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Abstract. One of the major challenges in evolutionary ecology is to understand how coevolution shapes
species interaction networks. Important topological properties of networks such as nestedness and
modularity are thought to be affected by coevolution. However, there has been no test whether coevolution
does, in fact, lead to predictable network structure. Here, we investigate the structure of simulated bipartite
networks generated under different modes of coevolution. We ask whether evolutionary processes
influence network structure and, furthermore, whether any emergent trends are influenced by the strength
or “intimacy” of the species interactions. We find that coevolution leaves a weak and variable signal on
network topology, particularly nestedness and modularity, which was not strongly affected by the intimacy
of interactions. Our findings indicate that network metrics, on their own, should not be used to make
inferences about processes underlying the evolutionary history of communities. Instead, a more
holistic approach that combines network approaches with traditional phylogenetic and biogeographic
reconstructions is needed.
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INTRODUCTION

Dynamics of ecological communities are fun-
damentally shaped by their networks of interact-
ing species (Thompson 2005). The study of these
networks, which involves the classification of
interspecific relationships and the strength of
their reliance upon one another, has important
implications for ecology and conservation—in-
forming, for example, the ability of communities
to maintain ecosystem function in the face of dis-
turbance. Specifically, interaction patterns are
thought to affect the resilience of a network to
disturbances such as fluctuating species abun-
dances, the introduction of new species, or the
extinction of existing species.

Ecological networks are frequently character-
ized using two network topology metrics—modu-
larity and nestedness (Bascompte 2010, Th�ebault
and Fontaine 2010). Modular community interac-
tions are more insular, occurring within separate
groups or “modules” more often than between
modules. Conversely, in nested networks, a few
species interact with many species while the other
species interact with progressively smaller subsets
of those species. Both mutualistic and antagonistic
networks can exhibit a high degree of nestedness
(e.g., plants and pollinators [Bascompte et al.
2003, 2006], hosts and parasites [V�azquez et al.
2005] or modularity (e.g., plants and pollinators
[Olesen et al. 2007], hosts and parasites [Krasnov
et al. 2012], plants and seed dispersers [Donatti
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et al. 2011]. Both nested and modular communi-
ties may also exhibit phylogenetically structured
interactions, where closely related species have
more similar interaction patterns than distantly
related species (Cattin et al. 2004, Rezende et al.
2007, Donatti et al. 2011). A strong phylogenetic
signal indicates that network patterns are con-
strained by past evolutionary history (e.g., as a
result of trait conservatism).

Coevolutionary dynamics likely play a critical
role in determining how communities are struc-
tured, because coevolution shapes and maintains
the traits involved in species interactions. Coevo-
lution can lead to interaction modules either
because phylogenetically closely related species
will often have similar trait values (Lewinsohn
et al. 2006) or because convergent evolution
among phylogenetically distantly related species
will lead to similar trait values (Donatti et al.
2011, Danieli-Silva et al. 2012). Coevolution can
alternatively lead to nestedness if phenotypes
constrain interactions (i.e., some links are “forbid-
den”, Jordano et al. 2003, Santamar�ıa and
Rodr�ıguez-Giron�es 2007). Coevolution can also
affect the degree of dependence between interact-
ing lineages (the “intimacy” of species associa-
tions) which can also affect network structure
indirectly (Ollerton 2006, Guimar~aes et al. 2007,
Fontaine et al. 2011). Selection that leads to the
avoidance of sharing interaction partners (so-
called partner overlap) and biological limits that
influence how many partners a species can have
(interaction niche breadth) are expected to lead to
more intimate interactions. For example, antago-
nistic coevolution favors parasites that are able to
overcome host defenses, which can subsequently
lead to parasites infecting only a few mutually
exclusive host species (e.g., overcoming one host’s
defenses might come at the expense of the ability
to overcome other host’s defenses; Nuismer and
Thompson 2006, Fontaine et al. 2011). In contrast,
more generalized interactions with considerable
partner overlap may evolve if selection favors
phenotypes that are compatible with traits com-
mon to many species in the community, as might
be the case for free-living mutualists (Thompson
2005, Fontaine et al. 2011, Guimar~aes et al. 2011).
Actual networks exhibit levels of interaction inti-
macy that lie along a continuous spectrum, with
varying degrees of interaction niche breadth and
partner overlap (Fontaine et al. 2011).

