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Abstract

Paper 1, Local Solutions to Global Problems: Climate Change Policies and
Regulatory Jurisdiction, considers the efficacy of various types of environmental
regulations when they are applied locally to pollutants whose damages extend beyond the
jurisdiction of the local regulators. Local regulations of a global pollutant may be
ineffective if producers and consumers can avoid them by transacting outside the reach of
the local regulator. In many cases, this may involve the physical relocation of the
economic activity, a problem often referred to as “leakage.” This paper highlights another
way in which local policies can be circumvented: through the shuffling of who buys from
whom. The paper maintains that the problems of reshuffling are exacerbated when the
options for compliance with the regulations are more flexible. Numerical analyses is
presented demonstrating that several proposed policies to limit greenhouse gas emissions
from the California electricity sector may have very little effect on carbon emissions if
they are applied only within that state. Paper 1 concludes that although local subsidies for
energy efficiency, renewable electricity, and transportation biofuels constitute attempts to
pick technology winners, they may be the only mechanisms that local jurisdictions, acting
alone, have at their disposal to address climate change.

Paper 2, Pass-Through of Solar PV Incentives to Consumers: The Early Years of
California’s Solar PV Incentives, examines the pass through of incentives to California
solar PV system owners. The full post-subsidy price consumers pay for solar power is a
key metric of the success of solar PV incentive programs and of overall PV market
performance. This study examines the early years of California’s most recent wave of
distributed solar PV incentives (2000-2008) to determine the pass-through of incentives.
Examination of this period is both intellectually and pragmatically important due to the
high level of incentives provided and subsequent high cost to ratepayers; policymakers’
expectations that price declines accrue to consumers; and market structure characteristics
that might contribute to incomplete pass-through. This analysis shows that incentive pass-
through in the California residential solar PV programs was incomplete. Consumer prices
declined 54 cents for every additional dollar of incentive received. A large share of the
incentive is captured by the solar PV contractor or other actors in the solar PV supply
chain. The finding of incomplete pass-through is persistent across specifications. The
analysis also identifies a lower degree of incentive pass-through for consumers in the
highest income zip codes. Whether expectations of incentives’ pass-through align with
reality is critically important in the beginning years of emerging clean energy technology
programs since this can affect the likelihood of future government investments and public
support. Given the often-held policy assumption that consumer prices are declining in
response to incentives, it is useful for policymakers to understand the circumstances
under which such an assumption may not hold.

Paper 3, Testing the Boundaries of the Solar Photovoltaic Learning System, tests
how the choice of experience curves’ geographic and technology assumptions affect solar
PV experience curve results. Historically, solar PV experience curves have assumed one
experience curve represents both module and non-module learning and that this learning
happens at a global scale. These assumptions may be inaccurate for solar PV since the
learning system, and technology and geographic boundaries, are likely different between
PV modules and non-module components. Using 2004 to 2008 PV system price data



from 13 states, and a longer time series of PV price data for California, some evidence is
found that cumulative capacity at the state level is a better predictor of non-module costs
than U.S. or global capacity. This paper explores, but is unable to significantly determine,
how knowledge spillovers from neighboring states can influence a state’s non-module
costs. Given data limitations, and limitations to the two-factor experience model
methodology itself, it is not possible to conclusively determine the correct geographic
boundary for the non-module learning system. Throughout the paper ways in which the
experience curve model and data can be augmented to achieve a better estimation are
discussed.



Dedication

I dedicate this dissertation to Professor Severin Borenstein, my mother Professor Phylis
Peterman, and my husband Matt Lesenyie who all kindly, and persistently, encouraged
me to finish this thesis as I pursued career and family.



Table of Contents

Introduction

Paper 1:
Paper 1:
Paper 1:
Paper 1:
Paper 1:
Paper 1:
Paper 1:
Paper 1:

Paper 2:
Paper 2:
Paper 2:
Paper 2:
Paper 2:
Paper 2:
Paper 2:

Paper 3:
Paper 3:
Paper 3:
Paper 3:
Paper 3:
Paper 3:
Paper 3:

Introduction

Policy Options

Problems with Local Application of Environmental Regulations
Climate Change Policies for the Electricity Sector

The Interaction of Regulatory Options

Summary and Conclusions

Appendix

Work Cited

Introduction

Models of Incidence and Relevant Literature

Data Overview: Incentives for Solar PV in California
Estimation Approach

Results and Discussion

Conclusions and Further Research

Work Cited -

Introduction

Study Design

Data Overview

Results and Discussion

Conclusions and Policy Implications
Appendix

Work Cited



List of Graphs

Graph 2.1:
Graph 2.2:
Graph 2.3:
Graph 2.4:
Graph 2.5:
Graph 2.6:
than 10kW
Graph 2.7:
Graph 2.8:
Graph 2.9:
Graph 2.10:
Graph 2.11:
Graph 2.12:
Graph 2.13:
Deviation
Graph 2.14:

Deviation

Elastic Case — Incentive Provided to Consumer

Perfectly Inelastic Supply Case — Incentive Provided to Consumer
Perfectly Elastic Supply Case — Incentive Provided to Consumer
Market Power — Incentive Provided to Consumer

California PV Incentive Programs Percentage of Installed Kilowatts

Emerging Renewables Program Cash Incentive for Solar PV systems less

PG&E CSI Residential Incentives

SCE CSI Residential Incentives

SDG&E CSI Residential Incentives

LADWP Residential Incentive Variation

SMUD Incentives for Solar PV systems less than 10kW
Data Total Residential Incentives by Year

Average Total Incentive Per Watt by Program and Year with +/- 1 Standard

Average Installed Cost Per Watt by Program and Year with +/- 1 Standard

Graph 3.1: California Non-Module Price and State Cumulative Capacity
Graph 3.2: Multi-State Non-Module Price and Cumulative Capacity (2004-2008)

il



List of Tables

Table 2.1:
Table 2.2:
Table 2.3:
Table 2.4:
Table 2.5:
Table 2.6:
Table 2.7:
Table 2.8:
Table 2.9:

Table 2.10:
Table 2.11:
Table 2.12:
Table 2.13:
Table 2.14:
Table 2.15:
Table 2.16:
Table 2.17:
Table 2.18:
Table 2.19:
Table 2.20:
Table 2.21:

Table 3.1:
Table 3.2:

Observations by Program and Year

CSI Residential MW Target by Utility

CSI Residential Incentives

SMUD 10 Residential Incentives Steps Per Watt

State and Federal Solar PV Investment Tax Credits

All California Regression Variables Summary Statistics

Variable Correlations

Two-Stage-Least Squares Regression Variables Summary Statistics

Two-Stage-Least Squares Observations by Program and Year
First Stage Results for kW

First Stage Results for kW squared

First Stage Results for HHI * kW

First Stage Results for HHI * kW squared

First Stage Results for Median Household Income * kW

First Stage Results for Median Household Income * kW squared
First Stage Results for Contractor Experience * kW

First Stage Results for Contractor Experience * kW squared
Two-Stage-Least Squares Regression Results

Primary Net Price Regression Results

Comparison California Median Zip Code Statistics versus Data
Income Interactions Regression Results

State, U.S., and Global Capacity Correlations

Data Summary for California Analysis

Table 3.3: Regression Variables Summary for California Analysis (11 observations)
Table 3.4: Data Summary for Multi-State Analysis

Table 3.5: Regression Variables Summary for Multi-State Analysis (57 observations)
Table 3.6: California Non-Module Price ($/Wp) Learning and Various Geographic
Boundaries (1998-2008)

Table 3.7: J-test and Cox-Pesaran test for State and U.S. Capacity Non-Module Models



Table 3.8: J-test and Cox-Pesaran test for State and Global Capacity Non-Module
Models

Table 3.9: Module Price ($/Wp) Learning and Various Geographic Boundaries (1998-
2008)

Table 3.10: J-test and Cox-Pesaran test for Global and State Capacity Module Models
Table 3.11: J-test and Cox-Pesaran test for Global and U.S. Capacity Module Models
Table 3.12: Multi-State Non-Module Price ($/Wp) Learning and State Level Capacity
(2004-2008)

Table 3.13: Program Duration and Non-Module Price Ranking 2004

Table 3.14: Program Duration and Non-Module Price Ranking 2008

Table 3.15: Contiguous States with Cumulative PV Capacity Greater than Origin State
2004-2008

Table 3.16: Multi-State Non-Module Price ($/Wp) Learning and State Level Capacity
with Contiguous State Capacity (2004-2008)

Table 3.17: Recent Solar PV Experience Curve Studies



Introduction

Human induced climate change presents a significant, and potentially
catastrophic, environmental and health problem for policymakers to address. The
Intergovernmental Panel on Climate Change concludes that in order to keep global
warming under the 3.6 degrees Fahrenheit warming threshold agreed to in the 2015 Paris
Agreement global greenhouse gases must be 40 to 70% lower by 2050 compared to 2010
and emissions level near zero or below by 2100.! Not only is the magnltude of the
problem great, but its solutions are complicated given the variety of warming sources, the
long life of greenhouse gases and polluting assets, the uneven distribution of causes and
benefits, and the near term high costs of action.

Given that the electricity and transportation sectors represent 25% and 14% of
global greenhouse gas emissions respectively, greenhouse gas reductions in these sectors
will be critical.? In the United States, these sectors will be required to achieve even
greater trdnsformatxon since they represent 30% and 26% of U.S. greenhouse gases
respectlvely Primary mltigatlon strategies for these sectors include reducing energy
consumption and a massive shift towards lower carbon fuels such as solar, wind, and
bioenergy.

The 2015 Paris Agreement represents progress and is the first global climate
change treaty including commitments from both the affluent United States and European
Union and industrializing China and India. The treaty provides direction regarding
specific greenhouse gases reduction targets, timing for reducing emissions, financing, and
emissions accounting and reporting. However, given the necessarily high-level nature of
the 195 nation commitment, specific policy interventions continue to be implemented at
the national and sub-national level.

The United States, the largest emitter of greenhouse gases over time, notably has
lacked federal climate change and renewable energy policies, resulting in individual
states and cities forging ahead with local greenhouse gas reduction strategies. Recent
efforts by the U.S. Environmental Protection Agency to promulgate the Clean Power
Plan, the nation’s first federal limit on power plant greenhouse gases, have been stayed
by the U.S. Supreme Court pending consideration of a multi-state lawsuit against the
plan.

In recent decades, states concerned with climate change such as California,
Hawaii, and New York, have instituted state level greenhouse gas goals and clean energy
programs. Some prominent program examples include California’s greenhouse gas
targets, the Northeast cap-and-trade program, and Hawaii’s renewable standards. In 2006,
California adopted the first binding state greenhouse gas target, Assembly bill AB32,
which set a target of 1990 levels of greenhouse gases by 2020 and 80% below 1990

'IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I. IT and 1II to
the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva,

Switzerland, 151 pp.

2 Ibid.

* Environmental Protection Agency. (2016). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-
2014. (April 2016).
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levels by 2050. This target was increased in 2015 to include an interim 2030 target of
greenhouse gases 40% below 1990 levels by 2030. In 2009, a consortium of northeastern
states developed the Regional Greenhouse Gas Initiative, the first U.S. mandatory
market-based program to reduce greenhouse gas emissions. In 2015, Hawaii promulgated
a 100% by 2045 renewable portfolio standard.

A number of questions arise when considering the consequences of state level-
regulation to address a global problem such as climate change. How to impose binding
regulations on sectors such as electricity and transportation that operate regionally, if not
globally? What regulatory mechanisms, including restrictions and subsidies, are most
appropriate for ensuring actual reductions? How does a state ensure the benefits of its
clean technology investments lead to lower costs solutions and benefits within and
beyond its borders?

This dissertation, in three papers, tackles some of these questions, with a
particular focus on California policy and regulations implemented in the 2000s. This
period represents the beginning of California’s recent wave of aggressive efforts to
address climate change, including the introduction of statewide renewable energy
programs.

The first paper, “Local Solutions to Global Problems: Climate Change Policies
and Regulatory Jurisdiction,” co-authored with Professor James Bushnell and Professor
Catherine Wolfram, considers the efficacy of various types of environmental regulations
when they are applied locally to pollutants whose damages extend beyond the jurisdiction
of the local regulator. The paper discusses various regulatory tools, specifically those that
impose costs on the polluting entities and those that subsidize “clean” behavior or
technologies.

We discuss the vulnerability of these regulatory tools to the issues of leakage and
reshuffling, using specific examples of state level electricity sector climate change
initiatives in the United States. We also present numerical analyses demonstrating that
several proposed policies to limit greenhouse gas emissions from the California
electricity sector may have very little effect on carbon emissions if they are applied only
within that state because producers and consumers can avoid these policies by transacting
outside the reach of the local regulator. One interesting finding is that if a jurisdiction is
large enough, a local standard may force an industry beyond a tipping point, where it is
less costly to produce all goods, even those sold outside the regulated region, to comply
with the local standard. In this case, the local standard, far from being bypassed, actually
gets leveraged onto other regions. A second interesting finding is that the promotion of
clean technologies through direct subsidies may be one of the most effective ways local
jurisdictions can address environmental goals. Although subsidies are some of the least
attractive regulatory tools from an economic efficiency perspective they can have a
measurable impact on pollution.

As the first paper notes, proponents of subsidies often point to a variant of the
“infant industries” argument. This hypothesis, often applied in the context of
international trade, argues that certain technologies or industries would be very
competitive with incumbent technologies if they could capture the necessary economies
of scale or learning. Thus, the theory is that the subsidies promoting these technologies
speed up their development, moving the industry along the learning curve faster, or
allowing it to grow to a minimum efficient scale more quickly. Once these technologies
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reap the benefits of such efficiencies, no further intervention is necessary. These new
technologies will, in theory, continue to be preferred even if the environmental costs of
the old technologies are not borne by the producers.

Although a plausible theory, designing accurate incentives to best capture
possible appropriable learning is tricky. Perhaps the biggest drawbacks of targeted
subsidies are the practical batriers to implementing them effectively. Even with skilled
and dedicated regulators, the information required to pick the “right” technologies is
daunting. There is considerable risk that large subsidies will go to technologies that
would not prove competitive under ideal regulations. Politicians and regulators are in
effect placing large bets that the expected economies of scale and learning will in fact
materialize.

My second paper, “Pass Through of Solar PV Incentives to Consumers: The Early
Years of California’s Solar PV Incentives,” examines one of the economic factors
important to consider when establishing subsidy programs: incidence, i.e. how much of
an incentive actually flow through to customers. Subsidy incidence “falls” on the group
(sellers vs. buyers) that receives the benefit of the subsidy. A subsidy can be passed
forward to the consumer or backwards to the supplier. Pass-through to either of these
groups can be full, e.g. 100 percent of the subsidy or incomplete, e.g. less than 100
percent, However the statutory burden of the subsidy is not necessarily the same as the
economic burden. Whether consumers or suppliers legally receive the subsidy is
irrelevant to the distribution of the subsidy benefits. Incidence depends on the relative
elasticities, i.e., price responsiveness, of supply and demand. Parties with more inelastic
supply or demand benefit from the subsidies (or bear the greatest tax burden). Given that
the post-subsidy price consumers pay for solar power is a key metric of the success of
solar PV incentive programs and overall PV market transformation, understanding the
degree of incidence, and factors that result in incomplete pass through, is important for
policymakers.

California has allocated billions of dollars to its solar PV incentive programs.
Paper 2 focuses on solar incentive programs from 1998-2008 because this period was
characterized by a plethora of high incentives. In addition, market structure
characteristics that might contribute to incomplete pass-through, such as reduced
information transparency and imperfect competition, were more likely present in this
period. Whether expectations of incentives’ pass-through align with reality is critically
important in the beginning years of emerging clean energy technology programs since
this can affect the likelihood of future government investments and public support.
Given the often-held policy assumption that consumer prices are declining in response to
incentives, it is useful for policymakers to understand the circumstances under which
such an assumption may not hold. This analytical framework is not only relevant for
emerging solar PV programs but for assessing the wave of new clean energy technologies
such as energy storage and electric vehicles.

Using a partial equilibrium model and incentive and PV system data from the
major California solar PV incentive programs, Paper 2 shows that incentive pass-through
in the California residential solar PV programs is incomplete. Consumer prices decline 54
cents for every additional dollar of incentive received. In other words, 46 cents of every
dollar of consumer side incentive is captured by the supply side. The analysis also
identifies a lower degree of incentive pass-through for consumers in the highest income
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zip codes, which could be due to a variety of factors including these consumers being less
price sensitive or engaging in less search activity.

Findings of incomplete incentive pass-through have a number of policy design
and evaluation implications. If the aim of incentives is to reduce costs to consumers,
incomplete pass-through mutes the expected price signal and may increase the time
necessary to reach capacity deployment goals. This analysis finds that a large share of the
incentive is captured by the solar PV contractor or other actors in the solar PV supply
chain. However, this is not necessarily a bad outcome for ratepayers providing the
incentive. For example, if installers utilize the rents they capture to increase marketing
and outreach and grow the PV market this may be beneficial for ratepayers. However,
alternatively, if installers are focused on competing for rents from the existing solar PV
customer base and dissipating rents through customer acquisition and defensive
advertising, this does not support ratepayer and policy goals. As affirmed in Papers 1 and
2, the effectiveness of regulatory tools depends on the extent of jurisdiction and market
conditions. As such, not all tools will be equally effective, at all times, for different
jurisdictions. Even with more direct subsidies, there are various factors that may hinder
success. As Paper 2 details, when considering clean energy subsidies, policymakers
should pay careful attention to what their expectations are regarding who ultimately
receives the subsidy and the market conditions that most lead to that outcome. In
particular, policymakers should be aware of any market barriers that might limit
competition and supply elasticity, such as licensure requirements. Such a condition can
lead to lower pass through of incentives to end use consumers.

As noted, Paper 1 and Paper 2 acknowledge that a key motivation for introducing
incentives is the belief that endogenous learning exists in infant clean energy industries,
i.e. cumulative experience with a technology will lead to cost declines and industry
growth. It is often assumed that subsidies are useful tools for jumpstarting this learning.
Energy modelers and policymakers use forecasts of possible learning, derived from clean
technology industry experience curve models, to determine appropriate subsidy levels.
My third paper, “Testing the Boundaries of the Solar Photovoltaic Learning System,”
delves into how experience curve models are developed and some important
considerations with their development to ensure better forecasting certainty.

Experience curves model how technology costs decline is relation to the
cumulative installed capacity of a technology. The simplicity of inputs required to create
an experience curve — a time series of technology costs, initial starting capacity, and
cumulative installed capacity — have led to its regular use. However this simplicity has
also led to critiques of such models’ broader, applicability and validity. Paper 3 tests how
the choice of experience curves’ geographic and technology assumptions affect solar PV
experience curve results. Historically, solar PV experience curves have assumed one
experience curve represents both module and non-module learning and that this learning
happens at a global scale. These assumptions may be inaccurate for solar PV since the
learning system, and technology and geographic boundaries, are likely different between
PV modules and non-module components. The majority of PV experience curves have
focused on the module cost declines. However, the share of total PV system cost
represented by the module component has declined over time, especially in smaller PV
systems.
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Using 2004 to 2008 PV system price data from 13 states, and a longer time series
of PV price data for California, paper 3 finds some evidence that cumulative capacity at
the state level is a better predictor of non-module costs than U.S. or global capacity.
However, given the collinearity of inputs and the small sample size, these findings are not
conclusive. To test this and alternative hypotheses, the paper estimates experience rates
using reduced form regression analysis. Empirical tests for non-nested models are used to
compare the state, national, and global models.

Paper 1 notes that even the presence of a strong potential for learning or scale
economies does not necessarily cause a market failure. The key issue is whether those
economies can be appropriated, through patents or a dominant position in the market, or
whether there are significant knowledge “spillovers.” If a firm can profit from developing
a new technology there is a market incentive to innovate. If the innovations are easily
copied by competitors, investment in research and development becomes a public good,
thereby justifying public support. The traditional experience models assume no
knowledge spillovers and that the impact of experience does not decay with distance.
Paper 3 explores the potential for knowledge spillovers across states. For non-module
costs [ hypothesize that spillovers will be positive, but limited since not all knowledge is
appropriable by a state. I expect the impact of other state capacity to be greater on a
state’s non-module costs if the state of interest has a relatively smaller market than
neighboring states. However, with this analysis I am unable to significantly determine,
how knowledge spillovers from neighboring states influence a state’s non-module costs.

Understanding the influence of a geographic boundary on learning has
implications for local policymakers. If non-module costs are influenced by city level
actions to expand solar PV capacity, a city council may have more motivation to institute
local solar PV subsidies or fast track permitting. However, if the local costs are just as
easily affected by expanding state level capacity and subsidies, or are a function of global
trends, city regulators may focus instead on directing scarce local resources towards other
initiatives.

