
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
A higher-order embedded boundary method for time-dependent simulation 
of hyperbolic conservation laws

Permalink
https://escholarship.org/uc/item/1wg350r1

Authors
Modiano, D.
Colella, P.

Publication Date
2000-03-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1wg350r1
https://escholarship.org
http://www.cdlib.org/


A Higher-Order Embedded Boundary Method for

Time-Dependent Simulation of Hyperbolic

Conservation Laws

D. Modiano and P. Colella

Lawrence Berkeley National Laboratory

Berkeley, California 94720

March 2, 2000

Abstract

We present a new method for time-dependent simulation of hyperbolic

conservation laws using a background Cartesian grid with an embedded

boundary to represent geometry. The 
uxes are produced at the centers

of the regular grid cell faces by a Godunov method. Since the accuracy

of the 
ux divergence depends on the 
uxes consistently centered at the

centroids of the irregular faces, we linearly interpolate the 
uxes from

the regular face centers to the irregular face centroids. We compare to

an exact solution the propagation of a planar wave in a straight-walled

channel inclined 30 degrees to the grid. The inconsistent 
ux method

converges at well below �rst order in the irregular cells, and at about �rst

order in the full domain. The present method, with consistent 
uxes,

converges at between �rst and second order in the irregular cells, and at

second order in the full domain.
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Nomenclature

Ax
, Ay


ux Jacobian matrices, @F x=@U and @F y=@U

F x
, F y


ux vectors

FB
ij 
ux evaluated at centroid of embedded boundary segment

F x
i+12;j, etc. 
ux evaluated at centroid of irregular faceeF x
i+12;j, etc. 
ux evaluated at center of regular grid face

L exact hyperbolic evolution operator

L discrete hyperbolic evolution operator

LC conservative discrete hyperbolic evolution operator

LNC nonconservative discrete hyperbolic evolution operator

U numerical approximation to V

UC
conservative numerical approximation to V

UNC
reference state, nonconservative numerical approximation to V

UP
preliminary update

V exact solution to hyperbolic evolution equation

e numerical error U � V

h grid spacing

`i+ 1

2
;j, `i;j+ 1

2

area fraction of irregular face

`Bij area fraction of embedded boundary segment

`1(�) max-norm of quantity

`2(�) `2 norm of quanitity in entire solution domain

`2EB(�) `2 norm of quanitity in irregular cells

n̂Bij normal direction of embedded boundary segment

p pressure

p? pressure, solution to Riemann problem

u,v x- and y-velocities

xi;j+ 1

2

, yi+ 1

2
;j fractional location of centroid of irregular face

xBi;j, y
B
i;j fractional location of centroid of embedded boundary segment

wlm;ij redistribution weights

�t time step

�ij volume fraction of irregular cell

�Mij local volume-integrated conservation error of preliminary update

�Ulm;ij redistribution increment

�ij interpolation coe�cient for preliminary update

� density

�ij local truncation error
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1 GOVERNING EQUATIONS

The governing equation is a two-dimensional hyperbolic system of conservation

laws

@V

@t
= �r�F (V ) = �@F x

(V )

@x
� @F y

(V )

@y
(1)

specialized to the equations of inviscid isentropic gas dynamics, with state vec-

tor V = (�; �u; �v)T , and 
ux vectors F x
= (�u; �u2 + p; �uv)T and F y

=

(�v; �uv; �v2+p)T where � is the 
uid density, u and v the x- and y-components

of velocity, and p = pref(�=�ref)


is the pressure.

2 NUMERICAL METHOD

The method presented here is based on a discretization of a complex problem

domain as a background Cartesian grid with an embedded boundary represent-

ing the irregular domain region. See �gure 1. We recognize three types of grid

cells or faces: a cell or face that the embedded boundary intersects is irregular.

