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1Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 2Channing 
Division of Network Medicine, Department of Medicine Brigham and Women’s Hospital and 
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Abstract

Background—Physical activity and sleep are behavioral risk factors for cancer that may be 

influenced by environmental exposures, including built and natural environments. However, many 

studies in this area are limited by residence-based exposure assessment and/or self-reported, time-

aggregated measures of behavior.

Methods—The Nurses’ Health Study 3 (NHS3) Mobile Health Substudy is a pilot study of 500 

participants in the prospective NHS3 cohort who use a smartphone application and a Fitbit for 

seven-day periods, four times over a year, to measure minute-level location, physical activity, heart 

rate, and sleep.

Results—We have collected data on 435 participants, comprising over 6 million participant-

minutes of heart rate, step, sleep, and location. Over 90% of participants had five days of ≥600 

minutes of Fitbit wear-time in their first sampling week, and this percentage dropped to 70% for 

weeks 2–4. Over 819 sampling weeks, we observed an average of 7,581 minutes of heart rate and 

step data (IQR: 6,651, 9,645) per participant-week, and >2 million minutes of sleep in over 5,700 

sleep bouts. We have recorded location data for 5,237 unique participant-days, averaging 104 

location observations per participant-day (IQR: 103, 107).

Conclusions—This study describes a protocol to incorporate mobile health technology into a 

nationwide prospective cohort to measure high-resolution objective data on environment and 

behavior.

Impact—This project could provide translational insights into interventions for urban planning to 

optimize opportunities for physical activity and healthy sleep patterns to reduce cancer risk.

Corresponding Author: Peter James, Harvard Medical School & Harvard Pilgrim Health Care Institute, Population Medicine, 401 Park 
Dr., Suite 401, Boston, MA 02215, United States, pjames@hsph.harvard.edu. 

Conflict of Interest Statement: The authors declare no potential conflicts of interest.

HHS Public Access
Author manuscript
Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2020 October 01.

Published in final edited form as:
Cancer Epidemiol Biomarkers Prev. 2020 April ; 29(4): 736–743. doi:10.1158/1055-9965.EPI-19-1386.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1 Introduction

Physical activity, sleep patterns, and obesity are major behavioral risk factors for cancer that 

may be influenced by environmental factors, including the built environment and green 

spaces. Inadequate physical activity in the US contributes to over 12% of breast and colon 

cancers, on par with the disease burden of smoking. (1) However, 80% of Americans do not 

report meeting the guideline of 150 minutes of moderate-intensity aerobic activity per week.

(2) In addition, 50–70 million US adults have chronic sleep and wakefulness disorders: 35% 

sleep <7 hours on average per night and 38% unintentionally fall asleep during the day.(3,4) 

Epidemiologic studies have reported that sleep disturbances are linked to breast,(5–11) 

colon,(12,13) prostate,(14–16) and endometrial cancer.(17) In addition, lack of physical 

activity and sleep act together to drive obesity,(18,19) also known risk factor for cancer.(20–

22)

Health behaviors are strongly influenced by the dynamic social and physical environments 

within which individuals interact.(23) Built and natural environments can provide 

“walkable” neighborhoods with safe, shaded, and protected parks that provide opportunities 

for routine physical activity, which may subsequently drive sleep patterns. These 

environments may also buffer individuals from exposure to noise, light at night, and air 

pollution, which may in turn lead to improved sleep quality. Research is evolving on how the 

built and natural environments influence health behaviors, however, most of these studies are 

cross-sectional and therefore limited by the resolution of the data collected. Using only a 

participant’s residential address to define environmental exposure ignores the fact that many 

people spend most of their day outside the home.(24,25) Physical activity and sleep are often 

based on time-aggregated, self-reported data, which do not provide objective information on 

timing or duration of these behaviors.(26–30) Measurement error in environmental exposure 

assessment and self-report of physical activity and sleep may lead to bias in assessing the 

impact of environmental factors on health behaviors.

