the model and the dynamics of its various internal variables, we 

simulated behavior in a probabilistic reversal learning task (Fig 3). In this task, the agent was 

presented with an environment consisting of a single state in which two actions were 

available. In the first phase of the task (1000 trials), performance of one action (Action A) 

resulted in a reinforcer 50% of the time, while performance of Action B never did. In the 

second phase (reversal), Action A never resulted in a reinforcer, while Action B resulted in 

one 50% of the time that it was taken.

Simulation 2: Omission Contingency

We simulated behavior in an omission experiment using a similar environment with one 

state and two available actions. In the first phase, performance of one action (Press Lever) 

resulted in a reinforcer of one type (Pellet) 25% of the time, while performance of the other 

action (Withhold Press) resulted in a reinforcer of another type (Leisure) 100% of the time. 

In the second phase, performance of Press Lever was never reinforced, but performance of 

Withhold Press resulted in both a 25% chance of Pellet and a 100% chance of Leisure. We 

set the agent’s utilities for Pellet and Leisure to 1.0 and 0.1, respectively. To investigate the 

effect of training duration on behavioral flexibility in the face of omission, we varied the 

number of trials in the training phase from 100 to 2000, in intervals of 100. The omission 

phase was always 500 trials in duration. We simulated ten agents for each duration of phase 

one, and report the average rate of performance of Press Lever for the final trial in each 

phase.

Simulation 3: Outcome Devaluation

We simulated behavior in an outcome devaluation experiment in a similar way. The training 

phase was identical to that used for omission. This training phase was followed by a 

devaluation manipulation, in which we set the agent’s utility for the Pellet reinforcer to 0, 

and then an extinction phase. In the extinction phase, performance of Press Lever resulted in 
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no outcome, while performance of Withhold Press continued to result in Leisure with 

probability 100%. To investigate the effect of training duration on behavioral flexibility in 

the face of devaluation, we again varied the number of trials in the training phase from 10 to 

2000 in intervals of 100, and report the average rate of performance of Press Lever for the 

final trial in each phase.

Simulation 4: Framework for Free-Operant Tasks

Assays of goal-directed and habitual behavior are typically performed not in two-alternative 

forced-choice environments like those we describe above, but rather in free-operant tasks in 

which subjects are not constrained by a discrete-trial structure, but are free to perform one or 

more actions (e.g., lever presses) at any rate they wish. To simulate these environments, we 

adjusted our model to accommodate choices along this continuous variable (lever press rate). 

In this simulation, the actions (a) were press rates, which ranged between 0 and 150 presses 

per minute. This extension to a larger action space required two changes to the model. The 

first was the use of function approximation to compute the reinforcer function R and the 

habit strength H. Instead of learning these functions directly over each value of a, as in 

equation 2 or 3, the model approximated them using a set of basis functions. For the 

reinforcement function, we used a Taylor (polynomial) basis set with four bases:

Rt(a, m) = ∑
i = 0

3
bt(m, i) ⋅ ϕi(a)

ϕi(a) = a − 75
75

i

10

where bt(m, i) is the learned weight for each reinforcer m and basis element i (see Equation 

12). For the habit strength function H(a), we used a set of radial basis functions, with 30 

Gaussian bumps with means at intervals of 5 and standard deviation 5 presses per minute:

Ht(a) = ∑
i = 1

30
ct(i) ⋅ γi(a)

γi(a) = e
− (a − 5i)2

2 ⋅ 52

11

where ct(i) is the learned weight for corresponding basis element i. The goal-directed 

weights b and the habitual weights c are then updated using a stochastic gradient descent 

procedure (Sutton & Barto, 1998):

Miller et al. Page 8

Psychol Rev. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



bt + 1(m, i) = bt(m, i) + αR ⋅ rt(m) − Rt at, m ⋅ ∂
∂b(m, i) R

at

= bt(m, i) + αR ⋅ rt(m) − Rt at, m ⋅ ϕi at

12

ct + 1(i) = ct(i) + αH ⋅ ∑
a′

δa′, at
− H a′ ⋅ ∂

∂c(i) H
a′

= ct(i) + αH ⋅ ∑
a′

δa′, at
− H a′ ⋅ χi a′

13

where δa, at
 is a Kronecker delta function, taking on a value of one when a = at and zero 

otherwise, and the vertical bar with subscript indicates that the partial derivative is evaluated 

at the point indicated.

The second change we made was to introduce an “action density” measure m, which can be 

thought of as controlling how many distinct “actions” are available that yield a particular 

press rate. Selecting an action density measure that is sharply peaked at zero ensures that an 

agent that chooses randomly will on average press at a low rate, rather than selecting at 

random from a uniform distribution of press rates (i.e., pressing on average at half of the 

maximum possible rate). We used an exponentially decaying action density function with a 

scale of 5.

m(a) = e
− a

5 14

This measure influences action selection, leading to a tendency to prefer rates for which 

more actions are available (i.e., low press rates). In place of Equation 6, the model now 

selects actions according to:

π(a) = em(a)D(a)

∑a′e
m a′ D a′ 15

Habitization in Variable Interval vs. Variable Ratio Reinforcement Schedules

We used the above framework to simulate behavior under two reinforcement schedules 

commonly used in experiments on animal learning, termed “variable ratio” (VR) and 

“variable interval” (VI) schedules. In a VR schedule, the probability of receiving a reinforcer 

is constant after each lever press. Reinforcement rate is therefore directly proportional to 

response rate and potentially unbounded. In a VI schedule, reinforcers are “baited” at 

variable intervals, and the first press following baiting will lead to a reinforcer. The 
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probability that a press will be reinforced therefore increases as a function of the time since 

the last press, and reinforcement rate is a sublinear function of response rate, saturating at 

the average baiting rate. In both environments, lever pressing is thought to involve some 

effort cost, which increases superlinearly with the rate of responding. To model acquisition 

in a VR environment, we used VR10, in which each press had a 10% chance of being 

followed by a pellet. To model acquisition in a VI environment, we used VI6, in which 

pellets were baited every six seconds, or on average ten times per minute. In both cases, we 

included an effort cost that was quadratic in press rate. Specifically, each action resulted in 

reinforcers of two types: Pellet Rate, with positive utility, and Effort Rate, with negative 

utility. Effort was modulated by press rate, to reflect the physical and cognitive costs 

associated with lever pressing:

R(a, m = e f f ort) = 2 ⋅ 10−3a + 6 ⋅ 10−4a2 16

where a is the press rate selected, with units of presses per minute.

Omission and Devaluation in VR vs. VI Schedules

To investigate the effects of training duration on behavioral flexibility in these free-operant 

environments, we exposed agents given limited training (5,000 trials) or extended training 

(30,000 trials) with either a VR or a VI schedule to both Omission and Devaluation 

manipulations. In the Omission manipulation, we changed the reinforcement schedule such 

that the magnitude of the Pellet Rate reinforcer was inversely related to the Press Rate 

action. The magnitude of the Leisure reinforcer (reflecting effort cost) was not changed. In 

the Devaluation manipulation, we left the reinforcement schedule unchanged, but changed 

the agent’s utility for the Pellet Rate outcome to 0.