A cell or face in the irregular problem domain which the boundary does not

intersect is regular. A cell or face outside the problem domain is covered. The

boundary of a cell is considered to be part of the cell, so that cells A, B and C in

�gure 2 are irregular. At the regular cells we use a numerical method designed

for a uniformly spaced Cartesian grid with unit aspect ratio. We defer discus-

sion of that method to section 2.5.1. At the irregular cells we use a conservative

method based on �nite volumes, described in this section.

State variables are de�ned at the geometric centers of the regular grid cells,

even if a cell is irregular, and even if the center is outside the irregular domain.

This is to enable the cancellation of error terms that results from the use of

regular �nite di�erence formulas. Cell centers have integer indices such as (i; j).

Variables that are de�ned at the faces of cells are at the centers of the regular

grid faces unless otherwise speci�ed. Cell faces have mixed integer and half-

integer indices, such as (i + 1
2
; j) which is normal to x, and (i; j + 1

2
) which is

normal to y.

An irregular cell is formed from the intersection of a grid cell and the irreg-

ular problem domain. We represent the segment of the embedded boundary as

a single 
at segment. Quantities located at the irregular boundary are given

the superscript B. Depending on which grid faces the embedded boundary face

intersects, the irregular cell can be a pentagon, a trapezoid, or a triangle, as

shown in �gure 3. A cell has a volume �h2, where � is its volume fraction. A

face has an area `h, where ` is its area fraction. The polygonal representation

is reconstructed from the volume and area fractions under the assumption that

the cell has one of the shapes above. Since the boundary segment is recon-

structed solely from data local to the cell, it will typically not be continuous

3



Figure 1: Decomposition of the grid into regular, irregular and covered cells.

The gray regions are outside the solution domain.

B CA

Figure 2: Cells with unit volume fraction that are irregular.

with the boundary segment in neighboring cells. We also derive the normal to

the embedded boundary face n̂ and the area of that face `Bh.

We do not represent irregular cells such as shown in �gure 4, in which the

embedded boundary has two disjoint segments in the cell. If such a cell is

present, it will be reconstructed incorrectly.

The mathematical formulation and its implementation allow multiple irregu-

lar cells in one grid cell, such as seen in �gure 5. However, for clarity of notation,

references to irregular cells in this paper are as if there is only one irregular cell

in any grid cell.

2.1 Conservative 
ux divergence

The central idiom for the solution method in irregular cells is that the quantity

we are trying to compute is the cell-centered divergence of a �eld discretely

speci�ed at the cell faces. See �gure 6. In this case we solve for U , an approx-

imation to the exact solution V , by discretizing the exact hyperbolic evolution

equation

@V

@t
= �r� ~F (V ) = L(V ) (2)
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n

Λ

lh

h

Figure 3: Representable irregular cell geometry. The gray regions are outside

the solution domain.

Figure 4: Unrepresentable irregular cell geometry. The gray region is outside

the solution domain.

Figure 5: Multiple irregular cells sharing a grid cell. The left face of the grid

cell is also multi-valued. The gray region is outside the irregular domain.
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y

B
ij F

i,j+1/2

F

i,j-1,2

F

Figure 6: Flux divergence at an irregular cell.

in a �nite volume manner to produce

Un+1
ij � Un

ij

�t
� L(U ) =

@V

@t
�L(V ) +O(�t+ h) (3)

in which L(U ) = D � ~F (U ) where D is a discrete divergence operator. We are

concerned with a conservative 
ux divergence

LC (U ) = L(V ) +O(h=�)

= � 1

�ijh

�
`
i+

1
2
;j
F x

i+
1
2
;j
� `

i�
1
2
;j
F x

i�
1
2
;j

+ `
i;j+

1
2

F
y

i;j+
1
2

� `
i;j�

1
2

F
y

i;j�
1
2

� `BijF
B
ij

�
: (4)

We can construct a scheme using the conservative update

Un+1
ij = UC

ij = Un
ij +�tLCij: (5)

This scheme would be unsatisfactory for reasons of accuracy and stability, as

explained below.

