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Abstract

Detection of melanocytes serves as a critical prerequisite in assessing melanocytic growth patterns 

when diagnosing melanoma and its precursor lesions on skin biopsy specimens. However, this 

detection is challenging due to the visual similarity of melanocytes to other cells in routine 

Hematoxylin and Eosin (H&E) stained images, leading to the failure of current nuclei detection 

methods. Stains such as Sox10 can mark melanocytes, but they require an additional step and 

expense and thus are not regularly used in clinical practice. To address these limitations, we 

introduce VSGD-Net, a novel detection network that learns melanocyte identification through 

virtual staining from H&E to Sox10. The method takes only routine H&E images during 

inference, resulting in a promising approach to support pathologists in the diagnosis of melanoma. 

To the best of our knowledge, this is the first study that investigates the detection problem 

using image synthesis features between two distinct pathology stainings. Extensive experimental 

results show that our proposed model outperforms state-of-the-art nuclei detection methods for 

melanocyte detection. The source code and pre-trained model are available at: https://github.com/

kechunl/VSGD-Net

1. Introduction

In biomedical image analysis, the automatic detection of certain types of cells in microscopy 

images is of significant interest to a broad spectrum of biological research and clinical 

practices. Accurate identification of particular cell types helps to interpret biopsies and 

to diagnose the states of different diseases. For example, the diagnosis of melanoma, the 

most serious type of skin cancer in the United States [41], requires the assessment of the 

distribution disorder of melanocytes1 under the microscopic examination of Hematoxylin 
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and Eosin (H&E)-stained glass slides of skin biopsies by pathologists. Nevertheless, 

identifying melanocytic populations can be challenging on routine H&E-stained slides 

given the visual similarity with other cells. As a solution to this, pathologists may rely 

on obtaining special additional immunohistochemistry (IHC) stains, for example, Sox10 

– a transcription factor expressed in melanocytic nuclei – as a specific immunomarker to 

highlight melanocytes (Fig. 2c). Despite this benefit, Sox10 immunostaining is not routinely 

obtained in clinical practice because of its high cost, especially in some low-resource 

regions. Hence, building computer-aided melanocyte detection methods would support the 

melanoma diagnosis workload and improve diagnostic accuracy.

In the last decade, benefiting from the development of deep learning techniques, researchers 

have leveraged deep convolutional neural networks (CNNs) with various model designs to 

tackle many computer vision tasks, including semantic segmentation and instance detection. 

As a part of instance detection, a major line of work utilizes deep convolutional neural 

networks (CNNs) [8, 12], U-Net [3], R-CNN [43], shape-guided CNN [37], and high-

resolution networks [5] to localize general nuclei on H&E images. Similar CNN structures 

can also be found in specific types of cell/nuclei detection studies, such as mitotic nuclei 

detection [31, 42] and tumor nuclei grading [5, 27, 8, 34]. However, unlike general nuclei/

cell detection, the detection of a specific class of cells is more challenging because of 

the inter-class visual similarity on routine H&E-stained slides. Although IHC staining 

can highlight certain types of cells, it is not comparable to H&E staining in terms of 

generalizability because of the difficult accessibility issue. Learning from only H&E-stained 

slides, the aforementioned CNN-based detection methods are not capable of incorporating 

information from other modalities/stainings and in this way fail to differentiate various 

classes of cells.

Recently, Generative Adversarial Networks (GANs) have been used for data augmentation 

and style transfer. In the biomedical research community, GANs also attract growing 

attention for virtual staining and realistic medical image synthesis to aid clinical practices. 

For example, researchers leverage the unsupervised CycleGAN [55] architecture and the 

supervised conditional GAN [13] to synthesize one modality into another, e.g. MR to 

CT [49, 11], H&E to IHC [48, 29]. However, there is still a gap between synthesizing 

convincing medical images and boosting the performance of downstream tasks. In other 

words, a generator cannot be trained for a specific downstream task for lack of direct 

feedback from another network. To make up for this issue, some studies [6, 52] cascade a 

segmentation net after the generator and train the network in an end-to-end style. But these 

methods fail to explore intermediate features from the image synthesis process, which are 

empirically important for the downstream tasks.