New consumer technologies such as smartphones and wearable accelerometer devices have 

unlocked the potential to gather data on location-based behavior at a greatly increased 

spatiotemporal resolution. High precision global positioning systems (GPS) data from a 

smartphone can be integrated with spatial datasets (e.g., built and natural environments, 

noise, and air pollution),(31–36) to create personalized, intraday, dynamic environmental 

exposure metrics. High precision activity data from consumer wearable devices containing 

miniaturized accelerometers, such as Fitbits, can be used as detailed, objective measures of 

participants’ physical activity. Fitbits measure physical activity as well as research-grade 

accelerometry in lab settings,(37) are comparable to electrocardiography (ECG) for heart 

rate during routine physical activity,(38–42) and have been tested for validity and usability 

in free-living subjects,(43–47), although it is worth noting that not all studies are consistent 

(41,46,48). In measuring sleep, Fitbit performs similarly to research-grade accelerometry 

when compared to the gold-standard of polysomnography (49–51), although Fitbit may 

systematically overestimate sleep (51) and some sleep metrics (e.g., total sleep time) may be 

more valid than others (e.g., sleep efficiency) (49). Wearable devices are often designed to 

communicate with a smartphone and securely upload data in near real-time, alleviating the 

need to mail devices back to researchers, which is costly and burdensome (52). Modern 
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mobile health (mHealth) technologies offer a passive, low-cost opportunity to address 

current limitations in measuring the impact of environment on cancer-related health 

behaviors.

In this protocol paper, we describe our methodology to integrate a custom smartphone 

application and a consumer wearable device protocol into the ongoing Nurses’ Health Study 

3 (NHS3), as well as use the data generated from this study. This pilot protocol, known as 

the NHS3 Mobile Health Substudy, aims to pilot approaches that will provide detailed 

information on environmental exposures and health behaviors using modern technology. The 

Substudy collects data on minute-level smartphone-based GPS, and Fitbit-based physical 

activity, heart rate, and sleep over seven-day sampling periods four times across a year for a 

maximum of 28 days of sampling per participant. We have provided some preliminary 

statistics on our data gathering to date; however, future analyses will assess the success of 

this pilot study and implications for scaling up measures to the full NHS3 cohort. 

Embedding these novel mHealth measures within an ongoing prospective cohort study will 

enable researchers to 1. examine how these mHealth measures compare to traditional 

environmental (GPS- v. residence-based) and behavioral (Fitbit v. self-report) measures; 2. 

understand the distribution of and variability in physical activity, heart rate, and sleep both 

between participants as well as within participant; and 3. analyze the longitudinal 

associations between minute-level environmental exposure and health behaviors.

2 Methods

2.1 NHS3 Mobile Health Substudy

The NHS3 is an on-going internet-based open cohort study of male and female nurses in the 

USA and Canada that began in 2010.(53) To be eligible for the study, participants have to be 

either a registered nurse, licensed practical/vocational nurse or nursing student and born on 

or after January 1, 1965. As of February 2020, 48,809 participants had joined the study. 

Participants complete questionnaires approximately every six months on lifestyle and 

medical characteristics. The response rate for the second questionnaire is currently at 72%; 

for participants who have completed at least two questionnaires, subsequent response rates 

exceed 80%.

The NHS3 Mobile Health Substudy is a pilot study that asks a subset of NHS3 participants 

(N=500) to download a custom smartphone application and to wear a consumer wearable 

fitness tracker. The aims of the Substudy are to quantify the relationships between dynamic 

measures of geographic context and objective measures of physical activity and sleep, and to 

develop measurement correction models for geographic context, physical activity, and sleep 

that can be applied to the full NHS3 cohort. This study is intended as a pilot to see whether 

the use of smartphone applications and consumer wearable devices will be accepted by 

NHS3 participants. In the Substudy, participants undertake seven-day sampling periods four 

times across a year, spaced three months apart to capture seasonal variability in behaviors. 