2.2 Consistent discretization

Johansen and Colella [Johansen and Colella,1998] noted that the discrete di-

vergence operator 4 is based on trapezoidal integration around the polygonal

boundary of the irregular cell, which will be second-order accurate only if the


uxes F x
, F y

and FB
are consistently centered at the centroids of the irreg-

ular faces, whereas the 
uxes are available at the centers of the regular grid

faces, which in general will not coincide. In the context of solving elliptic
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F
x
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Figure 7: Flux interpolation from the grid face centers (�) to the irregular face
centroids (�).

and parabolic problems, Johansen and Colella devised a method whereby the


uxes F x
and F y

are linearly interpolated from the regularly-centered faces to

the irregularly-centered faces, providing a second-order accurate divergence (we

defer until section 2.5.3 the details of computing FB
). We apply their method

here. The interpolation formula for the case in �gure 7 is

F x

i+
1
2
;j
=

�
1� �y

i+
1
2
;j

� eF x

i+
1
2
;j
+ �y

i+
1
2
;j
eF x

i+
1
2
;j+1

(6)

where eF x
(or eF y

) are the 
uxes centered at the regular faces and �yh (or �xh for

faces oriented normal to y) is the distance from the regular face center to the

irregular face centroid. This can also be written as

F x

i+
1
2
;j
=

1
2

�
1 + `

i+
1
2
;j

� eF x

i+
1
2
;j
+

1
2

�
1� `

i+
1
2
;j

� eF x

i+
1
2
;j+1

: (7)

Interpolation of 
uxes is only performed if the other face (at (i + 1
2
; j + 1) in

the example) is regular. If it is not, we locally drop the order of accuracy and

use the regular grid 
ux eF x

i+
1
2
;j
directly. We defer until section 2.5.1 the details

of computing eF .
2.3 Preliminary update

A scheme using the conservative update of equation 5 is unstable for �xed

Courant number�t=h due to the presence of �ij, which may be arbitrarily small,

in the denominator of the discrete 
ux divergence, equation 4. We use a redistri-

bution scheme, originally developed for shock tracking [Chern and Colella,1987,
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Bell, Colella, Welcome, 1991], to transfer unacceptably large changes in state

from small cells to their neighbors.

Our redistribution method de�nes two updates, the unstable conservative

update of equation 5 and a nonconservative reference state

UNC
ij = Un

ij +�tLNC(Uij) (8)

that is stable independent of �ij. We linearly combine the conservative up-

date UC
and the nonconservative update UNC

to form the preliminary update

UP
ij = �ijU

C
ij + (1� �ij)U

NC
ij (9)

where 0 � �ij � 1. If �ij=1 we recover the original conservative method.

The nonconservative discrete divergence must be consistent,

LNC (V ) = L(V ) + O(h) (10)

uniformly in �, in order for the overall scheme to be �rst-order accurate in the

irregular cells,

�ij =
V n+1
ij � V n

ij

�t
� L(V n

)ij = O(h): (11)

In section 2.5.4 we describe our method for producing a reference state that

satis�es this requirement.

To determine a proper value of �ij, we de�ne the volume-integrated conser-

vation error of the reference state

�Mij = �ijh
2
(UC

ij � UNC
ij ) (12)

and rewrite the preliminary update 9 as a correction to the reference state,

UP
ij = UNC

+ �ij(U
C
ij � UNC

ij )

= UNC
ij +

�ij

�ijh2
�Mij: (13)

This suggests that �=� = O(1) is a necessary condition for small-cell stability.

We choose �ij = �ij.