In order to aid in the pathologists’ decision-making process, it is very useful to have either 

accurate melanocyte prediction or precise virtual staining. Motivated by the demand, we 
propose VSGD-Net, a novel virtual-staining-guided detection architecture that provides 
a solution to both the detection and the virtual staining tasks simultaneously. VSGD-

1For example, melanoma in situ exhibits confluent growth of single and nested melanocytes at the epidermal base and/or extension 
into the mid-to-upper levels of the epidermis.
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Net boosts detection and image synthesis performance at the same time by incorporating 

hidden correlations between two image modalities. In Fig. 4, we illustrate our proposed 

model, which expands a conditional GAN to an instance detection pipeline. The generator, 

discriminator, and detection network are jointly trained so that the image synthesis task 

and the detection task can benefit from each other. We validate our approach with a 

carefully curated melanocyte dataset that contains biopsy images in H&E and Sox10 

stainings. Moreover, we verify the significance of the intermediate features with extensive 

experiments. Our contributions in this work can be summarized as follows:

1. We propose VSGD-Net for the instance detection task. To the best of our 

knowledge, this work is the first to investigate the detection problem using 

image synthesis features between two stainings. From an information system 

perspective, the added modality increases information entropy and facilitates 

feature learning through adversarial training.

2. We compare our model with previous nuclei detection and GAN-based methods 

in a melanocyte detection dataset. Extensive experiments show that our model 

achieves the state-of-the-art performance.

3. During inference time, the proposed VSGD-Net takes only an affordable regular 

H&E stain as input to identify melanocyte instances. As one of the first 

deep-learning-based melanocyte detection methods, the proposed model would 

provide reliable melanocyte results to reduce the burden on pathologists and aid 

in melanoma diagnosis in the future.

2. Related Work

2.1. Nuclei Detection

In recent years, deep learning-based nuclei detection methods have been widely studied. 

As a variant of the fully convolutional network (FCN) [22], U-Net [36] made a huge 

impact on the medical image research community. Many researchers extended the U-Net 

structure [36] into more efficient variants to identify nuclei in histopathological images, for 

example, R2U-Net [1], U-Net++[54], Micro-Net [35], and Triple U-Net [51]. To incorporate 

nuclei contour-aware modules, Zhou et al. presented CIA-Net [53] which contains two 

task-specific decoders to learn either the nuclei or the contours. Similarly, Schmidt et al. 
proposed StarDist [37] to localize nuclei via star-convex polygons. In the task of detecting 

nuclei of specific cells, Graham et al. proposed Hover-Net [8] by utilizing three downstream 

branches, namely segmentation, classification, and a novel Hover branch, which used the 

horizontal and vertical distance maps to segment attached nuclei. For better distance-map 

generation, Gao et al. presented the two-stage CHR-Net [5], which leveraged the W-Net 

structure [47] and high-resolution feature extractors, and achieved the new state-of-the-art 

performance.

Another line of approaches, e.g. Mask RCNN [9], have also achieved promising results in 

nuclei instance segmentation [21, 43, 44]. The feature pyramid network (FPN) backbone 

allows the model to extract features in multiple scales and feed into the region proposal 

network (RPN) to generate reasonable instance candidates in varying sizes for downstream 
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tasks like segmentation and classification. Our proposed model, VSGD-Net, also takes 

advantage of the FPN and RPN modules to better exploit the intermediate features for nuclei 

detection.

2.2. Image-to-Image Translation

First proposed by Goodfellow et al., the Generative Adversarial Network (GAN) [7] 

introduces the adversarial loss to optimize the generator and the discriminator in a minimax 

zero-sum game. To incorporate additional constraints on the generated data, Mirza et al. 
proposed the conditional GAN (cGAN) [30], which feeds the condition to both the generator 

and the discriminator to guide the generation process. Successful variants of the cGAN 

include the LSGAN [26], the ACGAN [32], the BigGAN [2], and Pix2Pix [13]. Among 

these prominent variants, Pix2Pix [13] first brought the cGAN to the paired image-to-image 

translation task and its extension, Pix2PixHD [45] enabled high resolution image generation. 

To alleviate the need for paired data, Zhu et al. proposed CycleGAN[55] to learn the 

mapping between two image domains X and Y in both directions by coupling two GANs. 

The idea behind Cycle GAN is that ideally if we translate the image from one domain to 

another and back again, the reconstructed image should be the same as the input image. 

The CycleGAN structure has also been widely applied in stain normalization, modality 

conversion, and virtual staining for histopathological images. For instance, Shaban et al. 
developed Stain-GAN [39] based on the CycleGAN structure for biopsy stain normalization. 