Lesions of Goal-Directed vs. Habitual Controllers

To simulate lesions of goal-directed and habitual controllers on behavior in free-operant 

tasks, we repeated the above experiments with the parameters of the model altered. 

Specifically, to model lesions of the goal-directed controller, we decreased the parameters θg 

and Wg, whereas to model lesions to the habitual controller, we decreased the parameters θh 

and Wh (see Table 1 for details).

Two-Armed Bandit Task

To illustrate the role of habits in producing perseveration in free-choice tasks, we simulated 

data from our agent performing a two-armed bandit task. The model was tested in an 

environment consisting of one state in which two actions were available. Performing either 

of these actions led to a reinforcer with some probability. Reinforcer probabilities were 

initialized uniformly between 0 and 1, and changed slowly across trials according to 

independent Gaussian random walks (SD = 0.15; bounded at 0 and 1), requiring the agent to 

continuously learn. The agent performed 10,000 trials in this environment, using the 

parameters in Table 1. Task parameters were selected to facilitate comparison to a rodent 

behavior dataset using a similar task (Miller, Botvinick, & Brody, in prep; Miller, Erlich, 

Kopec, Botvinick, & Brody, 2013). To simulate a dataset with similar characteristics to the 
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rat dataset, we generated data from 50 copies of our model, with parameters sampled from 

the range described in Table 2. See Appendix B for a detailed description of this agent.We 

analyzed these datasets using a logistic regression model that quantifies the influence of 

previous choices and their outcomes on future choice (Lau & Glimcher, 2005; Miller et al., 

in prep).

log
Pt

1 − Pt
= ∑

τ = 1

n
βa(τ) ⋅ at − τ + ∑

τ = 1

n
βr(τ) ⋅ rt − τ + ∑

τ = 1

n
βx(τ) ⋅ at − τ ⋅ rt − τ + βo 17

where Pt is the probability that the model believes the agent will select action 1 on trial t, at 

is the action taken on trial t, rt is the reinforcer received, n is a parameter of the analysis 

governing how many past trials to consider, βa, βr, and βx are vectors of length n containing 

fit parameters quantifying the influence of past actions, reinforcers, and their interaction, 

respectively, and βo is an offset parameter. Positive fit values of βa indicate a tendency of the 

agent to repeat actions that were taken in the past, independently of their outcomes, while 

positive values of βx indicate a tendency to repeat actions that led to reinforcement and to 

switch away from actions that do not.

Results

Our model proposes that behavior arises from the combined influence of two controllers: 

one driven by value-free perseveration (habitual) and one driven by model-based 

reinforcement learning (goal-directed). Figure 3 illustrates the learning dynamics of these 

two controllers in a simple reversal learning task, where an animal first learns to associate 

Action A with a higher probability (0.5) of reinforcement than Action B (0) and, after 1000 

trials, this contingency reverses (Figure 3A). Initially, behavior is driven by the goal-directed 

controller, which gradually learns the relative reinforcement rates (Figure 3B) and thus 

increasingly selects Action A. As it does so, the habitual controller strengthens its 

association between the current stimuli and Action A (Figure 3C). As these habits 

strengthen, the habitual controller increasingly drives the choice of which action to select 

(Figure 3D). As a result, when the reversal occurs, the agent continues to select Action A for 

an extended period, past the point where the goal-directed controller has learned that Action 

B is more likely to be reinforced (compare Figures 3B and 3E). In addition to demonstrating 

the different kinds of learning that drive each of these controllers, this example demonstrates 

that our model captures the observation that behavioral control in a novel environment tends 

to evolve from goal-directed to habitual (i.e., habits form from actions that were originally 

selected in a value-based manner). In the following sections we demonstrate that this model 

can capture all of the key diagnostic features of habitual behavior previously identified in 

animal behavior, including sensitivity to repetition frequency, reinforcement schedule, and 

selective modulation by lesions to one of two dissociable neural circuits.

Effects of Training Duration on Behavioral Flexibility

We first test whether our model can capture a central finding from research on habits: that 

extensive training in a static environment (overtraining) can render behavior inflexible in the 
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face of changes to that environment. This inflexibility is classically demonstrated in two 

ways: by altering the contingencies between actions and outcomes, or by devaluing the 

outcomes themselves. The first of these manipulations involves altering the probability that 

an outcome (e.g., a food pellet) will be delivered following an action (e.g., a lever-press) 

and/or the probability that it will be delivered in the absence of the action (contingency 

degradation). Overtrained animals will often continue to perform an action even when it no 

longer causes the desired outcome (indeed, even when it prevents the delivery of the 

outcome). This perseverative behavior is diagnostic of habitual control (Dickinson, 1998). 

The second manipulation involves rendering the outcome no longer desirable to the animal 

(e.g., by pairing its consumption with physical illness) – in this setup, overtrained animals 

will often continue performing an action that leads to an outcome they no longer desire 

(Adams, 1982).

We simulated the effect of overtraining on sensitivity to an omission contingency by running 

the model through simulated sessions with two stages. The agent was initially trained in an 

environment where performance of Action A (“press lever”) was followed by a reinforcer of 

one type (“food pellet”) 50% of the time, and Action B (“withhold press”) was followed by 

a reinforcer of another type (“leisure”) 100% of the time. The agent’s utility for the food 

pellet reinforcer was set to 1, while the utility of the leisure reinforcer was set to 0.1, and 

with experience in this environment the agent learns to press the lever on a large fraction of 

trials (Figure 4, blue curves). After a number of trials that varied between simulations, the 

reinforcement probabilities for the food pellet were reversed, such that pressing the lever 

resulted in no reinforcement, and withholding resulted in leisure 100% of the time and a 

food pellet 50% of the time. When the agent was given a small number of training trials, it 

successfully learned to decrease probability of lever pressing following this reversal. With 

longer training sessions, however, the model failed to reverse its actions within the same 

time period (Figure 3, left). This is consistent with data from animal learning, in which 

overtraining abolishes behavioral sensitivity to omission contingencies (Dickinson, 1998)

We simulated the effect of overtraining on outcome devaluation in a similar manner. The 

first stage of training was similar, with lever pressing being followed by a pellet 50% of the 

time and withholding being followed by leisure 100% of the time. At the end of this first 

stage, the agent’s utility for the food pellet reinforcer was decreased to zero, simulating a 

devaluation manipulation. In the final stage (testing), the agent was placed back in the choice 

state, and had the opportunity to again select between pressing and not pressing, with the 

outcome of pressing no longer delivering any reinforcement. We found that the frequency of 

choosing to lever-press in the testing stage strongly depended on the duration of the training 

stage (Figure 3, right), indicating that overtraining caused the agent to perseverate on the 

habitized behavior (lever-pressing).

Effects of Reinforcement Schedule on Habit Formation

Another central finding from research on habitual control is that the reinforcement schedule 

has a profound effect on habit formation. Actions followed by a constant probability of 

reinforcement (variable-ratio [VR] schedules) take a long time to habitize (Adams, 1982). 