Another key factor that arises when thinking about appropriability is the
difference between endogenous learning and economies of scale. Technology learning,
such as learning-by-doing, arises from aggregate increases in cumulative production and
the development of new production functions. Scale effects, such as economies of scale,
result from increased quantity in a given period and a more efficient use of inputs. These
effects are often conflated in experience curve studies, but have differing implications for
how much impact subsidies aimed at spurring endogenous learning may have.

If economies of scale are a greater price driver than endogenous learning, then
there is less argument for government support because those cost reductions are fully
appropriable, and hence will be pursued by firms. Moreover, if cost declines are being
driven purely by economies of scale, these companies will not see cost declines after they
reach a minimum efficiency. In this case, overall incentives designed on a composite
learning estimate will underperform and not spur expected market cost declines. Paper 3
attempts to disaggregate scale and learning effects by including proxies for both, however
the results in most specifications are not significant. Further research should focus on
disaggregating these effects and assessing implications for setting appropriate subsidy
levels.



Given the sensitivity of endogenous learning forecasts to model inputs and data
quality, Practitioners should exercise great care when employing them to design subsidies
in emerging clean energy markets. Such models can be bolstered via the use of sensitivity
tests, larger data sets, and more disaggregated modeling techniques. Paper 3 details some
of the factors that may reduce the accuracy of experience curve forecasts. In particular,
practitioners using experience curve models to forecast solar PV non-module prices
should thoroughly consider how the geographic boundary of the market is defined, the
relationship between price and cost, the possibly endogenous relationship between prices
and capacity, and the quality and time seties of data available. Overestimation of the
experience rate will underestimate the time needed for solar PV costs to reach parity with
fossil generation in a given market. Too low an estimate will underestimate the role of
incentives, and cumulative deployment as cost drivers. Both outcomes will have
implications for energy policy and renewable incentive program design, technology
preferences, and technology roadmaps. This issue is not unique to solar PV, and has
implications for all clean energy technology development.
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Local Solutions to Global Problems: Climate Change Policies and Regulatory
Jurisdiction !

Introduction

This paper considers the efficacy of various types of environmental regulations
when they are applied locally to pollutants whose damages extend beyond the jurisdiction
of the local regulator. For example, within the United States, many of the efforts to adopt
policies to mitigate climate change are taking place at the local level. A number of states
(e.g., California, New Jersey, New York, Oregon, Rhode Island), impatient with what is
perceived as inadequate federal action, have adopted various controls to address climate
change. At the same time, many US cities have adopted climate change policies, as
evidenced by the over 700 mayors who have signed the US Conference of Mayors
Climate Protection Agreement. Indeed, the growing market for voluntary carbon offsets,
purchased by individuals, can be viewed as the ultimate local action. Further, the global
nature of the climate change problem means that even actions taken by individual
countries can face the same types of problems as those experienced by cities or states.

Unfortunately, local regulations of a global pollutant may be ineffective if
producers and consumers can avoid them by transacting outside the reach of the local
regulator. In many cases, this may involve the physical relocation of the economic
activity, a problem often referred to as “leakage.” This paper highlights another way in
which local policies can be circumvented: through the shuffling of who buys from whom.
Reshuffling is a concern when buyers are subject to regulations (i.e., downstream
regulation). While leakage can be costly, as, for instance, when firms relocate their
production, with reshuffling, neither the location nor the costs of production need change.

We maintain that the problems of reshuffling are exacerbated when the options for
compliance with the regulations are more flexible. The very flexibility that makes market
based regulations, such as cap-and-trade, attractive, can also make them susceptible to
circumvention if only applied locally. In contrast, where leakage is concerned, the cost
impacts of regulation matter more than the flexibility of the mechanism. We argue that
leakage problems are more pronounced with regulations that impose a cost on firms than
with subsidies designed to reward production from nonpolluting sources.

Ironically, the tools that offer local regulators the greatest potential to make real
progress toward an environmental goal may be among the least attractive from an
economic efficiency perspective when considering regulation on a large scale. In
particular, targeted subsidies for “clean technologies,” although vulnerable to political
favoritism and limited in flexibility, can have a measurable impact on pollution.
Therefore, although local subsidies for energy efficiency, renewable electricity, and
transportation biofuels constitute attempts to pick technology winners, they may be the

! This paper was published as Bushnell J., Peterman, C. and . Wolfram C. (2008). “Local Solutions to
Global Problems: Climate Change Policies and Regulatory Jurisdiction.” Review of Environmental
Economics and Policy 2(2): 175-193 and is submitted here with permission from co-authors. Some
changes to the paper have been made by C. Peterman to reflect policy updates since the paper was
published in 2008.



only mechanisms that local jurisdictions, acting alone, have at their disposal to address
climate change.

The paper proceeds as follows. The next section discusses various regulatory
tools, which we divide into two broad categories: those that impose costs on the polluting
entities and those that subsidize “clean” behavior or technologies. In the third section, we
discuss the vulnerability of these regulatory tools to the issues of leakage and reshuffling.
The fourth section explores in detail the issues of leakage and reshuffling using specific
examples of state level climate change initiatives in the United States. We focus
particularly on the electricity sector, which has been one of the main targets of early
efforts to mitigate climate change, in part because it accounts for more CO2 emissions
than any other sector of the US economy. We also present numerical analyses
demonstrating that several proposed policies to limit greenhouse gas emissions from the
California electricity sector may have very little effect on carbon emissions if they are
applied only within that state. The last section summarizes our findings and concludes.

Policy Options

In this section, we describe the broad spectrum of policy options for regulating
environmental pollutants and briefly discuss the relative merits of these policies. We
distinguish between policies that impose costs on emitters and those that subsidize
activities that regulators deem desirable. Of course both types of policies involve a
component of revenue redistribution. For example, subsidies to some customers or firms
must be paid for by someone, and “costly” regulations such as emissions taxes or cap-
and-trade can generate revenue windfalls that can be redistributed in many ways. Later
we argue that the different types of regulations have different implications for local
jurisdictions.

Cost-imposing regulations

One traditional approach to an environmental problem is to enact policies that
cause firms to internalize the negative externalities created by their emissions. This can
be achieved using several different regulatory tools, including technology mandates,
environmental standards, and market-based regulations. These policies require firms to
either take costly mitigation actions or forgo profitable, but polluting, activities. As a
result, these regulations all impose an implicit (or explicit) tax on the polluting activities
of firms. They can also vary in the flexibility they allow for compliance.

Command and control regulations: technology mandates and standards

We begin by describing the least flexible regulatory tools—technology mandates
and environmental standards—which are often referred to as command-and-control
regulations. Technology mandates dictate specific technologies (the how of
environmental regulations) and the set of firms that must adopt the technologies (the
"who" of an environmental improvement strategy). For example, under the New Source



Performance Standards in the US, new plants built in counties that are in attainment with
the National Ambient Air Quality Standards must install the Best Available Control
Technology (BACT). In practice, the BACT is essentially determined through case-by-
case negotiations between the firm and the Environmental Protection Agency.

A slightly more flexible type of command-and-control regulation is an output-
based environmental standard, such as a maximum limit on the emission of a pollutant or
on the energy usage of an appliance. In some cases, each source of emissions (e.g., a
power plant, an appliance) is required to comply with the standard, but it is left to the
producer of the polluting product to determine the most cost-effective way to achieve
compliance. In other cases, standards are applied over multiple sources, such as a
standard on the average emissions across all of a firm’s plants. For instance, under the
Tier 2 vehicle emissions reduction program in the US, automobile manufacturers must
achieve a fleet average emission rate of 0.07 grams of NOx per mile. Subject to this
constraint, firms may determine the exact emissions rate for any given vehicle model as
well as the particular technology they will use to achieve that rate.

If mandates or standards are enforced broadly, they can be very effective at
achieving an environmental goal. So long as the standards are binding, firms and
consumers will alter their behavior, for instance, by installing pollution control
equipment that they otherwise would not or by purchasing more efficient appliances than
they would have. The standards will then result in lower emissions within the jurisdiction
where they are imposed. Regulators can determine with minimal monitoring and
enforcement costs whether firms are complying with the standards.

In general, command-and-control regulations have been criticized by economists
as an inflexible and inefficient approach for dealing with environmental problems. The
main criticism of regulatory mandates and standards has been that they are much more
costly than necessary, in terms of both the costs to the firms and the foregone consumer
welfare of people who would otherwise consume a product that has been banned or made
more expensive by the regulatory standard. This is because all firms are required to meet
the same standard. If there is heterogeneity across firms, for instance in their production
processes or in the vintage of their capital, it may be relatively inexpensive for some
firms to achieve substantial emissions reductions, while for others it may be prohibitively
costly to achieve any reduction in emissions. In short, one-size fits-all standards do not
recognize the potential differences in compliance costs across the regulated sources, and
therefore cannot take advantage of these differences. The severity of this problem is
obviously closely related to the actual size of those cost differences. Unfortunately, it is
often difficult to know exactly how much costs will vary before the regulations are put
into place.

Market-based regulations

The most flexible forms of cost-imposing regulations are market-based policies.
These include taxes on emissions or programs that allow the government to limit
emissions by issuing permits that can be traded among polluters (known as “cap-and-
trade”). Rather than dictating the technology (the how) or even the specific emissions of a



facility or firm (the who), these programs use price signals to provide incentives to firms
to reduce emissions in the most cost-effective way possible.

An emissions tax places an explicit charge on each unit of pollution produced by a
firm or individual.” If a firm has options for reducing its emissions that are less expensive
than the tax itself, then it should adopt those options and reduce its emissions.
Importantly, one of the options likely to be considered is simply consuming less of the
input that is producing the pollution (e.g., fuel, fertilizer, chemicals). Thus taxes, in a
relatively straightforward fashion, can directly and appropriately impact both production
and consumption choices in a market.

An alternative market-based policy is a cap-and-trade regulation of pollution
quantities.” A cap-and-trade system imposes an overall regional limit on total emissions
(the cap) but allows flexibility as to which sources within that region actually emit.
Emissions permits or credits, totaling no more than the regional cap, are created and
allocated to the regulated firms. In theory, firms that can cheaply reduce their emissions
will sell credits to firms that find it very expensive to reduce (the trade). The net result is
that the emissions target is achieved in a way that minimizes overall costs. Note that
regardless of whether a firm is buying or selling permits (and regardless of whether the
initial allocation of permits was given or sold to a firm), polluting under a cap-and-trade
system entails a marginal cost that is equal to the market price of the permits. In other
words, for each additional ton of pollution emitted, net buyers of permits must purchase
an additional permit, while net sellers incur a cost equal to the lost opportunity to sell
another permit.

Because of their inherent flexibility, these policies are attractive in circumstances
in which they can be practically applied. They do not require a perfectly informed
regulator to develop the optimal carbon-reducing strategy. In theory, individual firms will
arrive at the least cost method for reducing their emissions because, under most
circumstances, they have an incentive to do s0." Regulators still play a central role in a
market-based system, as the parameters they set for the regulatory instruments will drive
firms’ decisions. However, their role is more limited than under other regulatory
approaches.

Subsidy programs

Next we describe policies that attempt to regulate pollutants through the carrot of
financial subsidies rather than the stick of emissions limitations. In the policy arena, the
promotion of “clean” technologies has been a popular alternative to limitations on the use
of “dirty” technologies. The promotion of clean technologies can be accomplished

2 Nordhaus (2007) discusses many of the advantages of taxing carbon emissions rather than setting quantity
limits through something like a cap-and-trade policy.

3 2Dating back to Weitzman (1974), there is a rich literature in environmental economics on the proper use
of “price” tools such as emissions taxes vs. “quantity” tools such as command and control regulations or
emissions caps. The general idea is that taxes help to limit uncertainty over the costs of compliance while
quantity regulations help to limit the uncertainty over how much pollution results.

* There are cases where a firm’s incentives may not be strictly aligned with minimizing its compliance
costs. For example, a regulated utility may prefer options that can be added to its rate base (see Fowlie
2006).



through direct subsidies for the manufacture or installation of the technologies, tax
incentives, or mandates that buyers procure a certain percentage of their consumption
from clean sources.” As with cost-imposing regulations, subsidies can vary in their
regulatory flexibility, ranging from an inflexible subsidy on specific technologies to a
more market-based approach in which the subsidy increases in proportion to the positive
externalities associated with goods.

Consider first an example of a direct subsidy for a particular clean technology.
Many states provide refunds to homeowners who install solar photovoltaic cells to
produce low emissions electricity. The subsidy can also take the form of a requirement
that a certain share of purchases be from low-emissions sources. For instance, California
has adopted a low-carbon fuel standard (LCFS), which requires a reduction in the average
carbon content of transportation fuels. Several other states are actively considering an
LCFS, and there are some proposals for a national low-carbon fuel standard. Here, since
the focus is on the mix of transportation fuels sold, rather than on reducing consumption
of transportation fuels, an LCFS is largely a subsidy for ethanol and other low-carbon
fuels. Which particular low carbon fuels will be used to meet an LCFS will be determined
by market competition between the fuel producers.

Proponents of subsidies often point to a variant of the “infant industries”
argument. This hypothesis, often applied in the context of international trade, argues that
certain technologies or industries would be very competitive with incumbent technologies
if they could capture the necessary economies of scale or learning. Thus, the subsidies
promoting these technologies speed up their development, moving the industry along the
learning curve faster, or allowing it to grow to a minimum efficient scale more quickly.
Once these technologies reap the benefits of such efficiencies, no further intervention is
necessary. These new technologies will, in theory, continue to be preferred even if the
environmental costs of the old technologies are not borne by the producers.

It is important to note that even the presence of a strong potential for learning or
scale economies does not necessarily cause a market failure. The key issue is whether
those economies can be appropriated, through patents or a dominant position in the
market, or whether there are significant knowledge “spillovers.” If a firm can profit from
developing a new technology, there is a market incentive to innovate. If the innovations
are easily copied by competitors, investment in research and development becomes a
public good, thereby justifying public support.

There have been several criticisms of “green” subsidies. First, although it is
perhaps more politically appealing to make clean technologies cheaper than to make dirty
sources more expensive, such an approach sends the wrong message to consumers.
Subsidies impose no additional costs on continued consumption from dirty sources. The
opportunity for encouraging conservation in the obvious way, by making the production
more expensive, is therefore lost. In practice, the cost of direct subsidies is often borne by
other customers, which means that at least indirectly; dirty consumption can be made
more expensive. Similarly, subsidizing a source that is less bad than the alternative still

3 Note that here we are drawing a distinction between mandates or standards imposed on consumers that
implicitly subsidize producers using clean technologies, from mandates imposed directly on producers (i.e.,
the users of dirty technologies), which we discussed in the previous subsection.



promotes consumption of the “bad.” For example, in the context of the LCFS, although
encouraging a transition from petroleum-based fuels to biofuels can reduce the
greenhouse gas (GHG) impact of each mile traveled, the production of biofuels
themselves still creates GHGs.® Thus, by subsidizing the consumption of biofuels, the
policy could actually lead to higher GHG emissions.’

A second, related criticism of “green” subsidies is that they will indirectly reduce
the prices for dirty products by drawing demand away from them. From a consumer
perspective this may sound appealing, but from the perspective of an environmental
regulator, lower prices for dirty products are counterproductive. Even if consumption of
the disfavored product is discouraged within the region where the subsidies are applied,
lower prices will encourage consumption elsewhere.® Therefore, when applied locally,
even subsidies of alternative energy sources are not immune to spillovers in other
regions.

The overall effect of a local subsidy will be a function of the relative price
impacts of those subsidies on the “clean” and “dirty” goods, and the elasticity of demand
for those goods in other regions. When adopted by small jurisdictions, these price
impacts are likely to be small. It is worth pointing out that command and control
mandates, as discussed previously, can also have an indirect effect on prices for the dirty
goods. Specifically, when a locally applied standard causes firms to adjust production, for
example by relocating plants; the cost of production will go up because the standard has
forced firms to make suboptimal decisions. If these higher costs are passed on to
consumers, demand for the dirty product will fall. For small jurisdictions, these spillover
pricing effects are likely to be small and even negligible. However, from a practical
perspective, local regulators need to determine whether the price impacts of a policy
produce less damaging spillovers than the leakage and reshuffling effects.

Perhaps the biggest drawbacks of targeted subsidies are the practical barriers to
implementing them effectively. Even with skilled and dedicated regulators, the
information required to pick the “right” technologies is daunting. So there is considerable
risk that large subsidies will go to technologies that would not prove competitive under
ideal regulations. Politicians and regulators are in effect placing large bets that the
expected economies of scale and learning will in fact materialize. Even when these
benefits do not appear, there are often calls for continued subsidies, preventing some
“infant” industries from ever growing up.

There is no question that politics also play an important role in the subsidies
game. For example, many argue that USA’s focus on corn-based ethanol has been
significantly influenced by the Midwestern farm-belt (see Gardner 2007; Wall Street
Journal 2007). Federal tax incentives for the purchase of hybrid-fuel cars were
deliberately designed to favor those producers who sell hybrids in smaller volumes, who

% For ease, we use biofuels as an example of a transportation fuel that generates lower carbon emissions
than petroleum products. However, questions have recently been raised about whether using ethanol in fact
leads to lower carbon emissions (Searchinger et al. 2008).

7 See Holland, Knittel, and Hughes (2007) for a detailed examination of this point.

® This phenomenon is sometimes referred to as demand-side leakage, which we discuss in more detail in
the next section. It is worth noting that a reduction in natural gas prices has been cited as a benefit of
aggressive adoption of renewables (see Wiser, Bolinger, and St. Clair 2005).



also happen to be US auto manufacturers. Of course, it could be argued that politics plays
a role in just about any regulation or public policy. However, because subsidies often
involve direct transfers of money to certain parties, they appear to be even more
vulnerable to these pressures than other regulations. Moreover, once subsidy programs
are set in place and are conferring direct benefits to specific groups, it becomes politically
difficult to remove them.

Problems with Local Application of Environmental Regulations

Based on the discussion in the last section, from an efficiency perspective,
market-based regulations are more appealing than less-flexible regulations or subsidies.
However, when one is considering the local regulation of a global pollutant, such as
GHGs, the situation becomes more complicated. This section discusses the problem of
circumvention, specifically leakage and reshuffling, when environmental regulations and
policies are applied locally.

Leakage

Perhaps the most obvious way for polluters to circumvent an environmental
regulation is to relocate the regulated facility and its polluting activities to another
jurisdiction. Following the literature, we refer to this physical relocation of facilities as
leakage (see, for example, Fowlie 2007 and Kuik and Gerlagh 2003). There is also the
phenomenon of demand-side leakage, whereby a local regulation that depresses demand
for a polluting goods in one region can lead to higher quantities demanded of the goods in
unregulated regions (see Felder and Rutherford 1993). We will focus here on supply-side
leakage, although we comment on the relationship between demand-side leakage and
reshuffling when we discuss reshuffling below.

When differentially applied across regions, mandates and standards can lead to
leakage. For example, under the Clean Air Act (CAA), more stringent and costly
emission standards apply to nonattainment areas. Research has demonstrated that
industrial activity declines in nonattainment areas and is at least partially displaced by
growth in attainment areas, where regulation is less costly (see Greenstone 2002 and
Becker and Henderson 2000).To the extent that this displaced production emits at higher,
less regulated rates, pollution has leaked from the heavily regulated region to the more
lax region.

Market-based regulations are equally vulnerable to the problems of leakage. For
example, if one jurisdiction imposes a tax on emissions or establishes a cap-and-trade
system, it will be more expensive for firms to produce their pollution-intensive goods.
This creates an incentive for firms to move some of their production elsewhere. They
may accomplish this by producing slightly less from their regulated plants and more from
their unregulated plants, or by moving their particularly pollution-intensive plants out of
the regulated region.

When considering the leakage of polluting sources away from areas of stringent
regulation, it is critical to recognize the varying impacts of local pollution. For example,
many of the CAA criteria pollutants cause damage close to where they are emitted, with



the classic example being ground-level ozone, which contributes to smog. Therefore the
relocation of polluting sources is not necessarily a bad outcome (see Becker and
Henderson 2000).

However, the relocation of polluting sources may not improve the local
environment. This may be the case if the plants move “upwind” of the regulated region,
or if the region applying the standard is very small relative to the geographic scope of the
environmental problem. In this regard, climate change represents the most extreme and
challenging case. This is because the location of GHG emissions does not influence their
impact on the climate. When it comes to climate change, everywhere is upwind. The
global public good aspect of the climate is therefore one of the great challenges to
formulating climate change policy (see Nordhaus 2007). To the extent that local
regulations cause outmigration or “leakage” of regulated facilities, rather than a true
reduction from local sources, the local environment will not improve.

Until now, we have not distinguished between standards imposed on firms, such
as emissions limits for plants, and standards imposed on individuals, such as energy
efficiency standards for homes. While leakage is possible with both types of standards,’
leakage is generally less likely to be a problem at the individual level largely because
trying to avoid the standard can be more costly than meeting it. For instance, few people
choose to live in Nevada instead of California simply to avoid the residential energy
efficiency standards in California.

