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Latent Growth Curve Models for
Biomarkers of the Stress Response
John M. Felt, Sarah Depaoli and Jitske Tiemensma*

Department of Psychological Sciences, University of California, Merced, Merced, CA, United States

Objective: The stress response is a dynamic process that can be characterized by

predictable biochemical and psychological changes. Biomarkers of the stress response

are typically measured over time and require statistical methods that can model change

over time. One flexible method of evaluating change over time is the latent growth

curve model (LGCM). However, stress researchers seldom use the LGCMwhen studying

biomarkers, despite their benefits. Stress researchers may be unaware of how these

methods can be useful. Therefore, the purpose of this paper is to provide an overview of

LGCMs in the context of stress research. We specifically highlight the unique benefits of

using these approaches.

Methods: Hypothetical examples are used to describe four forms of the LGCM.

Results: The following four specifications of the LGCM are described: basic LGCM,

latent growth mixture model, piecewise LGCM, and LGCM for two parallel processes.

The specifications of the LGCM are discussed in the context of the Trier Social Stress

Test. Beyond the discussion of the four models, we present issues of modeling nonlinear

patterns of change, assessing model fit, and linking specific research questions regarding

biomarker research using different statistical models.

Conclusions: The final sections of the paper discuss statistical software packages and

more advanced modeling capabilities of LGCMs. The online Appendix contains example

code with annotation from two statistical programs for the LCGM.

Keywords: latent growth curve model, stress response, cortisol, alpha-amylase, biomarkers

LATENT GROWTH CURVE MODELS FOR BIOMARKERS OF THE
STRESS RESPONSE

The stress response is a complex, dynamic process. This process can be best characterized as
a negative emotional experience accompanied by predictable biochemical, physiological, and
behavioral changes that are relevant to adaptation (Lazarus and Folkman, 1984; Baum, 1990;
Dougall and Baum, 2012). Many methods have been developed to evaluate the stress response
using self-reported (i.e., subjective) measures and biomarkers (i.e., objective). Self-report measures
and biomarkers are collected over time, and therefore require alternative statistical methods that
can handle issues of repeated measurements. However, there are many methodologies that stress
researchers can choose from, depending on the properties of the data and research questions.

The methodological approaches used within stress research have evolved over time; specifically,
the approaches used to evaluate the change in biomarkers. The stress research literature,
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particularly relating to biomarkers, has commonly incorporated
methods such as mean-difference-based approaches (see e.g.,
Brouwer and Hogervorst, 2014; Alsalman et al., 2016; Kempke
et al., 2016; Gerber et al., 2017) and mixed effects models (see
e.g., Saxbe et al., 2008; Van Lenten and Doane, 2016). However,
the field has recently started to incorporate applications of latent
variable modeling (LVM) to examine the stress response. This
approach, although longstanding in other fields (e.g., Education
or Economics), is relatively new to the stress response literature—
with only some very recent applications (e.g., Hagger-Johnson
et al., 2010; Thornton et al., 2010; Giesbrecht et al., 2015).
The incorporation of more advanced statistical methods such as
LVMs represents an evolution of methodological approaches that
correspond to the development of more sophisticated research
questions being asked within biomarker-related inquires.

PURPOSE OF MANUSCRIPT

The purpose of this manuscript is to expand upon the most
commonly used statistical methods in stress research with
biomarkers. An alternative, powerful modeling framework (i.e.,
the latent growth modeling framework) will be discussed in the
context of specific research questions generated from commonly
used laboratory stressors. The paper includes a comparison of
statistical software for estimating LVMs. Sample code for various
statistical software programs will be provided in the online
Appendix for each LVM discussed1.

TRADITIONAL METHODS

Mean-difference-based approaches, such as analysis of variance
(ANOVA) and multivariate ANOVA (MANOVA), are useful
when researchers are interested in evaluating average change
over time (Hedeker and Gibbons, 2006a,b). However, ANOVA
and MANOVA approaches are limited in the types of questions
that can be answered. Researchers interested in evaluating the
individual differences observed in the stress response (e.g.,
Schlotz et al., 2011; Skoluda et al., 2015) should move to an
individual-difference-based approach. This approach typically
implements hierarchical linear models (also called multilevel
models), which include mixed regression models (MRMs).
MRMs provide insight into average change over time while
modeling individual variation through the specification of
random effects—or the estimation of an intercept and any
number of slopes (Hedeker and Gibbons, 2006c). While MRMs
also represent a flexible modeling approach, there are specific
research questions that are better handled in a LVM framework.

LATENT VARIABLE MODELS

LVM approaches that are used to evaluate change over time
include latent growth curve models (LGCMs McArdle and
Epstein, 1987; Muthén and Curran, 1997). In an LGCM, change
is modeled as a function of time and is represented through

1The online supplementary material can be found at: https://www.dropbox.com/

sh/5hthz8ndfozyxyg/AACUZRwrSKOnqCbBhHeSGmTIa?dl=0

the specification of latent (i.e., unobserved) variables referred to
as growth factors. A latent intercept and a latent slope (i.e., the
growth factors) are estimated based on the individual trajectories.
Growth factors provide an estimate of the average trajectory, and
individual variation around that trajectory, over time. Since the
growth factors are estimated (i.e., latent), they are considered
random effects. These model parameters can provide insight
into average change and individual difference surrounding that
change; model fit indices can also be obtained for LGCMs. While
LGCMs can be a useful tool for stress researchers working with
biomarkers, they have not appeared in the literature frequently.

Ram and Grimm (2007) provide a tutorial for LGCMs in
the context of cortisol research in developmental inquiries,
specifically for aging. However, LGCMs have not breached their
way into premier neuroscience or health psychology journals, to
evaluate change over time in cortisol and alpha-amylase. This
could be due to several reasons. First, researchers may not be
aware that LGCMs can be relevant to provide insight into their
complex hypotheses. Second, the estimation of LGCMs requires
the knowledge of specialty software programs. To compound
this issue, the coding languages vary across software programs.
Mastering these coding languages can be rather arduous and
time-consuming. Furthermore, the distinction between LGCMs
and other approaches, such as multilevel models and MRMs, is
not well pronounced. Researchers may not be aware of when
an LGCM is more appropriate to use compared to these other
approaches.

Within the LVM framework, we can start to incorporate
extensions that allow for a more complete version of the stress
response to be modeled. For example, the models we present in
the current manuscript (e.g., the LGCM) can be viewed as “base
models.” In other words, each of these models can be expanded
in a variety of ways to incorporate manifest or latent variables
influencing various parts of the growth model. These variables
can be incorporated as predictors, covariates, outcomes, or distal
outcomes. In this case, the model can represent a larger, inclusive
system of variables that work together to better capture the stress
response and promote a deeper understanding of the biomarker
fluctuations that are related to the stress response. True flexibility
of research questions is possible within the LVM approach.