By contrast, when an action is “baited” at a constant probability per unit time, and only the 
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first press following baiting results in reinforcement (variable-interval [VI] schedules), the 

action habitizes much more quickly, even when performance and overall rate of 

reinforcement are matched across these two reinforcement schedules (Dickinson, Nicholas, 

& Adams, 1983). The finding that VI schedules result in rapid habit formation has been 

widely replicated and represents a key element of the experimental toolkit for the study of 

habits (Gremel & Costa, 2013; Tanaka, Balleine, & O’Doherty, 2008; Yin & Knowlton, 

2006). We sought to replicate this effect using our model.

To do this, we adapted the model to operate in a continuous action space (see Methods for 

details). Briefly, at each timestep, instead of making a binary decision (e.g., between 

pressing the lever or not pressing), the agent instead selected a scalar lever pressing rate. 

Accordingly, the agent then observed a rate for each reinforcer rather than binary 

reinforcement. As the action Press Rate increased, two types of reinforcement increased, one 

with positive utility (Pellet Rate) and the other with negative utility (Effort Rate). For VR 

schedules, Pellet Rate is a linear function of Press Rate (Figure 4, top right), because each 

press results in reinforcement with equal probability. For VI schedules, Pellet Rate is a 

sublinear function of Press Rate, saturating at the rate of baiting (no matter how often a rat in 

a VI experiment presses the lever, reinforcers are only available as they are baited; Figure 4, 

top left). In both schedules, we modeled Effort Rate as a superlinear function of Press Rate 

(see Methods). The agents used function approximation to learn estimates for these two 

functions (which together comprise the model for the goal-directed controller), as well as for 

habit learning.

Consistent with empirical findings, we found that simulated agents trained on VI schedules 

lever-pressed at a moderate rate and habitized early in training (Figure 4, left) whereas 

agents trained on VR schedules lever-pressed at a high rate and habitized much later in 

training (Figure 4, right). This difference was largely driven by the difference in action-

outcome contingencies inherent to each schedule: a small change in press rate resulted in a 

much larger change in reinforcement rate for a VR schedule relative to a VI schedule 

(compare the slope of the green curve in the right panel relative to the left panel of Figure 4).

Effects of Striatal Lesions on Habit Formation and Behavioral Flexibility

The degree to which an animal behaves flexibly in a given environment can be affected 

profoundly by manipulating specific brain structures. Lesions to regions of a putative “habit 

system,” such as the dorsolateral striatum (DLS), promote behavioral flexibility (i.e., 

alleviate perseveration) following overtraining (Graybiel, 2008; Yin & Knowlton, 2006). 

Conversely, lesions to regions of a putative “goal-directed system,” such as the dorsomedial 

striatum (DMS) impair flexibility (Yin, Ostlund, Knowlton, & Balleine, 2005). In particular, 

relative to control rats, rats with lesions to DMS lever-press at a lower rate and are less able 

to decrease their press rate when reinforcers are omitted or devalued (Yin et al., 2005); rats 

with lesions to DLS lever-press at a similar rate to controls and are more successful than 

controls at adapting their press rate to omitted or devalued reinforcement (Yin, Knowlton, & 

Balleine, 2004, 2006).

We lesioned the goal-directed controller (DMS) or habitual controller (DLS) in our model 

while simulated agents performed the free-operant task (see Table 1 for details). These 
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agents received either limited training (5,000 trials) or extensive training (15,000) in the VR 

environment. They were then subjected to either an omission contingency (greater rates of 

lever pressing caused lower rates of reinforcement) or a devaluation manipulation (the utility 

of the pellet reinforcer was set to zero). Consistent with empirical findings described above, 

we found that lesioning the goal-directed system produced a low press rate that was 

unaffected by either omission or devaluation, whereas lesioning the habitual controller led to 

a high press rate that adapted to both manipulations (Figure 5). A “control” agent, with 

intact habitual and goal-directed controllers, adopted a high press rate that adapted to both 

manipulations when given limited training, but did not adapt to either following extensive 

training. Lesions to our model’s goal-directed and habitual controllers thus reproduce 

behavioral patterns typical of DMS and DLS lesioned rats, respectively, in classic 

experiments on instrumental conditioning.

Perseverative Behavior in Sequential Choice Tasks

Finally, we turn to the ubiquitous and poorly understood phenomenon of perseveration, 

which we argue can be understood as a manifestation of habitual control. In tasks where 

humans and animals make repeated decisions between similar alternatives, a near-universal 

observation is a tendency to select actions that have frequently been selected in the past, 

regardless of their outcome or of the task stimuli. For instance, in instructed task settings 

with human subjects, the speed and accuracy of an action are enhanced when that action has 

been recently performed (Bertelson, 1965; Cho et al., 2002). Similar effects are seen in 

monkeys (Gore et al., 2002). They are also seen in difficult perceptual decision tasks, in 

which decisions are nominally driven by stimuli that vary from trial to trial in a random way 

– these effects span monkeys (Gold et al., 2008), rats (Scott, Constantinople, Erlich, Tank, & 

Brody, 2015), and humans (Akaishi et al., 2014). Perseveration in reward-guided tasks has 

been seen with the aid of trial-by-trial analyses in rats (Ito & Doya, 2009; Kim et al., 2009), 

monkeys (Balcarras et al., 2016; Lau & Glimcher, 2005; D. Lee et al., 2005), and humans 

(Rutledge, Dean, Caplin, & Glimcher, 2010).

In one recent example, rats performing a dynamic two-armed bandit task exhibited 

behavioral patterns consistent with both reinforcement-seeking (i.e., being more likely to 

select a recently reinforced action), as well as with choice perseveration (i.e., being more 

likely to select a recently chosen action). Figure 7 shows the time course of this sensitivity to 

recent reinforcers (left panel) and recent choices (middle panel) in one example rat (data 

from Miller et al., in prep). We simulated performance in such an environment and found 

that the model was able to simultaneously reproduce both the reinforcement-seeking (value-

based) and perseverative (value-free) components of these behaviors (Figure 7, right, blue 

points). Replacing the habitual component of our model with a model-free reinforcement 

learning system rendered it unable to reproduce the perseverative pattern (Figure 7, right, red 

points). This example not only begins to validate the predictive abilities of our particular 

model, but also highlights the importance of a value-free habitual controller more generally 

in explaining habit-like behaviors that cannot otherwise be accounted for by a model-free 

RL-based algorithm alone.
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Discussion

Habits are classically thought of as simple, value-free, associations between a situation and 

the actions most commonly performed in that situation (Dickinson, 1985; Hull, 1943; James, 

1890), an intuition that continues to pervade a great deal of modern theorizing (Wood & 

Neal, 2007; Wood & Rünger, 2016). Despite this legacy, popular computational models of 

habits hold that they are implemented by value-based mechanisms, learning the expected 

future reward associated with each action in each situation (Daw et al., 2005; Dolan & 

Dayan, 2013; Keramati, Dezfouli, & Piray, 2011; S. W. Lee, Shimojo, & O’Doherty, 2014). 

Here, we have shown computationally that such value-based mechanisms are not strictly 

necessary, and that a value-free mechanism can account for the major behavioral phenomena 

that define habits.