Despite all the potential disadvantages of targeted subsidies, they do have the
advantage of being less vulnerable to leakage. Because they do not impose costs on firms,
firms have no reason to relocate production to avoid them. To the contrary—subsidies are
often touted as a way to attract new firms or even industries to benefit the local economy.
Therefore, smaller jurisdictions, such as US cities or states, may find subsidies more
appealing than other regulatory tools that can be more easily circumvented. In fact,
subsidies may be the only means to meaningfully impact emissions on a local level.

Reshuffling

We now turn to a related problem that can arise when regulations are imposed at
the point of purchase, but where some consumers are subject to the policies and others
are not.'? If a sufficient percentage of the products affected by a regulation already
complies with it, the policy’s goals can be achieved by simply reshuffling who is buying
from whom. This will make the policy completely ineffective, as it will not alter the rate
at which the favored product is produced. For example, assume that California accounts
for 10 percent of the world sea bass market, and that it adopts a regulation stating that
only sea bass caught using sustainable fishing techniques can be sold in the state. If more
than 10 percent of sea bass in the world market is already caught using sustainable
techniques, these fish can be diverted for sale in California. So, even if Californians had

? For example, homeowners may build just outside a local area to avoid zoning restrictions, or consumers
may purchase on the Internet in order to avoid local sales taxes.

1 Tronically, policy makers are often attracted to consumer-based regulations either because much of the
production takes place outside of their jurisdiction or because they fear that regulating only producers
within their jurisdiction will lead to leakage.



previously been consuming some non-sustainable fish, their ban will have no effect on
the way fish are caught worldwide as long as consumers outside of California are
indifferent between sustainable and non-sustainable fish."!

As the above example demonstrates, the reshuffling problem is similar to the
conditions that limit the effectiveness of consumer boycotts. Although a percentage of
motivated customers stops buying from the boycotted source, there will be no net impact
on sales or prices if there are enough other price-sensitive customers who are indifferent
to the cause of the boycott and willing to shift to the boycotted producers. As with an
ineffective boycott, reshuffling is more likely when the share of products that already
comply with a policy is larger than the share of consumers who are subject to it.

Note that both reshuffling and demand-side leakage affect demand outside the
regulated area. Unlike demand-side leakage, however, reshuffling does not change total
equilibrium consumption (or prices or emissions) of the regulated goods. Reshuffling
requires that consumers inside the regulated region perceive the clean product to be a
perfect substitute for the dirty product, and so substitute all their consumption to the clean
product, while consumers outside the regulated region are indifferent between consuming
clean or dirty goods, and so increase their consumption of the dirty goods. There is no
such perfect substitute available with demand-side leakage. In fact, there is a duality
between reshuffling and demand-side leakage, since if firms are able to reshuffle
completely, there need be no change in prices and therefore no demand-side reaction to
the regulation. It is only to the extent that firms are unable to avoid the regulation through
reshuffling that there is a real reduction in emissions in the regulated jurisdiction through
new, clean supply or reduced dirty consumption. In the latter case, there could be
demand-side leakage if the reduced dirty consumption in the regulated region drives
down the price for the product elsewhere.

California’s deliberations regarding the establishment of fuel economy
requirements on vehicles sold within its borders (through AB 1493) provides an example
of the potential for reshuffling under a regulatory standard. The standards initially
required higher fuel economy than is required at the federal level under the Corporate
Average Fuel Economy standards. As initially structured, the standard may have
encouraged car manufacturers to sell less fuel-efficient vehicles in other parts of the
country than they would have sold otherwise and yet still meet national standards, which
are based on national average fuel economy. This could result in a reshuffling of car sales
and not necessarily a real reduction in emissions (see Stavins, Jaffe, and Schatzki 2007).
Ultimately, an agreement was reached that aligned the state and national standards. Such
an agreement reduced the reshuffling concern and increased the national standards, but
also resulted in California implementing less ambitious reductions than proposed.

There are conditions under which a more aggressive policy such as a California
fuel economy standard could have a meaningful impact on the national fleet. Specifically,
if a jurisdiction is large enough, a local standard may force an industry beyond a tipping
point, where it is less costly to produce all goods, even those sold outside the regulated
region, to comply with the local standard. In this case, the local standard, far from being

11 The result that reshuffling will have no effect on market equilibrium assumes that there are no transaction
costs associated with rematching buyers and sellers.



bypassed, actually gets leveraged onto other regions. In a related fashion, previous
California regulations to limit pollution from vehicles have often led, in due time, to the
adoption of equally stringent regulations at the national level. Some observers credit the
California regulations with demonstrating to car manufacturers and federal regulators that
lower emissions can be achieved relatively cost effectively.

Similarly, indirect subsidies, which promote clean technologies by requiring
consumers to purchase them, can be vulnerable to reshuffling. Consider the case of the
LCFS as implemented by California. In assessing the carbon content of various
transportation fuels, the California LCFS takes a life cycle approach by tracking the
environmental impact of fuel production up the supply chain. For example, ethanol
produced from lower-carbon crops and using lower-carbon farming methods would earn
more credit under the California proposal than dirtier ethanol. Similarly, gasoline refined
from light crude oil would receive a slightly higher credit (or lower penalty) than gasoline
refined from heavy crude oil. If the California policy favors clean ethanol, then
consumers in other states will buy the dirty ethanol previously purchased by Californians.
If California’s demand for clean ethanol under the LCFS is less than the existing supply
of clean ethanol, this policy will have no impact on ethanol farming practices.

A consumption-based application of cap-and-trade can also fall victim to the
reshuffling of production. In the next section we discuss in detail an example of this
problem in the context of the California electricity sector. Reshuffling is not just a
problem with a cap and-trade system—it can also occur under an emissions tax, as long
as the tax is levied on consumers and not producers. For instance, if gasoline consumers
in California were charged higher prices for gasoline refined from carbon-intensive
sources such as heavy crude oil or oil sands, producers would have an incentive to divert
products from lower carbon sources to California.

Barriers to Leakage and Reshuffling

Clearly, regulatory jurisdiction can cause serious problems when environmental
regulations are applied locally to pollutants, such as GHGs, whose damages extend
beyond the jurisdiction of the regulator. We have argued that subsidies, in particular
targeted subsidies, are less vulnerable to leakage or reshuffling. However, it is important
to note that transaction costs and other barriers can influence the extent to which buyers
and sellers can circumvent local policies.

A key consideration concerning leakage is the cost of changing the physical
source of production. Assuming that production was sourced efficiently prior to the
imposition of environmental regulations, any change in that production would involve
some increase in costs. These costs could range from an increase in transporting goods, to
the physical relocation of entire production facilities. Constraints on import capacity,
such as pipeline, transmission line, or port-facility capacities, can limit the feasibility of
leakage. In many cases these costs may exceed the costs of the environmental regulation,
making leakage unprofitable.

The transaction costs of reshuffling appear to be less severe as reshuffling does
not involve the relocation of production, it simply rearranges where products are shipped.
Assuming that transportation costs were minimized before the implementation of the
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policy, reshuffling would only increase the costs. This could be true of attempts to favor
different sources of ethanol under a LCFS for example. Electricity provides a special case
since electrons cannot be tracked to particular generators. As a result, reshuffling in the
electricity sector is more of a financial arrangement than a physical activity.

Institutional factors, such as overlapping government regulations or limitations,
may also reduce the extent of reshuffling and leakage problems. For example, electricity
sales from federally owned water projects in the US favor certain customer classes, and it
may prove difficult for these customers to resell their subsidized power. In the specific
context of climate change policies, many of the large emitters of GHGs are either
regulated or government owned. The strong influence of government on those firms’
decision making can limit their incentive or ability to execute leakage or reshuffling
strategies.

That said, as we describe below, the problems of leakage and reshuffling are of
more than academic concern when it comes to local GHG policies. If states act
unilaterally, without the participation of other states in their regions, these problems
could seriously undermine the impact of the regulations.

Climate Change Policies for the Electricity Sector

In this section, we describe specific regulatory policies aimed at reducing carbon
emissions from the electric power sector. We focus on the experience in California
because it has adopted a wide range of policies, but we also discuss initiatives in other
regions of the country. In each case, we assess the potential for leakage and reshuffling.

Emissions standards

California senate bill 1368 establishes a standard for emissions from plants
providing “baseload” power to “load-serving entities” (LSEs), the firms responsible for
either producing or purchasing electricity for end-users in California. The law requires
that new energy purchases and investments by California LSEs be directed exclusively
towards low-carbon power plants. '2 In Bushnell, Peterman, and Wolfram (2007)
(hereafter BPW 2007), we demonstrate that there are already ample resources outside of
California that comply with this emissions standard. California utilities can comply with
the standard by buying from the existing low-carbon sources, and leaving new or old
“dirty” sources to meet the demand from other states (sce BPW 2007).

Efficiency standards can have a meaningful effect if they apply to choices that are
inherently local—such as residential and commercial building and lighting standards—
where leakage is not a serious issue. In fact, California has had a long tradition of
enacting energy efficiency standards for homes and appliances. For this reason, and
because California’s standards have often been adopted at the national level, its energy

12 Specifically, the law requires that power plants that LSEs invest in, build, or buy power from under long
term contract must meet a standard that limits their emissions to be no greater than those from a current
combined-cycle natural gas plant.
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efficiency program has likely had a meaningful impact on emissions from the electricity
sector (see Geller 1997).

Subsidies

Regulators have adopted a wide variety of initiatives to encourage specific
alternative energy technologies for producing electricity. For illustrative purposes, we
will focus our discussion on two prominent programs that represent different
implementation philosophies: state-level renewable portfolio standards and the California
Solar Initiative (CSI).

As 0f 2016, 29 states and the District of Columbia have adopted renewable
portfolio standards. While the details of their implementation vary, these policies share
the common characteristic that they impose a requirement that electric utilities within the
state meet a certain percentage of their demand with energy from renewable sources.
Conceptually, a renewable portfolio standard (RPS) does not target a specific technology,
but rather a class of technologies, for preferential treatment."

In theory an RPS could be subject to reshuffling. For example, if California
imposed an RPS, and significant amounts of renewable supply already existed in the
western states, California utilities could comply with the RPS by purchasing from
existing sources. In practice, the policies have been, and seem likely to continue to be,
strongly binding regulations that are dramatically changing the procurement practices of
electric utilities. This is because the renewable capacity necessary to meet many states’
RPS obligations does not yet exist. With so many states enacting an RPS, the option to
comply by exporting dirty power and importing the renewable energy from other states is
limited.

While the RPS favors all renewables, several states and cities have adopted
policies to promote specific alternative energy sources. Perhaps the most ambitious of
these in the US is the CSI. The initiative is a set of direct subsidies to property owners
who install solar photovoltaic systems on their buildings."* The CSI targets 3,000 MW
and includes investor-owned and public utilities programs. The programs operate from
2007 through 2016 and will allocate up to $2.8 billion in subsidies, financed from general
electric rates. The program represents a classic example of a targeted subsidy, and is
generally immune from leakage and reshuffling. Californians have clearly been
responding to these subsidies. The programs have been well subscribed with the investor
owned-utilities’ CSI program reaching in early 2015 its general market target of 1,750
MW. However, as often happens with targeted subsidies, some have questioned whether
the California regulators were wise to invest so much money in this particular
technology. At the beginning of the program, proponents of the CSI program claimed that
an expansion of solar PVs in California would spur new efficiencies in their design,
production, and installation and local economic investment in the industry (see Jurgens

13 RPS policies in fourteen states do require some portion of the RPS to be met with a specific technology,
but these amounts are small relative to the total RPS requirement.

1 The original subsidy was adopted by the California Public Utilities Commission. In 2006, Senate Bill 1
extended the program to most municipal utilities.
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2006; US Newswire 2006). Critics, on the other hand, pointed out that an injection of
even several hundred million dollars per year into the worldwide solar PV market while
significant, would hardly constitute the dramatic, transformational change in demand
necessary to capture needed efficiencies (see Borenstein 2008). Moreover, when the
program started, current-generation solar PV seemed a curious technology to bet on given
its high cost. In the years since the program was launched, various technology, financing,
and policy innovations have led to a significant worldwide reduction in rooftop solar
costs resulting in solar PV becoming more cost-effective for a class of customers. How
much of this cost decline is attributable to the CSI subsidy is debatable. However the
incentive program is viewed as a key contributor to the growth of, and public acceptance,
of California’s solar PV market.

Market-based regulations

Currently, two areas of the country use cap-and-trade programs to regulate GHG
emissions from the electricity sector: a consortium of 9 northeastern and Mid-Atlantic
States, organized as the Regional Greenhouse Gas Initiative (RGGI), and California.
RGGI is the first US mandatory cap-and-trade program to control carbon dioxide
emissions. Begun in 2009, the original cap did not results in additional emissions
reductions due to various factors including an economic downturn, an economic shift to
less carbon intensive fuels, and some elements of the cap design. In response, RGGI
reduced its cap in 2014 to be 91 million tons — a reduction of 45 percent from the
previous cap. The cap then declines 2.5 percent each year from 2015 to 2020.
California’s first GHG legislation, AB 32, articulates an overall goal of reducing
California’s GHG emissions to 1990 levels by 2020. California legislation SB 350,
enacted in 2015, extends the target to a 40% reduction in greenhouse gas levels relative to
1990 by 2030. Unlike RGGI, the scope of the California legislation extends well beyond
the electricity industry to include most major sources of GHG emissions.

There are two possible approaches to measuring the amount of emissions from the
electricity industry: a consumption-based metric and a production-based metric. RGGI
has adopted a production-based approach and California adopted a hybrid production and
consumption-based approach. This hybrid approach regulates imported electricity
through a consumption-based system and local sources through a production-based
system (CPUC2008b). It is instructive to consider the possibilities for leakage and
reshuffling under both a production and consumption based approach.

Since some of the RGGI states participate in markets with generators outside of
the cap and-trade program, concern has been raised about emissions leakage under a
production based system (Northeast Regional Greenhouse Gas Coalition 2005; RGGI
Emissions Leakage Multi-State Staff Working Group 2007b). Debate persists regarding
the extent to which such emissions leakage has and will occur, particularly since the
magnitude will be affected by location specific factors and allowance prices. A pure
production-based standard has never really gained traction in California, presumably
because a substantial fraction of California’s electricity and a majority of the GHG
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emissions come from plants outside of California.'® Therefore, reducing emissions to
1990 levels only from plants within California would not accomplish as much in terms of
emissions levels as a similar reduction in emissions from all plants that sell to California.
Also, there is a significant risk that a production-based standard could be circumvented
by simply increasing net imports from outside of California (i.e., leakage). Absent
additional limitations, these imports would count as perfectly “clean” under a production-
based standard.

However, the regulation of imports through a consumption-based approach could
be significantly undermined by reshuffling, as we have demonstrated in other work (see
BPW 2007). The analysis referenced below reflects data and forecasts available in 2008
when the analysis was conducted and published. Specifically, to examine whether there is
enough low-carbon capacity to meet California’s GHG goals for electricity, we use a
projection of California’s 2020 electricity demand of about 340 terawatt-hours (TWh)
(see BPW 2007 or Appendix included here for the assumptions underlying this
projection). 16 Since the CO2 emissions from meeting California’s electricity demand in
1990 were approximately 80 million metric tons (MMT), we use this as the target for
2020.

We analyze power plant operations in the west in 2004 to determine whether it is
possible to meet California’s GHG goals with existing western electricity production,
which would limit the regulation’s impact on investment. In 2004, there were 265 TWh
of output from zero carbon sources, mainly large-scale hydro and nuclear plants. The
emissions of CO2 necessary to meet the remaining 75 TWh of electricity demand in 2020
(75 = 340 — 265) would be only 30 MMT of CO2, well below the 1990 level of 80 MMT.
This suggests that California could procure power in the western markets from existing
sources without exceeding 1990 carbon emissions levels. It also implies that a
consumption-based standard for California is at serious risk of circumvention if utilities
in the western states reshuffle their energy sources. Since this analysis was conducted
changes in a few factors may influence whether sufficient renewable supply exists in the
west to meet California renewable demand. California’s load forecasts for 2020 have
declined from 2005 predictions and renewable self-generation has increased. Both of
these trends make it easier to reach California’s target. However, California’s RPS target
has increased from 33% in 2020 to 50% in 2030, which results in a higher need for
renewables (although the 2020 target remains the same.) Moreover, these calculations
reflect many important underlying assumptions about the ability and willingness of
western electricity firms to trade their electricity. It is intended as an illustrative example
of the potential severity of the problem, rather than a forecast of what is likely to happen.

15 The accounting of production is complicated somewhat by the fact that there is coal capacity owned by
(or contracted to) California LSEs that is located outside of California but connected in such a way that,
electrically, it is treated as within California. In 2004, over 29 TWh of electricity generation was attributed
to plants that fall in this category (McCann et al. 2006).

16 A5 noted in BPW (2007) and the appendix this analysis assumed an average 1.98% growth in electricity
demand from EIA reported 2005 demand for all western states. California demand has grown at a lower
rate than predicted. The 2016 California Energy Commission 2016-2026 demand forecasts assume a 0.97%
growth rate and a mid-case forecast of 296.244 TWh 2020 electricity demand in California.
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That said, BPW (2007) c0n51ders several of the most likely impediments to a complete
reshuffling of energy sources,'’ and concludes that California is not a large enough
player in the western electricity market to cause substantive changes with a cap-and-trade
policy unless it undertakes additional regulatory intervention. Because of such concerns,
California regulators have considered various administrative rules relating to the
accounting of emissions from “outside” the regulated region that could reduce, or even
eliminate, the incentives to reshuffle purchases. Most solutions would involve setting a
default emissions value that would be used to measure emissions from imported power
no matter what the source, and then limiting the ability of California utilities to cla1m as
imports emissions from facilities whose emissions are cleaner than this default."® For
instance, California regulators have proposed excluding existing hydro and nuclear plants
from the set of sources eligible to be claimed as imported power. These rules dilute the
incentives for existing firms located outside the region to actually reduce emissions. They
also blunt the accuracy of emissions measurement and could draw legal challenges.

The reshuffling in the electricity sector could reduce the effectiveness of AB 32 in
other sectors. If the cap-and-trade system allows trading across sectors, then electric
companies could sell any excess allowances they create by reshuffling. Firms in other
sectors could purchase these allowances instead of actually reducing the carbon
emissions from their production processes.

A far better outcome for the fate of a cap-and-trade program would be the
expansion of its jurisdiction. Over the years attempts at expanding the cap-and-trade
program to other states have occurred, including ultimately unsuccessful efforts in 2007
by California Governor Schwarzenegger to create a regional cap and trade system
between California, Arizona, New Mexico, Oregon, and Washington. With this in mind,
BPW (2007) examined a policy that would include the five states that were parties to the
agreement.

We find that a five-state production-based policy would likely help to induce (or
reinforce) a decision to retire a few coal plants by 2020. However, the key question is:
what kind of capacity would replace those plants and generate the additional energy
required to meet load growth in this region? The problem again with a production-based
standard is that this additional demand could be met from new facilities located outside of
the five-state block. If the new plants are coal-fired, this would clearly not help to reduce
GHG emissions.

Under a consumption-based standard, the imports would, in theory, be judged
based upon the carbon content of their sources. There are significant amounts of zero-
carbon hydroelectric capacity outside of the five states (including in Canada). In addition,
if sufficient capacity is built to comply with the various RPS policies enacted by the five

17 The BPW (2007) analysis excludes purchases from the Bonneville Power Administration, the largest
source of federally owned hydropower, and assumes that emissions from all sources within California will
be counted. This could reflect regulatory constraints on reselling this power out of California to avoid AB
32 or it could reflect transmission constraints that limit imports to their 2004 levels.

18 por example, power purchases could be tied to a historic reference year, rather than actual current
purchases. Thus a firm that bought power from a coal plant in 2000, for example, would be responsible for
the future emissions from that same plant, whether or not it continues to buy power from it.
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states, the zero carbon energy from these sources will account for about half of our load-
growth projections. This suggests that 1990 emissions levels could be met if a small
amount of new zero-carbon generation were added anywhere in the west (BPW 2007).

In sum, our analysis suggests that even if carbon limits are expanded to cover
Arizona, New Mexico, Oregon, and Washington, the policy tool that is likely to have the
greatest impact on reducing the carbon intensity of electricity generation is the renewable
portfolio standard. This highlights an important consideration in regulatory policy
design—that several different regulatory instruments are often applied simultaneously.
We address this topic in the next section.

The Interaction of Regulatory Options

Often, debates over the choice of the appropriate regulatory instrument fail to take
into account the fact that any regulation is likely to coexist with a host of other
regulations that can affect the problem of interest. This issue is particularly relevant when
discussing market-based environmental regulations. The key advantage of market-based
mechanisms is that they afford the regulated industry more flexibility as to how, and even
how much, to comply. However, this flexibility can be greatly reduced when the market-
based mechanism is overlaid onto a series of other regulations. Nowhere is this truer than
in the electricity industry, with its history of strong economic and environmental
regulation.