A variety of other processes can also affect spe-
cies interaction patterns including ecological
dynamics (Krause et al. 2003, Bastolla et al. 2009,
Th�ebault and Fontaine 2010), spatiotemporal spe-
cies distributions (Pimm et al. 1991, V�azquez
et al. 2009, Pillai et al. 2011, Encinas-Viso et al.
2012), stochastic events (Krishna et al. 2008,
Canard et al. 2012, Jonhson et al. 2013), or combi-
nations thereof (V�azquez et al. 2009, Suweis et al.
2013). Understanding which ecological, evolution-
ary, and stochastic processes have consistent
effects on interaction patterns (i.e., in determining
the degree to which communities are nested or
modular) is critical for elucidating the mecha-
nisms that structure communities, as network
topology correlates with stability. Compared to
randomly assembled communities, nested mutu-
alistic communities may be more resilient to spe-
cies extinction and fluctuations in abundance
(Memmott et al. 2004, Fortuna and Bascompte
2006, Burgos et al. 2007, Th�ebault and Fontaine
2010, Valdovinos et al. 2013, but see Allesina and
Tang 2012, James et al. 2012). Modular interaction
patterns, particularly in food webs, are also
thought to be more stable than random interac-
tions (May 1972, Krause et al. 2003, Stouffer and
Bascompte 2011) because fluctuations in species
abundance are largely contained within modules
and are less likely to spread throughout an entire
community (Krause et al. 2003, but see Pimm
and Lawton 1980, Th�ebault and Fontaine 2010).
Additionally, modeling work suggests that when
interactions are phylogenetically structured, spe-
cies extinction may trigger extinction cascades of
related species and a more pronounced loss of
taxonomic diversity (Rezende et al. 2007).
Recently, several authors have used theoretical

models to explore the effect of evolution on net-
works (Loeuille 2010, Guimar~aes et al. 2011, Nuis-
mer et al. 2013). However, there have been no
explicit tests of how different evolutionary assem-
bly mechanisms may lead to predictably different
network topologies. Here, we simulate coevolu-
tion and community assembly of two interacting
lineages of species under four different modes of
coevolution, each of which corresponds to a limit-
ing case of the possible coevolutionary mecha-
nisms (coevolution with cospeciation, coevolution
without cospeciation, cospeciation without coevo-
lution, and neither coevolution nor cospeciation)
to test whether coevolution leads to predictable
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network structure, specifically nestedness, modu-
larity, and phylogenetic interaction signal. We also
examine whether interaction intimacy, measured
as the range of interaction niche breadth and part-
ner sharing between species, accentuates the
coevolutionary signal of these different assembly
mechanisms on the structure of networks.

MATERIALS AND METHODS

Community generation approach
Our network generation process proceeds as

follows:

1. Simulate two phylogenetic trees for interact-
ing lineages

2. Simulate evolution of traits along those trees
3. Build interaction networks, using species’

trait values to determine which pairs of spe-
cies can interact

4. Evaluate the nestedness, modularity, and
interaction phylogenetic signal of networks

Depending on the evolutionary scenario under
consideration, the mechanisms for tree construc-
tion and trait evolution vary in order to simulate
the corresponding coevolutionary and cospecia-
tion processes (Steps 1–2). All simulations were
conducted in R version 3.3 (R Core Team 2008).
All simulation code is available at https://
github.com/lponisio/network_assembly.git.

We do not explicitly make a distinction between
predatory, mutualistic, parasitic, or commensal
interactions. These scenarios differ in how species
interactions affect fitness but, because species’ fit-
nesses are not a component of our data simulation
process, our conclusions should apply to networks
containing interactions of all types. To facilitate
biological intuition, however, we will develop our
methods using language most appropriate for
mutualistic interactions.