We have constructed a computational model in which habits consist of value-free 

associations between stimuli and actions, and in which these associations are strengthened 

each time that action is performed in response to that stimulus. This model reproduces key 

features of the behavioral literature on habits. The first of these features is that habits form 

slowly over time and often depend on behaviors that are initially taken under goal-directed 

control. In situations where goal-directed control consistently produces the same behavior in 

response to the same stimulus, that behavior is likely to become a habit. Once a habit has 

formed, behavior can become inflexible in the face of changes to the environment that 

render it no longer desirable, such as contingency omission (in which the reinforcer that 

drove initial acquisition of the behavior is delivered only when the behavior is not 
performed) and outcome devaluation (in which the reinforcer is rendered no longer valuable 

to the subject). When combined with another classic idea from the literature on habits – that 

large action-outcome contingencies delay habit formation – our model is able to explain 

another classic finding in the literature on habitual control: the effect of reinforcement 

schedule on the rate of habit formation. Additionally, the proposal that value-free stimulus-

response associations exist in the brain explains the ubiquitous observation that human and 

animal subjects show reinforcer-independent perseverative behaviors in a wide variety of 

tasks.

This computational account in which habits are understood as value-free stimulus-response 

associations therefore provides a closer match to classic psychological theories of habits, an 

account for classic behavioral data on habit formation, and a novel framework for 

understanding additional behavioral phenomena. As we will describe in the next section, 

such a mechanism is also more consistent with findings on the neural basis for habitual 

behavior, and would in turn help to resolve tensions that have emerged in interpreting those 

findings through the lens of model-free RL.

Tensions in Neuroscientific Data

Separable Neural Substrates for Habits vs. Goal-directed Control—The idea that 

separate goal-directed and habitual controllers exist in the brain, supported by distinct neural 

circuits, is strongly supported by lesion data from both humans and other animals. In 

particular, goal-directed behavior can be disturbed by perturbations to any of a network of 

interconnected brain regions, including prelimbic cortex (PL; Balleine & Dickinson, 1998; 
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Corbit & Balleine, 2003; Killcross & Coutureau, 2003), dorsomedial striatum (DMS; Yin et 

al., 2005), mediodorsal thalamus (Corbit, Muir, & Balleine, 2003), basolateral amygdala 

(Balleine, Killcross, & Dickinson, 2003), and orbitofrontal cortex (Jones et al., 2012; OFC; 

McDannald, Lucantonio, Burke, Niv, & Schoenbaum, 2011; K. J. Miller, Botvinick, & 

Brody, 2017). Habitual behavior, on the other hand, can be disturbed by perturbations to 

infralimbic cortex (Coutureau & Killcross, 2003) as well as the dorsolateral striatum (DLS; 

Yin et al., 2004, 2006). In human subjects, comparable data are more sparse, but impaired 

goal-directed behavior has been found in subjects with lesions to ventromedial prefrontal 

cortex (vmPFC), a candidate homolog of rodent OFC (Reber et al., 2017), as well as 

following perturbations to dorsolateral prefrontal cortex (dlPFC), a possible homolog of PL 

(Smittenaar, FitzGerald, Romei, Wright, & Dolan, 2013).

Further support for this idea comes from data measuring neural activity. In rodents, goal-

directed behavior results in greater activity in OFC and DMS, while habitual behavior 

results in greater activity in DLS (Gremel & Costa, 2013). In human subjects, goal-directed 

value signals during outcome devaluation have been identified in vmPFC (Valentin, 

Dickinson, & O’Doherty, 2007), and similar signals during contingency degradation have 

been identified both in vmPFC and in the caudate nucleus, a homolog of DMS (Tanaka et 

al., 2008). Activity in the putamen, a homologue of rodent DLS, has been found to track the 

behavioral development of habits (Tricomi, Balleine, & O’Doherty, 2009).

In sum, considerable evidence supports the idea that anatomically separate goal-directed and 

habitual controllers exist in the brain, and that either controller can be responsible for a 

given action. Work in rodents points to a number of structures that are necessary for the 

operation of each of these systems, while work using human subjects, though limited, 

suggests that the prefrontal and striatal components (at least) are preserved across species 

(Balleine & O’Doherty, 2010; Liljeholm & O’Doherty, 2012).

No Clear Separation for Model-Free vs. Model-Based Control—In contrast to the 

literature on the habitual/goal-directed dichotomy, such clean dissociations have largely 

evaded investigations into the neural substrates of model-based and model-free 

computations, which can theoretically be differentiated in several ways (Doll et al., 2012). 

The first of these is based on a neuron’s response to an action’s outcome: whereas activity in 

model-free circuits should only reflect actual reinforcement received (or omitted) and/or the 

degree to which this deviates from similarly constrained expectations (e.g., temporal 

difference-based prediction error), activity in model-based circuits should (also) reflect 

hypothetical (cf. counterfactual/fictive) outcomes that could have been obtained, and should 

reflect prediction errors based on a richer set of expectations that incorporates, for instance, 

information about state transition probabilities.

In both of these cases, researchers have been unable to identify circuits that carry uniquely 

model-based value signals (Bornstein & Daw, 2011; Doll et al., 2012; D. Lee, Seo, & Jung, 

2012; Shohamy, 2011). Rather, regions that respond to hypothetical outcomes (a model-

based construct) – such as the OFC, vmPFC, and dorsal ACC – tend also to respond to 

actual outcomes (Abe, Seo, & Lee, 2011; Camille et al., 2004; Coricelli et al., 2005; 

Hayden, Pearson, & Platt, 2011; Lohrenz, McCabe, Camerer, & Montague, 2007; 

Miller et al. Page 16

Psychol Rev. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Rushworth, Noonan, Boorman, Walton, & Behrens, 2011; Strait, Blanchard, & Hayden, 

2014). Regions that respond to model-free prediction errors and/or model-free 

representations of expected value – such as ventral striatum, vmPFC, and even dopaminergic 

midbrain – also respond to their model-based analogs (Bromberg-Martin, Matsumoto, Hong, 

& Hikosaka, 2010; Daw, Gershman, Seymour, Dayan, & Dolan, 2011; Kishida et al., 2016; 

Wimmer, Daw, & Shohamy, 2012). Moreover, ventral striatum also displays signatures of 

value “preplay” or the covert expectation of reward (Redish, 2016; van der Meer & Redish, 

2009), reflective of a classically model-based computation that has been observed in the 

hippocampus as well. While there are a few notable exceptions to the neuroimaging patterns 

above – studies that implicate separate regions of striatum in model-free versus model-based 

valuation (S. W. Lee et al., 2014; Wunderlich, Dayan, & Dolan, 2012) –these studies have 

not explicitly teased apart model-free valuation from forms of perseveration, leaving open 

the possibility that model-free value signals in those studies served as proxies for value-free 

signals of habit strength.