Overlapping regulation can have both negative and positive impacts. Research has
shown that the economic regulation of firms, rather than a motivation to minimize costs,
can determine a firm’s choice of compliance option under a cap-and-trade system (see
Fowlie 2006). This can, for example, lead to investments being made in capital-intensive
pollution control by firms with the most favorable regulatory treatment, rather than those
with the lowest cost.

On the other hand, when the market-based regulation is applied only locally,
traditional regulatory instruments can limit the leakage and reshuffling problems that
would otherwise arise. Indeed, regulators in both California and the RGGI states have
expressed a commitment to use energy efficiency standards and to promote alternative
energy while developing a cap-and-trade system. Both regions are relying on these other
measures, in part, to limit the problems of a localized cap-and-trade market (RGGI
Emissions Leakage Multi-State Staff Working Group 2007b). Yet these measures, which
include aggressive commitments to renewable energy and energy efficiency, as well as
direct oversight of the procurement decisions of regulated utilities in their regions, will no
doubt limit the impact of the cap-and trade program. California’s electricity industry may
be the most extreme case, with many different regulations directed at reducing GHGs. In
addition to funding for energy efficiency and an RPS target of 50% percent of energy
consumed by 2030, there are also explicit penalties and laws aimed at preventing
investment in new coal-fired plants. California’s RPS and energy efficiency programs
alone will meet all of the state’s load growth, leaving compliance with AB 32 down to
reducing current emissions to 40% below 1990 levels. With California’s initial AB32
greenhouse target of 1990 levels by 2020, BPW (2007) analysis showed that increasing
the RPS to 33 percent and increasing energy efficiency, demand response, and PV alone
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alone would enable California’s electricity sector to reach its 1990 emissions levels and
be in compliance with AB32, without engaging in cap and trade.'® However, the
substantial increase in the greenhouse gas target for 2030, and the potential role for
transportation electrification, now enable a greater role for the cap-and-trade program for
electric sector compliance.

Summary and Conclusions

Local regulators are at a disadvantage when they attempt to regulate emissions of
pollutants such as GHGs, which are damaging even when emitted outside the regulator’s
jurisdiction. There is a significant risk that because of their limited scope, certain types of
local policies could be undermined either through the exodus of physical plants, along
with their emissions, to unregulated regions, or through a reshuffling of deliveries to
customers within and outside the regulated area.

We have argued that leakage problems are most pronounced for regulations that
impose costs on firms, as the firms are more likely to find it profitable to move to
jurisdictions where they will not incur the costs. Firms may also move into a jurisdiction
that is subsidizing clean technologies. Reshuffling problems can arise with both cost-
imposing and subsidizing policies, but they are more pronounced with more flexible
policies, such as a cap-and-trade system. This implies that regulatory mechanisms such as
mandates or subsidies for specific clean energy sources or energy efficiency standards,
although less efficient when applied on a large scale, may be the only kinds of regulations
that can produce meaningful results at the local level.

In our survey of policies to reduce GHGs from the electricity sector, we have
noted that local regulators are keenly aware of the potential for leakage. In several
instances, concerns about leakage have caused regulators to consider regulating
consumers rather than producers. Unfortunately, regulating consumers works much like a
government-imposed boycott, and is only effective if the boycotting consumers make up
a sufficiently large share of the relevant market. Thus, although there may be reasons for
local regulators to target consumers instead of producers, avoiding leakage is not one of
them.

Our analysis raises an important question. What are local regulators actually
trying to achieve with their GHG emissions policies? Are the goals truly limited to
forcing down the carbon footprint from activities within their jurisdiction? If so, one must
keep in mind that the net GHG reductions from the policies proposed by a locality as
large as California, assuming it achieves all its goals, would amount to orders of
magnitude less in reductions in greenhouse gases than countries’ such as China are
predicted to add to the atmosphere. This fact makes it clear that local initiatives are
largely symbolic unless they can also facilitate change beyond their local regions. Thus it
is useful to consider those policies that are the most likely to have broader impacts, either
by making it easier for other jurisdictions to adopt effective GHG regulations or by

' The California Energy Commission’s Scenario 5A, “High Energy Efficiency and Renewables in CA
only,” which includes such aggressive scenarios, predicts 2020 carbon emissions to be close to 1990 carbon
levels (CEC 2007b, p. 130).
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influencing these technologies that are available to reduce emissions. Here it is important
to consider how generally applicable either the regulatory or technological lessons are.

For all of the reasons discussed in this paper, the experiences with local
regulations appear unlikely to have much bearing on their effectiveness at a broader level.
For example, while California cap-and-trade policies for the electricity industry may be
easily undermined by reshuffling and leakage, these issues are much less likely to be a
problem on a national level (electricity is not a globally traded commodity). But given
political realities, an ineffectual California policy may make it less likely that a federal
cap-and trade policy will be adopted, even if the problems California experiences are
unlikely to be replicated for a broader scale policy. Nevertheless, if local policies lead to
what are effectively demonstration projects of various technologies, their successes or
failures could be important first steps in adopting effective low-carbon technologies on a
more global scale.
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Paper 1 Appendix

This appendix describes the data sources and underlying assumptions reflected in the
analyses described in the text.

Supply
Overview:

2004 WECC (and sub-NERC region) energy supply (in MWhs) is from the Platts
Powerdat database (www.platts.com) and is supplemented with Platts Basecase database.
Platts’ Powerdat supply data is from the RDI modeled production costs query and
information is from EIA-906 and FERC form 423. From this database the following plant
level data is'used: MW, net generation (MWh), capacity factor, prime mover, primary
fuel, plant owner, and heat rate. This database contains a separate record for each plant
by prime mover type and by ownership. Since the policies under review address the unit
instead of the plant, concern was taken to make sure that the data in this form does not
overlook the important unit specific factors such as fuel use and capacity factors. This
query produces 1,208 plants.

Platts Basecase database (Utility/Non Utility Unit Ownership query) was used to
supplement the Powerdat data with plants less than S0MW that were not captured in the
main query. This database uses data from EIA forms EIA-411 and EIA-860. An
additional 427 plants were added to the database with this method. Capacity factors for
these plants are estimated using the average capacity factors for plants with the same fuel
type already present in our database. For fuel types for which there was no know
capacity factor, the average capacity factor (.474) of the database is used.

The total WECC energy supply used here does not include Canadian or Mexican plants in
WECC. The WECC includes Washington, Oregon, California, Idaho, Nevada,
Wyoming, Utah, Arizona, Colorado, the bulk of Montana and New Mexico, plus western
portions of Texas, and South Dakota. It also includes the Canadian provinces British
Columbia and Alberta, and the northern portion of Baja California, Mexico.

Mohave generating plant is included in the database; however the units currently owned
by California utilities are not considered part of their portfolio due to reports that these
utilities will discontinue their involvement with the plant. It was announced in 2009 that
the plant would be permanently decommissioned.

EPS specific:
For the EPS analysis, supply with a capacity factor > 60% and hydro and wind facilities

were designated as baseload. EPS-compliant plants are those plants that meet the
baseload criteria and have a CO2 emissions rate equal or less than 1,0001bsCO2/MWh.
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Demand
EPS specific:

Hourly 2004 demand data for the WECC and each of the WECC sub-regions is used to
determine 60% demand. This data is from Platts Powerdat database (www.platts.com)
and from its NERC Sub-Region Hourly Load query. This hourly load data is from EIA-
704.

For all the NERC sub-regions baseload demand growth through 2012 is based on the 4
year average (2001-2004) of baseload growth in these sub-regions calculated using data
from the Platt’s NERC Sub-Region Hourly Load query (EIA-704). The resulting growth
rates are: CAMX, 1.85%, NWPAUS, 1.23% AZ/NM/SNV, 2.61%, RMPA, 6.19% and
WECC average of 2.14%.

AB32 specific:

2020 demand for the following states (AZ, CA, MT, NM, NV, OR, WA) is calculated
using 2005 demand from EIA form 861 (Retail Sales of Electricity by State by Sector by
Provider) and assumes an average 1.98% growth rate for each of the states. 1.98% is the
10 year average demand for states in WECC region (the above states plus WY, Utah, and
ID). Various sources were analyzed to determine state level demand forecasts. However,
uncertainty and discrepancies between sources as well as year-to-year volatility in
demand levels has resulted in the use of the region’s average of 1.98%. Other sources
considered: 1. EIA 861 state level data average 5 year and 10 year historical growth rates
(resulted in average state rates of -1% to 5%) The average for all states was 1-2%. 2. The
WECC 2005 Information Summary provides a CAGR of 2.4% for the WECC region
(which includes some states not considered in this analysis). 3. The California Energy
Commission projects 2020 demand for CA using a 1.14% rate.

CO2 emissions

1990 emissions data:

1990 emissions data is from the EIA’s Electric Power Annual with data for 2005 (U.S.
Electric Power Industry Estimated Emissions by State (EIA-767 and EIA-906)) and is
used to determine the cap targets.

2004 emissions data:

2004 emissions data is used to determine the emissions from existing generation. It is
assumed that in 2020 capacity factors and emissions rates will be the same.
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Since emissions’ data was not available for all plants, heat rate is used to estimate the
CO2Ibs/MWh emissions rate for all the plants. A regression of heat rate on
CO2lbs/MWh was conducted using reported heat rate and CO21bs/MWh data from a
subset of plants for which such data was available from the EPA Continuous Emissions
Monitoring Systems (CEMS) database. Plants were analyzed by fuel type and the
following regressions were calculated:

Mean Mean Heat

CO2Ibs/MWh|Rate/kWh
Gas Plants 1,519.6]  12,638.4
Coal Plants 2,328.3] 11,3633

CO2Ibs/net SE of |BIHR(BT

Fuel type Year MWH = |constant |constant [U/MWH) |SE of B1 _ |t-test P-value [R"2 Correlation
Gas 2000-2005 14.9536 18.7] 0.0001191]  6,54E-07 181.92 0.000 0.976 0.9881
Coal (SUB and BIT) |2000-2005 2.95696 7.5 0.0002046] 6.58E-07 31097 0.000 0.997 0.9987

The CO2 emissions rate for the following fuels, geothermal, wood, biogas, refuse, and
landfill gas, were estimated due to lack of sufficient data to run a regression analysis.
The records that were available for these fuel types all had CO2 emissions rates of zero,
leading to the assignment of zero as the appropriate CO2 emissions rate for these fuels.
Due to limited data, oil and petroleum coke emissions were estimated using the coal
regression. Oil emissions are similar to coal (1.969 1bs/lkWh as compared to
2.0951bs/kWh) and both fuel types have similar heat rates. These fuel sources represent
4.4% of the total MWs.

Heat rates

Heat rates for plants are from the previously mentioned Platts Powerdat and Basecase
databases. Average heat rate calculation: Calculated by dividing the total Btu content of
fuel burned for generation by the resulting net kilowatt-hour generation. Calculation is as
follows: sum of [(fuel quantity X conversion factor:
42(0il)/1,000(gas)/2,000(coal/trash/wood))* fuel BTU]/net generation MWh. For
example, a station that burns 45,570 tons of coal rated at 11,461 btu/lb, producing
110,700 MWH would have a heat rate calculation = ((45.570*2000)*11461) divided by
110700, = 9436 heat rate.

RPS

Information on the RPS programs of states in the WECC is from The Database for
Incentives for Renewables and Energy Efficiency. http://www.dsireusa.org/. Expected
RPS TWhs is calculated as: % target*2020 demand forecast. See above for more detail
on state demand forecasts.
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Pass-Through of Solar PV Incentives to Consumers: The Early Years of
California’s Solar PV Incentives

Introduction

Public subsidization of desirable goods, such as low-carbon energy, aims to
reduce the private price of, and increase demand for, these goods. In practice however,
the extent to which such incentives pass through to reduce final consumer prices varies
due to market conditions. Incidence is the analysis of the pass-through of a particular
subsidy or tax to a consumer and is the difference between an individual’s available
resources before and after the subsidy has been provided. Incidence analysis is about
price, not quantity, changes.

Solar PV incentives pass-through to consumers is of particular importance to
California since it has statutorily provided significant cash incentives to consumers for
solar PV over the last two decades. Solar PV is promoted by the state to meet targets to
reduce greenhouse gas emissions and local air pollution, increase energy independence
from imported natural gas, diversify the state’s energy mix, and generate domestic energy
jobs.

The final price consumers pay for solar power is a key metric of the success of
these incentive programs and overall PV market performance. Policymakers and
advocates have opined on how subsidies should lead to consumer price declines.
Regarding the effectiveness of previous California solar incentive programs, the 2006
policy director of Environment California, the sponsor of the California solar bill Senate
Bill 1 noted, “By lowering prices and growing demand, both of these direct consumer
rebate programs (ERP, SGIP) have been major drivers of California's modern solar power
program.” (Del Chiaro and Gibson, 2006). The expectation that incentives should drive
down solar PV purchase prices, and not just spur demand, was clear in the first version of
Senate Bill 1 introduced by California Senator Kevin Murray. The bill identified that the
proposed solar incentive program incentives “shall benefit the end-use consumer of the
renewable generation by directly and exclusively reducing the purchase price or lease
cost of the eligible system...” (Murray, 2004).

This incidence study, which I formally define in Section II, examines the early
years of California’s most recent wave of distributed solar PV incentives (2000-2008) to
determine the pass-through of incentives. Examination of this period is worthwhile due to
the high level of incentives provided and subsequent high cost to ratepayers;
policymakers’ expectations that price declines accrue to consumers; and market structure
characteristics that might contribute to incomplete pass-through. Whether expectations of
incentives’ pass-through align with reality is critically important in the beginning years of
emerging clean energy technology programs since this can affect the likelihood of future
government investments and public support. Given the often-held policy assumption that
consumer prices are declining in response to incentives, it is useful for policymakers to
understand the circumstances under which such an assumption may not hold.

My results indicate that the pass-through of solar PV incentives during the 2000s
to consumers was incomplete and did not reduce consumer prices as much as some
supporters may have expected.
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This period of California’s subsidies included net metering, various upfront cash
incentives, and tax credits. These government incentives were viewed as critical for
making distributed solar PV accessible to homeowners. In 1995, California passed its
first net metering law, Senate Bill 656, which compensated solar PV producers for excess
solar generation at the retail electricity rate. In 1996, Assembly Bill 1890 created the
Emerging Renewables Program, which provided cash incentives for residential and
commercial solar PV system less than 30 kW. In 2000, Assembly Bill 970 created the
Self-Generation Incentive Program ("SGIP"), which incentivized distributed solar PV
systems 30 kW to 1 MW. After two failed legislative efforts, the California Public
Utilities Commission administratively created the California Solar Initiative (CSI) —a
3,000 MW goal distributed solar PV mandate for investor owned utilities. In 2006,
California Senate Bill 1 codified the CSI and expanded its incentives to public utility
customers.

California has allocated billions of dollars to its solar PV incentive programs. This
period was characterized by high incentives for solar PV although they did decline over
time. The highest upfront cash incentives offered by the California programs were
$4.50/W, which represented approximately 40% of installed costs. By 2014 upfront cash
incentives were phased out of California’s market (except for low-income installations)
and residential PV total installed cost per watt neared $4.00. These incentives assisted
with the financing of solar PV since during this period there was very limited third party
(lease) financing available. Third party financing enables homeowners to purchase solar
PV without a down payment, ownership, or payments higher than their monthly
electricity bills. These leases have been credited with assisting homeowners in more
recent years in overcoming the barrier that high upfront capital costs present for solar PV
adoption. For systems 10kW or smaller, third party leases increased from 12% in 2007 to
65% in 2014 (Barbose and Dargouth, 2015).

As was noted earlier, California legislators were interested in the price declines and
growth in demand for solar PV that incentives could spur. In addition, they were also
concerned about the income differences in the pass-through of incentives. Specific
concerns have been raised that incentives benefit only the wealthiest consumers who can
already afford to purchase solar PV. Analysis of SB1 by California Senate Energy,
Utilities, and Communications Committee consultant Randy Chinn notes, “For those who
can afford it and who have a long term perspective, the PV program envisioned by this
bill, in conjunction with the tax credits, makes installing a PV system an attractive option.
But the cost of the PV system makes it impossible for low and middle income customers
to even consider. As these customers will never be able to participate in the rebate
program, the author and committee may wish to consider whether they benefit before
making them pay for it.” (Chinn, 2005).

Incomplete consumer information and supplier market power may also affect
incidence and so it is useful to consider how these factors may have been present from
2000-2008. Game-theoretic bargaining literature suggests that a negotiating party who
has incomplete information about the other party will obtain a smaller share of the
surplus in the negotiation than if that party was better informed. Busse, Silva-Risso, and
Zettelmeyer (2006) offer this a possible reason for their observation of different incidence
rates for dealer versus consumer subsidies in the car market.
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In the early years of solar PV incentives, consumers had less complete
information regarding attainable solar PV prices and incentives. First, significant
heterogeneity in solar PV prices existed in the late 1990s and early 2000s. As Barbose
and Dargouth (2015) show, the range between the 20™ and 80™ percentile solar PV prices
relative to median prices was especially pronounced during the early years, 1998-2004, of
the US residential solar PV market. Price variability has narrowed significantly in the
subsequent years. Regardless of the source of this variability, due to the lack of online
comparison tools, early PV consumers had less means to compare system prices or
available incentives. As the solar PV industry, the internet, and government incentive
programs grew, searchable online resources such as findsolar.com, the California Solar
Initiative database (Go Solar California), and New York’s Solar PV Incentive Program
Completed Projects by City and Contractor dataset emerged that facilitated attaining
pricing information.

Moreover, information that was publicly available regarding incentives was not
always reliable or clearly understandable. The Emerging Renewables Program, LADWP
solar program, and New Solar Home Partnership, all adjusted subsidies at different times
than initially proposed in their program schedules. Consumer eligibility for certain
incentives was confusing given the overlap between programs, with publicly owned
utility customers at times being eligible for investor owned utility programs. As programs
matured eligible system sizes and price caps were introduced and changed. Moreover,
how programs calculated total watts to be incentivized changed during the time period,
and not necessarily at the same time the incentives changed. After 2008 all of the
programs had more predictable incentive glide paths. Given the frequency of change and
variation, I would expect customers to be less informed, and less able to predict, subsidy
increases and declines. I think this reduced transparency may result in lower incentive
pass-through during this period.

In addition, early solar adopters may have been less concerned about searching
for the lowest prices or best incentives. Instead, as Garling and Thorgersen (2001)
observe, early technology adopters are more focused on how technology prices compare
to their internal reference price for what an innovation is personally worth to them as
compared to what the actual cost is.

This period was also marked by a plethora of geographically limited installer
firms, with some local markets served only by a few installers. Such conditions may lead
to the exercise of market power and potentially less pass through. GTM Research and
SEIA noted that it was in 2014 that the industry saw numerous in-state and national
installers expand their sales footprints from one to two utility service territories and
undertake unprecedented geographic diversification (GTM Research and SEIA, 2014).
As Gillingham et al. (2014) observe, greater installer density is associated with greater
competition, lower information search costs, and lower PV prices. Gillingham et al.,
focus their research on the 2010-2012 period, where they also find that some high
demand areas do not have the lowest prices, suggesting some form of imperfect
competition. All of these factors may lead to lower incentive pass-through to solar PV
consumers in the early years of the market.
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Models of Incidence and Relevant Literature

Subsidy incidence “falls” on the group (sellers vs. buyers) that receives the
benefit of the subsidy. A subsidy can be passed forward to the consumer or backwards to
the supplier. Pass-through to either of these groups can be full, e.g. 100 percent of the
subsidy, incomplete, e.g. less than 100 percent (Graph 1), or in some circumstances over
100 percent. (Doyle and Samphantharak, 2008, Hamilton 1999, Katz and Rosen 1985,
Stern 1987).

There are three rules of incidence. First, the statutory burden of the subsidy is not
necessarily the same as the economic burden. Whether consumers or suppliers legally
receive the subsidy is irrelevant to the distribution of the subsidy benefits. When a
subsidy is offered to consumers in a perfectly competitive market or a monopoly market,
the consumer will be willing to pay more for the subsidized good, so prices will rise,
partially offsetting the statutory subsidy benefit to consumers. (Gruber, 2007, Ruffle,
2004). Second, the side of the market where the subsidy is imposed is irrelevant to the
distribution of subsidy benefits. Third, incidence depends on the relative elasticities, i.e,
price responsiveness, of supply and demand. Parties with more inelastic supply or
demand benefit from the subsidies (or bear the greatest tax burden). For example, in a
situation with perfectly inelastic supply, perhaps due to a labor shortage that limits all
new entrants (Graph 2.2) the quantity of PV supplied remains the same regardless of the
subsidy. In this situation, the supplier receives the full subsidy. In a situation with
perfectly elastic supply (Graph 2.3), which would be expected in the long run for a
competitive solar PV market, the quantity of PV demanded is available at a constant price
and the full subsidy shifts to the PV consumer.