This family of statistical techniques is, of course, not a
novel concept. These models have been explored in a variety of
substantive and methodological inquiries for decades. However,
these statistical tools are lacking in the stress-related biomarker
literature and we feel that incorporating them can help to
broaden the scope of questions being examined.

SPECIFIC GOALS AND INTENDED
AUDIENCE

Given that the typical statistical approach in biomarker related
research can only answer mean-difference-based questions, we
felt it was important to highlight the use of a potentially richer
and more flexible statistical modeling framework. Since there is
no set standard of methodology within the field due to the vastly
different data collection patterns that can be used, researchers
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may not be aware of the most advantageous and appropriate
statistical tool for their situation. Our hope is that researchers
examining the impact of the stress response on biomarker
fluctuations will find these LGCMs useful when constructing
future research questions to explore. Therefore, the goal of this
paper is to present statistical methodology, in a user-friendly
manner, which can answer research questions that are important
and under-studied in the stress-related biomarker field. Not
only do we discuss how to formulate and interpret findings
from relevant LGCMs, but we also show how easy they are to
implement by including sample code for a variety of models. This
code is available in our online Appendix.

HYPOTHETICAL EXAMPLE

The Trier Social Stress Test (TSST) is a method for inducing
a psychological stressor and evaluating the effects on biological
responses (Kirschbaum et al., 1993; Kudielka et al., 2007). Several
studies have confirmed that the TSST reliably induces activation
of the HPA axis (Kudielka et al., 2004) and the sympathetic
adrenal medullary (SAM) system (Nater et al., 2005). The TSST
consists of a public speaking task and a verbal arithmetic task.
The total procedure takes between 11 and 15 min to complete.
Biological measures of the stress response can be collected before
and after the TSST at several time-points (Kirschbaum et al.,
1993); for a thorough description of the TSST protocol, see
Kirschbaum et al. (1993) or Kudielka et al. (2007).

Describing the different specifications of the LGCM in the
context of the TSST allows for the nuances of the models to
be described in a way that is relevant and familiar to stress
researchers. The types of questions that can be answered, and
the modeling issues that may arise, will then be described in
the context of a commonly used experimental paradigm in
stress research. However, this modeling approach can also be
implemented in a variety of longitudinal research settings outside
of stress research.

BASIC DETAILS SURROUNDING LATENT
GROWTH CURVE MODELS

LGCMs are a class of LVMs designed to capture change over time.
Within the context of most biomarker research, data are skewed
and need to be transformed before analysis (Miller and Plessow,
2013). However, there have been many advances for LVM
techniques, and now any type of variable (e.g., those on different
scales of metric) can be modeled without data transformation
(Muthén and Asparouhov, 2002). If the item-type (e.g., binary,
ordered categorical, or count) is properly specified in the code,
then the software program selects the optimal estimator and data
need not be transformed.

Another important factor to consider before estimating an
LGCM is the number of time-points data were collected over. In
order to test a linear trend, at least three time-points are needed
(i.e., three pointsmake a line).Whenmodel complexity increases,
as when evaluating nonlinear change, the number of time-
points needed also increases; for example, complex nonlinear

change over time may require four, or more time-points (e.g.,
Grimm and Ram, 2009). LGCMs can also model time-points
that are either equal or unequal regarding their spacing. For
the basic LGCM, each subject is typically measured on the
same measurement occasions (i.e., each subject shares the same
time-points, but those time-points need not be equally spaced).
However, basic LGCMs can be easily expanded to account for
subjects on different measurement occasions (see Muthén, 1997
or Muthén and Muthén, 1998–2016 for further information and
an example of implementation).

LGCMs capture change over time through the specification
of latent (i.e., unobserved) growth factors. Latent growth factors
represent change through the estimation of a latent intercept
(i.e., initial level) and latent slopes (i.e., rate of change), which
can reflect linear or nonlinear growth patterns (Grimm and
Ram, 2009). The intercept and slope are latent because they
are not variables that exist in the data set. Rather, they are
estimated based on the collection of trajectories obtained for each
individual. Figure 1 is an example of a plot containing individual
growth trajectories. The intercept is reflected by the y-axis, and
the slope reflects the rate of change over the time-points (x-axis).
Each line represents an individual’s trajectory from which an
intercept and slope(s) are estimated. These trajectories can then
be summarized by an average growth trajectory and measures
of variance surrounding the average trajectory. The measures of
variance represent the individual slopes surrounding the average
trajectory and provide insight into inter-individual differences
within the overall growth pattern(s) captured.

SAMPLE SIZE LIMITATIONS OF LGCMS

There are some important limitations that need to be considered
when deciding between LGCMs and other methods of evaluating
change over time. Possibly the most relevant limitation to stress
researchers is the issue of sample size. LGCMs can require larger
sample sizes than other approaches (e.g., MRMs), especially
with fewer time-points or as model complexity increases; some

FIGURE 1 | Example trajectory plot for a Latent Growth Curve Model (LGCM).

Each line (or trajectory) represents an individual persons growth trajectory

across time. In the case of the example, this could be how the stress response

(i.e., outcome measure) changes over-time across longitudinal measurements

of data.
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studies suggest needing over 1,000 subjects, depending on model
complexity (see Hertzog et al., 2006; Hertzog and von Oertzen,
2008; Cheong, 2011). However, studies have found that basic
LGCMs can perform adequately under smaller sample size
situations. For instance, Cheong (2011) found that LGCMs had
adequate power to model mediation relationships when the
sample size was 200 and there were at least five time-points.
Furthermore, Fan (2003) found that, when evaluating linear
growth, LGCMs had more power to detect group differences
in latent trajectories than repeated measures ANOVA did.
Regardless, sample size is an important limitation because the
cost of collecting biomarkers can grow quickly as the sample size
increases, especially if researchers do not have a wet-lab locally
and have to ship out samples. If the research question dictates the
use of LGCMs, and large sample sizes are not achievable, there
are alternative methods that can be considered.

Bayesian estimation is an alternative modeling framework
that allows researchers to incorporate subjective information into
their statistical models that can have a similar effect as increasing
power to detect effects (Kaplan and Depaoli, 2013). For example,
Zhang et al. (2007) found that the LGCM could be estimated with
as few as 20 subjects under the Bayesian estimation framework.
A thorough review of Bayesian estimation and the specific issues
involved are beyond the scope of this paper. For less technical
reviews of Bayesian estimation, see van de Schoot and Depaoli
(2014) and van de Schoot et al. (2014). For a more technical
review of Bayesian estimation and how it applies to LVMs such
as LGCMs, see Muthén and Asparouhov (2012) and Kaplan and
Depaoli (2012).