Historically, some of the strongest support for the idea of uniquely model-free computations 

in the brain has come from studies showing that activity in midbrain dopamine neurons 

exhibits key characteristics of a computational signal which plays a key role in many model-

free learning algorithms: the temporal-difference reward prediction error (Schultz, Dayan, & 

Montague, 1997). More recent data, however, suggest that dopamine neurons likely carry 

model-based information as well. In a reversal learning task, these neurons carry information 

consistent with model-based inference (Bromberg-Martin et al., 2010), while dopamine 

release in human subjects encodes information about both real and counterfactual 

reinforcement (Kishida et al., 2016). Perhaps most tellingly, dopamine neurons in a sensory 

preconditioning task encode prediction errors indicative of knowledge only a model-based 

system is expected to have (Sadacca, Jones, & Schoenbaum, 2016). Patients with 

Parkinson’s Disease, in which dopamine neurons die in large numbers, show both impaired 

model-based behavior (Sharp, Foerde, Daw, & Shohamy, 2015) and increased perseveration 

(Rutledge et al., 2009), both of which are mitigated by dopamine-restoring drugs. These data 

indicate that dopamine neurons are unlikely to play a role in a uniquely model-free control 

system, but instead have access to model-based information and play a role in model-based 

control.

Collectively, these findings are at odds with the idea that the brain contains separable model-

based and model-free systems. Instead, they suggest that to the extent that model-free 

computations exist in the brain, they are intimately integrated with model-based control, 

consistent with some existing computational models (Gershman, Markman, & Otto, 2014; 

Ludvig, Mirian, Kehoe, & Sutton, 2017; Pezzulo, van der Meer, Lansink, & Pennartz, 2014; 

Silver, Sutton, & Müller, 2008; Sutton, 1990). This lack of clear dissociation between 

model-based and model-free computations stands in stark contrast to the dissociations 

(described above) between circuits for goal-directed and for habitual control. This casts 

doubt on the idea that a one-to-one mapping exists between these two dichotomies, and 

motivates the search for alternative accounts (K. J. Miller, Shenhav, Pezzulo, & Ludvig, 

2018).
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A Proposed Realignment

To overcome the obstacles just described, we propose a revised framework with two key 

alterations: a divorce and a union. We first propose severing the tie between habits and 

model-free RL, and instead defining a category of behaviors that are “value-free” and 

therefore distinct from either type of RL computation. These behaviors would consist of S-R 

associations whose strengths are modified primarily through repetition, consistent with 

Thorndike’s Law of Exercise and some more contemporary notions of habit learning (e.g. 

direct cuing; Wood & Rünger, 2016). They would be value-free in the sense that such a 

behavior could be fully described from the triggering of the stimulus to the emission of a 

response without requiring the representation of expected reinforcement along the way. 

Being value-free, however, would not entirely prevent these behaviors from being sensitive 

to one’s surroundings. S-R associations can be learned in a fashion such that their likelihood 

of being triggered is influenced by the spatial, temporal, and motivational contexts. 

Moreover, and perhaps counterintuitively, being value-free would by no means prevent S-R 

associations from being value-sensitive. In particular, while the mechanism for S-R learning 

might be through repetition, the strength of the resulting association might be influenced by 

the value of the action being repeated. That is, the behavior that becomes habitual may 

initially have been performed, and gradually strengthened, while in the pursuit of value 

under the goal-directed controller, but once a habit has formed, behavior is no longer directly 

driven by value (Tricomi et al., 2009; Wood & Rünger, 2016).

Our second proposal is to re-unify model-free and model-based computations as being two 

different drivers of goal-directed (i.e., value-based) behavior, distinct from the class of 

value-free behaviors just described. Rather than viewing these two computations as 

categorically distinct, we further suggest that it may be more appropriate to view them as 

falling along a continuum, varying according to the amount of information used to make 

decisions. On this view, the available information would range from recent rewards, through 

simple relationships between stimuli, up to a full world model of all possible states. All of 

these computations are goal-directed, but their informational content directs them toward 

different goals. This latter proposal carries an additional benefit in that it obviates the need 

to cache value in a “common currency” (i.e., without reference to a specific outcome like 

juice or food type). Storage of such a common currency signal is typically required for 

model-free RL, but evidence for such signals in the brain remains weak (Morrison & Nicola, 

2014; O’Doherty, 2014; Schoenbaum, Takahashi, Liu, & McDannald, 2011). This 

realignment therefore offers the possibility of bypassing model-free RL computations 

entirely, but our current model is agnostic as to whether such a drastic revision is appropriate 

based on the available evidence.

Relationship to Previous Computational Models

A large and influential body of computational work is built on the assumption that habitual 

control arises from model-free reinforcement learning algorithms (Dolan & Dayan, 2013; 

O’Doherty, Lee, & McNamee, 2015). This work originates from a proposal by Daw and 

colleagues (Daw et al., 2005) that the parallel goal-directed and habitual controllers 

described by animal learning theory can be understood computationally as model-based and 

model-free reinforcement learning agents, operating in parallel and competing with one 
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another for control of behavior. Subsequent work in this line has proposed different 

mechanisms for this competition (Keramati et al., 2011), or suggested ways in which model-

based and model-free controllers might cooperate rather than compete (Keramati, 

Smittenaar, Dolan, & Dayan, 2016; S. W. Lee et al., 2014), but has retained the basic 

premise that habits are instantiated by model-free RL mechanisms and that habitization can 

be understood as a process by which these mechanisms come to dominate model-based 

mechanisms for the control of behavior.

This view of habitization is most successful at explaining the inflexibility of habits in the 

face of outcome devaluation: because model-free mechanisms associate actions with 

common-currency values only, rather than particular outcomes, they are unable to respond 

flexibly when a particular outcome is no longer desired. This view is in tension, however, 

with the inflexibility of habits in the face of contingency omission: learning that an action 

which previously led to reinforcement now instead prevents reinforcement should be well 

within the capabilities of a model-free system. The only resolution to this tension that we are 

aware of requires invoking an additional habitization mechanism: a slow decrease in the 

learning rate of the model-free system when faced with stable environments (Dayan, 

Kakade, & Montague, 2000). Our proposal avoids this tension entirely by positing that 

habits are instantiated not by model-free RL, but by mechanisms that are entirely value-free. 

It therefore explains the inflexibility of habitual behavior in the face of both devaluation and 

omission using only one mechanism: the handoff of control from a value-based to a value-

free system.

In a similar vein to the current proposal, Dezfouli and Balleine (2012) developed a model of 

habits that dropped the mapping between habits and model-free reinforcement learning. 

Instead, they proposed that habits should be modeled as learned action sequences 

(“chunks”). In contrast to our model, however, those action sequences are initiated under 

(outcome-sensitive) goal-directed control, after which they proceed in an outcome-

insensitive manner until the sequence is completed. A particular sequence of actions can be 

executed more quickly when selected as a chunk than when each action is selected 

individually in series, and this strategy is preferred when the benefit of speeded responses 

outweighs the cost of such temporarily open-loop control. In contrast, the model of habits 

we are proposing completely cuts the tie between reinforcement learning and the habitual 

controller. Actions become habitized merely from use in a particular state, independent of 

any costs or benefits. This view provides an alternative explanation for the observation of 

habitized action sequences: when actions are typically performed in a particular order, the 

proprioceptive or other feedback associated with each action can become the “stimulus” that 

directly cues the subsequent action in the sequence (see James, 1890, chapter 4). Exploring 

this idea using using computational RL algorithms would involve building environments in 

which information about the previous action is incorporated into the state space. 