Phylogeny and trait generation
We begin by generating phylogenetic trees for

a fixed number (15) of resource-providing spe-
cies (e.g., plants) and resource-seeking species
(e.g., pollinators). We do this using a birth–death
process which approximates diversification of
clades by assuming homogeneous rates of speci-
ation (birth, k) and extinction (death, l) across
taxa and time (Stadler 2012).

We next simulate trait evolution along these
trees as a random walk through trait space
(Brownian motion model; Paradis 2012), and in
one scenario (see Coevolution without cospeciation),
we modify the Brownian motion model to
include selective optima that assert an attracting
force on random walk trait evolution (Ornstein-
Uhlenbeck model [Gillespie 1996, Nuismer and
Harmon 2015]). According to the Brownian
motion model, a trait X evolves at a rate r:

DXðtÞ ¼ rDWðtÞ (1)

where W(t) is drawn at random from a normal
distribution with mean 0 and variance r2.
Similarly, the Ornstein-Uhlenbeck model is a

random walk in which trait values are pulled
toward some “optimal” value, h, with an attrac-
tion strength proportional to the parameter a.
The model has the following form:

DXðtÞ ¼ aðXðtÞ � hÞ þ rDWðtÞ (2)

The four scenarios under which we simulate
trait evolution are as follows:
1. Coevolution and cospeciation (Fig. 1a): High

levels of species-level interaction specificity lead-
ing to tight coevolution and cospeciation and, con-
sequently, evolution of congruent phylogenies
(Farenholz 1913). The plausibility of this scenario
has been extensively criticized for its lack of real-
ism (e.g., Klassen 1992). Recently, even obligate
mutualisms have been shown to deviate from pre-
dictions of this model (e.g., figs and fig wasps
[Machado et al. 2005, Cruaud et al. 2011], oil-
producing orchids and Euglossine bees [Ram�ırez
et al. 2011], yucca plants and yucca moths [Althoff
et al. 2012]). Different parasite groups, including
macro-parasites (internal and external) and their
vertebrate hosts also do not exhibit a strong signal
of cospeciation (for a review, see Hoberg and
Brooks 2008). However, this scenario provides a
useful benchmark, because communities assem-
bled under this scenario represent an extreme out-
come of coevolution. We simulate this mode of
coevolution by generating communities where the
tree topology and trait values (simulated under
Brownian motion, Eq. 1) of interacting taxa are
identical (Fig. 1a).
2. Coevolution without cospeciation (Fig. 1b):

Trait complementarity is the result of natural
selection honing the traits involved in interac-
tions across many lineages (e.g., corolla tubes of
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Fig. 1. Coevolutionary and non-coevolutionary phylogeny–trait combinations and interaction weightings
under four scenarios: (a) coevolution, cospeciation, (b) coevolution, no cospeciation, (c) no coevolution, cospecia-
tion, and (d) no coevolution, no cospeciation. Trait values are represented by circle size on the phylogenetic tree
branch tips. The matrix of interactions (e.g., plants and pollinators, where pollinators are the columns and plants
are the rows) is depicted with interaction frequency indicated by gray-shaded squares. Unweighted interactions
result in only 0s (white) or 1s (black).
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plants and the length of pollinators’ proboscises).
Interacting communities are composed of phylo-
genetically related and unrelated species that
have converged on similar traits (Olesen et al.
2007, Donatti et al. 2011, Danieli-Silva et al.
2012, Krasnov et al. 2012, 2014). This pattern of
trait convergence is often observed in interacting
species, such as patterns of fruit design in unre-
lated plant species (Jordano 1995), oil production
in orchids (Ram�ırez et al. 2011), and ecto-
parasites of mammals (Krasnov et al. 2012). To
investigate this scenario, we generate communi-
ties where speciation of the interacting partners
occurs independently (and thus phylogenetic
topologies differ between the two lineages) but
trait distributions of interacting species are prob-
abilistically matched (Fig. 1b). To link the trait
distributions, the traits of one interacting lineage
are first simulated under Brownian motion
evolution (Eq. 1). These traits are then used as
lineage-specific optima (h, Eq. 2) in an Ornstein-
Uhlenbeck process to generate the traits in the
other interacting lineage. We kept the strength of
attraction to the optima (a, Eq. 2) constant at 1.
To approximate reciprocal selection, we then use
the traits of the second lineage as optima in
another Ornstein-Uhlenbeck process to regener-
ate traits for the first lineage. Each lineage’s traits
are thus used as optima for the other lineages to
evolve toward.