2.4 Redistribution

The preliminary update is not globally conservative. The volume-integrated

conservation error in cell (i; j) is

�ijh
2
(UC

ij � UP
ij ) = (1� �ij)�Mij (14)

which must be added to the solution in order for the overall method to be

conservative. We distribute (1 � �ij)�Mij to a neighborhood of cells adjacent
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Figure 8: Redistribution neighborhood (diagonal lines) of cell (i; j) (crosshatch-

ing). Cells (i� 1; j� 1) and (i; j � 1) (white) are excluded because they cannot

be reached by monotone paths. Note that cells (i; j + 1) and (i + 1; j + 1) are

regular.

to (i; j) (including diagonally) which can be reached from it by a monotone path,

i.e. without going around 180
�
corners. Some of these cells may be regular. See

�gure 8. We include the cell (i; j) in its own neighborhood. The state of a target

cell is incremented by

�Ulm;ij = wlm;ij
1� �ij

�lmh2
�Mij : (15)

The weights wlm;ij must satisfy

1

�lm

X
(l;m)2nbh(i;j)

wlm;ij = 1 (16)

for the redistribution to be conservative, and

wlm;ij = O(�lm) (17)

so that �Uij is �nite for small �lm. For volume-weighted redistribution the

weights are

wlm;ij =
�lmX

(i0;j0)2nbh(i;j)

�i0;j0

: (18)

The redistribution update will satisfy

�Ulm;ij = O(h �t) (19)

which is the same order as UP � Un
.
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2.5 Godunov details

The numerical method is a multi-dimensional higher-order Godunov method

based on the method described by Colella [Colella,1990] for general quadrilat-

eral grids. The method presented here is restricted to Cartesian grids of a

uniform mesh spacing h and unit aspect ratio. State variables are de�ned at

the geometric centers of the regular grid cells, even if a cell is irregular, and even

if the center is outside the irregular domain. This is to enable the cancellation

of error terms that results from the use of regular �nite di�erence formulas.

Variables de�ned at the faces of cells are at the centers of the regular grid faces

unless otherwise speci�ed.

2.5.1 Regular Grid Method

The basic numerical method is a multi-dimensional higher-order Godunov

method [Colella,1990]. An outline of the method follows. Cell centers have

integer indices such as (i; j). Cell faces have mixed integer and half-integer

indices, such as (i + 1
2
; j) which is normal to x, and (i; j + 1

2
) which is normal

to y.

1. Compute slopes. We compute the slopes of the state variables at the cell

centers using the second-order central di�erence formula

�xUij = h

�
@U

@x
+ O(h2)

�
=

1
2

�
Un
i+1;j � Un

i�1;j

�
(20)

at interior cells and a �rst-order one-sided di�erence formula such as

�xUij = h

�
@U

@x
+ O(h)

�
= Un

i+1;j � Un
ij (21)

at cells adjacent to a boundary. The formulas for slopes in the y direction

are similar.

2. Linearized normal extrapolation. Given data at the cell center (i; j) at

time t = n�t we extrapolate to the left side of the face of the cell (i+ 1
2
; j)

at time t+ 1
2
�t = (n+ 1

2
)�t as

UL

i+
1
2
;j
= Un

ij +
1
2
h
@U

@x
+

1
2
�t

@U

@t
: (22)

Similarly, extrapolation to the right side of the face of the cell at (i� 1
2
; j)

is

UR

i�
1
2
;j
= Un

ij � 1
2
h
@U

@x
+

1
2
�t

@U

@t
: (23)
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In order to approximate @U=@t, we linearize the conservative form of the

equations

@U

@t
= � @F x

@x
� @F y

@y
(24)

in the x direction as

@U

@t
= �Ax

(U )
@U

@x
� @F y

@y
(25)

so that

UL

i+
1
2
;j
= Un

ij +
1
2
h
@U

@x
� 1

2
�tAx

ij

@U

@x
� 1

2
�t

@F y

@y
(26)

and

UR

i�
1
2
;j
= Un

ij � 1
2
h
@U

@x
� 1

2
�tAx

ij

@U

@x
� 1

2
�t

@F y

@y
: (27)

We de�ne bUL

i+
1
2
;j
and bUR

i+
1
2
;j
to be the result of the normal derivative term

bUL

i+
1
2
;j
= Un

ij +
1
2

�
1� �t

h
Ax
ij

�
�xUij (28)

and bUR

i�
1
2
;j
= Un

ij � 1
2

�
1 +

�t

h
Ax
ij

�
�xUij: (29)

The formulas for extrapolation to the faces normal to the y direction are

similar. Normal extrapolation must be completed for all sets of faces

before transverse extrapolation can be done.