Constructing such models, and designing experiments to dissociate them from the Dezfouli 

and Balleine account, is a promising direction for research into habit formation. Such 

experiments might involve interposing additional instructed actions into traditional 

sequential behavior assays of habit formation.
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A mechanism that is conceptually similar to ours has appeared in models of interactions 

between the cortex and the basal ganglia (Ashby, Turner, & Horvitz, 2010; O’Reilly & 

Frank, 2006). These models propose that novel behaviors are first acquired via a dopamine-

dependent plasticity mechanism within the basal ganglia, and that with consistent 

performance, control of behavior is transferred to cortex via a Hebbian cortico-cortical 

plasticity mechanism. This idea has been applied to categorization learning and instrumental 

conditioning (Ashby, Ennis, & Spiering, 2007), sequence learning (Hélie, Roeder, Vucovich, 

Rünger, & Ashby, 2015) and to action selection in probabilistic environments (Topalidou, 

Kase, Boraud, & Rougier, 2017), and it has been suggested to describe how basal-ganglia-

dependent behavior becomes automatic in general (Hélie, Ell, & Ashby, 2015). Though the 

cortical module of these models is conceptually similar to our habitual controller, the basal 

ganglia module is different from our goal-directed controller in important ways: its learning 

rule instantiates a version of model-free RL, which tends to repeat actions in situations 

where they have led to reinforcement in the past, but does not learn about the particular 

outcomes that are expected to follow each action. Such a mechanism is not expected to 

exhibit the critical properties that characterize goal-directed control, most notably flexibility 

in the face of outcome devaluation. This form of flexible behavior is thought to require 

model-based mechanisms (Daw et al., 2005).

In addition to utilizing different mechanisms for value-based control and for arbitrating 

between the value-based and value-free controllers, our model also differs from these 

corticostriatal models in the level of analysis at which it is described. While this limits the 

level of detail with which our model can engage neurobiological data, it greatly facilitates 

engagement with a wide variety of behaviors and with a broad range of other theoretical 

approaches (Frank, 2015; Frank & Badre, 2015). As such, we have applied the model to a 

wider cut of behaviours, including outcome devaluation, perseveration, and the impact of 

reinforcement schedule on habitization. A critical next step, however, will be to develop a 

neurobiologically detailed implementation of our competing controllers, building on the 

types of multiple learning systems described above and related work (Ashby, Alfonso-Reese, 

Turken, & Waldron, 1998; McClelland, McNaughton, & O’Reilly, 1995; O’Reilly & Frank, 

2006). Such work would seek to integrate the Hebbian learning systems of these earlier 

models with a neurobiologically plausible model-based controller (Friedrich & Lengyel, 

2016; Solway & Botvinick, 2012)

Many formalizations of the standard mapping from habits/goals to model-free/model-based 

reinforcement learning also include a perseveration kernel (e.g. Daw et al., 2011; Lau & 

Glimcher, 2005). That is, in addition to the two types of value learning, subsequent choice is 

also influenced by the most recent choice. A similar tendency to repeat actions also appears 

due to predictive coding in the free energy framework, whereby actions are repeated for 

maximal predictability (Pezzulo, Rigoli, & Friston, 2015). This extra piece of computational 

machinery allows the models to account for the tendency to repeat choices, independent of 

values. Here, we bring this perseveration kernel to the foreground. Our proposed framework 

re-maps habits to the perseveration kernel and provides an account of how that kernel might 

plausibly operate in tandem with a goal-directed controller so as to account for behaviors 

that have previously been described by RL models. In effect, we are showing that the model-
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free component of some of these previous formalizations might not be necessary and that an 

elaboration of this perseveration kernel actually serves as a better model of habits.

In our model, control of behavior is allocated on each trial to either the habitual or the goal-

directed system by an arbiter. This arbiter is similar to mechanisms found in computational 

accounts mapping habitual/goal-directed control onto model-free/model-based 

reinforcement learning. In the initial formalization of this idea (Daw et al., 2005), each 

system determined the uncertainty in its value estimates, and the arbiter selected the system 

with less overall uncertainty. The extra computational complexity associated with the goal-

directed system was a source of uncertainty, leading the arbiter to favor the habitual system 

in well-learned environments. Subsequent accounts have developed arbiters that consider 

proxies for this uncertainty (S. W. Lee et al., 2014), or other possible advantages of habitual 

over goal-directed control, such as response time (Keramati et al., 2011). The arbiter in our 

model is motivated by a classic observation in research on habits: habits are promoted in 

situations where the contingencies between actions and outcomes are weak (Dickinson, 

1985). Future research should explore the conditions under which these arbiters make 

similar or diverging predictions for habitual control and systematically test the relative 

success of these arbitration approaches at accounting for empirical data under those 

conditions.

Implications

The realignment we are proposing carries important implications and testable predictions for 

future work. First and foremost, our account predicts that neural circuits associated with 

habitual behavior (e.g., DLS) should also be related to (value-free) perseveration. We might 

therefore expect greater activity in this circuit with additional repetitions of a previous 

action, and that lesioning parts of this circuit will reduce the tendency to perseverate. 

Secondly, we predict that elicitation of action repetition should be sufficient to construct new 

habits, without requiring reinforcement. For instance, generating actions with 

microstimulation in a particular context may facilitate the subsequent performance of those 

actions in that same context. Such evidence would provide strong support for our model. 

This prediction also provides a mechanistic underpinning for the repetition strategies that 

have shown to be effective at improving workplace and health-related performance through 

habit formation (Gardner, Lally, & Wardle, 2012; Lally et al., 2010; Wood & Rünger, 2016). 

Related to both of these claims, our model suggests that disorders of habitual behavior (e.g., 

Obsessive-Compulsive Disorder, Tic Disorders) need not result from dysfunction in 

valuation (cf. Gillan & Robbins, 2014). Our model can help to tease apart the degree to 

which value-free versus value-based processes are implicated in each of these disorders, and 

this will have important implications for considerations of etiology and treatment.

Our model makes additional but weaker predictions with respect to the relationship between 

model-free and model-based processes. If these represent related manifestations of a 

common value-based system, we expect brain regions that reflect model-free value signals to 

also reflect model-based value signals, as has been the case in many previous studies (Abe et 

al., 2011; Bornstein & Daw, 2011; Doll et al., 2012; D. Lee et al., 2012; Shohamy, 2011). 

For instance, model-free prediction errors should not be found in regions that fail to exhibit 
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model-based prediction errors. Related to this, one should not be able to lesion part of the 

model-free valuation circuit without influencing model-based behavior. To the extent that 

model-based forms of decision-making draw on additional mechanisms, including 

hippocampally-mediated stimulus-stimulus associations (Bornstein & Daw, 2013; Bunsey & 

Eichenbaum, 1996; Dusek & Eichenbaum, 1997) and prefrontal control mechanisms (E. K. 

Miller & Cohen, 2001), the reverse need not be true; we would predict that inactivating (K. 

J. Miller et al., 2017; Smittenaar et al., 2013) or otherwise drawing resources away from 

(Otto, Gershman, Markman, & Daw, 2013; Otto, Skatova, Madlon-Kay, & Daw, 2015) such 

additional mechanisms would selectively impair model-based behavior, as has been 

observed. Thus, our model accommodates data that fail to identify a model-free learning 

component in behavior and/or neural activity, while also accommodating a growing 

literature demonstrating factors that selectively promote or inhibit model-based control.