In public policy and academic arenas the issue of incidence in the energy sector
has been more widely discussed as it relates to tax policy. For example, the consumer
incidence of gasoline taxes was a political and equity concern for both President Jimmy
Carter and President Clinton, and motivated their calls for income compensation for the
poor affected by the pass-through of higher gasoline taxes to retail prices. Gasoline tax
incidence also arose during the 2008 presidential campaign when Senator Hillary Clinton
and Senator John McCain supported a suspension of federal gasoline taxes and then-
Senator Barack Obama was in opposition. In the discussions, Senator Obama directly
addressed the issue of less than complete pass-through of taxes when he noted “At best,
this is a plan that would save you pennies a day for the summer months; that is, unless
gas prices are raised to fill in the gap, which is just what happened in Illinois, when we
tried this a few years ago," (Balz and Slevin, 2008). Although less commonly analyzed,
subsidies are in essence negative taxes, and as such their pass through are subject to
similar economic and distributional equity concerns.

There has been significant work on the incidence of taxes. Applied tax incidence
studies typically assume full pass-through of taxes to consumer prices (Wiese, Rose and
Schluter 1995, Zupnick 1975) although empirical evidence varies. Alm, Sennoga, and
Skidmore (2009) and Marion and Muehlegger (1999) estimate full shifting of gasoline
taxes to final consumers in the United States. Doyle and Samphantharak (2008) review
the effects of sales taxes on retail gasoline prices in Illinois and Indiana utilizing incidents
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of tax suspensions and re-instatements and find that 70% of tax suspensions are passed to
consumers in the form of lower prices, while 80-100% of the tax re-instatements are
passes on to consumers. Besley and Rosen (1998) find evidence of full pass-through and
some overshifting of taxes on U.S. commodity prices. In an analysis of the pass-through
of state and local retail taxes on clothing prices during the post War World II period,
Poterba (1996) finds full pass-through with retail rates increasing the same amount as the
tax.

Subsidy incidence studies find a wider range of pass-through rates than tax
studies. Studies of the pass-through rate of hybrid vehicle subsidies find incomplete to
full incidence. Sallee (2008) finds almost complete shifting of incentives to hybrid
vehicle consumers. However, Chupp, Myles, and Stephenson, (2010) find that sellers
capture almost half of the federal tax credits for California hybrid cars. In the general car
market, Busse, Silva-Risso, and Zettelmeyer (2006) estimate a 70-90% pass-through of
cash rebate promotions for consumers, and only a 30-40% pass-through for dealer
discount promotions.

Several recent examinations of the pass-through of solar PV incentives in
California have yielded mixed results. Dong, Wiser, and Rai (2014) identify the pass-
through of incentives in the California Emerging Renewables Program and the California
Solar Initiative programs to residential customers using structural and reduced form
modeling approaches. Using data from 2001-2012, they estimate a nearly 100% pass-
through of incentives. Their reduced form model produces pass-through estimates of 83-
103%, with greater variation in pass through rates across counties (32-270%). An
earlier study, Wiser et al. (2006) offers evidence of incomplete pass-through of solar PV
incentives in California. The authors find a pass-through of 50-80% across different
specifications for two California subsidy programs.

Henwood (2014) finds a pass-through rate of 36% for the California Solar
Initiative incentives for 2007-2013. He also finds that pass-through varies by zip code
and that zip codes in the lowest quartile of median household income have a subsidy pass
through slightly higher than the upper quartile. Podolefsky (2013) identifies the pass-
through rate for the federal investment tax credit for solar PV to customers to be 17%.
Gillingham et al. (2014) examine the source of heterogeneity in solar PV prices and find
that higher consumer value of solar, defined as the combined discounted value of
incentives and electricity savings, is associated with higher prices. The authors note that
this result suggests that installers may be retaining some portion of this consumer value,
i.e. incomplete pass-through.

Demand and supply constraints can affect how much of the subsidy passes
through to consumers. Marion (2009) identifies a higher pass-through rate for diesel taxes
when diesel supply is more elastic, such as times when untaxed diesel uses are of greater
importance. Moreover, Marion finds that the pass-through rate is lower when US refinery
utilization rate is high and capacity constrained. Similarly, Alm, Sennoga, and Skidmore
(2009) offer evidence of less than full pass-through in less competitive rural markets (less
elastic demand) as compared to urban gasoline markets. Chouinard and Perloff (2004)
conclude that state specific gasoline taxes have a higher pass-through to consumers than
federal taxes due to higher supply elasticity in certain states that is not present in the
nation as a whole. Sallee (2010) presents evidence contrary to this trend in the Toyota
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Prius market. Even in the presence of production constraints, Sallee finds that Prius
prices did not shift and consumers still received 100% of the subsidy. Sallee posits that
search frictions in the car market leads to this unconventional finding.

This paper contributes to the incidence and energy policy literature by evaluating
the incidence of solar PV incentives in the early years of the most recent distributed solar
PV demand pull programs. Review of this period is worthwhile due the high level of
incentives provided and subsequent high cost to ratepayers; policymakers’ expectations
that price declines accrue to consumers; and market characteristics that might result in
lower pass-through.

To determine incidence this paper employs a partial equilibrium model. Due to
PV’s relatively small share of the overall economy, the partial equilibrium model is
preferable to a general equilibrium model. This model ignores where tax and subsidy
proceeds are spent or originate and assumes a competitive marketplace. Thisisa
reasonable assumption given that in the long-run the local solar PV market is not
expected to be a monopoly market as there are no persistent barriers to entry. If it is a
monopoly market, the pass through depends on the monopolist’s marginal revenue and
cost curves as well as the demand curve as detailed in graph 2.4.

It is most likely that currently the solar PV market is imperfectly competitive
since higher search costs and some market power are likely present. Weyl and Fabinger
(2013) extend the principles of tax incidence under perfect competition to imperfect
competition models including monopoly, symmetric imperfect competition, and generally
imperfectly competitive models. They find that the principles of incidence in competitive
markets generally hold as well for imperfectly competitive markets. They also find that
less competitive markets result in smaller pass-through rates.

Graphs 2.1, 2.2, and 2.3 offer hypothetical illustrations of the pass through of a
consumer incentive on the final equilibrium price of a PV system under elastic and
inelastic conditions. In the market there are two prices, the gross price and the after-
incentive price. The gross price is the price received by the PV seller. This price is the
same as the price in the market. The second price, the after-incentive price, is the price
paid by the consumer who is receiving the incentive. The after-incentive price is lower by
the amount of the incentive (if consumer gets the incentive) or higher by the amount of
the incentive (if the seller receives the incentive).
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Graph 2.1: Elastic Case — Incentive Provided to Consumer
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In this case, the pre-incentive equilibrium is A. An incentive to the consumer
increases the willingness of the consumer to pay and shifts the demand curve up (by the
incentive amount) and to the right (D;— D,). At the initial equilibrium price Py, there is
now an excess of demand. Consumers want Q> (point C) at the initial price, but sellers are
only willing to sell Q;. Consumers bid up the price as they compete for smaller quantities
of watts until the new equilibrium price and quantity, B, are reached. P is the price paid
by consumers. P; is the sellers’ price received. The new equilibrium price is higher than
the initial price, but less high than the incentive amount. The consumer incentive benefit
is P; —P;+ incentive amount. The seller incentive benefit is P3 — P; + 0. Consumer and
seller benefits total the initial incentive. In this case, the pass-through of incentives is
incomplete, with approximately half flowing to the supplier.

In the long-run, it is expected that the solar PV market is elastic. Perfectly elastic
supply can occur when sellers have the choice among a large number of perfect
substitutes in the production. Assuming buyers shop around, any quantity of the good can
be produced at the same production cost and price because the productive resources can
be easily switched back and forth between other goods.
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Graph 2.2: Perfectly Inelastic Supply Case — Incentive Provided to Consumer
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In the extreme case, supply or demand constraints, such as labor supply
constraints, can lead to inelastic supply or demand and full shifting of the incentive to one
party. In the more likely case of inelastic supply, the price to consumers would not
decrease which would be antithetical to policymaker expectations.

In this case, the pre-incentive equilibrium is A. An incentive to the consumer
increases the willingness of the consumer to pay and shifts the demand curve up (by the
incentive amount) and to the right (D;— D). At the initial equilibrium price Py, there is
now an excess of demand. Consumers want Q, at the initial price, but sellers are only
willing to sell Q3 same as Q; Consumers bid up the price as they compete for smaller
quantities of watts until the new equilibrium price and quantity, C, are reached. Since
supply is inelastic, the quantity supplied does not change at the new equilibrium price. P;
is the price paid by consumers. P; is the suppliers’ price received. The new equilibrium
price is higher than the initial price by the total incentive amount.

In this case, the consumer incentive benefit is zero, P; — P3+ incentive amount.
The seller incentive benefit is the full incentive amount, P; — P; + 0. Consumer and seller
benefits total the initial incentive. In this case, the pass-through of incentives is zero with
all of the incentive flowing to the seller.
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Graph 2.3: Perfectly Elastic Supply Case — Incentive Provided to Consumer
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In this case, the pre-incentive equilibrium is A. An incentive to the consumer
increases the willingness of the consumer to pay and shifts the demand curve up (by the
incentive amount) and to the right (D;— D,). Consumers now want Q> at the initial price
Py,. Since supply is perfectly elastic, sellers are willing to sell O, at the initial
equilibrium price P;_ Since supply is perfectly elastic, the quantity supplied changes, but
the new equilibrium price paid by consumers, P3 does not change.

The consumer incentive benefit is the full incentive amount, P; — P3+ incentive amount.
The seller incentive benefit is zero, P3 — P; + 0. Consumer and seller benefits total the
initial incentive. In this case, the pass-through of incentives is full, with all of the
incentive flowing to the consumer.

The above models of incidence are based on competitive markets. The graph
below details incidence under an extreme case of imperfect competition, a monopoly
market with non-discriminating pricing. Incidence under a monopoly market is a
function not only of supply and demand elasticities but of the curvature of the demand
curve. In a market with monopoly power, there is only one supplier of the good. A
monopolist sets marginal cost equal to marginal revenue and the price of the good is
determined by the monopolist and not the market. A monopoly solar PV market is not
expected in the long run, although market power could exist in the local contractor
market.
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Graph 2.4: Market Power — Incentive Provided to Consumer
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In the monopolist case, the pre-incentive equilibrium quantity is Q; and is the
quantity at which the marginal revenue curve, MR; intersects with the supply curve. The
pre-incentive equilibrium price, Py, is determined by the demand curve and is the price at
which Q; is demanded. The monopolist charges P;, which is above the marginal revenue
curve. An incentive to the consumer increases the willingness of the consumer to pay
and shifts the demand curve up (by the incentive amount) and to the right (D;— D»). This
leads to the marginal revenue curve also shifting to the right (MR;— MR;). The
monopolist determines the new equilibrium by once again identifies the quantity, O, at
which the marginal revenue curve, MR;, intersects with the supply curve. The monopolist
then sets the price at P, the price at which the market demands O, The new equilibrium
price is higher than the initial price but less than the total incentive. Similar to the elastic
case (graph 2.1), the monopolist shares the incentive benefit with the consumer, although
the total benefit to consumers and producers is greater than the subsidy cost because the
quantity sold is already distorted downwards.
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Data Overview: Incentives for Solar PV in California

This analysis uses variation in incentives within and across programs to estimate
incentive pass-through. Incentives offered by programs varied across time and customer
class due to rebate schedules, system size requirements, system performance adjustments,
incentive type, and incentive caps. The greatest source of variation in the data is from
different incentive levels offered across time and programs. This section details each
incentive program's components and the additional data used in the analysis.

This paper uses 2000 to 2008 incentive and PV system data from the major
California solar PV incentive programs to estimate subsidy incidence to California PV
consumers.?’ The programs included are the Emerging Renewables Program (ERP),
California Solar Incentive (CSI), New Solar Homes Partnership (NSHP), LADWP Solar
Photovoltaic Incentive Program, and SMUD PV Program. The first three programs were
primarily available only to consumers in one of the state’s Investor Owned Utilities
(Pacific Gas and Electric, Southern California Edison, and San Diego Gas and Electric™).
The LADWP and SMUD programs are available to consumers in their respective utility
territories. Combined, these five utilities represent 90% of California’s electric load
during the study period. The unit of observation is a PV system (kW) (including modules,
inverter, Balance-of-System parts, permitting, and labor). PV system technical, price, and
installation data were collected from incentive program administrators through the
Lawrence Berkeley National Laboratory’s Tracking the Sun II project.

The data are limited to PV systems with similar technology and installation
approach and so systems with building integrated PV, thin film or hybrid thin film, and
self installs are excluded. The data are also limited to systems between 2 and 10 kW.
Systems missing any of the OLS regression variables are also excluded. Before data
screens, 313.2 MW were incentivized across the programs during the time period,
including commercial systems and systems greater than 10 kW. After data screens,
26,465 systems remain for a total of 127.8 MW. The Emerging Renewables Program has
the most systems, and in the data represents 64% of total systems installed and 63% of
kilowatts installed.

20 The initial data included observations from 1998 and 1999. However after the data were screened to
exclude systems with various characteristics (noted in the data screening section) 39 observations from
1998 and 178 observations from 1999 were dropped. The most systems were dropped from the data due to
estimated system size.

2! In the beginning of the ERP Publicly Owned Utilities were eligible so the final ERP data set includes 73
POU systems.
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Table 2.1

Observations by Program and Year

Program 2000 2001 2002 2003 2004 2005 2006 2007 2008 Total
Emerging Renewables Program 2 752 1,987 3,311 2,669 4,302 3,617 249 16,889
New Home Solar Partnership 48 141 189
California Solar Initiative 2,474 5,631 8,105
LADWP Solar Incentive Program 3 51 150 167 34 63 113 258 320 1,159
SMUD Residential Retrofit Program 14 20 45 44 123
Total 3 53 902 2,154 3.345 2,746 4,435 6,442 6,385 26,465

Program and Incentives Overview

The Emerging Renewables Program (1998-2008)

The Emerging Renewables Program (ERP) was created by omnibus California
restructuring legislation Assembly Bill 1890 (AB 1890) and Senate Bill (SB90). Enacted
in 1996, AB1890 provided $54 million to support emerging renewable electricity
generation technologies, including rooftop solar PV, small wind, and fuel cells. SB90
(1997) provided specific direction on how those funds were allocated. Additional
program funding was authorized through subsequent legislation (SB 1038 (2002-2006),
SB107 (2007) and SB1250 (2007)).

Distributed solar PV systems, including new homes, were funded through the
ERP from 1998 to 2006 and represent over 95% of ERP incentives during the period.
From program inception to February 2003, the ERP provided rebates to both small and
large PV systems, but after March 2003, the program focused primarily on residential and
small commercial systems under 30 kW. In 2007, PV systems for IOU consumers
became exclusively funded under the California Solar Initiative and the New Solar
Homes Partnership.22 However, the ERP data include systems with completion dates
through 2008.

To participate in the ERP, eligible systems were required to have a minimum five
year warranty, installation by an appropriately licensed contractors (A, B, or California
C-46 Solar Installer license, or C-10 Electrical Contractor license), and key PV system
components certified to meet established standards.

The ERP total residential incentive varied by reservation date, incentive cap, and
system performance characteristics. The initial ERP schedule set the incentive level to
decline in five steps from $3 per watt to $1 per watt. Since the program had no
established MW targets, each incentive level was tied to a specific portion of the
program's $54 million authorization. The five blocks of funds varied in size from $10.5t0
$12 million. Although the incentives were designed to decline from 1998 to 2001, all
reservations received the initial incentive level established in Block 1, $3.00/W.

22 ERP systems in database from 2008 reflect the final completion date for remaining systems allocated
under ERP (through 12/31/06). Systems not completed by January 1, 2007 had the option to withdrawal
their applications from the ERP program and move to the CSI program.
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SB 1038 removed the requirement established by SB90 for declining incentives.
In 2001, the ERP permanently deviated from its initial set schedule, and the incentive
increased from $3.00 per watt to $4.50 per watt in February 2001. The decision to
increase the incentive during the electricity crisis was exogenous to demand for the ERP.
The subsidy was changed to be aligned with subsidy levels offered in the CPUC’s Self-
Generation Program (SGIP) which was established in 2001 to support larger, commercial
systems.23 PV systems were eligible for only one of the two programs. The ERP
incentive remained $4.50 per watt through December 2003 after which it declined
steadily until it reached $2.60 per watt at the end of the sample period.

Through February 2003, ERP incentives faced a cap of 50% of total eligible costs,
with periods of a 40% cap for systems greater than 10 kW. 1.7% of systems in the final
data faced the 50% incentive cap. After February 2003, the incentive percentage cap was
eliminated. The total incentive was also capped at $2.5 million and $1 million during the
study period; however these caps were not binding for any observations in the sample.

The total incentive the consumer received also changed with certain system
performance characteristics. In the ERP, system size incentivized was adjusted
downwards to reflect differences in module operation under real world performance
conditions and inverter efficiency. Consumers with the same nameplate system capacity
could receive different incentives depending on, for example, the inverter efficiency. The
ERP incentive level also varied with incentive type, whether the system was self-installed
and total system size. However these types of variation are not present in the data since
self installs were excluded from the analysis and no residential systems utilized the pilot
performance based incentive, which was limited to systems greater than 30kW. Although
not captured in this data, the ERP also offered for a period a lower incentive for systems
greater than 10kW. From 1999-2000, these larger systems received an incentive of $2.50
per watt, a 17% lower incentive than for smaller systems.

23 The SGIP was started at $4.50/watt, and initially covered all PV systems, overlapping with the ERP.
Overlap was reduced by limiting SGIP to systems greater than 30kW.
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Graph 2.5

Emerging Renewables Program Cash Incentive for Solar PV systems less than 10kW

£ $2.50 A ;—Eﬁ’ ($Ichc-ac)I

standard rebate
et
o
o

T I I NN N N N N S YN 2Tzt = =
T T ¥ 8 S f & &f ¥F f 2 &f  fF & & o &fr o« =<
e e e - - e S - S

Incentive declined on February 8, 2001; January 1, 2004; July 1, 2004; January 1, 2005; and July 1 2006.

California Solar Initiative (2007-2016)

The California Solar Initiative (CSI) was created by California’s Senate Bill 1
(SB1) in 2006. SB1 continued upfront buydown and performance based incentives first
established for solar PV in the Emerging Renewables Program and Self Generation
Incentive Program, but expanded the rebate program to account for differences in the new
construction market, increased the utility net metering limits, and required publicly
owned utilities to create their own solar rebate programs.

Under SB1, the CSI had $2.167 billion allocated for IOU solar PV consumers
from 2007-2016. Administered by the California Public Utilities Commission, the CSI
program has a 1,940 MW goal and funds distributed solar PV systems on existing
buildings. The CSI is available to residential and non-residential systems 1kW -IMW,
with each consumer class however having a set MW target.

The CSI total residential incentive varied depending on reservation date,
cumulative installations within a utility service area, incentive type, and system
performance characteristics. Under the CSI, systems less than 100kW were eligible for
upfront buydown incentives based on expected performance (EPBB). Eligible systems
were not subject to an incentive cap, although systems could not be sized greater than
annual on-site load. CSI EPBB residential incentives, within each utility service area,
declined from $2.50 per watt to $0.20 per watt over 10 steps of increasing megawatts
during the course of the program. The incentive level depended on the reservation '
submittal date and the total solar demand (MW reserved) within a utility service area.
Non-residential systems had similar incentives, but different total MWs targets for each
step. Although there were 10 steps, in accordance with the CPUC policy decisions that
provided for a transition between the Self Generation Incentive Program (SGIP) and CSI,
step 1 was fully reserved in 2006 under the SGIP, which was only open to non-residential
projects. The 50 megawatts in step 1 were not allocated across the utilities and were

% CEC-AC rating, but not design factor was used to determine minimum and maximum size eligibility.
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reserved on a first come, first served basis. By the end of the data sample (2008), for
residential systems, SCE reached step 3, SDG&E step 4, and PG&E step 5. Although
Performance Based Incentives were required for systems 100kW are greater, smaller
systems could opt-in. 1.5 percent of CSI residential data observations utilized the PBI.

Table 2.2
CSI Residential MW Target by Utility
PG&E SCE SDG&E
Step

1
2 10.1 10.6 2.4
3 14.4 15.2 3.4
4 18.7 19.7 4.4
5 23.1 24.3 54
6 274 28.8 6.5
7 31.0 32.6 7.3
8 36.1 38.0 8.5
9 41.1 43.3 9.7
10 50.5 53.1 11.9
Total 252.4 265.6 59.5
Total % by Utility 43.7% 46.0% 10.3%

PG&E reached Step 3 October 2007, Step 4 April 2008. SCE reached Step 3 May 2008. SDG&E reached
Step 3 January 2008 and Step 4 October 2008.