Consistent with other physical activity and GPS studies, we chose to conduct a seven day 

protocol to capture behaviors and exposures on both work and non-work days (32). During 

this sampling period, they wear a researcher-provided Fitbit to measure physical activity, 

heart rate, and sleep, and run an application on their smartphones. Participants were emailed 
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instructions to run the smartphone application on their phone and to wear the Fitbit 

simultaneously during all seven-day sampling periods. During these sampling periods, they 

were asked to have their smartphone on them during waking hours and to wear the Fitbit for 

24 hours a day (except when showering, bathing, or swimming). Participants were asked to 

download the Fitbit app and to sync their data with the app every 3–4 days. They were also 

asked to charge their Fitbit before each sampling period, as well as every 3–4 days during 

sampling periods. Participants were free to keep their Fitbit devices after the study 

concluded. We worked with app developers (Overlap Health, Inc.) to develop a customized 

NHS3 iPhone app that enables us to distribute short surveys, collect smartphone 

accelerometer and location (GPS) data, and sync with the Fitbit Application Programming 

Interface (API) to gather Fitbit wearable device data. The Substudy began enrollment on 

March 2018 and data collection is ongoing.

To be eligible for the Substudy, participants had to have been 21 years old as of March 12, 

2018, have to have reported height and weight on their first questionnaire, have to have 

completed the physical activity questions on their second questionnaire (six months into the 

main NHS3 study), have to have completed the sleep questions on their fourth questionnaire 

(one and a half years into the study), and must have reported that they do not have a doctor-

diagnosed sleep disorder on the fourth questionnaire. Further, participants must own an 

iPhone (for the pilot, our app was only designed for iOS), and had to live in the contiguous 

United States (where data on the environmental exposures of interest were available).

Potential participants were emailed an invitation to participate in the Substudy and were sent 

a link to an eligibility screener to determine whether they had an iPhone and to confirm that 

they did not have a doctor diagnosed sleep disorder. If participants were determined to be 

eligible, they were sent an electronic informed consent form. Once consented, they are 

mailed a Fitbit and sent Substudy instructions that include a link to download the custom 

NHS3 smartphone application. The Substudy was approved by the Institutional Review 

Board of the Brigham and Women’s Hospital (Boston, Massachusetts) and Harvard Pilgrim 

Health Care Institute (Boston, Massachusetts).

2.2 NHS3 Smartphone Application

The NHS3 iOS application walks participants through the onboarding process and obtains 

permission to gather location services data and to send notifications. See Supplemental 

Figure 1 for screenshots of the app on the participant facing side. The application also 

directly connects participants to Fitbit, so that they can give permission to access their Fitbit 

data. Over the course of one year, Substudy participants are sent a notification by the 

smartphone application four times that asks them if the upcoming week is a typical week for 

the participant. If the participant responds yes, then sampling begins and the participant is 

advised to wear their Fitbit. If the participant responds no, they can delay up to four times 

until the sampling period is considered missed.

Before and after the sampling period, participants fill out a brief survey assessing whether 

the week and their sleep patterns were typical for them. The survey includes questions about 

stress level, factors effecting sleep (including a range of responses from “young children 

who don’t sleep through the night,” to “partner snoring,” to “had a cold”), night shifts and 
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breastfeeding. At the end of the year, the app provides several questions on the quality of the 

experience participating in the study and opportunities for improvement. After completing 

the four sampling sessions, participants are emailed a link to a questionnaire on self-reported 

physical activity (54), sleep, and sedentary behavior (55) (Supplemental Table 1). Data from 

these questionnaires will be used to compare self-reported data on these behaviors to 

objectively collected data from wearable devices. The combination of self-report and Fitbit 

data will be used to inform regression calibration methods.(56)

The NHS3 application utilizes smartphone location services, which employ a hybrid of 

assisted GPS, WiFi positioning, and cellular network positioning to precisely estimate 

location.(57–59) The NHS3 app uses smartphone location services to record the latitude and 

longitude of participants during the sampling periods at ten-minute intervals. We chose this 

interval to reduce battery consumption while maintaining the ability to impute participant 

trajectories throughout the day.(60) Each geolocation coordinate also receives a measure of 

horizontal accuracy in meters. Based on the distribution of horizontal accuracy from our 

participant data, we chose 65 meters as a cutpoint for adequate accuracy.