Mahmood et al. leveraged CycleGAN to learn the mapping between histopathology images 

and nuclei masks to improve nuclei segmentation [25]. Xu et al. developed cCGAN [48] 

that incorporated CycleGAN with photorealism and structure similarity losses to learn 

virtual staining from H&E to IHC. However, the cycle consistency loss in CycleGAN only 

forces the reconstructed image to be similar to the original image, lacking some constraints 

between the two image domains, which weakens its reliability in virtual staining. To solve 

this, Liu et al. adds a pathology-consistency constraint to CycleGAN and requires the 

generated and source images to have the same pathological properties in both H&E and IHC 

stains [20].

To benefit from GANs, some studies utilize the synthesized data to enhance the performance 

on downstream tasks such as detection and segmentation. A R-CNN-based detector is 

cascaded after the generator to learn nuclei segmentation [18, 6] and disease localization 

[52, 19]. However, these models fail to exploit the informative hidden features during 

the generation, and the feedback from the downstream tasks may only yield minor 

improvements in the image synthesis process. To this end, we propose VSGD-Net that 

can jointly optimize the image synthesis and nuclei detection via the shared intermediate 

features. The improvements in both the synthesis and the detection tasks are validated 

through our comprehensive experiments.

3. Methodology

In this section, we explain the data preprocessing (Fig. 1), the design of our proposed 

VSGD-Net, and the training procedure; the following section will examine various methods 

and ablate VSGD-Net’s components to show its performances and design decisions.
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3.1. Dataset

The skin biopsy dataset used in this study consists of skin tissue from paraffin-embedded 

blocks of 15 cases, which were chosen at random among historical cases from a 

private dermatopathology laboratory, including three cases for each MPATH-Dx diagnostic 

category[4, 33]4. The tissue from each skin biopsy case is cut into multiple (4–6) thin slices 

for microscopic examination, resulting in 75 slices in 20x magnification. We stain each WSI 

with H&E first (see Fig. 2a). We then carefully destain the exact tissue sections and re-stain 

them in Sox10. The Sox10 stain highlights the nuclei of melanocytes in red, while the nuclei 

of other cells appear in blue, which provides the ground truth label of melanocytes and 

non-melanocytes (see Fig. 2b).

To generate ground truth labels for melanocyte detection, we introduce a pseudo-automatic 

procedure. We trained a Random Forest classifier on 100 manually labeled melanocytes in 

Sox10 to generate coarse melanocyte masks. Then, we applied a pretrained nuclei detection 

model, NuSeT [50], to separate touching nuclei and refine the masks. We find that this 

procedure yields accurate melanocyte masks, which can serve as ground truth labels in this 

study (see Fig. 3).

To fit images into memory as well as keep adequate information, we cropped the registered 

paired images into 256×256 patches with 10x magnification. The background patches were 

excluded, leaving a total of 25,314 patches to use. We reserved 9652 paired image patches 

from 5 patients for the testing set and the rest for training and validation, where data from 

patients in the testing set never appeared in the training and validation sets. Both the training 

and testing sets contain the full range of MPATH-Dx diagnostic classes for a fair evaluation.

3.2. Model Architecture

Fig. 4 illustrates the VSGD-Net architecture. We built the generator G based on an adapted 

UNet [36] structure with ResNet-50 [10] being the encoder. The encoder learns the high-

dimensional feature representations of input H&E images in multiple scales, and the decoder 

translates them into target Sox10 stained images. Given the 25x downsampling in the 

encoder, the decoder comprises 5 deconvolution layers. To better focus on melanocytes 

without expanding the model architecture, we incorporated attention blocks in the skip 

connections between the encoder and the decoder. The attention blocks leverage the design 

of CBAM [46], which contains a 3-layer MLP channel attention block and a convolutional 

spatial attention block to learn the attention maps in different dimensions (see Fig. 5).

While the generator G learns the virtual staining process, the discriminator D attempts to 

differentiate real and synthesized Sox10 images. Inspired by Pix2PixHD [45], we adopted 

a multi-scale architecture that has 2 identical CNN networks as discriminators: the two 

discriminators work at coarse and fine levels separately, where the input to the coarse-level 

discriminator is downsampled by a factor of 2 from the input to the fine-level discriminator. 