Importantly, the value-free mechanisms we have proposed for habits by no means preclude a 

role for value or motivational state (e.g., hunger or satiety) in habit learning. These may 

modulate the strengthening of habit associations either directly (e.g., through a feedback 

mechanism that influences the S-R association) or indirectly (e.g., by influencing the vigor 

of an action, which in turn results in greater associative strengths). The particular form of 

such a mechanism that best accounts for available data is a matter of further research, and 

one which we aim to pursue in extending our model.

Conclusions

We have provided evidence that a value-free learning process -- according to which S-R 

associations are strengthened through action repetition in a Hebbian manner -- may be 

sufficient to generate behaviors that have been traditionally classified as habits, and held up 

in contrast to goal-directed behaviors. We demonstrate that such a mechanism leads to 

perseveration of a previously higher-value action following contingency degradation or 

outcome devaluation and increased perseveration of all actions in a probabilistic choice task 

with varying action-outcome contingencies. We further show that such habitual behaviors 

are diminished by simulating lesions to a habitual system, consistent with classic findings in 

the animal behavior literature. Crucially, the system that generates these habitual behaviors 

does so without engaging in any manner of reinforcement learning (model-free or 

otherwise), consistent with theories that place habits outside the domain of RL.

In spite of the absence of a model-free controller, we also show that our model can still 

capture key features of behavior for a task that is thought to rely on both model-free and 

model-based control, bringing into sharper focus recurring questions about whether and/or 

when a purely model-free controller is necessary to explain these behaviors. Collectively, we 

argue that these findings support a realignment of current computational models of decision-

making, towards (re-)associating goal-directed/habitual with value-based/value-free rather 

than model-based/model-free. Beyond providing a potentially more parsimonious account of 

previous behavioral results, such a realignment may offer a better account of extant neural 

findings, including the fact that structures associated with model-free and model-based 

computations (i.e., value-based computations) tend to overlap, whereas lesion/inactivation 
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studies have revealed clear dissociations between structures associated with goal-directed 

behavior versus (potentially value-free) habits.
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Appendix A: Model for Environments with Multiple States

This appendix provides the complete equations for the full version of the model that can 

include multiple states. For simplicity, the version in the text only includes a single state 

because the simulations here all include only a single state.

Habitual Controller

The habitual controller is sensitive only to the history of selected actions, and not to the 

outcomes of those actions. This action history is tracked by a matrix of habit strengths, Ht, 

in which Ht(s,a) acts as a recency-weighted average of how often action a was taken in state 

s prior to timepoint t. Initial habit strength H0 is set to zero and updated after each trial 

according to the following equation:

Ht + 1 st, ∗ = Ht st, ∗ + αH at − Ht st, ∗ A1

where st is the current state, Ht(st,*) is the row of Ht corresponding to st, αH is a step-size 

parameter that determines the rate of change, and at is a row vector over actions in which all 

elements are zero except for the one corresponding to at, the action taken on trial t. 
Importantly only the row of H corresponding to st is updated – other rows remain the same.

Goal-Directed Controller

The goal-directed controller maintains an estimate, Rt of predicted immediate 

reinforcement, in which Rt(s,a,m) gives the agent’s expectation at timepoint t of the 

magnitude of reinforcer type m, that will follow from action a, in state s. Initial 

reinforcement expectation R0 is set to zero, and after each trial, the agent updates these 

quantities according to the following equation (Sutton & Barto, 1998):

Rt + 1 st, at, m = Rt st, at, m + αR rt(m) − Rt st, at, m A2

where st is the current state, at is the current action, rt(m) is the magnitude of the reinforcer 

of type m received following that action, and αR is a step-size parameter which governs the 

rate of learning.
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The goal-directed agent also maintains an estimate T of transition probabilities, where each 

element, Tt(s,a,s’), gives the agent’s expectation at timepoint t that taking action a in state s 
will lead to subsequent state s’To ensure proper normalization, T0 is initialized to 1/n, where 

n is the total number of states in the environment and is updated according to:

Tt + 1 st, at, ∗ = Tt st, at, ∗ + αT st + 1 − Tt st, at, ∗ A3

where Tt(st,at,*) is the slice of Tt corresponding to st and at,, and st+1 is a row vector over 

states in which all elements are zero except for the one corresponding to st+1, the state 

visited on trial t, and αT is a step-size parameter. The goal-directed agent assigns values to 

states based both on expected immediate reinforcement as well as on expected reinforcement 

in future states via the recursive Bellman equation (Sutton & Barto, 1998):

Q(s, a) = ∑
m

(U(m) ⋅ R(s, a, m)) + γ∑
s′

T s, a, s′ ⋅ max
a′

Q s′, a′ A4

where U(m) is a utility function giving the value that the agent assigns to reinforcers of each 

type m, and γ is a rate of temporal discounting giving the relative utility of immediate vs. 

future rewards.

Arbiter

The arbiter governs the relative influence of each controller on each trial. It computes an 

overall drive D(s,a) in favor of each action, a, taken in each state s, as a weighted sum of the 

habit strength H and the goal-directed value Q:

D(s, a) = w ⋅ θh ⋅ H(s, a) + (1 − w) ⋅ θg ⋅ Q(s, a) A5

where θh, and θg are scaling parameters, and w is a weight computed on each trial by the 

arbiter to determine the relative influence of each controller (see Equation A9). The model 

then selects actions according to a softmax on D:

π(s, a) = eD(s, a)

∑a′e
D s, a′ . A6

To determine the appropriate weight w, the arbiter computes two quantities, the action-
outcome contingency (g) and the overall habitization (h), which promote goal-directed and 

habitual control, respectively. Action-outcome contingency is a measure of the extent to 

which the expected outcome received varies according to the action that is performed. Here, 

we quantify action-outcome contingency for a particular reinforcer m, conditional on a 

particular policy π with the following equation:
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gt(m) = ∑
a

π st, a Rt st, a, m − ∑
a′

π st, a′ R st, a′, m
2

A7

which reflects the degree of variation in expected outcome for that reinforcer, based on the 

available actions and the policy. The arbiter also computes an analogous quantity for the 

habitual controller, which we term “overall habitization” h:

ht = ∑
a

Ht st, a − mean Ht st, a 2 . A8

The overall habitization h is minimal when no action has a large habit strength, or when all 

action have approximately equal habit strengths. It is maximized when one or a few actions 

have much larger habits strengths than the others. The arbiter then computes the mixing 

weight w on the basis of these two quantities:

w = 1
1 + e

wg ⋅ g − wh ⋅ h + w0
A9

Appendix B: Model-Based/Model-Free Agents

In simulations of the two-armed bandit environment, we compare our model to one 

consisting of a mixture of model-based and model-free agents. In a general environment, the 

model-based agent would be identical to the goal-directed agent described in Appendix A. 