Table 2.3
CSI Residential Incentives
MW Step EPBB PBI (per kWh)

1
2 $2.50 $0.39
3 $2.20 $0.34
4 $1.90 $0.26
5 $1.55 $0.22
6 $1.10 $0.15
7 $0.65 $0.09
8 $0.35 $0.05
9 $0.25 $0.03
10 $0.20 $0.03

Similar to the ERP, the total incentive the consumer received changed with
certain system performance characteristics. Before calculating the total incentive (rebate
level*system size), the CSI downwardly adjusted system size to reflect differences in
module operation under real world performance conditions (DC-PTC), inverter
efficiency, and design factors such as weather, shading, mounting, and tilt.
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Graph 2.6

Investor-Owned Utilities CSI Residential Incentives
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Graph 2.9

SDG&E CSI Residential Incentives
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New Solar Homes Partnership (2007- Present )

The New Solar Homes Partnership (NSHP) was also created under California’s
Senate Bill 1 (SB1). The New Solar Homes Partnership has a total maximum budget of
$400 million, with a goal of 400 megawatts of solar PV on new homes by 2016.
Administered by the California Energy Commission, the NSHP incentive is an upfront
incentive based on expected system performance (EPBB) and is available for market-rate
and affordable housing in the state’s IOU territories. Eligible systems must be at least 1
kW and cannot be sized greater than residence expected load.

During the analysis period, the NSHP total residential incentive varied depending
on home type and system performance characteristics. NSHP offered a higher incentive
for a reference production home with solar as a standard feature, and a lower incentive
for other homes. To qualify as a reference production home with solar as a standard
feature, the builder had to commit at the reservation stage that a minimum of 50 percent
of the homes in a subdivision or multi-family housing development would have solar
systems. The lower incentive was referred to as the base incentive and applies to custom
homes, small developments, reservations where solar is identified as an option, and all
applications where solar is not installed as a standard feature. In the data, 76% of
incentives were for systems using solar as a standard and as such they received a higher
incentive.

To determine the total incentive, the NSHP also adjusted system capacity and
output to reflect system performance characteristics although it employed a different
methodology. The NSHP converted the $/W incentive to a time-dependent weighted
$/kWh incentive for an ideal, reference system. Unlike the CSI and ERP calculators, the
NSHP rewarded expected generation that exceeds that of the reference system in the
reference location. The $/kWh incentive was then multiplied by the PV system’s
expected kWhs (determined hourly over a year). Expected kilowatt-hours are a function
of system characteristics such as module real world performance, inverter efficiency,
module orientation, tilt, and type, system power losses, and geographic location. With an
hourly focus, the NSHP incentive was greater optimized to address peak load, and as
such NSHP systems had a greater incentive for southwest facing systems. In the CSI,
incentives were more evenly distributed around the compass.
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To participate in the NSHP, homes had to first meet a higher efficiency standard
of 15% (Tier 1) or 35% (Tier II) beyond the energy efficiency mandated by California’s
Title 24 building efficiency standards. Both Tier I and Tier II systems are included in the
analysis. Tier II systems did not receive an additional cash incentive although such
applicants did receive additional marketing support. Tier II systems represent 80% of the
final NSHP data. Exclusion of either Tier I or Tier II systems does not significantly
change overall analysis results.

The NSHP incentive level was initially scheduled to decline over time by 10% in
response to 10 volumetric trigger steps. However, due to slow program uptake, and
program administrator concerns about declining new home construction, the incentive
level did not decline during the data period. The incentive for production homes was
$2.60 per watt and $2.50 per watt for other homes through 2008. In January 2012, later
than the data sample, the Energy Commission issued a revised declining incentive
schedule.

Publicly Owned Utility Programs (POUs): LADWP and SMUD

Publicly owned utilities represent 25% of California’s electricity demand. Two
utilities, Los Angeles Department of Water and Power (LADWP) and Sacramento
Municipal Utilities District (SMUD), represent over 90% of publicly owned utility
electricity sales. An additional 46 utilities represent the remainder of POU load.

CA LADWP Solar Incentive Program (2000- Present)

In response to AB1890, The Los Angeles Department of Water and Power's
(LADWP) solar program began offering upfront cash buydown incentives in 2000. The
program was updated in 2007 to reflect new guidelines established under SB1. Under
SB1, publicly owned utilities were mandated to establish solar programs by 2008 to assist
with the state’s goal of 3,000 megawatts of solar by 2016. LADWP’s required share of
the SB1 goal was 280 megawatts. The LADWP program provided performance based
incentives and maintained separate funding goals for residential and non-residential
participants as well as an additional incentive for PV modules manufactured in Los
Angeles.

Pre-SB1 the program had total funding of $14 million to a maximum of $22
million for both residential and non-residential systems. Since SB1, the program has an
overall funding cap of $313 million through 2017, with $144 million of funding
dedicated to residential systems. Funding is allowed to be less, provided that the funding
is sufficient to provide an incentive of at least $2.80 per watt. The revised program is
funded through a public benefits fund and $30 million is available annually.

Initially the minimum system size was 300 watts and the maximum system size 1
MW. Starting in 2007, the program had minimum and maximum system size
requirements of 1 kW and 3 MW and a maximum $7 million incentive payment limit per
billing meter each fiscal year. The system had to be sized to be no greater than the entire
consumer load.
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LADWP’s total residential incentive varied by reservation date, incentive type,
incentive cap, equipment manufacturer location, and system performance characteristics.
Although initially set to decline every 12 months, the incentive level frequently varied
due to continual updates and revisions to the incentive level and schedule. Prior to 2006,
systems were only eligible for an upfront cash buydown incentive. The program
transitioned to expected performance based incentives in 2005, and moved exclusively to
performance based incentives in 2006. From 2000 through December 2001, the
incentive for all systems was $3.00 per Wprc with an additional $2.00/ per Werc
incentive offered for systems manufactured by a Los Angeles company.” The base
incentive increased to $4.50 per Wprc in 2002, declining to $3.50 per Wprc from 2004 to
2006. In 2006, a declining performance based incentive schedule based on estimated
system performance, tied to volumetric triggers was introduced. In 2007, the declining
incentive schedule was once again revised to ten declining block steps. The residential
EPBB started at $0.14 cents/kWh and reached the second step, $0.13 cents/kWh in
December 2008. The data does not include any observations beyond Step 1. The variation
in incentive level by reservation date is depicted in graph 2.10. LADWP’s program had a
residential incentive cap of 85% of total installed cost through 2004 and 75% thereatter,
but it is not binding for systems in the sample.

In addition to changing incentive levels, similar to the IOU programs, the total
LADWP incentive provided was downwardly adjusted to reflect differences in module
operation under real world performance conditions (DC-PTC), inverter efficiency, and
design factors such as weather, shading, mounting type, and cell temperature. The extent
to which system performance was considered in determining adjusted system size varied
during the program.

From the onset, the incentive level accounted for module performance, by
requiring system output to be measured using the PTC which adjusts for module
efficiency. Starting in August 2004, the total incentive paid also adjusted for inverter
losses and a 13% loss for wiring. The transition to performance based incentives mid-
2005 changed the total incentive calculation to be based on estimated performance for 20
years. The estimated performance accounted for system tilt, orientation, shading, and
installation location and a system degradation factor of 0.9.

% According to LADWP program administrators virtually no one received the LABC subsidy during the
data period (less than 1% of applicants eligible), but the LABC incentive is not identified in the available
reported data.

43



Graph 2.10

LADWP Residential Incentive Variation
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SMUD Residential Retrofit and Commercial PV Buydown Programs

Since 1999, SMUD has offered buydown incentives for residential and rooftop
PV systems. In 2004 SMUD transitioned from a direct sales program, in which the utility
sold subsidized systems to consumers, to a consumer rebate program that provided
upfront cash incentives. After the passage of SB1, SMUD offered both expected
performance based buydown incentives (EPBB) and performance based incentives for
grid-connected PV to residential and commercial consumers. SMUD’s required share of
the SB1 goal was 125 MW. The program had no caps on system size or incentives, but
did require systems to be sized not to exceed consumer's annual consumption. Starting in
2007, systems installed by NABCEP certified installers received an additional $200
incentive for the contractor. The relatively small size and limited use of this additional
_ incentive, however, resulted in this contractor incentive not being isolated in the analysis
from the overall after-tax cash incentive. Incentives were available on a first come, first
serve basis.

SMUD’s total residential incentive varied by reservation date, incentive type, and
system performance characteristics. In 2005 and 2006, SMUD offered a $3.50 per watt
and $3.00 per watt EPBB incentive respectively. Starting in 2007, a ten step, declining
incentive schedule was established and consumers were eligible for an EPBB or PBI
incentive. The PBI was the sole option for systems installed under third-party PPAs and
lease options. The PBI was designed so that the net present value of the sum of the
payments was equal to the current EPBB level adjusted by a 7.5% annual discount rate
and 0.05% per year system output degradation. The incentive level reached Step 2
($2.50) during the data sample.

In addition to changing incentive levels, similar to the IOU programs, the total
incentive provided was downwardly adjusted to reflect differences in module operation
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under real world performance conditions (DC-PTC), inverter efficiency, and design
factors such as shading, tilting, mounting method, and orientation. The additional factor
of system degradation (0.05% a year) was added in 2007.

Table 2.4

SMUD 10 Residentjal Incentives
Steps (per Watt)

MW Step EPBB

1 $3.00

2 $2.50

3 $2.20

4 $1.90

5 $1.55

6 $1.10

7 $0.65

8 $0.35

9 $0.25

10 $0.20

Graph 2.11

SMUD Incentives for Solar PV systems less than 10kW
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Tax Credits and other non-cash subsidies for Solar PV

In addition to these rebate programs, through 2008, other policies supporting PV
in California included: state and federal tax credits, net metering requirements, simplified
interconnection standards, and an exemption of PV systems from state property taxes.
Net metering allowed PV customers to credit excess generation at the retail rate to their
next billing cycle. California systems, except for systems within the LADWP service
territory, have been eligible for net metering since 1996.
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The availability and size of the tax credit depended on the market segment,
system size, and year. The state tax credit cap of $4.50 per Watt,, was not binding for any
observations in the sample. The federal tax credit cap of $2,000 was binding for nearly all
systems. About 1% of the systems eligible for a residential federal tax incentive had a tax
credit lower than the cap. Table 2.5 describes the tax credits available.

Table 2.5

State and Federal Solar PV Investment Tax Credits
Tax Credit Customers Period Credit Level Incentive Cap
CA State ITC All 2001-2003 15% of post-rebate installed cost |$4,50/Wxc
CA State ITC All 2004-2005 7.5% of post-rebate installed cost |$4.50/W ¢
Federal ITC Commercial 1998-2005 10% pre-rebate installed cost None
Federal ITC Commercial 2005-2016 30% pre-rebate installed cost None
Federal ITC Residential 2006-2008 30% post-rebate installed cost $2,000
Federal ITC Residential 2009-2016 30% post-rebate installed cost None

Since Federal tax incentive and state incentive data were not available, the
Federal ITC and State ITC were estimated for systems. Projects in the data identified as
residential PV and installed on or after January 1, 2006 were assumed to receive a
Federal ITC equal to the lesser of 30% of the tax credit basis or $2,000. However, the tax
credit estimates produced nonsensical results in the regression analysis and so are not
included in the final analysis. Instead pass-through is calculated using only the after tax
cash incentive.

Subsidy Variation Conclusion

As detailed, the incentives within and across programs varied due to system size,
system performance adjustments, time of purchase, total eligible costs, incentive type,
and incentive caps. Incentives were offered on a per Watt basis and the total incentive
received by each system equals the system size times the appropriate rebate level (subject
to any incentive caps). However, given that the data for this analysis is restricted to
residential systems from 2000-2008, the primary source of variation in incentive levels is
across time and within and across programs.

For the ERP, incentives varied across time, in fact they changed five times during
the data period. Incentive for the ERP also varies due to the incentive cap of 50% of total
costs. 1.7% of ERP systems completed in 2002-2007 faced the cap.

For the CSIL, incentives varied across time and utility. Although the incentives
started at the same level for each utility, during the study period they declined twice for
PG&E’s and SDG&E’s territory and once for SCE’s territory. These incentive declines
occurred on different dates across the utilities.
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For the NSHP, there is 10 cents per Watt difference in incentives between homes
with solar as standard and other homes. 76% of NSHP systems in sample received the
higher incentive. Otherwise the incentives do not vary during the sample time period.

For LADWP, the incentive changed over time with an increase in 2002 and a
decrease in 2004. For SMUD, the incentive level increased once and decreased twice

during the sample period.

Graph 2.12
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Other Key Price Drivers

Total system capacity (kW) is the primary determinant of net price, the total price
minus the incentive, and is a key component of this analysis. The larger the system’s
generating capacity, the more expensive the overall PV system. PV systems are modular
in nature and priced accordingly. Dong, Wiser, and Rai (2014) find some economies of
scale due to system size and the Lawrence Berkeley National Laboratory Tracking the
Sun reports find evidence of economies of scale in systems less than 5 kW. For this
analysis system capacity is measured as the standardized module nameplate capacity
rating (Wpc.stc) times the number of modules in a PV system. System capacity is
reported in kilowatts for ease of review. Industry practice is to use Wpc.stc when selling
modules and it is a comparable metric across module models.

This nameplate system size is used for this analysis because it captures the system
sizing and module pricing factors that influence net price that are commonly reported to
the program administrators. Although modules have differing real world performance and
at times incentives were adjusted for performance, modules were not significantly
differently priced based on these performance factors. Remaining cost competitive
remained the primary pricing driver for module manufacturers. Despite the very real
differences between certain brands (within a single technology class), pricing is fairly
homogenous during this period with regards to module performance. Anecdotal evidence
also suggests that consumers, in particular residential and commercial consumers with
smaller system sizes, did not assign extra willingness to pay on production benefits. For
such consumers, minor adjustments became less important in absolute terms and
consumers relied on simpler metrics such as $/W. The impact of performance adjusted
system size on net price may increase as programs moved towards performance based
incentives that account more for such performance differences in the incentive amount.
This analysis was conducted using both nameplate and performance adjusted system
ratings and the difference in incentive pass-through was not statistically different.

Contractor quality, as measured by installation experience, can also influence net
price. Experience, as well as contractor training and certification, can lower costs by
increasing human productivity through such mechanisms as inter-project learning and
establishment of a common code of language that facilitates knowledge spillovers.
(Becker, 1975; Shum & Watanabe, 2007; Shum & Watanabe, 2008). Such factors
however may also lead to an increase in prices if they result in superior installer quality
that is signaled to the market through higher prices (Spence, 1973). Empirical evidence
also exists that professional status, through education and certification, offers a path to
higher wages (Garud and Karnoe 2001). Analysis of California PV system prices found
mixed results for contractor experience. Gillingham et al. (2014) and Dong, Wiser, and
Rai (2014) find contractor experience and increased installer density lower net prices paid
by consumers. Earlier analysis, (Wiser, Bolinger et al., 2006), finds that experienced
installers in the ERP, identified as the top 5% of contractors by aggregate installations in
the program, charged more than less experience installers, but that experienced installers
in the California Public Utilities Commission SGIP program charged less for systems
(Wiser, Bolinger et al., 2006).

For this analysis, cuamulative contractor experience is calculated using all
California PV system data available, prior to data screens. The pre-screened data includes
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42,497 observations and eight California solar PV programs. In the final data contractor
experience is mixed and diverse. 1,247 contractors installed the 26,465 systems. After the
other screens, 217 systems were excluded since installed by the homeowner themselves.
For this analysis I limit contractor experience to experience within a given county. The
average installer cumulative county expetience for an installation in the data is 156 kW.
This limitation is reasonable since contractor teams and permitting are local, or at least
sub-national, even if part of a national or intérnational company. Gillingham et al. (2014);
Dong, Rai, Wiser (2014); Henwood (2014); and Davidson and Steinberg (2014) also
measure experience at the county level. I also interact the final contractor experience
variable, Experience, measured in kilowatts, with system capacity, k¥ because I expect
the effect of experience to change proportionally with system size.

Market structure characteristics, such as market concentration, can increase or
decrease installation costs and price. Due to economies of scale, increased market size
should lower net price if installers are price-takers in a competitive market. However, if
market concentration exists, and market power is exercised, firms can extract a higher
price from consumers (Viscusi, Joseph E. Harrington et al., 2005). Anecdotal and
empirical evidence suggests that California PV markets are not perfectly competitive and
there is variation in competitiveness across the counties. In this analysis the Herfindahl—
Hirschman Index (HHI), measured at the county level in a given year, is used as a
measure of market power. The HHI is the sum of the squares of the market shares of the
PV contractors installing solar PV incentivized by the eight California programs for
which data is available.”® HHI is calculated using all California PV system data
available, prior to data screens. The pre-screened data includes 42,375 observations (less
than the cumulative experience variable because some observations were missing county
identification). As with contractor experience, county is chosen as the market definition.

The inclusion of all PV systems incentivized under California programs may
downwardly bias the market power calculation because this wider net includes
commercial and larger contractors who may not participate in the residential solar PV
market. However, a number of firms do participate in both the residential and commercial
markets and so exclusion of these systems could potentially overestimate market
concentration. Using whole percentages, HHI can range from zero to 10,000 with zero
representing perfect competition and 10,000 representing full monopoly market power. A
HHI greater than 2,500 is considered by the U.S. Department of Justice and federal
agencies as a high concentration. The Department of Justice generally considers a HHI
between 1,500 and 2,500 as moderately concentrated. In the data, 54 counties are
represented and average HHI is 1,187 which suggests, that on average, the markets are
not concentrated. However, some higher concentration county years exist. 1511 PV
systems (5.7%) are installed in market years with HHI greater than 2,500 (5.7% of the
sample). 342 of the PV systems (1.3%) are in markets with HHI greater than 5,000, and
39 systems (0.1%) are installed in market years with 100% market concentration (HHI
equal to 10,000). Not surprisingly, the 9 counties with HHI in a given year equal to
10,000 are smaller and more rural counties, including Colusa, Fremont, Glenn, Imperial,

26 In addition to 5 CA programs in the study the HHI calculation also includes data from the CA Anaheim
Solar Advantage Program, the CA Lompoc PV Rebate Program, and SGIP program.
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Inyo, Lassen, Mono, San Benito, and Stanislaus counties. One would expect there to be a
smaller number of PV contractors, and as such less competition in these markets. In the
analysis, the final market power variable, HHI, measured at the county level, is interacted
with PV system capacity because the effect of market power is expected to change
proportionally with system size.

Consumers’ willingness to pay for solar PV can also lead to higher net prices and
less incentive pass-through. If a contractor has market power and is able to identify the
maximum price a consumer is willing to pay for solar PV she can extract higher rents.
Household income is a primary and positively correlated factor with a consumer’s
willingness to pay for green electricity and other green products. Additional key drivers
of willingness to pay include education and environmental attitudes. Studies have found a
consumer premium, but not a large one for green products (Batley et al., 2000, Bollino,
2009, Faiers & Neame, 2006, Scarpa & Willis, 2010, Yoo & Kwak, 2009, Zarnikau,
2003, and Zoric and Hrovatin, 2012). Less price sensitive, higher income households
may also have lower pass-through of incentives if wealthier consumers engage in less
search activity for lower prices. Instead such consumers may rely on other factors such as
neighbor recommendations to select a contractor. Notably, solar PV consumers have a
higher income distribution than the general population so I hypothesize that the
wealthiest PV consumers have less incentive to be price sensitive. Henwood (2014) finds
that consumers in zip codes in the bottom quartile have a pass-through rate of
approximately 14 percentage points higher than zip codes in the highest quartile of his
2007-2012 California solar PV data which supports this hypothesis. Since household
level income data are not available in my self-reported dataset, median household income
at the zip code level (Income) from the 1999 census is used for this analysis.

Electricity consumption is another indicator of willingness to pay since larger
consumers, especially consumers facing an increasing tiered rate price structure (the
majority of the sample), have a greater economic incentive to install solar PV. Electricity
consumption data are not available, and as such this driver is excluded from the analysis.
In the analysis, Income, is interacted with the PV system capacity because I expect the
effect of income to change proportionally with system size.

Data Screening

To avoid excessive influence of outliers and to eliminate data errors, the
following types of systems are screened from the data: systems with missing data,
installed price less than $3/Wpc.stc, installed price > $30/pc.stc, systems less than 2 kW
and systems greater than 10 kW, price net of subsidy less than zero, battery-operated
systems, thin-film or hybrid technologies, building integrated photovoltaics, consumer
segments commercial, government, and non-profit, systems with estimated system
capacity, affordable housing, and self-installs. For observations with consumer segment
not known, it is assumed that systems less than or equal to 10kW are residential. In the
two-stage least squares estimation, further eliminated are systems with roof square
footage per watt greater than 50 and building square footage greater than 20,000 square
feet. The data, after screening, contain 26,465 systems, installed from 2000-2008,
totaling 127.8 MW.
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Table 2.6 provides data summary statistics. The average system size is 4.6
killowatts and the average installation year is 2006. Systems have an average total price
of $26,079 with an average of 32% of total price offset by available program incentives.