UNIQUE BENEFITS TO BIOMARKER
RESEARCH

The latent growth modeling framework encompasses many
forms of LGCMs, which carry unique benefits in biomarker
research. Perhaps the most pronounced benefit is that we
see an extension of types of research questions that can be
examined using this modeling framework. Of course, there are
other statistical approaches that would also help to expand
topics currently being explored beyond mean-difference-based
inquiries. Such approaches includemultilevel models andMRMs.
There are many areas of overlap between these two modeling
approaches and the LVM framework we discuss. Some obvious
connections are the fact that latent growth models are indeed
multilevel models and that mixed effects can be specified in all
approaches. We view the LVM framework as just one approach
that can help to broaden the scope of research questions being
examined. One important extension that the LVM framework
provides is the use of multiple indicators for a single construct. In
other words, constructs can be included into any of these types of
growth models as latent variables with many observed indicators
(e.g., items on a scale). These latent constructs can be included
as predictors, covariates, or (distal) outcomes within the “base”
latent growth modeling being examined (see for e.g., Gunnell
et al., 2016). This feature represents the extreme flexibility of
the LVM framework. We cover additional benefits for biomarker

research specific to each of the types of models presented in the
following sections.

The following main section presents key specifications of the
LGCM relevant to stress related inquiries using biomarkers. The
organization of the remaining sections is as follows. First, a
description of path diagrams and how they are used to represent
LGCMswill be provided. Next, we present a sampling of the types
of research questions that can be addressed using LGCMs. This
is followed by a description of four specifications of the LGCM,
as well as issues surrounding model fit. Each specification of the
LGCM will be discussed in the context of the TSST and how they
can address specific research questions. We focus on the basic
LGCM, a multi-group version, the piecewise LGCM (PLGCM),
and the LGCM for two parallel processes. We cover issues tied
to assessment of model fit and adequacy related to these models.
Finally, two statistical software packages to estimate LGCMs will
be discussed; namely, Mplus and the freely available program R.

PATH DIAGRAMS

Each of the specifications of the LGCM will be described in
reference to a corresponding path diagram, which represents any
type of LVM in a convenient graphical form. These diagrams
allow LGCMs to be discussed through a graphical representation
rather than through an equation. In a path diagram, squares or
rectangles represent manifest or observed variables that would
appear in the data file (e.g., cortisol). Circles represent latent
or unobserved variables, such as the growth factors (e.g., latent
intercept and slopes) in LGCM. Manifest and latent variables are
linked together by paths with arrows at the ends. Single-headed
arrows represent paths in which one variable predicts another
variable (i.e., a regression path). Double-headed arrows represent
the covariation or correlation between two variables, latent
or manifest. Numbers beside the paths represent relationships
between variables that are fixed in order to preserve the structure
of the desired growth model being estimated. Paths without any
numbers indicate relationships between variables that will be
freely estimated.

TYPES OF IMPORTANT AND
UNDER-STUDIED RESEARCH QUESTIONS

The impact of the stress response on fluctuations in biomarkers
is a broad topic, and we see room for improved flexibility in
the research questions currently being addressed in the field.
This section presents five types of research questions that can be
answered using the specific LCGM techniques described below:

(1) What is the continuous rate of change in cortisol?
(2) What does the change in cortisol look like over time?
(3) How do cortisol and alpha-amylase relate over time?
(4) Are there (observed or unobserved) group differences in the

rate of change in cortisol?
(5) Does the rate of change in cortisol predict health outcomes?

These questions are a sample of the types of important and under-
studied research questions that can be answered using LGCMs to
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evaluate change in biomarkers. This is not an exhaustive list of the
types of research questions that can be addressed using LGCMs,
nor is it a complete list of questions that can be addressed
within biomarker research. Rather, the questions were selected to
provide a context to discuss the implementation of the different
LGCM specifications.Table 1 presents the five research questions
inmore detail.We present sections on several main specifications
of the LGCM. Within each model-specific section, we describe
the relevant research questions and how they can be addressed.
Issues such as model fit and assessment, as well as issues related
to statistical software, are also described.

THE BASIC LGCM

Figure 2 presents a path diagram of a basic LGCM. The basic
LGCM was developed to evaluate the continuous rate of change
over time (McArdle and Epstein, 1987). In the basic LGCM, a
latent intercept and a latent linear slope is estimated to capture
linear change over time. This model is appropriate when the
researcher does not expect bends in the trajectories over time.

An example of the basic LGCM can be found in Hagger-
Johnson et al. (2010) who aimed to investigate the effects of
chronic stress on physical and mental well-being. The linear
slope from a basic LGCM yielded a significant relationship
between the rate of change in cortisol levels to mental health
issues. Specifically, a steeper decline in daytime cortisol levels
related to better mental health scores, indicating a link between

chronic stress and mental health. However, results from this
study are cross-sectional and causation could not be determined.
In experimental designs, nonlinear growth factors may need
to be estimated to capture the bends in trajectories that an
experimental paradigm may cause.

Burant (2016) investigates how LGCMs can be used to
capture how depression levels change over time in elderly
hospital patients. Using a combination of model fit indices and
parameter estimates that correspond with theory, Burant (2016)
determined that an LGCM with freely estimated slopes (akin to
the latent basis model described below) best described changes
in depression over time. This specification of the LGCM was
able to capture nonlinear change and provide insight into where
the greatest rate of change in depression occurred. Specifically,
depression levels declined most quickly after 1 month, with the
rate of change slowing until it reached its lowest levels at 6
months. One caveat to this model is that it requires larger sample
sizes due tomore parameters being estimated. For the description
of the basic LGCM in this manuscript, quadratic growth will
be the focus because of the context in which the models are
described (i.e., TSST).”

In the model presented in Figure 3, a basic LGCM with
a quadratic growth factor and six measurement occasions of
cortisol is depicted. The latent variables in this model are the
intercept and slope (i.e., linear and quadratic) growth factors.
When interested in capturing the increase and decrease of
biomarkers, nonlinear slopes can be specified (e.g., the quadratic

TABLE 1 | Types of questions each specification of the LGCM can address.

Question Basic LGCM LGMM PLGCM LGCM for 2 parallel processes

1. What is the

continuous rate of

change in cortisol?

Provides information on the rate

of cortisol change throughout the

study. When nonlinear slopes are

specified, gives insight into the

rate of the nonlinearity present.

Provides information on how the

rate of change in cortisol differs

across unobserved groups.