Similar to PatchGAN [13], each discriminator evaluates the realism of every fixed-sized 

patch in the image instead of directly evaluating the realism of the whole image. With the 

4Classes 1-5: Benign mildly atypical nevi, Moderate dysplastic nevi, Melanoma in situ, Invasive melanoma T1a, and Invasive 
melanoma T1b.
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minimax loss introduced in [7], this multi-scale design guides G to synthesize images with 

globally consistent patterns as well as finer details. The architectural details of the attention 

block and the discriminator are explained in the supplementary material.

Similar to Mask R-CNN [9], our detection branch consists of a feature pyramid network 

(FPN), a region proposal network (RPN), and the downstream heads. Learning to generate 

Sox10 images, the decoder layers have higher correlations with the Sox10 images than the 

encoder layers; moreover, Sox10 staining can highlight melanocytes in a red chromogenic 

color, which is consistent with the detection goal. In light of this, we place the detection 

branch in the decoder of G instead of the encoder, which is proven to be effective in the 

ablation study.

3.3. Training Process

In our end-to-end model, the virtually stained images and the detected instances are 

predicted from the shared intermediate features. To incorporate the feedback from both the 

image synthesis and the instance detection, we train G, D, and the detection branch jointly to 

learn from both the GAN loss LGAN and the detection loss LDET.

3.3.1 GAN Loss—The generator G and the multi-scale discrimator D are optimized 

following the minimax loss [7]:

min
G

max
D

∑
i = 1, 2

log Di Xs + log 1 − Di G Xℎ

where D1 and D2 are the coarse- and fine-level discriminators, and Xs and Xh are the Sox10 

and H&E images.

Besides the minimax loss, we add a feature similarity loss Lfeat to improve the similarity 

between the generated and the real images. The calculation of Lfeat involves multiple layers 

in D and a pretrained VGG19 model, and is given by the following equation:

Lfeat = ∑
i = 1

N
Di Xs − Di G Xℎ 1 + ∑

j = 1

M
V GGj Xs − V GGj G Xℎ 1

where N and M denote the layers to extract features. The details of feature similarity loss is 

provided in the supplementary material.

3.3.2 Detection Loss—The detection loss LDET is separated into Lrpn, Lboxc, Lboxr, 

and Lseg. Lrpn the total loss of the candidate classification and the coarse bounding box 

regression in the RPN, given by the summation of binary cross entropy of the candidate 

classification and L1 loss on the coarse bounding box regression in the RPN. It forces the 

RPN to learn the location of anchor boxes and whether the anchor boxes contain objects. 

Lboxc, Lboxr, and Lseg are the losses for the instance classification, the final bounding box 

regression, and the segmentation in the downstream heads, which are given by the binary 
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cross entropy of the instance classification, the binary cross entropy of the mask prediction, 

and the L1 loss of bounding box coordinates. The total loss is defined as:

LDET = Lrpn + Lboxc + Lboxr + Lseg

3.3.3 Overall Losses and Training—In our VSGD-Net, the shared intermediate 

features are learned to characterize features of melanocytes and boost the Sox10 image 

synthesis at the same time. To facilitate such multi-task learning, we combine LGAN with 

LDET and backpropagate them to the encoder inside G. The final total loss is defined below,

min
G

max
D

∑
i = 1, 2

log Di Xs + log 1 − Di G Xℎ + λ * Lfeat + LDET (1)

4. Experiments and Results

4.1. Experimental Design and Baseline Methods

To comprehensively evaluate the performance of our proposed VSGD-Net, we compared 

VSGD-Net with two lines of methods. The first group is specialized in nuclei detection, 

including Radial Line Scanning (RLS)[24], Mask R-CNN[9], U-Net[36], StarDist[37], 

HoverNet[8], the new state-of-the-art CHR-Net[5], and a “nuclei classification” method 

we designed. RLS was specifically proposed to study melanocyte detection. It leverages a 

feature-based approach based on the “halo region” assumption that melanocytes appear with 

a brighter region surrounding the nuclei under H&E staining. Furthermore, to investigate 

the local texture around nuclei, we designed the “nuclei classification” method, which first 

applies a fine-tuned ensemble model [38] to detect nuclei and then trains the open-source 

ESPNetv2[28] to classify cropped nuclei patches.

The second group of methods consists of GAN-based approaches, including StainGAN [39], 

PC-StainGAN [20], and a self-implemented GAN-based segmentation model similar to [6]. 

The segmentation model, whose G and D are the same as VSGD-Net, directly feeds the 

synthesized image to the segmentation net and is trained end-to-end. For the other GAN 

models that do not incorporate any downstream modules, we tested their performances 

in a two-stage manner, using the random forest and the NuSeT model in our groundtruth-

generating step (Section 3.1).