3. Cospeciation without coevolution (Fig. 1c):
Concurrent allopatric speciation of lineages across
a shared biogeographic and climatic landscape
leads to congruence between phylogenies of inter-
acting species, without reciprocal selection on spe-
cies’ traits (Smith et al. 2008, Althoff et al. 2012).
For example, the phylogenetic congruence
between yuccas and yucca moths is likely due to
shared biogeographic history rather than coevolu-
tion (Althoff et al. 2012). When species co-occur
geographically, it is possible that they also coevo-
lve. Here, however, we present an extreme case
where no coevolution takes place so that we can
quantify the effect of cospeciation alone. To model
this, we generate communities where interacting
taxa share the same tree topology, but the traits of
the partners’ traits evolve independently via
Brownian motion evolution (Eq. 1, Fig. 1c).

4. No coevolution, no cospeciation (Fig. 1d):
Speciation and trait evolution proceed indepen-
dently of one another. Such independent evolution

could occur if environmental or developmental
constraints on the traits involved in interactions
(e.g., the body size of pollinators and the flower
size of plants) enable interactions to occur without
coevolution taking place. To construct communi-
ties under this scenario, we generate trees and trait
values of interacting taxa independently, the latter
via Brownian motion evolution (Eq. 1, Fig. 1d).
The shape of phylogenetic trees has the poten-

tial to affect the structure of networks (Chamber-
lain et al. 2014), so we generated birth–death
trees for a range of extinction and speciation
rates (Fig. 2) for all of the evolutionary scenarios.
Specifically, we simulated trees with primarily
deep or primarily shallow divergences (Fig. 2).
We also tested whether the trait distribution
affected network topology by altering the vari-
ance of the Brownian motion process (r2, Eq. 1)
while holding the tree age constant (because trait
variance and tree age are linearly related under a
Brownian motion model).

Linkage rules and interaction intimacy
Several ecological “linkage rules” have been

suggested for determining how a species’ traits
mediate interactions (Santamar�ıa and Rodr�ıguez-
Giron�es 2007). Here, we assume that interactions
depend on the complementarity between the
trait values of the resource-producing species
and the reward-seeking species (matching traits
[Santamar�ıa and Rodr�ıguez-Giron�es 2007, Stang
et al. 2007, Nuismer et al. 2013]; Fig. 1) and, fur-
ther, that the range of partner trait values with
which a species can interact is proportional to a
species’ trait value (Williams and Martinez 2000,
Santamar�ıa and Rodr�ıguez-Giron�es 2007, Pires
et al. 2011). Our formulation of matching traits is
similar to the niche model (modified to generate
bipartite networks [Williams and Martinez 2000,
Pires et al. 2011]) or to the “single-trait comple-
mentary model” (Santamar�ıa and Rodr�ıguez-
Giron�es 2007), both of which have been shown to
generate empirically feasible networks (Santa-
mar�ıa and Rodr�ıguez-Giron�es 2007, Pires et al.
2011). Depending on the variance in trait values
and the structure of the phylogenetic tree, the
distribution of traits was normal to right-skewed,
which is consistent with empirical findings
(Stang et al. 2006, 2009). In addition, our formu-
lation of trait ranges reflects the observation that
species with more extreme trait values tend to
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have relatively narrow or wide ranges of part-
ners with which they can interact (Stang et al.
2009, Warren et al. 2010).