Table 2.6
All California Regression Variables Summary Statistics
Variable Mean Std. Dev. Min Max
Net Price $26,079.4 $11,892.7 $2.3 $123,083.6
Cash Incentive $12,250.6 $6,445.4 $935.3 $59,617.2
kW (system size) 4.6 1.9 2.0 10.0
Install Year 2006 2 2000 2008
Contractor HHI-County 1,187.4 900.0 353.8 10,000.0
Median HH Income Zip Code (,000) $61.6 $25.1 $9.6 $200.0
Installer Experience kW 156.3 345.8 2.0 4,364.1
Dataset includes 26,465 observations
Table 2.7
Variable Correlations
Net Price Total kW Contractor HHI{ Median HH Installer Experience kW
Incentive (system County Income Zip Code
size) (,000)
Net Price 1.00
Cash Incentive 0.49 1.00
kW (system size) 0.83 0.75 1.00
Contractor HHI-County 0.01 -0.05 0.01 1.00
Median HH income Zip Code (,000)
0.07 -0.02 0.02 -0.13 1.00
Installer Experience kW 0.07 -0.12 0.03 0.02 0.08 1.00

Estimation Approach

A partial equilibrium model is used to estimate the incidence of after-tax solar PV
incentives. Partial equilibrium analysis examines the effects of the policy action in
creating equilibrium only in that particular sector or market which is directly affected.
The linear specification below was chosen because net price is expected to change
linearly with the incentive. Variables expected to have a proportional impact such as
household income, market power, and contractor experience are interacted with system

capacity.

It is assumed that the data generating process for the price, net of incentives, of an
individual solar PV system is as follows:

NetPrice,= B; + BoIncentivey+ BsKWi, + B4HHI  + fslncome i, + BsExperience;, +
BrHHI*KW; + Bslncome *KWy,, +PoExperience* KW, + B1oKWsq,, + B1iHHI *KWsq, +
Bi2Income*KWsqyy, +13Experience *KWsqi + ty + Az Out&iry

51




where the dependent variable, NetPrice, is the PV system (with installation) total price
minus the cash incentive. Incentive, the variable of interest, is the after-tax program
subsidy awarded to a PV consumer. B; is the dollar change in the total system price, net
of incentives, when the incentive increases by one dollar. Under most scenarios -1 < B;<
0. There are some cases, cases with imperfect competition, in which B; can be greater
than zero or less than -1. I expect incentive pass-through to be incomplete, -1 < B,<0.
This analysis test the hypothesis that pass-through is fully incomplete; B>=0. I also test
for whether pass-through is 100% (B;=-1). The constant term allows for a non-linear
relationship between system size and price.

KW is the PV system capacity in kilowatts. Market concentration, experience, and
income variables (HHI, Experience, and Income) are included standalone and interacted
with kilowatts and kilowatts squared because the magnitude of the effect of these factors
is likely to be proportional to system size. Installation year (u), utility (6y), and zip code
(\,) dummies capture time, location, and regulatory varying price shifters. The standard
errors are clustered at the zip code level to account for correlation that might exist among
neighbors and households facing similar local conditions. All price and cost.data are
expressed in 2008 dollars.

Endogeneity Concerns: Two-stage least squares estimation

Accurate estimation of the relationship between PV system prices and incentives
using the above equation assumes that there is no simultaneity bias present. Such bias is
possible if net price is jointly determined with at least one of the model’s explanatory
variables. In this model net price and system capacity (KW) could be jointly determined.
Under certain conditions, system price could be a function of system size if a consumer
selects bigger system sizes because the per-unit price is less due to the presence of
economies of scale.

This type of endogeneity, consumers increasing the system size to benefit from
lower unit costs, is not expected to be pronounced in this sample for the following
reasons. First, under the programs, PV consumers have restrictions on the extent to which
they can use or profit from excess generation. Net metering allows residential consumers
to bank excess generation against their future utility electricity purchases, but only
through the calendar year. Program rules also required that systems not be sized greater
than onsite load and that applicants submit proof of twelve months of historical electricity
usage. Finally, all of the programs have a cap on system size, and a smaller cap on system
size eligible for incentives. These temporal and program conditions reduce the economic
incentive for larger sized systems. Gillingham et al. (2014) decline to address this
potential endogeneity in their analysis based on their understanding that system sizing
decisions are nearly always based on electricity consumption and roof size. However,
going forward, as policies, such as feed-in-tariffs, that allow residential consumers to
export more power are adopted and as customer-sited battery storage increases in
popularity, the economic rationale to oversize systems will increase. In fact, Barbose and
Dargouth (2015) note that the size of residential solar PV systems has grown steadily
from a median size of 2.4 kW in 1998 to 6.2 kW in 2014,
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As such, although I am not particularly concerned about endogeneity for the time
period under review, I still test for the presence of endogeneity using a two-stage-least
squares estimation with roof size as an instrument. Roof square footage is the size of the
roof of the home on which the solar PV is installed. Roof square footage is calculated
based on known home square footage and the number of building stories. These data
were confidentially obtained from a real estate marketing firm for a sample of the overall
data set. Roof square footage is not directly available and is calculated as total square
footage divided by the number of building stories from address and realtor firm data. This
instrument is available for only a subset of the ERP, CSI, and NSHP. Total systems in
sub-sample are 14,889, which represents 56% of the data used for the primary analysis.

Roof square footage was selected as an instrument since it reasonably satisfies
both conditions of an instrumental variable:

(1) Correlation with endogenous variable system size (KW).
(2) Instrument is not correlated with the error term of a regression of net price on all
exogenous variables.

Roof square footage is positively correlated with system size (p =.29). As a
home’s roof size increases so does the installed system size. In order to satisfy Condition
2, a factor so far omitted from the analysis, electricity consumption needs to be controlled
for. Electricity consumption can be a determinant of PV system price because consumers
with higher electricity consumption and higher marginal electricity rates will have a
greater economic benefit from PV and a higher willingness to pay. Roof square footage is
likely correlated with electricity consumption since larger footprint buildings are
positively correlated with electricity consumption. However, due to lack of data,
electricity consumption is not included in the model. Household square footage is
available for a subset of the data and is used as a proxy for electricity consumption.
Although square footage does not reflect all the determinants of electricity consumption
(e.g. does not reflect number of people and usage habits), it does capture the elements of
roof square footage (e.g. building physical footprint) correlated with electricity
consumption. In addition to roof square footage, the number of rooms in a property is
also tested as an instrument, but dropped due to poor fit. Conditioning on building square
footage, roof square footage now satisfies the second 2SLS condition.

The primary specification also includes other covariates that may be
endogenous since they are interacted with system size. As noted in the other key drivers
discussion, these variables, HHI, income, and contractor experience, are expected to
change proportionally with system capacity. As such, these variables also must be
instrumented with roof size. The final two-stage-least-squares includes eight instruments;
roof square footage, roof square footage squared, HHI * roof square footage, HHI *
roof square footage squared, income * roof square footage, income * roof square footage
squared, contractor experience * roof square footage, and contractor experience * roof
square footage. The summary statistics for the two-stage-least squares regression are in
Tables 2.8 and 2.9. The first stage results for all the endogenous variables are below
Tables 2.10-2.17.
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Table 2.8

Two-Stage-Least Squares Regression Variables Summary Statistics

Variable Mean Std. Dev. Min Max

Net price $25,726.4 | $160,277.0 $547.7 $123,083.6
Cash Incentive $11,795.0 $5,868.2 $935.3 $43,774.9
kW (system size) 4.6 1.9 2.0 10.0
Install Year 2006 2 2001 2008
Contractor HHI-County 1,071.5 715.6 358.0 7.222.2
Median HH Income Zip Code (,000) $65.4 $26.0 $16.3 $200.0
Contractor Experience kW 168.4 320.4 2.0 434 1
Square Footage (100s) 2,376.0 9.9 4.8 167.0
Roof Square Footage (100s) 18.7 8.3 2.7 167.0
Dataset includes 14,899 observations.
Table 2.9
l_ Two-Stage-Least Squares Observations by Program and Year

Program 2001 2002| 2003 2004 2005 2006 2007 2008 Total
Emerqging Renewables Program 2 414 1,131 1,812 1,510 2,503 2,144 136 9,652
MNew Home Solar Partnership 27 84 111
California Solar Initiative 1,604 3,632 5,136
Total 2 414 1,131 1,812 1,510 2,503 3,775 3,752] 14,899
Table 2.10

First Stage Results: System Size (kW)
Instrument Co-efficient Robust |t statistic| P >(t)
Standard
Error

F-Test = 8.36

roofsgft (100s) - instrument 0.00920 0.00593 1.55 0.12

roofsqft squared (100s) -

instrument -.0001696 0.00013 -1.29 0.20

Contractor HHI County

*roofsaft 0.00000 0.00000 0.19 0.85

Contractor HHI County

*roofsqft squared 0.00000 0.00000 0.19 0.85

Median Household Income *

roofsqft -0.00003 0.00005 -0.65 0.52

Median Household Income

*roofsqft squared 0.00000 0.00000 0.57 0.57

Contractor Experience *

roofsaft 0.00001 0.00001 2.35 0.02

Contractor Experience *

roofsqft squared 0.00000 0.00000 -0.40 0.69
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Table 2.11

First Stage Results: System Size (kW squared)

Instrument Co-efficient Robust |t statistic| P >(t)
Standard
Error
F-Test=5.01
roofsqft (100s) - instrument 0.03172 0.07396 0.43 0.67
roofsqft squared (100s) -
instrument -.0003455 0.00156 -0.22 0.83
Contractor HHI County
*roofsqft 0.00004 0.00005 0.82 0.41
Contractor HHI County
*roofsqft squared 0.00000 0.00000 -0.49 0.63
Median Household Income *
roofsqgft -0.00058 0.00059 -0.98 0.33
Median Household income
*roofsqft squared 0.00001 0.00001 0.93 0.35
Contractor Experience *
roofsqgft .0001694 0.00006 2.88 0.00
Contractor Experience "
roofsaft squared 0.00000 0.00000 -0.99 0.32
Table 2.12
First Stage Results: System Size (HHI * kW)
Instrument Co-efficient Robust |t statistic| P >(t)
Standard
Error
F-Test = 52.38
roofsaft (100s} - instrument -46.07422 22.06926 -2.09 0.04
roofsqft squared (100s) -
instrument -.1703084 0.35693 -0.48 0.63
Contractor HHI County
*roofsgft 0.03730 0.02141 1.74 0.08
Contractor HH1 County
*roofsqft squared 0.00019 0.00034 0.56 0.58
Median Household Income ™
roofsqft .1093432 0.09816 1.11 0.27
Median Household Income
*roofsqgft squared -.0009016 0.00124 -0.73 0.47
Contractor Experience *
roofsqft .026531 0.00940 2.82 0.01
Contractor Experience *
roofsqft squared -0.00031 0.00018 -1.79 0.07
Table 2.13
First Stage Results: System Size (HHI* kW squared)
Instrument Co-efficient Robust |t statistic| P >(t)
Standard
Error
F-Test = 42.92
roofsqft (100s) - instrument -540.77140 | 248.65480 -2.17 0.03
roofsqft squared (100s) -
instrument -.4387812 3.92538 -0.11 0.91
Contractor HHI County
*roofsqft 0.43816 0.23923 1.83 0.07
Contractor HHI County
*roofsqft squared 0.00103 0.00372 0.28 0.78
Median Household Income *
roofsaft 6703046 1.09614 0.61 0.54
Median Household Income
*roofsqft squared -.0040235 0.01354 -0.30 0.77
Contractor Experience *
roofsaft .3108096 0.10390 2.99 0.00
Contractor Experience ~
roofsqgft squared -.0038362 0.00191 -2.00 0.05
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Table 2.14

First Stage Results: §

ystem Size (Median Household Income® kW)

Instrument Co-efficient Robust |t statistic| P >(t)
Standard
Error
F-Test=75.29
roofsqft (100s) - instrument -5.02998 0.59109 -8.51 0.00
roofsqft squared (100s) -
instrument 0193617 0.01085 1.77 0.08
Contractor HHI County
*roofsqft 0.00034 0.00036 0.93 0.35
Contractor HHI County
*roofsqft squared 0.00000 0.00001 -0.49 0.63
Median Household Income *
roofsqgft .0802992 0,00560 14.33 0.00
Median Household Income
*roofsqaft squared -.0004554 0.00005 -8.35 0.00
Contractor Experience ™
roofsaft .0001157 0.00053 0.22 0.83
Contractor Experience *
roofsqft squared 0.00001 0.00001 1.00 0,32
Table 2.15
First Stage Results: System Size (Median Household Income* kW squared)
Instrument Co-efficient Robust |t statistic| P >(t)
Standard
Error
F-Test = 56.78
roofsqft (100s) - instrument | -56.92379 6.96941 -8.17 0.00
roofsqft squared (100s) -
instrument .2791657 0.12201 2.29 0.02
Contractor HHI County
*roofsqft 0.00555 0.00400 1.39 0.17
Contractor HH! County
*roofsaft squared -.0000837 0.00010 -0.86 0.39
Median Household Income *
roofsaft 8307062 0.07016 11.84 0.00
Median Household Income
*roofsqft squared -0,00446 0.00057 -7.87 0.00
Contractor Experience *
roofsaft .0047231 0.00606 0.78 0.44
Contractor Experience *
roofsgft squared .0000428 0.00009 0.47 0.64
Table 2.16
First Stage Results: System Size (Contractor Experience * kW)
Instrument Co-efficient Robust |t statistic]| P >(t)
Standard
Error
F-Test = 170.51
roofsqft (100s) - instrument -17.11226 5.06975 -3.38 0.00
roofsqft squared (100s) -
instrument 1499844 0.10779 1.39 0.16
Contractor HHI County
*roofsqft 0.00088 0.00290 0.30 0.76
Contractor HHI County
*roofsqft squared -.0000366 0.00006 -0.66 0.51
Median Household Income *
roofsgft -.0223142 0.06414 -0.35 0.73
Median Household Income
*roofsgft squared 0.00038 0.00128 0.30 0.77
Contractor Experience *
roofsqft .0935572 0.01291 7.25 0.00
Contractor Experience *
|roofsqft squared -.0006291 0.00021 -2.99 0.00
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Table 2.17

First Stage Results: Sy

tem Size (Contractor Experience * kW squared)

Instrument Co-efficient Robust |t statistic| P >(t)
Standard
Error

F-Test = 158.34
roofsgft (100s) - instrument -181.3765 58.12664 -3.12 0.00
roofsqft squared (100s) -
instrument 1.710182 1.24493 1.37 0.17
Contractor HHI County
*roofsaft 0.01432 0.03380 0.42 0.67
Contractor HHI County
*roofsqft squared -.000537 0.00065 -0.83 0.41
Median Household Income *
roofsqft -.395618 0.71531 -0.55 0.58
Median Household Income
*roofsqft squared 0.00695 0.01430 0.49 0.63
Contractor Experience "
roofsgft 1.001641 0.14341 6.98 0.00
Contractor Experience *
roofsaft squared -.0069216 0.00240 -2.88 0.00
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Two-Stage-Least Square Results

Table 2.18 below presents the OLS and 2SLS results for regression of net price on

the set of covariates for the observations with square footage and roof square footage

available.

Table 2.18

Two-Stage Least Squares Regression Results

)

()

OoLS 28LS
Dependent variable: Net Price (PV system total
price - cash incentive)
After-tax cash incentive -0.43*** -0.81
(0.05) (8.01)
kW (system size) 5799.58*** 5463.63
(631.90) (14510.52)
Contractor HHI-County -0.34 41.95
(0.62) (155.32)
Median HH Income Zip (,000) -72.34™** -683.71
(19.42) (3794.38)
Iinstaller Experience (kW) 1.40 -16.97
(1.09) (35.13)
kW Squared (system size squared) -13.12 39.79
(62.71) (1841.61)
Contractor HHI-County *kW -0.12 -18.62
(0.24) (38.63)
Contractor HHI-County *kW squared 0.02 1.76
(0.02) (3.50)
Median HH Income Zip (,000) *kW 10.19 232.42
(8.45) (1770.09)
Median HH Income Zip (,000) *kW squared -0.17 -20.06
(0.83) (166.72)
Installer Experience (kW) * kW -0.25 7.92
(0.45) (184.28)
Installer Experience (kW) * kW squared 0.02 -0.77
(0.04) (18.02)
Sq. Footage (100s) 38.54** 35.63
(8.54) (78.22)
Constant 6549.90*** 17660.13
(2001.13) (54820.79)
Observations 14899 14899
Adjusted R-squared 0.757 0.507

Includes completion year, utility, and zip code dummies.

Includes robust and zip code-clustered errors.

All dollar values in 2008 U.S. dollars.

In the first stage, the instruments for kW and kW squared are not significant (As
noted in Table 2.10, kW t=1.55 and kW squared t=-1.69). In the OLS (Model 1) the co-
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efficient on INCENTIVE is negative, suggesting, as expected, that an increase in the
incentive reduces the net price to the system buyer. Although the OLS estimate is
significantly different from zero and -1 at the .05 level, the 2SLS variable of interest is
imprecisely estimated and the hypothesis that B; is equal to zero or -1 cannot be rejected.
The variation in instrument performance and variance in the 2SLS estimate suggests that
measuring endogeneity will be challenging, However to test for endogeneity, I conduct
the Hausman test comparing the OLS and 2SLS results above. The Hausman test is
essentially a test of whether the loss in efficiency is worth removing the bias and
inconsistency of the OLS estimators. The null is that the two estimation methods should
yield coefficients that are similar. The Hausman test produces an F-statistic of 3.27,
suggesting I cannot reject the null that the two estimations should yield similar
coefficients. Roof square footage is highly correlated with building square footage (.81)
and so its effect on system capacity is reduced with the inclusion of the square footage
variable. Since the instruments are not particularly strong and the Hausman test is
inclusive, I rely on the qualitative assessment of the effect of net price on kW, to lend
support for using the OLS estimator instead of the 2SLS estimator.

Results and Discussion

OLS Regression Results

Below is the estimation of the pass-through rate of solar PV incentives to net price
for the data presented in Table 2.6. The data include the entire sample from the five
California programs, as compared to the results in Table 2.18, which are for only the
subset of the data for which an instrument was available. The primary specification
results (Table 2.19) show evidence of incomplete pass-through of incentives to
consumers. On average, for every one dollar increase in the incentive, system price
declines 54 cents. In other words, 46 cents of every dollar of consumer side incentive is
captured by the supply side. A one standard deviation change in the cash incentive
($12,251 to $18,696) decreases net price by an additional $3,481 dollars. These findings
are significantly different from -1 and 0 at the 5% level. Based on these estimates I reject
the hypothesis that the pass-through of PV cash incentives to consumers is complete.

Considering the relatively elastic supply and demand in the PV market, this
finding is not surprising. This finding is consistent with findings by Henwood (2014),
Gillingham et al. (2014), Podolefsky (2013), and Wiser (2006). Results are lower than
pass through found by Dong, Wiser, and Rai (2014). The variation across findings can be
due to a number of factors including different model specifications, data quality, and the
time period of observation.

Regarding other key price drivers, as expected, system size is a large and
significant driver of net price. A change in one standard deviation of system size (1.9
kW) increases system net price by $12,272. Measures of kW squared, median household
income*kW, experience*kW, and HHI*kW are insignificant.
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Table 2.19

Net Price Regression Results
(1)
Dependent variable: Net Price (PV system total
price - cash incentive)
OLS
After Tax Cash Incentive -0.54**
(0.03)
kW (system size) 6461.76**
(489.24)
kW Squared (system size squared) -39.99
(47.44)
Contractor HHI-County -0.12
(0.33)
Median HH Income Zip (,000) -88.06™**
(20.27)
Installer Experience (kW) 1.26"
(0.71)
Contractor HHI-County *kW -0.12
(0.14)
Contractor HHI-County *kW squared 0.02
(0.01)
Median HH Income Zip (,000) *kW 8.87
(7.25)
Median HH Income Zip (,000) *kW squared -0.15
(0.70)
Installer Experience (kW) * kW -0.41
(0.29)
Installer Experience (kW) * kW squared 0.03
(0.03)
Constant 28765.14**
(9028.06)
Observations 26465
Adjusted R-squared 0.754

Includes completion year, utility, and zip code dummies.
Includes robust and zip code-clustered errors.
All dollar values in 2008 U.S. dollars.