In our experiments, the ResNet-50 backbone in Mask R-CNN and the ResNet-34 backbone 

in CHR-Net are pre-trained with ImageNet for fair comparisons. We empirically set λ = 10 

in Eq. 1. We report precision (P), recall (R), F1-score, and Jaccard index on the test set in our 

experiments. More training details are explained in the supplementary material.

4.2. Main Results

In clinical practice, pathologists diagnose and grade melanoma based on the distribution 

of melanocytes, hence it is important to have both high precision and recall. With high 

precision but low recall, malignant melanocytes may be missed, leading to under-diagnosis 
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of melanoma. On the other hand, a case may be over-diagnosed with high recall but low 

precision. Thus the F1-score and Jaccard index are the most significant metrics. More 

detailed analyses, such as precision-recall curve and P@R metrics, are included in the 

Appendix for reference.

As shown in Table 1, VSGD-Net achieves the best F1-score and Jaccard index. RLS, 

although it heuristically utilizes the “halo region” characteristics of melanocytes, demands 

a huge workload in hyperparameter tuning and lacks generalizability in this way. Both 

“Nuclei Classification” and Mask R-CNN show high precision but low recall, because they 

only predict instances with high confidence scores under the instance-level learning schema. 

Given the shape similarity between melanocytes and other cells, StarDist and HoverNet fail 

to utilize the shape representation and the distance map of nuclei. Benefiting from the skip 

connections, U-Net reaches a decent result. Furthermore, the CHR-Net leverages a double 

U-Net structure and high-resolution feature extractors to achieve a 1% improvement over 

U-Net, which is consistent with the previous findings[5]. However, without learning from 

Sox10 staining, U-Net and CHR-Net still underperform VSGD-Net.

Figure 6 shows the qualitative comparisons of VSGD-Net, CHR-Net, and GAN-based 

segmentation. The predictions in VSGD-Net have a high coincidence with the ground 

truth, while CHR-Net over-predicts the melanocytes on the bottom-left of the image, and 

GAN-based segmentation over-predicts the melanocytes on the top of the image. More 

qualitative visualizations are provided in the supplementary material.

Table 2 and Figure 7 demonstrate the performance of GAN-based methods. StainGAN [39] 

and PC-StainGAN [20] were designed based on unsupervised CycleGAN [55]. Without 

any additional supervision, StainGAN fails to learn the distribution gap between the two 

stainings. Although PC-StainGAN adds a pathology constraint to the Cycle-GAN, it still 

lacks supervision on the conversion between H&E and Sox10. On the other hand, the GAN-

based segmentation method has supervision on the synthesized images, but its detection 

performance is bounded by the image synthesis quality due to its architecture.

4.3. Image Synthesis Evaluation

Although image synthesis is only auxiliary in our VSGD-Net framework, we still evaluate 

its quality to show that the virtual staining is improved by the shared intermediate features. 

To measure the reliability of the virtual staining, we calculate the average Peak Signal-to-

Noise Ratio (PSNR) and Structural Similarity (SSIM). Larger numbers in PSNR and SSIM 

indicate better image quality and higher similarity with the groundtruth. As Table 3 shows, 

our VSGD-Net achieves the highest PSNR and a comparable SSIM to PC-StainGAN. By 

assessing the mean squared error of the synthesized images, higher PSNR indicates more 

reliable results with regard to the virtual staining task.

4.4. Ablation Study

In Table 4, we ablated each key component in VSGD-Net, namely the image synthesis 

features, the location of the detection branch and the attention module’s presence. To verify 

the efficacy of the image synthesis features, we replaced the generator of VSGD-Net with 

the generator in Pix2PixHD[45], which has fewer convolution layers, no skip connections, 
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and no attention module. As Row 1 of Table 4 shows, despite the weakness of the 

Pix2PixHD generator, it still achieves comparable results and outperforms other baselines 

with the key component of boosting detection with image synthesis features. We assumed 

the features in the decoders have higher correlations with Sox10 staining and melanocytes, 

and the attention module refines the intermediate features. Such assumptions are verified by 

the notable performance gains in Table 4 row 5.