2.3 Fitbit: Consumer Wearable Devices

We have provided our participants with a range of Fitbit devices over the course of 

enrollment, including the Fitbit Charge HR, the Fitbit Charge 2, and the Fitbit Charge 3. All 

of these devices measure physical activity, heart rate, and sleep, and last up to 7 days on a 

single charge. Physical activity and sleep data are measured through miniaturized 

accelerometers in the Fitbit, and proprietary algorithms parse accelerometry data into steps, 

activity intensity, and sleep duration at the minute level. Heart rate is measured by the Fitbit 

device through photoplethysmography. Photoplethysmography uses light to measure blood 

flow by measuring the absorption of green light by the blood flowing under the skin. Higher 

absorption means more blood pumping through the veins. The device uses photodiodes to 

measure the light absorption and uses the information from the photodiodes to calculate 

heart rate through a proprietary algorithm, and has been shown to be reasonably accurate 

(38,61).

After participants provide permission, the Fitbit API enables researchers to download 

minute-level datasets. These datasets contain timestamped information on steps 

(continuous), activity intensity (categorical), heart rate (continuous), and sleep duration 

(continuous).

2.4 Data Processing

The volume and structure of data provided by the customized app posed unique challenges 

for processing and analysis. Each of the approximately 40 million records downloaded from 

the mobile application comes in JSON format, a syntax for structured data that is highly 

standardized but is not tabulated, and therefore gives no way to obtain aggregate numbers, 

statistics, or visualizations. In addition, the data provided to us by the app developers 

contained excess information that was not part of our study protocol and needed to be 

discarded.
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Storage for the data was the first problem we had to solve. We chose to store raw JSON files 

by uploading to a MongoDB database, an open-source noSQL database that is designed to 

store, process and query very large collections of JSON documents. Overlap Health database 

schemas follow the mobile health standards recommended by Open mHealth (https://

www.openmhealth.org/) to ensure interoperability. The MongoDB provides a repository for 

the raw JSON, but gave no way to obtain aggregate numbers, statistics, or visualizations.

To create the graphics and statistics in this paper, it was necessary to restructure all the data 

into tabulated format, but due to the size it was not feasible to pull all the data at once and 

work with it in aggregate in R. To filter and restructure the data we wrote custom software 

tools in R to interact with the MongoDB and extract, transform and save the re-formatted 

data in smaller chunks. We used some existing functionality in well-vetted packages such as 

mongolite and jsonlite but also wrote specific reusable functions in R for this project. The 

reusability of the custom functions allowed us create a download system that is reproducible 

and well documented.

We calculated non-wear time based on missing heart rate data. If there was no observation 

for heart rate in the JSON file, we considered that minute to be non-wear time. For step data, 

if there was a heart rate observation and no step data, we set the step count to zero and 

considered it wear time with no steps.

2.5 Statistical Analytic Plan

In this manuscript, we present response rates for each step of Substudy participant 

recruitment, and show demographic characteristics (means and frequencies) comparing 

Substudy participants to the full NHS3 cohort. Although data collection is ongoing, we also 

present preliminary data on compliance for Fitbit wear time using two cutoffs: 1. Five days 

with at least 600 minutes (10 hours) per day, which is commonly used in Actigraph studies 

(62), and 2. Five days with at least 1200 minutes (20 hours) per day, which we chose to 

ascertain how well participants did at wearing the Fitbit for the full 24 hour period. 

Compliance percentages are presented by sampling week. We also present means, medians, 

and interquartile ranges (IQR) for step, hear rate, sleep, and GPS data. To illustrate the 

distribution of GPS observations by participant, we present a histogram of GPS observations 

per participant in one sampling week.