The degree of interaction intimacy in a com-
munity is determined by the amount of partner
overlap in the community and the interaction
niche breadth of the constituent species. We var-
ied both components of interaction intimacy by
changing the specificity of the interactions which
we did by changing the maximum acceptable
difference in trait values that would still enable
two potential partners to interact (Appendix S1:
Fig. S1). The range of acceptable trait values for
speciesi (xi) is hi � hi 9 d, where hi is the trait
value of speciesi, and d indicates how similar a
partner’s trait value must be (relative to hi) in

order to enable an interaction. We varied d from
0.1, which indicates that individuals only accept
a narrow range of trait values in their partners,
to 1, which indicates that they accept a wide
range. d above 1 or below 0.1% yielded interac-
tion matrices where nearly all or nearly none of
the species interacted and, thus, they were not
considered. We also generated weighted net-
works, in which partners interact in proportion
to the amount of overlap in their trait ranges,
and unweighted networks, in which partners
interact equally frequently with all others whose
trait ranges overlap (xi � xj).
We calculated niche breadth as �d, the mean

proportion of potential interaction partners a
species interacts with, from the total possible
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Fig. 2. Dependence of tree shape on speciation (l) and extinction rates (k). The low values of l and k generated
trees with shallow divergences and the high values generated deep divergences. The panels (a–d) show the dis-
tribution of trait values generated by the different combinations of phylogenetic tree structure and Brownian
motion variance (r).
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(i.e., the mean species degree). We calculated the
partner overlap of species belonging to the same
interaction lineage as �sij, the mean pairwise simi-
larity of interaction partners using the Gower
metric (Gower 1971, Oksanen et al. 2017).

Because we assume that interactions require
complementarity of traits between partner spe-
cies (Santamar�ıa and Rodr�ıguez-Giron�es 2007,
Stang et al. 2007, Nuismer et al. 2013), traits of
interacting lineages are positively correlated in
each of the coevolutionary scenarios. For hosts
and parasites, this positive correlation might cor-
respond to a match between traits that govern
susceptibility in hosts and mode of attack in par-
asites. Traits such as the depth of nectar tube in a
flower and the length of a pollinator’s tongue
would also be expected to positively correlate
when interactions are mutualistic.

When simulating phylogenies, we began with
a 1:1 ratio of resource-providing species to
resource-seeking species. We did this in order to
facilitate comparisons between scenarios where
there is necessarily a one-to-one congruence (e.g.,
the coevolution and cospeciation scenario) with
those where there is not. However, species that
evolve to possess trait values that prohibit them
from interacting with any members of the com-
munity were not included in the network. Thus,
the communities vary in the number of species in
each interacting lineage. We would expect this
feedback between species’ traits and community
composition when species with ill-suited trait
values are unable to persist in that community.

Characterizing network topologies
For each of the resulting interaction networks,

we calculated topological descriptors, focusing in
particular on nestedness and modularity. We use
NODF (weighted or unweighted) to evaluate net-
work nestedness (Almeida-Neto et al. 2008). The
NODF metric is large when species with fewer
partners interact with subsets of partners with
which more connected species interact (Almeida-
Neto et al. 2008). Many methods exist for
partitioning networks into sub-communities for
modularity computation, and all have potential
pitfalls (Fortunato 2010). We therefore consid-
ered three community partitioning methods: (1)
a dynamic algorithm via a random walk (Pons
and Latapy 2005, Csardi and Nepusz 2006), (2) a
greedy modularity optimization (Clauset et al.

2004, Csardi and Nepusz 2006), and (3) a hierar-
chical clustering algorithm (Newman and Girvan
2004, Csardi and Nepusz 2006).
We estimated the strength of the phylogenetic

interaction signal as the correlation between the
evolutionary time separating species and the dis-
similarity of their interaction partners. The evolu-
tionary distance between two species is
proportional to their phylogenetic distance—the
sum of the branch lengths connecting those spe-
cies (Paradis et al. 2004). We measured the dis-
similarity of interaction partners by calculating
the relative overlap of interaction partners
between pairs of species using the Gower metric
(Gower 1971, Oksanen et al. 2017). Following
Rezende et al. (2007) and Cattin et al. (2004), we
then calculated phylogenetic interaction signal as
the correlation between the phylogenetic dis-
tance matrix and the interaction dissimilarity
matrix using a Mantel test. A high correlation
indicates that species with older divergence
times are less likely to share interaction partners.
To calculate the effect of coevolution, we