Provides information on the rate

of cortisol change during the

baseline phase (slope 1) and the

recovery phase (slope 2)

Provides information on the rate of

change for two processes (i.e.,

cortisol and alpha-amylase), whether

linear or nonlinear

2. What does the

change in cortisol look

like over time

Can gain insight into the stress

reaction and the recovery period

through the specification of

nonlinear growth factors.

Provides information on how the

trend differs across unobserved

groups (e.g., linear in one group

and quadratic in another).

Can evaluate the change in

cortisol over time for the baseline

and recovery periods separately.

Can address in the same way as the

basic LGCM, LGMM, and PLGCM

depending on specification.

Addresses these question for each

process and provides insight into how

they are related across processes.

3. How do cortisol and

alpha-amylase relate

over time?

Can evaluate growth of cortisol

and alpha-amylase through a

multivariate LGCM or can control

for the effect of alpha-amylase at

each measurement of cortisol.

Provides information into how

these relationships differ across

unobserved groups.

Can evaluate growth of cortisol

and alpha-amylase through a

multivariate PLGCM or can

control for the effect of

alpha-amylase at each

measurement of cortisol.

Evaluates how activation of each

system is related through

relationships specified between

growth factors of each system.

4. Are there (observed

or unobserved) group

differences in the rate

of change in cortisol?

Can control for the effects of a

grouping variable (i.e.,

time-invariant covariate) or can

compare the trajectories and

rates of changes of each group.

Can evaluate differences in the

trajectories and rate of changes

for unobserved groups (e.g.,

extreme responders vs. normal

responders)

Can control for the effects of a

grouping variable (e.g., gender)

or can compare the trajectories

and rates of changes of each

group.

Can control for the effects of a

grouping variable (e.g., gender) or can

compare the trajectories and rates of

changes of each group.

5. Does the rate of

change in cortisol

predict health

outcomes?

Can answer whether the rate of

change in cortisol affects a

health outcome (e.g., the

number of medical office visits)

Provides insight into how cortisol

predicts health outcomes may

differ across unobserved groups

Can answer whether the rate of

change in cortisol at baseline or

recovery affects a health

outcome (e.g., the number of

medical office visits).

Same as the basic LGCM and the

PLGCM, except can now include how

the rate of change in alpha-amylase

also affects health outcomes (e.g.,

the number of medical office visits).

LGCM, Latent growth curve model; PLGCM, piecewise LGCM; LGMM, latent growth mixture model.
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FIGURE 2 | Latent Growth Curve Model with a Linear Slope. Cort, Cortisol measurement occasion.

slope in Figure 2). For the growth factors to represent change
over time, the paths between the cortisol measurement occasions
and the growth factors may be fixed to specific values. For
example, Figure 2 shows the paths from the linear slope term
fixed to the following: 0, 1, 2, ... 5. Fixing these paths is a way
of specifying a particular growth shape within the model (e.g.,
linear or quadratic). However, for extensions of the LGCM, such
as the latent basis model, these loadings can be freely estimated
to model any form of nonlinearity. In the case of Figure 2, these
fixed paths from the slope terms would be freed and estimated
to represent the degree of nonlinearity in the data (i.e., the paths
would no longer say: 0, 1, 2, ... 5).

In the basic LGCM, the intercept is specified by fixing all paths
between the cortisol measurements and the intercept growth
factor to one. The linear slope is defined by fixing the path
between the first measurement of cortisol and the linear slope
growth factor to zero. This specification makes the intercept
represent the first time-point. However, any time-point can be
specified to represent the intercept. Paths between subsequent
cortisol measurements and the slope growth factor are fixed to
represent equal spacing (i.e., with unit increments, as in Figure 2)
or unequal time spacing (i.e., 0, 1, 4, 5 would indicate longer time
has elapsed between the 2nd and 3rd time-points). The quadratic
slope is specified through the squared values of the linear slope.
Quadratic growth is only one form of nonlinear change, and
higher order forms can be specified if desired (see e.g., Grimm
and Ram, 2009).

UNIQUE BENEFITS OF THE BASIC LGCM
TO BIOMARKER RESEARCH

As we will illustrate in subsequent sections, the LGCM is a highly
flexible model that can be manipulated in a variety of ways to
answer complex and dynamic research questions. Arguably, one
of the most beneficial modifications that can be made to the basic
LGCM is to specify various forms of nonlinear change within the
model. The LGCM can be estimated in a variety of ways, each
capturing a different picture of what kind of growth patterns exist
in the data. The LGCM can capture nonlinear change through
the specification of polynomial growth factors (e.g., quadratic or
cubic), a feature that it shares with MRMs (e.g., quadratic and
cubic; Meredith and Tisak, 1990; Willett and Sayer, 1994; Bauer,
2007).

However, LGCMs carry added flexibility and can handle
other forms of nonlinearity, which often cannot (easily) be
implemented in other modeling frameworks (e.g., using MRMs).
For instance, alternative specifications of the LGCM exist where
the pattern of nonlinear change can be estimated. The latent basis
model is one such model that treats the pattern of change as a
latent variable (McArdle and Epstein, 1987; Meredith and Tisak,
1990). In this type of model, the user need not implement a pre-
specified growth pattern (e.g., quadratic growth). Instead, the
pattern of change is estimated as latent.

Another form of handling nonlinearity is to use an
additive model (e.g., the generalized additive model; Hastie and
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FIGURE 3 | Latent Growth Curve Model with Linear and Quadratic Slopes. Cort, Cortisol measurement occasion.

Tibshirani, 1986), which is used to identify nonlinearity without
specific knowledge of where the bends in the trajectory (i.e.,
changes in growth patterns) are located. Example code for these
two forms of handling nonlinearity in the model is included
in the online Appendix. There is a wide range of modeling
techniques that can be used to incorporate or assess nonlinear
change within LGCMs, and these are just two examples. For
more information on some of these, see Grimm and Ram (2009),
Grimm et al. (2011), or Ram and Grimm (2007). For models
that are nonlinear in the parameters (i.e., with binary indicators),
see Blozis and Harring (2016). Due to the flexibility of the
LVM framework, these assessments of nonlinearity can also be
incorporated into the more complex versions of the LGCM that
are discussed below.