3. Transverse 
uxes. With the de�nition of bUL
and bUR

, the time-centered

face states are computed as

UL

i+
1
2
;j
= bUL

i+
1
2
;j
� �t

2h

�bF y

i;j+
1
2
;j
� bF y

i;j�
1
2
;j

�
(30)

and similarly for UR

i�
1
2
;j
. We compute the transverse 
uxes bF y

from the

solution to the Riemann problem at each face de�ned by the states bUL

and bUR
at the face normal to y.

4. Riemann solution. We solve the Riemann problem de�ned by the left

and right states UL
and UR

to yield a single time-centered value at each

face Un+
1
2 .

5. Flux di�erence. We compute the 
uxes eF x
and eF y

at each face from the

Riemann solution. The state vector is advanced by one time step by the


ux di�erence,

Un+1
ij = Un

ij � �t

h

�eF x

i+
1
2
;j
� eF x

i�
1
2
;j
+ eF y

i;j+
1
2

� eF y

i;j�
1
2

�
(31)
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2.5.2 Irregular slopes

The computation of the slopes is modi�ed if access to a cell needed by the

central di�erence stencil is blocked by the irregular boundary (this does not only

mean that a cell is outside the irregular domain; for an example, in �gure 9,

the irregular boundary blocks access to cell (i + 1; j) for a stencil centered at

cell (i; j)). We use a one-sided second-order formula. For example, if cell (i+1; j)

is unavailable, the slope �xUij is computed as

�xUij = h

�
@U

@x
+ O(h2)

�
=

1
2
(Ui�2;j � 4Ui�1;j + 3Uij) : (32)

If the cell (i � 2; j) is also unavailable, we use a �rst-order formula. If the

cell (i � 1; j) is unavailable, the slope is set to zero. The latter is an indication

that the geometry is under-resolved.

2.5.3 Embedded boundary 
ux

The embedded boundary 
ux FB
ij is evaluated at the centroid of the embedded

boundary face, which does not coincide with any of the regular grid faces. The

entire Godunov procedure must be performed to evaluate this 
ux. The embed-

ded boundary represents a solid wall, so there is no convective transport across

it. Thus, the only non-zero 
ux is the pressure term of the momentum 
ux.

The slopes computed for the regular scheme can be reused. Since the em-

bedded boundary is not, in general, aligned with the grid, there is no notion of

normal and tangential grid directions for di�erencing. The predictor is similar

to the normal stage of the regular grid predictor, except that spatial extrapo-

lation is performed to the centroid of the embedded boundary face (�xBh; �yBh)

(measured relative to the center of the grid cell), which is arbitrary within the

cell, and the derivatives are linearized in both grid directions. Thus,

bUB
ij = Un

ij +

�
�xBij �

�t

2h
Ax
ij

�
�xUij +

�
�yBij �

�t

2h
A
y
ij

�
�yUij: (33)

A Riemann problem must be solved at the embedded boundary face. Only

one state is available. Since the embedded boundary represents a solid wall,

an arti�cial state is constructed which is identical to bUB
ij except the sign of the

normal velocity is reversed. Recall that we only need to compute the pressure

term, for the momentum 
ux. The solution to this Riemann problem is

p?ij = p̂Bij � ûBij ĉ
B
ij (34)

where u is the velocity normal to the embedded boundary and c is the speed of

12



i,j-1/2

i,j i+1,j

i+1/2,j

Figure 9: Double-valued extended face at (i+ 1
2
; j).

sound. The 
ux is then

FB
ij =

8>><
>>:

0

p?ijn
x
ij

p?ijn
y
ij

0

9>>=
>>; (35)

2.5.4 Reference State

The reference state UNC
is a stable, nonconservative approximation to Un+1

.