To achieve study aims, in future analyses data will be examined at the minute level to 

estimate associations between contemporaneous environmental exposures (e.g., spatial 

datasets on built and natural environments) derived from GPS and physical activity / heart 

rate outcomes. For sleep analyses, GPS data linked to environmental data will be aggregated 

to create dynamic measures of daily average exposure across the day, and nightly sleep 

measures will be linked to daily average exposures based on the day prior to the sleep 

period. We will conduct hierarchical mixed models that account for the correlation of data 

within each individual. A priori, based on previous research we will examine biological sex, 

age, race, and individual- and area-level socioeconomic status as potential confounders and 

effect modifiers. To identify subpopulations at higher susceptibility to environmental 

exposures, we will conduct stratified analyses and conduct likelihood ratio tests comparing 

models with and without interaction terms.
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For measurement error correction analyses, data from the Substudy will be used as an 

internal validation study in which the error-prone measures (self-reported sleep, physical 

activity, sedentary behavior, and residential addresses) are validated against the reference 

measures (Fitbit behavioral data and smartphone GPS). The non-iterative regression 

calibration method can be used to obtain consistent point estimates and valid interval 

estimates of associations in regression models with measurement error in one or more 

continuous covariates.(56) The Substudy data will be used to estimate the regression model 

for E(x|X) and true covariates will be predicted for all NHS3 study participants using this 

model.

2.6 Security and Confidentiality

All smartphone application and Fitbit data are encrypted prior to transmission. The Overlap 

platform is protected by two-factor authentication, and all data are downloaded from the 

platform directly to study servers hosted at Brigham and Women’s Hospital. To protect the 

identity of participants, no identifiable data nor health data are shared with app developers or 

Fitbit beyond a Substudy ID, which in turn is not directly linkable to all other participant 

data.

3 Results

As of August 12, 2019, we have invited 1,337 NHS3 participants to complete the eligibility 

screener. Of those invited, 743 completed the eligibility screener (56%), and 597 of these 

individuals were found eligible (80%) (Supplemental Figure 2). Subsequently, 500 

participants completed the consent process, were mailed a Fitbit and sent instructions to 

download the NHS3 app, and are actively participating in the study. Demographics of the 

Mobile Health Substudy subsample compared to the full NHS3 cohort are shown in Table 1. 

In general, Mobile Health Substudy participants were of similar age (35.7 v. 35.4 years), had 

lower body mass index (25.6 v. 26.8), and were more likely to be white (90% v. 85%), 

married (59% v. 47%), and to never smoke (80% v. 69%) compared to the full NHS3 cohort. 

Compared to those who were invited and chose not to participate in the Substudy, 

participants were younger, had lower BMI, and were more likely to never smoke, but had 

similar distribution by race and marital status (Table 1). These differences were generally 

consistent comparing those who were invited and found eligible but chose not to participate.

3.1 Fitbit Data

While some devices were still in transit and data gathering will not end until March 2020, as 

of August 2019 we had received data from 435 participants, comprising over 6 million 

participant-minutes of heart rate and step data. A summary of Fitbit wear time based on 

minutes with recorded heart rate values is shown in Supplemental Figure 3 and Table 2. In 

Sampling Week 1, 90% participants had at least one study period with five days of at least 

600 minutes each of Fitbit wear-time, which is a commonly used standard in research-grade 

Actigraph studies.(62) This percentage declined to about 70% in Sampling Week 2, but 

remained steady for all following sampling weeks. Using a more stringent cutoff of five days 

with at least 1200 minutes of Fitbit wear-time, 75% of participants met these criteria in 

Sampling Week 1. Again, this number decreased to about 50% in Sampling Week 2 and 
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remained at that level for all later sampling weeks. Over 819 completed study period weeks, 

we observed an average of 7,581 minutes of heart rate and step data (IQR: 6,651, 9,645) per 

participant-week. The mean number of steps per week per participant was 86,143 (IQR: 

71,520, 110,302), and average steps per minute ranged from 0 to 225. We have also recorded 

a total of over 2 million minutes of sleep in over 5,700 unique sleep bouts, including naps 

and main sleep periods. For Sampling Week 1, sleep bouts were on average 6 hours long 

(IQR: 5 hours, 7.5 hours).