Another benefit of evaluating growth in the LVM framework
is the flexibility of the outcomes that can be handled. While both
MRMs and LGCMs canmodel multivariate growth, LGCMs have
a little more flexibility in how multiple variables are modeled.
First, LGCMs can be used to evaluate the growth of other
latent variables (Muthén and Asparouhov, 2002; Cheong et al.,
2003). This is useful when a construct under study has multiple
indicators (e.g., multiple measures of the SAM system). This
modeling framework can also be used to handle autoregression,
when outcomes at different time-points are allowed to predict

one another (e.g., time 1 score predicts the score at time 2); see
Bollen and Curran (2004) for more information. The addition
of autoregressive elements in the models may be particularly
relevant to the stress response because outcome measures are
inherently related to measures collected at previous times within
person. These are merely included to act as examples of the
flexibility of the general LVM framework. Our main focus here
is on the LGCM and it’s immediate extensions into biomarker
research.

RESEARCH QUESTIONS RELATED TO THE
BASIC LGCM

Table 1 presents several types of important and under-studied
research questions. Specifically related to the basic LGCM, we
can highlight Questions 1, 2, and 5 for this discussion. Question
1 examines whether the rate of change in a given outcome (e.g.,
cortisol) is continuous in nature. Fitting an LGCM to the data
allows the researcher to examine this continuous rate of change
and explore different growth patterns, which is closely tied to the
next type of research question. Question 2 relates to what patterns
of change look like over time for a given outcome (e.g., cortisol).
The basic LGCM allows us to examine continuous change over
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time and express different forms of nonlinearity within themodel
to uncover the best model that captures patterns of change in
the data. Finally, Question 5 examines how the rate of change
in a repeated measures outcome (e.g., cortisol) might impact
another outcome measure (e.g., other health outcomes). This
specification can yield insight into, for example, how changes
in cortisol caused by the TSST affects the number of medical
visits. The LGCM can be easily modified to act as a predictor
model for other outcomes, which can be measured at a single or
multiple time-points. For full details on how the basic LGCM can
be specified to address a range of questions, see Table 1.

MULTI-GROUP (OBSERVED OR
UNOBSERVED) GROWTH MODEL

The basic LGCM can be extended to handle multiple groups.
In this case, the researcher may be interested in examining
growth or change-rate differences across different groups of
individuals. These groups can be observed groups such as
gender, race/ethnicity, disease status, or age. In this case, the
model would be called a multi-group LGCM, which indicates
that the groups are observed. However, groups can also be
unobserved, or latent. In this case, the theory is that the sample
data were collected for multiple unobserved subpopulations,
where individuals from these populations follow different growth
patterns. This type of model is often referred to as a latent growth
mixture model (LGMM), where the word mixture indicates that
groups are unobserved (i.e., the grouping label for an individual
is something that is estimated in the model and is not a label
that appears in the data file). Examples of latent groups can
include individuals representing different levels of addiction
status (Muthén and Shedden, 1999), individuals experiencing
different outcomes of a traumatic experience (deRoon-Cassini
et al., 2010), and adolescents with different smoking behaviors
(Colder et al., 2001). In the context of the current paper, we might
consider a subset of subjects that have a faster recovery time from
the TSST compared to another group of subjects. In this case, the
LGMM can be used to identify and model these subjects.

For the purposes of discussion, we will continue describing
the LGMM here, but the (observed) multi-group LGCM would
look much the same (code for both is provided in the online
Appendix). When comparing observed multiple-groups to one
another, there is typically an iterative process implemented. In
particular, constraints are placed within the model (e.g., on
the growth factor loadings if freely estimated, the parameter
variances, or the covariances) one-by-one to assess exactly where
(if at all) the model results differ across groups. This process
helps to uncover how growth processes may differ across the
observed groups. For more information on this process, please
see Li et al. (2001) for an applied example or Muthén and Curran
(1997) for a more technical description. The unobserved groups
are (typically) handled in a different manner.

As mentioned, the LGMM differs from the basic LGCM
only in that multiple unobserved groups (or latent classes)
are accounted for in the model. The user would estimate the
model many times, each with a different number of latent

classes specified. Then model fit assessments (described below)
and substantive knowledge would be used in combination to
determine the “best” number of latent classes, each represented
by a substantively different growth trajectory. In other words, the
LGMM identifies subpopulations that may have been sampled
and estimates an LGCM for each unobserved group that has
been identified. It is important to note that LGMMs are highly
complex and should be estimated using a set of guidelines. Such
guidelines have recently been published in van de Schoot et al.
(2017). Some further modeling concerns about assumptions that
have to be made in LGMMs can be found in Bauer (2007). A
depiction of the LGMM can be found in Figure 4. Notice that
the only difference between this model and the basic LGCM is
the inclusion of the latent variable “c,” which indicates that the
entire model is allowed to be estimated for latent groups such
that each group can be represented by its own estimated growth
trajectory. An LGMM trajectory plot might look something
like Figure 5, where there are groups of trajectories that
represent different growth patterns. In this case, we might
identify three groups, each with their own estimated growth
trajectory.

UNIQUE BENEFITS OF THE LGMM TO
BIOMARKER RESEARCH

The multi-group approach to the LGCM is incredibly helpful
for modeling different sub-groups on the same outcomes, and
then doing subsequent comparisons across those groups. The
LVM framework allows for these groups to be either observed
or unobserved in nature, with the latter being a specific benefit to
working within this modeling context. The ability to model latent
groups allows researchers to explore potentially substantively
interesting sub-populations and related covariates. This feature
could be particularly beneficial when examining whether patterns
of change are dictated by underlying characteristics that have not
been previously explored.

RESEARCH QUESTIONS RELATED TO THE
MULTI-GROUP GROWTH MODEL

The type of research question listed in Table 1 that is particularly
relevant to this type of latent growth model is Question 4.
This question can be used to explore whether there are viable
groupings of individuals that substantively differ in their growth
rates. When using the TSST, the LGMM may be able to
distinguish between high and low responders to the TSST and
estimate trajectories for each group. This provides insight into
what the stress response of these two different types of responders
looks like. The model can also be used in the context of large-
scale models, which include additional covariates, and outcome
measures. Perhaps the groups appear similar in their growth
patterns, but differ substantively on other aspects of the larger
model—this sort of model can help the researcher to distinguish
these nuances. Any of the other research questions listed in
Table 1 could be potentially relevant to this group of models, but
Question 4 is the research question unique to this type of model.
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FIGURE 4 | Latent Growth Mixture Model: In this specification, there is a linear and a quadratic trend estimated, but the relationships can differ across latent groups

(c). Note that groups can also be observed (e.g., gender) rather than latent.

FIGURE 5 | Trajectories for multiple groups (observed or unobserved).

For a nice example showing how the LGMM applies to diurnal
cortisol data, see Dmitrieva et al. (2013) or Ram and Grimm
(2009).

PIECEWISE LGCM

The PLGCM is also known as the multiphase LGCM or the spline

LGCM. Figure 6 presents a path diagram of a two-piece PLGCM.