selected and compared random pairs of commu-
nities that shared the same cospeciation history
with and without coevolution (Fig. 1a, c and b,
d). By comparing the observed metrics to those
derived from null communities, we can quantify
how much the observed level of structure can be
explained by the simple rules that determine the
probability that two species interact in the null
communities. To assemble 99 null communities,
we reshuffled the interactions between species
but fixed the total number of interactions and spe-
cies and, in quantitative networks, the distribution
of the interaction frequencies (Galeano et al.
2009). We then calculated the mean and standard
deviation of the null community metrics, �Xnull
and rnull, respectively. By standardizing the met-
rics using z-scores, ðXobs � �XnullÞ=rnull, where Xobs

is the observed metric, we can compare the met-
rics between networks of different numbers of
interactions and species. Simulating >99 for all
analyses presented here was too computationally
intensive. However, we verified that conclusions
did not differ qualitatively for a subset of scenar-
ios when using 999 vs. 99 null communities. We
then calculated the difference between metric
z-scores between pairs of communities that had
cospeciated but differed in whether or not they
exhibited coevolution (Fig. 1a–c and b–d). The
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mean and standard deviation of these differences
across replicate pairs of communities was used as
an estimate of the effect of coevolution.

RESULTS

We found that the coevolutionary history of a
community can have consistent and detectable

effects on the structure of interactions (Fig. 3;
Appendix S1: Tables S1–S3). Specifically, when
interaction probabilities were not weighted by
the degree of overlap between partner traits,
communities that coevolved and cospeciated
were more modular and anti-nested (less nested
than expected by randomly assembled communi-
ties; Fig. 3a, c). This is likely because cospeciating

−5

0

5

10

R
el

at
iv

e 
  m

od
ul

ar
ity

Unweighted

−8

−6

−4

−2

0

2

4
c)

a)

R
el

at
iv

e 
ne

st
ed

ne
ss

0.0

0.1

0.2

0.3

0.4

No c
oe

vo
lut

ion
, 

 no
 co

sp
ec

iat
ion

No c
oe

vo
lut

ion
, 

 co
sp

ec
iat

ion

Coe
vo

lut
ion

, 

 no
 co

sp
ec

iat
ion

Coe
vo

lut
ion

 

 an
d c

os
pe

cia
tio

n

e)

P
hy

lo
ge

ne
tic

 
 in

te
ra

ct
io

n 
si

gn
al

Weighted b)

d)

No c
oe

vo
lut

ion
, 

 no
 co

sp
ec

iat
ion

No c
oe

vo
lut

ion
, 

 co
sp

ec
iat

ion

Coe
vo

lut
ion

, 

 no
 co

sp
ec

iat
ion

Coe
vo

lut
ion

 

 an
d c

os
pe

cia
tio

n

f)

Fig. 3. Mean relative modularity (a–b), nestedness (c–d), and phylogenetic interaction signal (e–f) of 104 simu-
lated communities. Communities comprised 30 species in each interacting lineage. Colors correspond to different
coevolutionary scenarios. In left panels, all species interactions were equally frequent, whereas in right panels the
interaction probability depended on the degree of trait overlap between potentially interacting pairs of species.
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cantly more or less structured than randomly assembled communities. Vertical bars denote 95% confidence inter-
vals. The modularity metric depicted here was calculated using a hierarchical clustering algorithm.
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clades form interacting modules (e.g., see
Fig. 1a). The metric used for calculating modu-
larity (edge-betweenness, greedy optimization,
and random walk) did not qualitatively affect the
relative differences between coevolutionary sce-
narios (Appendix S1: Fig. S2). Across all coevolu-
tionary scenarios, communities were, on average,
significantly modular but not significantly nested
(Fig. 3a–d).

In addition, communities that cospeciated had
the highest phylogenetic interaction signal
(Fig. 3e, f; Appendix S1: Table S3). That a strong
phylogenetic interaction signal characterizes
cospeciating communities is likely a consequence
of the fact that shared tree topologies between
interacting lineages constrain trait evolution such
that closely related species will have similar traits
and thus share interaction partners, with or with-
out coevolution.