It is intended to resemble the �nite di�erence scheme used on the regular grid,

and does not include the e�ects of the geometry. Computation of the reference

state di�ers from computation of the regular grid update when a face required

for the 
ux di�erence is outside the valid irregular domain. These faces are

called extended faces and the quantities at them are called extended states and

extended 
uxes.

Extended values are speci�c to the cell they border. In �gure 9, face (i+ 1
2
; j)

has two sets of extended values, one for cell (i; j) and one for cell (i+1; j). The

implementation allows double-valued extended states, but for clarity of notation

that is not re
ected in this description.

Consider computation of the 
ux eF x

i+
1
2
;j
for cell (i; j) when the face (i+ 1

2
; j)

is invalid. The left and right states needed for the solution of the Riemann

problem are computed as follows. On the \inner" side of the face (L in this

example) we extrapolate from the center of cell (i; j) using �rst-order one-sided

slopes. bU I

i+
1
2
;j
= Un

ij +
1
2

�
1� �t

h
Ax
ij

�
�xUij (36)

where

�xUij = Un
ij � Un

i�1;j: (37)

On the \outer" side of the face, we extrapolate from the center of cell (i� 1; j)

13



using �rst-order one-sided slopes computed from cells (i � 1; j) and (i� 2; j).

bUO

i+
1
2
;j
= Un

i�1;j +
1
2

�
3� �t

h
Ax
i�1;j

�
�xUi�1;j (38)

where

�xUi�1;j = Un
i�1;j � Un

i�2;j: (39)

The Riemann problem is solved using the inner and outer states bU I
and bUO

de�ned above, in order to compute transverse 
uxes bF x
and bF y

. The transverse


ux update is performed with the use of the extended 
uxes. The extended

states themselves are updated with the transverse 
ux.

U I

i+
1
2
;j

= bU I

i+
1
2
;j
� �t

2h

�bF y

i;j+
1
2

� bF y

i;j�
1
2

�

UO

i+
1
2
;j

= bUO

i+
1
2
;j
� �t

2h

�bF y

i;j+
1
2

� bF y

i;j�
1
2

�
(40)

Note that it is possible for the transverse 
uxes to be extended 
uxes, as

is bF y

i;j�
1
2

in �gure 9.

The 
uxes eF x
and eF y

for computation of the reference state,

UNC
ij = Un

ij �
�t

h

�eF x

i+
1
2
;j
� eF x

i�
1
2
;j
+ eF y

i;j+
1
2

� eF y

i;j�
1
2

�
; (41)

are computed from the solution of the Riemann problem de�ned by U I
and UO

.

There is no in
uence of the embedded boundary on the reference state, and these


uxes are centered at the centers of the regular grid faces.

3 TEST CASES

3.1 Simple wave exact solution

The simple wave de�ned here is the time-dependent exact solution of the straight-

walled channel test case. The 
ow �eld is a stagnant 
uid with a small per-

turbation in a single characteristic quantity. We specify an initial pro�le for

density at time t = 0,

�0(x) = �ref (1 + �f(�x)) (42)

where

f(�x) =

�
(�x2 � 1)

4
if 0 � �x � 1

0 otherwise
(43)

with the dimensionless coordinate

�x = ~x�n̂=w: (44)

14



Figure 10: Initial condition for test problem. Density varies from 1:0 at the left

and right to 1:001 in the center.

The parameters are �, the amplitude of the wave; w, the width of the wave;

and n̂, the direction of propagation of the wave. The initial pressure is found

from the isentropic relation

lnp0(x)� 
 ln �0(x) = ln pref � 
 ln�ref: (45)

The initial 
uid velocity is found by characteristic analysis. The value of the

Riemann invariant

J+ = u+
2c


 � 1

(46)

is taken from the pro�le u = u0(x), c = c0(x), while the Riemann invariant

J� = u� 2c


 � 1

(47)

is taken from the reference ambient conditions u = 0, c = cref. Equating

u0(x) =
1
2
(J+ + J�) (48)

yields

u0(x) =
2


 � 1
(c0(x) � cref) (49)

The exact solution u(x; t) is obtained by using the pro�le u0(x+), c0(x+) in

equation 46, where x+(x; t) = x� (u + c)t, and iterating to convergence of x+.