In this specification, there are two phases being modeled, Phase 1

(cort1, cort2, and cort3) and Phase 2 (cort 4, cort 5, and cort 6).

Phase 1 represents the time-points before the onset of the TSST

(i.e., the baseline period), whereas Phase 2 represents the time-

points after the onset of the TSST (i.e., the recovery period). The

time- points for Phase 1 and Phase 2 will differ depending on how

the study was designed (e.g., more time-points in the recovery

period). Additional “pieces” can be specified in the model when

the location of more than one bend is known (e.g., a baseline

period, a reaction period, and a recovery period). The first piece

(i.e., growth factor slope 1) represents linear change in cortisol

before the onset of the TSST. The second piece (i.e., growth factor

slope 2) represents linear change in cortisol after the onset of

the TSST. For this example, we included three waves of data for
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FIGURE 6 | Piecewise Latent Growth Curve Model. In this specification, there are two phases being modeled, Phase 1 (cort1, cort2, and cort3) and Phase 2 (cort 4,

cort 5, and cort 6). This relationship is defined through the slope paths. Phase 1 represents the time-points before the onset of the TSST (i.e., the baseline period),

whereas Phase 2 represents the time-points after the onset of the TSST (i.e., the recovery period). Cort, Cortisol measurement occasion.

each phase. The purpose of this was to ensure that each phase
would be identified on its own (see Bollen and Curran, 2006).
It is possible for each phase to only have two waves, akin to
a confirmatory factor analysis with correlated factors and two
indicators each. However, Diallo and Morin (2015) found that
LGCMs with only two indicators may be underpowered to detect
an effect. Therefore, discussion of this model focuses on three
waves for each phase of the PLGCM.

Attention to the specifications of the paths between the
observed items and the latent growth factors is crucial for
estimation of the PLGCM. In Figure 6, the linear growth factor
for the first phase is specified with the first three timepoints (i.e.,
cort1, cort2, and cort3) fixed to “0,” “1,” and “2,” respectively.
Specifying the first three timepoints this way permits the
estimation of the linear slope (similar to basic LGCM). However,
the final three timepoints are fixed to “2.” This specification
prevents information from the final wave of timepoints from
being included in the estimation of the first linear slope. In
other words, fixing the remaining timepoints to “2” allows the
remaining growth information to be absorbed into the second
piece. This generalizes to the second linear slope where the
timepoints from the first three waves (i.e., cort1, cort2, and cort3)
are fixed to “0.” This specification prevents information from
the first three waves from being absorbed into the estimation of
the second growth factor (Diallo and Morin, 2015). This allows
each piece to capture information across different phases of the
trajectory.

UNIQUE BENEFITS OF THE PLGCM TO
BIOMARKER RESEARCH

The PLGCM is an alternative specification of the LGCM for
researchers interested in capturing nonlinear change over time
when there is knowledge as to the location of the bend in the
trajectory (Kohli and Harring, 2013). The PLGCM is specifically
relevant to the data collection protocol using the TSST since
growth rates can be viewed as different phases—before and after
the acute stressor.

RESEARCH QUESTIONS RELATED TO THE
PLGCM

Research Questions 1, 2, and 5 (see Table 1) are most relevant to
this type of growth model. Akin to the basic LGCM discussed
above, Questions 1 and 2 can also be addressed through the
piecewise version of this model. Given that the location of the
bend in the trajectory will be known when implementing the
TSST, the PLGCM can providemore accurate insight into the rate
and nonlinear change in cortisol. With the PLGCM, Question
1 can be addressed in two parts: rate of change in the reactivity
period (first linear slope growth factor), and rate of change in the
recovery period (second linear slope growth factor). Question 2
is addressed because the location of the bend in the trajectory is
specified (rather than estimated) and can provide more accurate
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results regarding the growth trajectory. The PLGCM can also be
easily extended to address Question 5 when assessing whether the
piecewise growth curve acts as a predictor for any other health
outcome. This notion falls into the inherent flexibility of the LVM
framework.

LGCM FOR TWO PARALLEL PROCESSES

Figure 7 presents a path diagram for the LGCM for two parallel
processes [also referred to in the literature as the Bi-variate
LGCM (Muniz-Terrera et al., 2017), multivariate LGCM Bollen
and Curran, 2006, multiple domain LGCM (Byrne and Crombie,
2003), and the associative LGCM Bollen and Curran, 2006]. This
model is an alternative specification of the LGCM for researchers
specifically interested in how the trajectories of two systems are
related to one another (Cheong et al., 2003). In this example,
trajectories for cortisol and alpha-amylase are simultaneously
estimated through separate growth factors. In other words,
there are two cortisol-specific growth factors (i.e., intercept and
slope) and two alpha-amylase-specific growth factors estimated.
The way that the trajectories of cortisol and alpha-amylase
relate can now be modeled through the relationships of their
specific growth factors. Figure 7 provides an example of how the
relationships between the growth factors of these two biomarkers
can be modeled. The direct paths between the latent growth
factors of cortisol and alpha-amylase can be specified in any
way to accommodate specific research questions about how these
processes relate.Most importantly, the specification of the LGCM
for two parallel processes presented in Figure 7 is specified to
estimate linear change of both processes. Because there will be
nonlinear change in both cortisol and alpha-amylase due to the
TSST, the LGCM for two parallel processes can be specified
to account for nonlinear change. The LGCM for two parallel
processes can also be specified to account for nonlinear growth
change (e.g., quadratic or freely estimated slopes), or it can be
combined with the PLGCM when the location of the bend in
the trajectory is known. Ultimately, decisions for specifying the
LGCM for two parallel processes should be driven by the research
questions and data characteristics.

UNIQUE BENEFITS OF THE PARALLEL
PROCESS LGCM TO BIOMARKER
RESEARCH

The parallel process model is perhaps the most encompassing
model that we describe here. This model shows potential to be
most complex because any of the other LGCM variations we
have discussed can be embedded within each process within
this model (e.g., one process can include a mixture component,
piecewise growth, etc.) The benefit of this model is that it allows
researchers to be extremely malleable when research questions
are being developed. There need not be a single outcomemeasure
across time, and other elements (e.g., mixture components and
nonlinear growth curve functions) can be embedded in different
ways within each of the processes.