The effect of coevolution did not depend
strongly on phylogenetic tree structure or the
variance in evolved trait values (Table 1).
Because these community characteristics did not
have distinct effects on the differences between
coevolutionary communities, we restrict our focus

to community with shallow divergences between
species within an interacting lineage and a low
variance in evolved trait values (Fig. 2b).
There was no detectable effect of coevolution

on network structure in communities with the
same cospeciation history. In both communities
that cospeciated and those that did not, the mean
effect size of coevolution (calculated as the differ-
ence in network metrics or phylogenetic interac-
tion signal between communities with and
without coevolution; Fig. 1a–c and b–d) was
smaller than the standard deviation of the differ-
ence (Table 1). Thus, the effect of coevolution
was never significantly different from zero.
In addition, at any level of interaction niche

breadth or partner overlap, the effect of coevolu-
tion was highly variable and not significantly
different from zero (Figs. 4 and 5). Modularity
increases slightly across niche breadth in the com-
munities that coevolved and cospeciated in com-
parison with those that only cospeciated. The
variance around those trends is large relative to the
effect sizes and, thus, it seems unlikely that they
would be of empirical relevance, at least under the
range of community parameters considered here.

Table 1. The mean and standard deviation of the difference in modularity (z-scores), nestedness (z-scores), and
phylogenetic interaction signal between coevolved and non-coevolved communities, controlling for whether
the interacting lineages cospeciated (see Fig. 2 for details on the parameters governing tree divergence and the
variance in evolved trait values).

Tree divergences r Weights Coevolution

Modularity Nestedness Phylo int signal

Mean SD Mean SD Mean SD

Shallow Low Unweighted With cospeciation �0.47 6.286 �3.618 5.603 0.012 0.294
Shallow Low Unweighted Without cospeciation 2.144 5.759 1.471 6.436 0.02 0.121
Shallow Low Weighted With cospeciation 1.431 3.765 �3.568 5.121 0.005 0.302
Shallow Low Weighted Without cospeciation 0.676 4.232 1.995 5.687 0.019 0.119
Shallow High Unweighted With cospeciation �0.454 6.383 �3.592 5.614 0.01 0.294
Shallow High Unweighted Without cospeciation 2.142 5.69 1.499 6.672 0.021 0.124
Shallow High Weighted With cospeciation 1.423 3.833 �3.572 5.115 0.001 0.302
Shallow High Weighted Without cospeciation 0.691 4.334 2.065 5.892 0.018 0.123
Deep Low Unweighted With cospeciation �0.576 6.464 �3.403 5.595 0.015 0.291
Deep Low Unweighted Without cospeciation �0.22 5.499 0.348 6.419 0.006 0.137
Deep Low Weighted With cospeciation 1.444 3.853 �3.457 5.062 0.005 0.294
Deep Low Weighted Without cospeciation �0.342 3.982 0.419 6.071 0.004 0.132
Deep High Unweighted With cospeciation �0.521 6.334 �3.413 5.649 0.016 0.29
Deep High Unweighted Without cospeciation 3.599 5.324 �3.986 6.301 �0.003 0.169
Deep High Weighted With cospeciation 1.418 3.728 �3.447 5.141 0.006 0.295
Deep High Weighted Without cospeciation 3.923 5.007 �3.153 6.751 �0.009 0.169

Notes: The effect of coevolution with cospeciation is calculated as the difference between communities that coevolved and
cospeciated and those that only cospeciated. Similarly, the effect of coevolution without cospeciation is calculated as the differ-
ence between coevolved communities that did not cospeciate and those with interaction partners that did not coevolve or
cospeciate. SD represents the standard deviation. The mean differences are always less than the standard deviation.
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DISCUSSION

We found that coevolution leaves a weak sig-
nal on network topology in four coevolutionary
community assembly scenarios. These scenarios
represent extreme possibilities, ranging from
coevolution and cospeciation to completely inde-
pendent evolution and speciation. Real-world
communities likely fall somewhere between
these extremes and are, thus, likely to exhibit

intermediate patterns to those reported here.
Because the topological differences reported
here are small, detecting signals of coevolution
will likely be difficult. Thus, caution should be
taken when using only the most commonly
studied network topology descriptors (nested-
ness, modularity, and phylogenetic interaction
signal) alone to make inferences about the pro-
cesses that underlie the evolutionary history of
a community.