4.5. Discussion

The VSGD-Net successfully detects melanocytes using the features from image synthesis 

between H&E and Sox10 stainings. Considering the large quantity of melanocytes (e.g. 

total number range from 3,780 to 830,750 per WSI) on a single segment of a skin biopsy, 

it is not feasible to label melanocytes manually for training. While the pseudo ground 

truth labels are not perfect, it is sufficient to provide highly accurate annotation given how 

Sox10 staining works in skin biopsies. One limitation is that we utilize a simple U-Net 

with a ResNet-50 backbone as our generator. With more recent works studying GANs on 

histopathology images [17, 40], we believe the synthesis features can be further improved by 

state-of-the-art GAN models. Another consideration is that we only evaluate VSGD-Net on 

the melanocyte dataset. Although researchers have publicized some multi-modality medical 

imaging datasets for image synthesis study, such as CT-MRI [14], PET-MRI [15], and 

H&E-Trichrome staining [16], these datasets do not have any annotations on lesions or 

cell-type-of-interest. In the future, researchers can add pathologists’ annotations or leverage 

self-supervised learning to overcome these issues.

5. Conclusion

In this study, we introduce a novel virtual staining guided detection network, VSGD-Net, 
and investigate cell-type-of-interest detection with the boost of image synthesis features 

between two distinct stainings on the skin biopsy specimen. During inference, the model 

can produce promising results from only the routine H&E staining. Extensive experiments 

validate the effectiveness of our method on a corresponding dataset of melanocytes in H&E 

and Sox10 stained images. We anticipate that the proposed method can adapt to a broad 

category of different tissue types and diseases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Preprocessing steps: First, we register raw Sox10 images (b) into aligned Sox10 images (c) 

using template H&E images (a) with the Histokat software3[23]. Then, we apply a Random 

Forest classifier to classify pixels into melanocyte or non-melanocyte. At last, the pretrained 

NuSeT [50] separates touching nuclei and refine the masks.

3 https://histoapp.mevis.fraunhofer.de/ 
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Figure 2. 
Sample H&E stained image and Sox10 stained image. The Sox10 stain highlights the nuclei 

of melanocytes in red, while the nuclei of other cells appear in blue.
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Figure 3. 
Nuclei groundtruth: The top row shows the H&E images with melanocytes marked with 

green boundaries. The bottom row shows their corresponding Sox10-stained images.

Liu et al. Page 16

IEEE Winter Conf Appl Comput Vis. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Our VSGD-Net framework: H&E images are virtually stained to Sox10. The jointly trained 

detection branch utilizes the intermediate features in the generator to detect melanocytes and 

provides feedback to the generator to enhance synthesis quality. The inference phase only 

uses the upper part of the architecture.
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Figure 5. 
Attention block: Channel attention and spatial attention are consecutively computed to refine 

the features.

Liu et al. Page 18

IEEE Winter Conf Appl Comput Vis. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
The green and red bounding boxes denote the groundtruth and the predicted instances. 

(Zoom in for best view)
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Figure 7. 
Synthesized Sox10 images.
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Table 1.

Comparison with nuclei detection methods.

Method P R F 1 Jaccard

RLS [24] 0.443 0.570 0.499 0.332

Nuclei Classification 0.693 0.506 0.585 0.413

Mask R-CNN [9] 0.735 0.514 0.605 0.434

U-Net [36] 0.630 0.639 0.635 0.465

StarDist[37] 0.745 0.426 0.542 0.372

HoverNet[8] 0.729 0.499 0.592 0.421

CHR-Net [5] 0.607 0.688 0.645 0.476

Ours 0.660 0.710 0.684 0.520
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Table 2.

Comparison with GAN-based methods.

Method P R F 1 Jaccard

StainGAN [39] 0.476 0.299 0.367 0.225

PC-StainGAN [20] 0.591 0.343 0.434 0.277

GAN-based Segmentation 0.569 0.719 0.636 0.466

Ours 0.660 0.710 0.684 0.520
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Table 3.

Synthesized image quality assessment.

Method PSNR(dB) SSIM

StainGAN [39] 19.010 0.577

PC-StainGAN [20] 19.344 0.618

GAN-based Segmentation 19.583 0.569

Ours 19.815 0.611
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Table 4.

Ablation results.

Generator Features From Atten. F 1 Jaccard

Pix2pixHD Decoder - 0.654 0.486

Ours Encoder ✗ 0.641 0.472

Ours Decoder ✗ 0.674 0.508

Ours Encoder ✓ 0.660 0.492

Ours Decoder ✓ 0.684 0.520
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