The collected and parsed data provide an extremely high resolution, external record of 

activity and rest patterns. Figure 1 shows a visualization of one participant-week of data and 

illustrates the day-to-day variability in heart rate and step that appear for each person at the 

week level. Data for all figures are from a test subject collected as part of protocol 

development. Figure 2 provides a visualization of rest-activity patterns for one participant-

week on a 24-hour clock. Variations in peak activity levels between days can be teased out, 

along with variability in sleep timing and duration.

3.2 Geolocation Data

We have collected continuous smartphone GPS data for 5,237 unique participant-days. Our 

participants are drawn from across the US (Supplemental Figure 4), and the geolocation for 

each participant provides information on daily routines, including commuting, home, and 

work locations (Figure 3). The geolocation data from the smartphone app is precise to 5 

decimal degrees for both latitude and longitude, and also provides an estimate of accuracy of 

each GPS estimate in meters. Horizontal accuracy ranged from very accurate (5 meters) to 

highly inaccurate (24,000 meters). In a visual examination of multiple participants’ 

geolocation data accuracy over time, we found that when accuracy was poorer than 65 

meters, the app would repeatedly assess location until accuracy was 65 meters or better. 

After filtering for a minimum accuracy of 65 meters or better, we had approximately 

550,000 GPS data points. There were on average 104 GPS observations with accuracy of 65 

meters or less per participant per day (IQR: 103, 107; median: 104), which roughly 

corresponds to one GPS observation every 15 minutes. The distribution of GPS observations 

per participant for the first sampling week is shown in Supplemental Figure 5. For this first 

week of sampling, the median ranged from 107–116 observations per day per person, and 

the lowest number of observations in a single participant day was zero, while the maximum 

number of observations in a single participant day was 280. Examining multiple 

participants’ geolocation data in relation to the observations’ time stamps confirmed that the 

observations were spread evenly throughout the day.

4 Discussion

Physical inactivity and inadequate sleep are major behavioral risk factors for cancer that are 

widespread in the US population and may be driven by environmental exposures. In parallel, 

mobile health technology is becoming increasingly prevalent and enables novel perspectives 

on physical activity and sleep. The NHS3 Mobile Health Substudy integrates high spatio-

temporal resolution measurement of environmental exposures with objective physical 

activity, heart rate, and sleep measurement into a nationwide prospective cohort.
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This study brings mobile health technology into epidemiologic research to quantify 

relationships between minute-level environmental factors and health behaviors measured 

with smartphones and wearable devices. This integration is notable for the high-granularity 

of information it provides on participant’s behaviors as well as the objectivity of the 

measurements. It offers an opportunity to examine the features of places in which 

individuals are physically active, estimate timing and duration of sleep, derive metrics of 

circadian patterns, or asses social jetlag (misalignment between social and biological times 

measured through sleep onset on free days compared to workdays). (63,64) In addition, we 

plan to use these data to create regression calibration methods that can be applied to correct 

for residence-based measures of environmental exposure and self-reported physical activity, 

and sleep in the full NHS3 cohort. Data from this project will advance the field of 

environmental exposure assessment and behavioral measurement within cohort studies and 

will provide novel insights on how environment and behavior drive cancer.