Fig. 4. The effect of coevolution on the relative modularity (a–b), nestedness (c–d), and phylogenetic interac-
tion signal (e–f) across a range of levels of mean interaction niche breadth. Interaction niche breadth is measured
as the mean proportion of potential interaction partners a species interacts with out of the total possible. The
solid curves represent smoothed mean differences between randomly selected pairs of communities, and the
filled area corresponds to 95% confidence intervals. Note that we do not directly vary interaction niche breadth,
but instead do so indirectly by varying the size of the range of trait values that a species will accept in a partner
(see Appendix S1: Fig. S1 for further interpretation of these values).
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By assembling communities both with and
without coevolution in the same context, our
approach differs from those that consider coevo-
lutionary dynamics in isolation (e.g., Loeuille
2010, Guimar~aes et al. 2011, Nuismer et al.
2013). Here, coevolutionary feedbacks between
phylogenies, traits, and interactions were mod-
eled implicitly, so that the same framework could
be used for communities that had and had not
coevolved. Our coevolutionary communities
exhibit similar structural properties to communi-
ties generated by explicit coevolutionary models

of bipartite networks (Nuismer et al. 2013). We
found that trait-matching-based species interac-
tions led to anti-nested networks (Fig. 3)—this is
consistent with other studies (Nuismer et al.
2013). However, many real-world communities,
and in particular mutualistic communities, tend
to be significantly nested in comparison with ran-
domly assembled communities (Fontaine et al.
2011). In models where the resource-seeking
species (e.g., the pollinator) has to overcome a
barrier to access the reward offered by the
resource species (e.g., the plant), networks tend

Fig. 5. The effect of coevolution on the relative modularity (a–b), nestedness (c–d), and phylogenetic interac-
tion signal (e–f) for simulated communities across a range of partner overlap values. Partner overlap is measured
as the mean similarity of pairs of species belonging to the same interacting lineage. Curves were calculated as
described in the caption to Fig. 4. The solid curves represent smoothed means, and the filled area corresponds to
95% confidence intervals.
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to be nested (Santamar�ıa and Rodr�ıguez-Giron�es
2007, Nuismer et al. 2013). We did not, however,
explore this mechanism for determining interac-
tions because we assumed a positive correlation
between the traits of the two interacting lineages
which would not be valid when barrier-type
mechanisms determine interactions.

Our finding that different coevolutionary pro-
cesses do not lead to drastically different interac-
tion patterns in networks sheds light on why
other studies have found it difficult to distin-
guish mechanisms (e.g., Machado et al. 2005,
Cruaud et al. 2011, Ram�ırez et al. 2011, Althoff
et al. 2012). Until recently, coevolution and
cospeciation were thought to play a critical role
in structuring many one-to-one symbiotic rela-
tionships, such as those between figs and fig
wasps or yucca and yucca moths. Evidence was
largely based on the congruence between traits
of interacting species and their phylogenies.
Recent work using more synthetic approaches
and diverse data sources, however, has shown
that these apparent patterns were primarily
caused by the shared biogeographic history of
interacting lineages leading to cospeciation
(Althoff et al. 2012) and/or incomplete sampling
(Machado et al. 2005, Cruaud et al. 2011).

Because at least four different mechanisms
give rise to the same interaction patterns, addi-
tional tests have to be devised and undertaken to
assess the contribution of different assembly
mechanisms. Specifically, determining whether
assembly processes structure interactions will
require a synthetic approach—combining net-
work metrics with more traditional phylogenetic,
trait, and biogeographic reconstructions (e.g.,
Ram�ırez et al. 2011).
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