RESEARCH QUESTIONS RELATED TO THE
PARALLEL PROCESS LGCM

Research Question 3 (see Table 1) is most applicable to the
parallel process LGCM. This question deals with how two
separate outcomes can relate over time. However, it is also
important to note that the LGCM for two parallel processes
can answer any of the other questions in Table 1 for each
process simultaneously. The relationship between cortisol and
alpha-amylase is explicitly modeled in how the growth factors
for each process are related. Specifically, the LGCM for two
parallel processes provides insight into how the baselines (i.e.,
intercept growth factors) and rates of change (i.e., slope growth
factor[s]) are related in each system. Modeling how the growth
factors of cortisol and alpha-amylase are related can provide
more insight into how activation of the HPA-axis is related to
activation of SAM system. For full details on how the LGCM
for two parallel processes can be specified to address a range of
questions, see Table 1. Finally, for an example of plotting two
parallel process growth trajectories, see Figure 8. In this figure,
we can see that cortisol and alpha-amylase substantially vary
in their growth patterns over time, even though the baseline
assessment is comparable.

MODEL FIT AND ASSESSMENT

Model fit and assessment is typically an important part of
implementing any type of LGCM. Model fit statistics are
measures of how well a statistical model reflects the data. Model
fit can be evaluated through two different classes of statistics: (1)
absolute model fit, and (2) relative model assessment measures.
The following sections will discuss the two classes of statistics
and the types of questions that they can aid in answering when
implementing LGCMs.

ABSOLUTE MODEL FIT

Absolute fit statistics are used to determine how well a statistical
model reflects the data. This category includes the closeness-of-
fit measures, badness-of-fit measures, and the χ

2 goodness-of-fit
test (Bentler and Bonett, 1980; Bentler, 1990). Closeness-of-fit
measures include the comparative fit index (CFI) and the Tucker-
Lewis index (TLI); there are many additional measures, but these
are arguably the most common because they are reported in
most LVM software. CFI and TLI values close to 1.0 indicate a
statistical model that adequately reflects the data. Generally, CFI
and TLI values above 0.96 (for CFI) or 0.95 (for TLI) reflect
excellent fit and values of 0.90 reflect mediocre fit (Bentler,
1990; Byrne, 1994; Schumacker and Lomax, 2004). Badness-of-fit
measures include the root mean square error of approximation
(RMSEA) and the standardized root mean square (SRMS).
RMSEA and SRMS values closer to zero indicate a statistical
model that adequately reflects the data. Generally, RMSEA, and
SRMS values of 0.01 reflect excellent fit, values of 0.05 reflect
good fit, and values of 0.08 reflect mediocre fit (MacCallum et al.,
1996). The χ

2 goodness-of-fit statistic indicates that a statistical
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FIGURE 7 | Latent Growth Curve Modeling for Two Parallel Processes. The intercept and slope terms can be related in a variety of ways. For example, Intercept 1 can

predict only Slope 1, only Slope 2, or both slope terms. Dashed lines have been included from the corresponding intercept and slope terms to show the choice of

including this relationship or not within the model being estimated. Cort, Cortisol measurement occasion; Alpha, Alpha-amylase measurement occasion.

model adequately reflects the data when the corresponding p-
value is above the nominal 0.05 level. Caution should be exercised
when interpreting the χ

2 goodness-of-fit statistic as the statistic
is sensitive to sample size, with larger sample sizes sometimes
erroneously indicating model misfit (Satorra and Saris, 1985).
These measures can all be used to assess whether a model fits the
data or not. Sometimes there are inconsistencies in the results,
where some measures indicate the model fits the data and other
measures do not. If this discrepant result occurs, it is imperative
to reflect on the substantive information driving the model when
assessing the final model. It should be noted that model fit indices
may not perform equally across all models and all modeling
contexts, and reliance on the rule-of-thumb cut-offs can yield
misleading results (Barrett, 2007; Hayduk et al., 2007; Nylund
et al., 2007). For instance, Nylund et al. (2007) found that the
correct number of mixtures in a growth mixture model were
only identified by the bootstrap loglikelihood ratio test and the
Bayesian information criterion (BIC) With this in mind, model

selection and evaluation should not rely solely on these rules-of-
thumb for absolute model fit. Rather, model evaluation should
come from a combination of relative and absolute model fit,
as well as how well the parameter estimates fit with previous
literature or theory.

RELATIVE MODEL ASSESSMENTS

Relative model assessment indices are used to compare
competing statistical models and include information criteria
(IC) and likelihood-ratio tests. IC assessments include the
Akaike information criterion (AIC; Akaike, 1981), the Bayesian
information criterion (BIC; Schwarz, 1978), and the sample-sized
adjusted BIC (saBIC), to name a few. IC values can be compared
across two or more models, where the first represents the original
model and the subsequent models represent competing models
(varying to some degree from the original model). The statistical
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FIGURE 8 | Trajectories for cortisol and alpha-amylase during the TSST. This figure shows that changes in alpha-amylase occur immediately after the stressor,

whereas changes in cortisol occur about 20min after the stressor.

model with the lowest IC is then selected as the optimal model;
i.e., the one reflecting the data patterns best. Likelihood-ratio tests
can also be used to compare two models via χ

2-difference test.
The difference in χ

2 values between two models is calculated
and compared to a χ

2 distribution with degrees of freedom
equal to the difference in parameters estimated between the two
models. A p-value lower than the nominal 0.05 indicates that
the models are significantly different from one another, and the
model with the lower χ

2 value is then selected as the optimal
model. Relative model assessment measures are especially useful
when researchers are trying to determine whether to assess
linear or nonlinear change in the LGCM. Researchers can
estimate one LGCM that specifies a linear slope and another
LGCM that specifies nonlinearity. Then the model assessment
measures can be used to help the researcher determine the
pattern of change that best reflects the data patterns being
modeled.

STATISTICAL PROGRAMS TO ESTIMATE
LGCMS

The estimation of LGCMs requires the use of statistical
software programs capable of estimating LVMs. There are
several statistical software packages used to estimate LGCMs
that differ in modeling capabilities, complexity of the program,
and price. Table 2 presents the modeling features of the most
commonly used statistical software programs for estimating
LGCMs (i.e., Amos, SAS, Stata, Mplus, EQS, and Lavaan through
the R programming environment). The purpose of Table 2 is to
provide the reader with relevant features of each program so
that they can make a decision as to which program best meets
their needs. We discuss and provide code for three different
software programs: Mplus (Muthén and Muthén, 1998–2016),
Amos (Arbuckle, 2014), and the R package Lavaan (Rosseel, 2012;
R Core Team, 2015), with the latter being of no cost for users.

Mplus is one of the more flexible LVM programs. Researchers
can evaluate change over time for any type of variable (i.e.,
continuous, binary, ordered-categorical, unordered-categorical,
count, and censored). Furthermore, Mplus has multiple options
for handling missing data, including full-information maximum
likelihood and multiple imputation. Compared to the other
programs presented in Table 2, Mplus is decidedly the most
user-friendly with a website (http://www.statmodel.com) that
contains example code for many different types of models. Mplus
is also capable of more advanced modeling techniques such as
estimating unobserved groups (i.e., latent mixture modeling) and
Bayesian estimation. The cost of this program is $1095 for an
academic license, with an annual fee of $175 to keep the license
current and qualify for upgrade downloads when made available.
Example code and contrived data to estimate each of the LGCM
specifications in Mplus can be found in the online Appendix.