Mobile health data are an important new resource for health and epidemiology research, but 

gathering and analyzing these data is not without challenges and limitations. Challenges 

include the investment required in developing a custom smartphone application, the number 

of staff required to ship Fitbits and communicate with participants, as well as managing the 

data once it is collected. While the volume and velocity of streaming data from mobile 

health technologies is a strength of this approach, researchers must not underestimate the 

learning curve of dealing with these “big data.” Parsing, cleaning, and visualizing these 

high-dimensional data are no small task. To effectively make sense of these data, it is 

fundamental to partner with transdisciplinary teams of computer scientists, app developers, 

behavioral scientists, and epidemiologists. Major limitations beyond the challenges above 

mainly have to do with the Fitbit device itself. Fitbits are designed to increase physical 

activity and alter behavior, so the distribution of physical activity, heart rate, and sleep may 

not be representative of normal behavior. However, within-participant analyses of the 

relationship between environmental exposures and health behaviors should be internally 

valid. Another major concern is the proprietary ‘black-box’ algorithms Fitbit uses to process 

the raw sensor data. These algorithms can change at any time unbeknownst to researchers, 

and the lack of raw data precludes the sharing of approaches across studies that utilize 

different devices.

However, the potential strengths of incorporating mobile health technology into prospective 

cohorts are substantial. Our preliminary data suggests that compliance with mobile health 

protocols is high and remains relatively high over followup, likely because participants 

already carry their smartphones with them at most times and seem to like the wearable 

devices, but we will re-evaluate this when data collection is complete. Because there is no 

need for participants to mail devices back to researchers, researchers have near-real time 

access to the data and can assess compliance while the study is ongoing. Consumer 

wearables have battery life up to a week on one charge, are low cost and low burden for 

participants and researchers, and are easy to use. This low burden approach creates a 

potentially scalable methodology that might be expanded to tens of thousands of participants 

to efficiently gather objective, passive data on environmental exposures and health behaviors 

over long time periods.
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The data collected in this pilot study will be used to inform efforts to expand a scalable 

mobile health protocol to the entire NHS3 cohort. For example, we will compare data across 

different Fitbit devices to assess the feasibility of a bring-your-own-device protocol where 

participants volunteer the data from wearable devices that they already own. As we move 

forward, we envision creating digital phenotypes, or the ‘moment-by-moment quantification 

of the individual-level human phenotype in situ using data from personal digital devices’ to 

understand patterns of behavior predictive of health outcomes within the full NHS3 cohort.

(65,66) We also hope to incorporate geotagged micro-surveys, or ecological momentary 

assessment,(67–69) protocols to validate health behaviors and to assess mental health and 

positive health outcomes in real-time, as participants experience them. Finally, we may 

capitalize on other sensors on the phone to assess, for instance, noise or light exposure and 

the influence of these exposures on sleep or stress.

The NHS3 Mobile Health Substudy has substantial implications for public health. Physical 

inactivity and inadequate sleep are dominant risk factors for cancer that are widespread in 

the US population, and new insight into what influences these behaviors, as well as their 

inter-relationships, have great implications for public health and society. This project may 

provide translational data to inform interventions to improve urban planning policies and 

green space development to optimize opportunities for increased physical activity, healthy 

sleep patterns, and lowered obesity prevalence. Ultimately, mobile health technology is 

growing in popularity, and tremendous amounts of data are gathered each day. The NHS3 

Mobile Health Substudy provides viable next steps to advance methods to find meaningful 

signals in the noise of streaming, semi-continuous health data. These approaches hold great 

promise for advancing epidemiologic research on contextual factors that promote healthy 

behaviors and reduce cancer risk.
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Figure 1. 
Visualization of one hypothetical participant week where red represents heart beats per 

minute, blue step counts per minute, and green is latitude as a proxy for GPS availability. 

Data are from a test subject collected as part of protocol development.
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Figure 2. 
One week of heart rate and sleep data for a hypothetical participant represented on a 24-hour 

clock. Thin colored lines represent heart rate across each day, while the thick blue line is 

average heart rate. The shaded gray areas represent sleep periods where overlapping sleep 

periods are darker gray. Data are from a test subject collected as part of protocol 

development.
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Figure 3. 
GPS observations for one participant-week by day based on data from a test subject 

collected as part of protocol development.
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