3.2 Simple wave pulse in straight channel

The walls of the channel are angled 30
�
to the x-axis. The parameters of the

pulse are � = 10
�3
, w = 0:4, and n̂ = (

1
2

p
3; 1

2
). We used grids in the range 64�
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64 to 512 � 512. Each grid has irregular cells with a wide range of volume

fraction. The solution error is calculated from the analytic exact solution of

section 3.1. We compare the error, eij = Uij�Vij, of simulations using consistent


uxes to simulations using 
uxes centered at the regular grid faces. Three

error measures are shown: kek
1
, the maximum error; kek2;EB, the `2 norms

of the �eld error in the irregular cells only; and kek2, the `2 norms of the �eld

error in the entire problem domain. Tables 1{4 show the errors in density

and x-momentum. The rate listed is the error exponent p for which the errors

satisfy e(h) = O(hp). It is calculated as pn = log2 (ke(2h)kn = ke(h)kn). We

expect p = 1 in the irregular cells for the consistent 
ux method. Since the

irregular region is a set of points codimension one lower than the full domain,

we expect an extra factor of h, or p = 2, for the full domain in the asymptotic

limit.

The inconsistent 
ux method shows the maximum error and the irregular

cells error norm to converge at well below �rst order, and the full domain error

norms to converge at about �rst order. The present method, with consistent


uxes, shows the maximum error and the irregular cells error to converge at

between �rst and second order, and the full domain error norm to converge

at about second order. The convergence rates for x-momentum is signi�cantly

poorer than that for density, due to the convection of vorticity errors along the

wall.
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Table 1: Errors and convergence rates of density for consistent 
ux scheme.

grid kek
1

p1 kek2;EB p2;EB kek2 p2
64�64 5:74(�6) | 4:91(�7) | 9:73(�8) |

128�128 2:26(�6) 1.35 1:79(�7) 1.46 2:56(�8) 1.92

256�256 1:03(�6) 1.13 6:40(�8) 1.49 6:77(�9) 1.92

512�512 4:45(�7) 1.22 2:29(�8) 1.48 1:75(�9) 1.95

Table 2: Errors and convergence rates of x-momentum for consistent 
ux

scheme.

grid kek
1

p1 kek2;EB p2;EB kek2 p2
64�64 7:86(�6) | 6:56(�7) | 1:27(�7) |

128�128 3:48(�6) 1.35 2:95(�7) 1.15 4:06(�8) 1.65

256�256 1:67(�6) 1.06 1:25(�7) 1.24 1:23(�8) 1.72

512�512 7:84(�7) 1.09 5:05(�8) 1.31 3:57(�9) 1.78

Table 3: Errors and convergence rates of density for inconsistent 
ux scheme.

grid kek
1

p1 kek2;EB p2;EB kek2 p2
64�64 6:26(�6) | 1:02(�6) | 2:07(�7) |

128�128 3:28(�6) 0.93 6:60(�7) 0.64 9:58(�8) 1.11

256�256 2:45(�6) 0.42 3:68(�7) 0.84 4:00(�8) 1.26

512�512 2:23(�6) 0.13 2:15(�7) 0.78 1:67(�8) 1.26

Table 4: Errors and convergence rates of x-momentum for inconsistent 
ux

scheme.

grid kek
1

p1 kek2;EB p2;EB kek2 p2
64�64 6:26(�6) | 9:22(�7) | 1:83(�7) |

128�128 4:31(�6) 0.85 6:29(�7) 0.55 8:92(�8) 1.03

256�256 4:04(�6) 0.10 4:74(�7) 0.41 4:98(�8) 0.84

512�512 4:66(�6) {0.21 4:23(�7) 0.16 3:17(�8) 0.65
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