The next software package discussed is Amos (Arbuckle,
2014). Amos is another user-friendly program that has many of
the same modeling capabilities as Mplus. Rather than relying on
a syntax-based coding language like Mplus (and the R package,
Lavaan, detailed next), Amos uses a graphical interface where
the user specifies the model by drawing a path model using
point-and-click tools. One limitation of Amos is that it is a more
expensive program than other programs such as Mplus, with an
annual fee starting at $811.00 per license. Another limitation
of Amos is that the modeling capabilities are less flexible than
Mplus, where features such as multilevel modeling can be
combined easily with LGCMs. However, data management in
Amos can still be housed in SPSS file formats, whichmay be easier
to manage than text and csv files required by Mplus. In order to
estimate the specifications of the LGCM discussed, a user is able
to draw the models as they appear in Figures 2–7.

The final software package discussed is the R package, Lavaan.
Lavaan has many of the same modeling capabilities as Mplus,
but is a free program and provides the additional benefits of
being part of the R programming environment (i.e., it is an open
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TABLE 2 | Statistical methods for assessing growth and the software that can estimate these models.

Method SPSS: SAS PROC STATA v. 14 Mplus v. 7.4 EQS v. 6.3 R: Lavaan**

AMOS v. 23 CALIS v. 9.4 v. 0.5-20

Latent Growth Curve Model X X X X X X

Latent Growth Mixture Model X X X X

Data Types

Continuous X X X X X X

Binary X X X X X

Ordered-Categorical X X X X X

Unordered-Categorical X

Count X X X

Estimator

ML/MLR X X X X X X

WLS/WLSM/WLSMV/ADF X X X X

Bayesian X X X X X

Missing Data

Full-Information Maximum Likelihood X X X X X

Multiple Imputation X X X X X

Price of Program (In USD)*

Annual Academic License 811 9,200 445 175 NA Free

Perpetual Academic License 1840 NA 895 1095 595 Free

*All prices are for the full versions of each program as of June 2016. In some instances, removing some features can reduce the cost of the program.

**R package Blavaan is a Bayesian extension of the R package Lavaan.

source program that is easily linked to other packages in R). One
limitation of Lavaan is that it does not feature all of the modeling
capabilities of Mplus, such as multiple imputation or Bayesian
estimation. However, there are R packages designed to handle
these issues that can be used alongside (or instead of) Lavaan,
such as the R packageMI (Su et al., 2011) for multiple imputation
and BLavaan (Merkle and Rosseel, 2016) for Bayesian estimation.
While Lavaan is decidedly less user-friendly than other programs
presented in Table 2, it is free and contains most of the modeling
features of its more expensive counterparts. Example code and
a contrived data set to estimate each of the specifications of
the LGCM in Lavaan can be can be found in the online
Appendix.

DISCUSSION

The aim of the current paper was to present LGCMs, in a
user-friendly manner, which can answer research questions that
are important and under-studied in the stress-related biomarker
field. We discussed how to formulate and interpret findings from
relevant LGCMs, and showed how easy they are to implement by
including sample code for a variety of models.

LGCM methodology provides advantages to researchers
interested in studying change over time of biomarkers of
the stress response. The LGCM provides insight into the
rate at which a variable changes over time through the
specification of latent growth factors. Latent growth factors
answer questions about the rate of change of a variable, and
how that rate of change relates to other variables. Different
specifications of the LGCM were selected to address specific

research questions developed through the context of the TSST;
namely, the basic LGCM, the multi-group growth model, the
PLGCM, and the LGCM for two parallel processes. We also
presented a description of a selection of the most commonly
used statistical software programs available to estimate LGCMs.
Our hope is to help researchers identify research questions
that can be better handled through this flexible modeling
framework.

CAUTIONS FOR ALL LGCM-BASED
APPROACHES

Model specification is an important issue within any sort of
modeling framework (Curran et al., 2010). In the case of latent
growth models, there are many features that one must be aware
of when specifying the model. If, for example, the nonlinear
function incorporated into the model is not representative of
the patterns in the population, then substantive results may be
impacted with this specification error embedded. Likewise, there
is a part of the model that controls how related measures for the
same subject are at different times, as well as how related (if at
all) observations for different subjects are allowed to be. These
elements in the model are controlled through within-individual
and between-individual covariance matrices. The researcher can
control whether time-points or people are allowed to covary
through the manipulation of these matrices. Wu and West
(2010) found that misspecification in the within-individual or
the between-individual covariance structure can impact model
fit statistics and change substantive conclusions. Therefore, it
is always important to examine the specification of the model
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carefully and fully report the settings used to aid in interpretation
of findings; see van de Schoot et al. (2017) for more details
surrounding proper specification and reporting of latent growth
models.

Applied researchers are often understandably concerned with
whether a growth model specified actually fits the data patterns.
For example, a researcher could specify a quadratic-shaped
growth curve and examine whether it fits reasonably well
compared to other growth shapes. In this case, a researcher would
likely use model comparison measures (e.g., AIC or BIC) to
make that assessment. One point of caution specific to growth
models is that fit assessment does not just arise at the model-
level. It is also possible to examine person-level fit, to see howwell
each individual’s trajectory fits along with the specified model.
One issue that can arise in nonlinear growth is that one form
of nonlinearity (e.g., quadratic) may fit the full data best, but it
could be that this growth shape is not what represents the bulk
of individual growth trajectories. As an example, it is possible to
have a quadratic model fit the full data set best, but have most
of the individual trajectories follow a linear trajectory. In this
case, there is a mismatch between overall and person-level fit with
respect to the optimal model to select for interpretation. In this
case, it is imperative to fully report findings and any discrepancy

yielded. For more information on person-level fit, see Coffman
and Millsap (2006).

CONCLUSION

In summary, the LGCM and its various specifications is one tool
in an array of quantitative methodologies for the study of change
over time in biomarkers of the stress response. The choice of
proper statistical methodology should be driven by a number of
factors, including the research question, and the sample size. The
methods described in this article provide a perspective that can be
of great relevance to stress researchers. The purpose of this paper
was to increase awareness of LGCMs and how they can be useful
to stress researchers investigating biomarkers. The accessibility
of more statistical methods permits the continued evolution
and development of the types of research questions that can be
asked.
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