In the two-armed bandit environment, however, there is only one state and one type of 

reinforcer, so the equations describing this agent (equations A2, A3, and A4) can be 

simplified to the following single equation:

Qt + 1 at = Qt at + αMB rt − Qt at B1

where the parameter αMB governs the rate of learning in this agent. This environment is 

therefore simple enough that the model-based agent does not employ any of its uniquely 

model-based machinery. The model-free agent is described by a similar equation, where we 

use H to denote its values, because in model-based/model-free schemes the model-free 

controller is typically thought of as implementing habitual control (Daw et al., 2005).

Ht + 1 at = Ht at + αMF rt − Ht at B2

where the parameter αMF governs the rate of learning. The model-based and model-free 

values are combined to determine overall drive:
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D(a) = w ⋅ θMF ⋅ H(a) + (1 − w) ⋅ θMB ⋅ Q(a) B3

where θMB and θMf are scaling parameters, and w is a mixing weight, and drive is used to 

determine choice:

π(s, a) = eD(a)

∑a′e
D a′ B4

The mixed model-based/model-free controller therefore has five free parameters, αMB, αMF, 

θMB, θMF, and w.
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Figure 1. 
Left: Traditional view of the relationship between habits and goal-directed control. Habits 

are viewed as stimulus-response associations that become stronger with use, while goal-

directed control takes into account knowledge of action-outcome relationships as well as 

current goals in order to guide choice. Right: Common computational view. Habits are 

implemented by a model-free RL agent which learns a value function over states and 

actions, while goal-directed control is implemented by a model-based RL agent which learns 

about the structure of the environment.
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Figure 2: 
Schematic description of the model components and their interactions. See main text for 

details.
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Figure 3. 
A) Simulations of a reversal-learning environment: Action A is initially reinforced with 

higher probability (0.5) than Action B (0), but after 1000 trials, the relative dominance of the 

actions reverses. B) Soon after the reversal, the goal-directed system learns that Action B is 

more valuable. C) The habit system increasingly favors Action A the more often it is chosen 

and only begins to favor Action B once that action is chosen more consistently (long after 

reversal). D) The weight of the goal-directed controller gradually decreases as habits 

strengthen, then increases post-reversal as the global and goal-directed reinforcement rates 

diverge. E) Actions are selected on each trial by a weighted combination of the goal-directed 

values (Q) and the habit strengths (H) according to the weight (w).
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Figure 4. Behavior becomes inflexible after overtraining.
Rate of pressing in a simulated instrumental conditioning task at the end of the training 

period (blue) as well as following omission or devaluation manipulations (orange), as a 

function of the duration of the training period. As this duration increases, the agent is 

increasingly unlikely to alter its behavior (blue and orange curves become similar). These 

simulations are consistent with the finding that overtraining results in behavior that is 

insensitive to omission and to devaluation. Error bars represent standard errors over ten 

simulations.
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Figure 5. 
Variable-Interval (VI) schedules produce more rapid habit formation than Variable-Ratio 

(VR) schedules. Top: Cross-sections of the state of the agent acquiring lever pressing on a 

VI (left) or VR (right) schedule, taken 5,000 trials into training. Solid curves indicate the 

rate of pellets or effort as a function of the rate of pressing. Note that in the VR schedule, 

pellet rate is linear in press rate, whereas in the VI schedule, the relationship is sublinear. 

Dashed red and green curves indicate the goal-directed system’s estimates of these quantities 

(R). The dashed orange curve indicates the habit strength (H) associated with each press 

rate. Bars give a histogram of the responses of the agent between time points 4,000 and 

5,000. Bottom: Time courses of key model variables over the course of training.
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Figure 6. Model Reproduces Effects of Lesions on Behavioral Flexibility.
Rate of lever pressing before (blue) and after (orange) omission (top) or devaluation 

manipulations (bottom rows) performed following either limited or extensive training (left 

and right columns). We simulated lesions by impairing the goal-directed or habitual 

controllers, respectively (see Methods for details). The unlesioned model responded flexibly 

to both manipulations following limited, but not extensive training. Goal-directed lesions 

caused the model to acquire lever pressing at a much lower rate, and rendered it inflexible to 

all manipulations, a pattern seen in rats with DMS lesions (Yin et al., 2005). Habit lesions 

caused the model to respond flexibly to all manipulations, a patterns seen in rats with DLS 

lesions (Yin et al., 2004, 2006).
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Figure 7. 
Left/middle: Rats performing a sequential choice task exhibit both reinforcer-seeking 

behavior (left) as well as repetition of recently chosen actions (middle), as has been 

observed in other species. Reinforcement and choice sensitivity are shown as a function of 

trial lag for one example rat (Example taken from Miller et al., in prep.). Right: To compare 

the ability of our model and a MB/MF agent to capture key tendencies in these data, we 

show total reinforcement and choice sensitivity (summing over trial lags shown in left/

middle panels) for these rats (green; mean and standard deviation) as well as for simulated 

model-based/perseverative agents and model-based/model-free agents. Overall the rats 

exhibit similar choice and reinforcement sensitivity on average. Our model is able to capture 

this with a relatively limited parameter range (blue scatter; see Table Two); across a much 

broader parameter range, however, we find that MB/MF agents are unable to generate this 

same pattern of behavior (red scatter).
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Table 1.

Parameter values used in simulations

Two-Alternative Forced Choice Operant Conditioning Operant Conditioning GD 
Lesion

Operant Conditioning Habit 
Lesion

αH 10−3 10−5 10−5 10−5

αR 10−2 10−1 10−1 10−1

θh 5 103 103 0

θg 5 20 2 20

wh 5 15 15 0

wg 5 6 0 6

w0 1 1 1 1
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Table 2.

Parameter ranges used in simulations of two-armed bandit task

Goal-Directed/Habitual Model-Based/Model-Free

αH 0.5–0.7 αMF 0.2–1

αR 0.5–0.7 αMB 0.2–1

θh 1–3 θMF 0–10

θg 3–6 θMB 0–10

wh 1–3 w 0–1

wg 8–12

w0 1–3

Psychol Rev. Author manuscript; available in PMC 2020 March 01.


	Abstract
	Introduction
	Methods
	Computational Model
	Habitual Controller
	Goal-Directed Controller
	Arbiter


	Simulated Task Environments
	Simulation 1: Reversal Learning
	Simulation 2: Omission Contingency
	Simulation 3: Outcome Devaluation
	Simulation 4: Framework for Free-Operant Tasks
	Habitization in Variable Interval vs. Variable Ratio Reinforcement Schedules
	Omission and Devaluation in VR vs. VI Schedules
	Lesions of Goal-Directed vs. Habitual Controllers
	Two-Armed Bandit Task

	Results
	Effects of Training Duration on Behavioral Flexibility
	Effects of Reinforcement Schedule on Habit Formation
	Effects of Striatal Lesions on Habit Formation and Behavioral Flexibility
	Perseverative Behavior in Sequential Choice Tasks

	Discussion
	Tensions in Neuroscientific Data
	Separable Neural Substrates for Habits vs. Goal-directed Control
	No Clear Separation for Model-Free vs. Model-Based Control

	A Proposed Realignment
	Relationship to Previous Computational Models
	Implications

	Conclusions
	Appendix A: Model for Environments with Multiple States
	Appendix B: Model-Based/Model-Free Agents
	References
	Figure 1.
	Figure 2:
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Table 1.
	Table 2.