Income Interactions

In addition to the coefficient on INCENTIVE, also of interest is how the pass-
through rate changes under different market conditions. I hypothesize that consumers
with higher income have lower incentive pass-through. Less price sensitive, higher
income consumers may engage in a lower degree of price shopping. Facing more budget
constraints lower income consumers may be more informed and suffer less from
information asymmetries than their wealthier counterparts. Such consumers may also
have a lower incentive pass-through if contractors are able to offer differentiated prices to
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different customer classes. It is important to note that the lowest income consumers in
this case are not low income by traditional metrics such as relation to the poverty line. In
the 2000 census, the weighted average U.S. income poverty levels for two person
families and four person families were $10,869 and $17,029 respectively. In 1999, 14.2%
of Californians had income below the poverty line. In this data, the average zip code level
household income, $61,500, is much higher than the poverty line or state average income.
Overall the income distribution in the data is shifted to the right of the state’s income
distribution. This analysis addresses whether, among consumers wealthy enough to
purchase solar PV, the pass-through rate is lowest for consumers with the highest income.

Hypothesis: PV consumers with the highest income have lower incentive pass-through
due to asymmetric information.

To test the hypothesis regressions are run that include various specifications of
income interactions (Table 2.21). Included in specifications 3 through 5 are dummies for
the observations in the highest third of income and for observations in the middle third of
income. Dropped from specifications 3 through 5 are the dummy for observations in the
lowest third of income. Income percentiles are based on the distribution of median
income (1999 California Census) for all zip codes in the pre-screened data (column 2 in
Table 2.20)*”. On average, the income distribution in the data is higher than the income
distribution in the state and slightly lower than the distribution in the final regression data
as shown in the table below. In the regression sample, 35% of the observations are in
highest income bracket (66% and above). 32% of the data are in the lowest third income
bracket.

Table 2.20
Comparison Calfiornia Median Zip Code Statistics versus Data
(1) (2) (3)

Upper Limit All California Zip Codes Pre-Screened Data |Final Regression Data
Median Income $42,884 $55,869 $56,486
Lowest Third Maximum $35,933 $47,099 $47,837
Middle Third Maximum $50,585 $64,611 $65,737
Highest Third Maximum $200,001 $200,001 $200,001

Multiple specifications are run to separately identify income’s interaction with
system size and incentive. Due to the high correlation between system size and incentive
(.76) separating these effects at a fine level is challenging. Results are shown in Table
2.21. Specification 1 is the primary OLS specification also shown in Table 2.12. The
coefficient on MEDIAN HOUSEHOLD INCOME ZIP*KW shows the change in net price,
for every kilowatt, as income increases $1,000. These results are not significant (t-1.22,
p=-221). In Specification 2, both the interaction of income with system size and the

2" Data included are screened for systems with missing data, installed price less than $3/Wpc, installed
price > $30/Wpc, price net of subsidy less than zero,
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interaction of income with incentive are tested. The coefficient for MEDIAN
HOUSEHOLD INCOME ZIP*KW remains insignificant, but the coefficient for MEDIAN
HOUSEHOLD INCOME ZIP*INCENTIVE is significant and positive, albeit small. As
income increased by $10,000, holding system size constant, the pass-through rate
decreases by .03 to -0.51. This finding is significant and supports the alternative
hypothesis that wealthier consumers experience a lower pass-through of incentives.
Specification 3 tests whether there is a difference in the interaction of income and system
size for the highest income group relative to the lowest. No significant difference is
found. Specification 4 however finds that the wealthiest consumers receive a lower pass-
through of the incentive than the consumers in the lowest income groups. The coefficient
of .11 suggests that for every dollar of incentive, the pass-through of incentive to the
highest income consumers is -0.48, 11 cents less per dollar than for the lowest income
group. Finally, Specification 5 strives for the greatest decomposition of income effects on
system size and incentive pass-through and include dummies for both middle and high
income system size and incentive interactions. The finding that highest income customers
have lower incentive pass-through persists in this specification with pass-through for
highest income customers 16 cents less than lower income customers.

The regression results for the income interactions are presented below in Table
2.21.
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Table 2.21

Income Interactions Regression Results

(1) {2) (3) 4) (8)
Dependent variable: Net Price (PV system total price -
cash incentive)
After-tax Cash Incentive -0.54** -0.76*** |-0.54** |-0.59*** |-0.61™"
(0.03) (0.05) (0.03) (0.04) (0.04)
kW (system size) 6461.76** |6879.31**17015.29~17022.03**17186.78™"
(489.24) (470.35) [(271.38) [(265.17) |(280.69)
Contractor HHI-County -0.12 -0.11 -0.05 -0.07 -0.02
(0.33) (0.33) (0.33) (0.32) (0.33)
Median HH Income Zip (,000) -88.06*** -98.00™** |-52.19*** |-49.07*** |-53.74**"
(20.27) (20.62)  [(9.44) (9.10) (9.55)
Installer Experience (kW) 1.26* 1.36* 1.11 1.32% 1.12
(0.71) (0.72) (0.70) (0.70) (0.71)
kW Squared (system size squared) -39.99 -26.51 -89.30™ |-68.95* [-88.67*""
(47.44) (47.43) |(27.99) [(26.54) |(28.08)
Contractor HHI-County *kW -0.12 -0.10 -0.16 -0.14 -0.15
_ (0.14) (0.14) (0.14) (0.14) (0.14)
Median HH Income Zip (,000) *kW 8.87 2.02
(7.25) (6.90)
Contractor Experience (kW) * kW -0.41 -0.44 -0.35 -0.42 -0.34
(0.29) (0.29) {0.29) (0.29) (0.29)
Contractor HHI-County *kW squared 0.02 0.02 0.02 0.02 0.02
(0.01) (0.01) (0.01) (0.01) (0.01)
Median HH Income Zip (,000) *kW squared -0.15 -0.35 0.60™*  10.29* 0.59™
_ (0.70) (0.70) (0.21) (0.16) (0.21)
Contractor Experience (kW) * kW squared 0.03 0.03 0.02 0.03 0.02
(0.03) (0.03) (0.03) (0.03) (0.03)
Median HH Income Zip Code (,000) *Incentive 0.003**
{0.006)
HH Income Zip Code Middle Third (,000) -714.52 |-1168.65 [-1185.43
(4486.64) |(4575.04) [(4586.56)
HH Income Zip Code Middle Third (,000) *kW 36.39 -43.34
(88.14) (128.92)
HH Income Zip Code Highest Third (,000) *kW -1167.22 |-1307.31 [-1165.59
(874.58) [(860.82) |(875.18)
HH Income Zip Code Highest Third (,000) 28.55 -376.38™
(139.54) (161.40)
HH Income Zip Code Middle Third (,000) *Incentive 0.04 0.03
— (0.03) (0.04)
HH Income Zip Code Highest Third (,000) *Incentive 0.11™*  [0.16***
(0.04) (0.04)
Constant 28765.14*** |29461.577|27173.56*|27560.75%|27567.52"*"
(9028.06) (8764.98) |(8907.21) |(8664.89) |(8645.93)
Observations 26465 26465 26465 26465 26465
Adjusted R-squared 0.754 0.754 0.753 0.754 0.754

Includes completion year, utility, and zip code dummies.
Includes robust and zip code-clustered errors.
All dollar values in 2008 U.S. dollars.
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Conclusions and Further Research

The analysis shows that incentive pass-through in the CA residential solar PV
programs is incomplete. Consumer prices decline 54 cents for every additional dollar of
incentive received. A large share of the incentive is captured by the solar PV contractor
or other actors in the solar PV supply chain. The finding of incomplete pass-through is
persistent across specifications. Also identified is a lower degree of incentive pass
through for consumers in the highest income zip codes. This result could be due to such
consumers engaging in a lower degree of price search behavior, placing a higher value on
contractor quality, their greater reliance on personal referrals, or supplier price
differentiation.

Findings of incomplete incentive pass-through have a number of policy design
and evaluation implications. If the aim of incentives is to reduce costs to consumers,
incomplete pass-through mutes the expected price signal and may increase the time
necessary to reach capacity deployment goals. How installers utilize the rents they
capture may however reduce timing delays stemming from incomplete pass-through if
such monies are used to increase marketing and outreach.

A finding of incomplete pass-through is not surprising considering the relatively
elastic solar PV supply and demand curves. In the long-run, solar PV markets are
expected to be competitive given the presence of substitutes and surmountable barriers to
entry. However, regulators should be extremely attentive to any circumstances that may
result in medium to long term demand and supply inelasticities.

A scenario with very inelastic demand is unlikely. Solar PV consumers can easily
substitute to grid power or other forms of self-generation such as gas engines if solar PV
prices are too high. Studies to date show solar PV consumers as price responsive (Faiers
and Neame, 2006). There is clear evidence of an increase in U.S. demand for solar PV as
net price changed with the introduction of state and federal subsidies, and conversely a
decline in Spain’s PV demand after the decline in Spanish incentives.

Situations of inelastic supply are more likely, at least in the short run. Within the
PV module market there have already been periods of inelastic supply. From 2004 to
2008 the supply of PV modules was constrained by the availability of purified silicon.
Limited availability of high grade silicon and long-term silicon contracts, forced PV
manufacturers to buy expensive silicon on the global market. High competition for
silicon for computing and solar power needs resulted in unprecedented silicon prices.
(Arnoldy, 2008, Gartner, 2005, Lewis, 2006). Solar PV manufacturers responded over
time by reducing PV module silicon content and silicon producers also invested in silicon
processing capacity, which eased the shortage in the latter part of the decade.

However, although these supply constraints existed during the data period, they
do not affect the incidence of the pass-through of state level incentives because incentives
are limited to, and influenced by, a smaller geographic market. CA is a price-taker for
modules and in a supply constrained scenario California consumers would merely pay
higher prices for the modules. As such, supply constraints that impact pass-through must
be constraints faced within the local PV contractor market that affect the ability of
suppliers to deliver solar PV, even in times of high demand.
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Limits to labor supply may be a constraint that affects incentive pass-through.
Labor supply constraints could result from barriers to entry such as licensing and
certification requirements for contractors (Mass, Bing et al. 2003). Licensing and
certification requirements for contractors can be useful consumer protection tools, as
improper installation may create safety risks or result in poor system performance.
Licensing is a mandatory requirement, while certification is usually a voluntary standard
that contractors attain to differentiate them from competition and signal higher quality
service. Over the last decade several incentive programs have begun to require solar PV
certifications as mandatory requirements for receiving incentives. As of 2012, 12 states
and Puerto Rico have specific solar contractor licensing requirements. Most states require
PV installations to be done by a licensed electrical or general contractor at a minimum for
installations that are not self-installed.

California incentive programs require contractors to possess one of the following
licenses: A-General Engineering Contractor, B- General Building Contractor, C-10
Electrical Contractor license, or California C-46 Solar Installer license. Although an
initial license is a few hundred dollars and requires experience, this requirement is
unlikely to result in labor constraints since a number of firms possessed one or more of
these licenses by 2008. Moreover, the C-46 license allows contractors to get the solar
specialty license and install systems without having a full electrical or plumbing license.
This reduces the cost of licensure for contractors who plan to only install solar systems
and increases the pool of potential contractors. As of June 2009, 527 firms had received a
California solar license.

In addition to license requirements, there has been a growing trend in specialized
solar PV certifications, the most popular being the NABCEP certification. The North
American Board of Certified Energy Practitioners (NABCEP) is a nationally-recognized,
independent, voluntary certification program for PV and solar thermal system
contractors. To become NABCEP-certified, contractors must have at least one year of
installation experience and must document systems training and installation. Contractors
must also pass a four-hour, 60-question examination, sign a code of ethics, and take
continuing education courses for re-certification every three years. NABCEP’s PV
Installer Certification is North America’s only renewable energy personnel certification
that has been ANSI accredited to the internationally recognized ISO/IEC 17024 standard.
NABCERP certifies contractors, not firms, although it provided its first firm level
certification in September 2012. Full NABCERP certification costs $600 and tests are
offered only four times a year.

Although intended as a voluntary credential, NABCEP certification is now either
mandatory or is preferred for contractors who wish to participate in several state
incentive programs. In Utah, NABCEP-certification is a prerequisite for qualifying for a
state solar contractor license. For solar installations to be eligible for state incentive funds
in Maine, Minnesota, New York, Ohio, or Wisconsin the PV systems must be installed by
a NABCEP-certified professional. California, Delaware, Massachusetts, and
Pennsylvania prefer or recommend that NABCEP-certified professionals install systems
receiving incentives. As of November 2010, California had 231 NABCEDP certified solar
PV contractors. As previously noted SMUD’s program offered a $200 higher incentive
for NABCEP contractors.
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If this trend for requiring NABCEP certification continues then short to medium
term solar PV supply constraints could result. Under such a scenario, local solar PV
supply can be inelastic and incentive pass-through to consumers will be zero. There is
insufficient empirical evidence in the data to test this hypothesis. This hypothesis could
be tested in further analysis of incentive pass-through in states that introduce mandatory
NABCEP requirements. Although licensing and certification offer advantages, their
introduction should be timed so as to not constrain supply and incentive impact.

This analysis focuses on the price effect of incentives to the individual consumer.
Understanding this impact could be enhanced in future research projects with more
detailed data on consumer income, electricity usage, and willingness to pay. To further
understand the long-term impact of incentives, future analysis could assess the general
equilibrium incidence in order to determine which persons ultimately benefits from the
incentive. For example, solar PV contractors may use the extra rents for higher wages
which can have positive macroeconomic impacts. Further analysis could also address
who ultimately pays for the incentives. Such analysis would have to consider the varying
electricity rates, usage, and expenditures of electricity customers.

Although measuring incidence is one of the first steps in understanding the impact
of incentives on public policy goals, it does not fully explain the impact of incentives on
ratepayer welfare. The actual benefits to ratepayers for incentivizing solar can vary
depending on the causes for the lower pass-through.

It is often noted that incidence is about prices, and not quantities. This is indeed
true from a PV consumer’s perspective. PV consumers are indifferent along the various
points of their demand curves regarding whether to purchase solar or use their income for
other purposes. However, how rents are used by installers from incomplete pass-through
can have different implications on overall ratepayer welfare since ratepayers pay for the
subsidy, but may not directly benefit from it. With incomplete pass-through, installers are
capturing greater rents and these rents may have positive benefits to ratepayers if directed
towards activities that increase PV quantity by improving product quality or advertising
to harder to reach and serve solar PV consumers. However, alternatively, installers may
be dissipating rents through customer acquisition and defensive advertising focused on
competing for rents from the existing solar PV customer base. This behavior would not
grow the market and does not benefit ratepayers at large. A 2014 Solar Energy Industries
Association (SEIA) report notes that the share of customer acquisition costs had only
fallen slightly since the previous year and a strong correlation between customer
acquisition cost reduction and the size of the solar company has not been observed (GTM
Research and SEIA, 2014). This suggests that firms are not benefiting from economies of
scale in customer acquisition. Moreover, in the presence of imperfect competition, some
of the rents gained will accrue to inefficient and smaller firms and be dissipated at faster
rate through such activities. The worst case scenario for ratepayers is if firms are taking
all captured rents as profit. Future research examining installer firms advertising and
customer acquisition expenditures and profit margins would provide useful insight into
the ratepayer welfare implications from incomplete pass-through.
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Testing the Boundaries of the Solar Photovoltaic Learning System

Introduction

PV experience curves relate solar PV technology cost declines to the cumulative
capacity of solar PV installed. Historically, solar PV experience curves have assumed one
experience curve represents both module and non-module learning and that this learning
happens at a global scale. These assumptions may be inaccurate since the learning
system, and technology and geographic boundaries, are likely different between PV
modules and non-module components. This paper examines how solar PV experience
curves’ geographic and technology assumptions affect their accuracy. This is done by
testing the fit of the typical two-factor experience curve model with covariates to
California, national, and global solar PV data.

The experience curve methodology is employed because it is a widely used and
easy to understand model for predicting manufacturing cost declines due to
improvements in production technology that result from increased installed capacity.
Such curves were first used to estimate solar PV costs by Maycock in 1975 and have
been used as a forecasting tool in energy models such as the Energy Information
Administration’s (EIA) National Energy Modeling System and the International Institute
for Applied Systems Analysis’ (IITASA) MESSAGE model. Experience curves are also
used to justify government financial intervention in new clean technology markets
(Ferioli et al., 2009; van Benthem et al., 2008; Gillingham et al. 2007, Gritsevskyi, A.
and N. Nakicenovic 2000). The experience curve methodology is used here in order to
situate this analysis as a follow-up to previous studies of solar PV learning that rely on
experience curves to estimate PV module and non-module learning. Table 3.17 in the
Appendix lists ten studies from 1997 to 2007 that rely on the experience curve
methodology to estimate learning in the solar PV market.

The simplicity of inputs required to create an experience curve — a time series of
technology costs, initial starting capacity, and cumulative installed capacity — have led to
its regular use. However this simplicity has also led to critiques of such models’ broader
applicability and validity. Below, and throughout this paper, critiques of this model are
acknowledged and attempts are made to correct for some of the model limitations.
Interestingly, once the model deficiencies that other studies do not address are corrected,
the learning relationship is no longer statistically significant.

This paper begins with an overview of the geographic and technology
characteristics of the non-module component and why they warrant their own learning
curve construct. Next, the experience curve model and some potential challenges with
using it to estimate non-module learning are explained. Finally, study design, data,
results, and conclusions are presented.

Technology boundary — the module is no longer the primary cost driver

Distributed solar PV systems’ costs are historically represented as the cost of the
module — the collection of photovoltaic cells that allows sunlight to be collected for
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conversion to electricity. However, as module costs have fallen, other non-module costs
such as the inverter, wiring, hardware, labor, interconnection, permitting, and back office
processing costs are increasingly representing a larger portion of total PV system costs.

The majority of PV experience curves have focused on the module cost declines.
However, the share of total PV system cost represented by the module component has
declined over time, especially in smaller PV systems. In 2008, the module cost
represented approximately 45% of the installed cost of residential PV systems. By 2014,
modules represented only approximately 25% of residential solar PV installed costs
(Barbose and Dargouth 2015). This trend towards proportionally higher non-module
(balance of system) costs leads one to question whether the historical experience curve
model is still appropriate for representing PV cost declines.

Geographic boundary of installed capacity- when location matters

The key variable of interest in an experience curve model is the market
cumulative capacity. The market is defined as the installed capacity or production that
can affect individual system costs. Actors within this market trade and share common
learning and experience. The market for modules is global, but the market for the module
components of the system may not be. By extrapolating global module learning to the
entire learning system, modelers assume that the non-module system components are
similarly affected by global PV installed capacity. However, as noted earlier, non-module
costs include activities such as labor and permitting that are more local. Burkhardt et al.
(2015) detail well how variations in local regulations can lead to significant differences in
solar PV non-module costs. Schaeffer et al. (2004) and Shum and Watanabe (2008) posit
that the non-module learning system is more local than the module learning system due to
cross, and potentially within, country differences in PV system designs, regulations,
financial incentives, and electric codes. Similarly, in an examination of non-module
prices in US states I expect to find that cumulative experience is associated with lower
costs more at the state, or sub-state level than national or global.

In addition to assuming a global learning system, the traditional experience
models assume no knowledge spillovers and that the impact of experience does not decay
with distance. For example, the traditional model assumes that the installations of a PV
system in Germany, and a PV installation in Nevada, affect PV system costs in California
similarly and that this effect is the same for module and non-module costs.

For non-module costs I hypothesize that spillovers across states will be positive,
but limited since not all knowledge is appropriable, i.e. a state or firm is not able retain
within its borders all of the learning occurring in its local, sub-national market.

There are a number of pathways by which learning in one state can influence
another. Information sharing can occur through labor migration, best practices sharing
across regulatory and government bodies, and networks and conferences for knowledge
dissemination. Spillovers are likely a function of geographical distance, market size,
political boundaries, and the extent of solar PV project customization.

Various industry studies have shown that the impact of experience may dissipate
over longer distance since distance limits the opportunities for learning-by-doing and
information sharing (Keller 2002; Jaffe, Trajtenberg, and Henderson 1993). There is
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also evidence that technology transfers more easily between countries that are
geographically closer (Keller 2002; Davidson and McFetridge 1985). However, distance
decay can be mitigated, to a degree, by the increased opportunities for information
exchange facilitated by advances in communication (Feldman 1999).

For solar PV systems, knowledge transfer may also have discontinuous jumps at
political boundaries, especially since non-module activities are regulated by distinct
political jurisdictions. Burkhardt et al. (2015) identify more than 18,000 US local
authorities that have jurisdiction over some aspect of non-module costs. Tong (2012)
explains that some installers avoid certain jurisdictions altogether due to the
complications of dealing with local requirements.

Schaeffer et al. (2004) offer anecdotal evidence of spillovers across European
countries’ non-module prices. They find that although in Europe non-module costs are
mostly national, there is some international spillover. Comparing four countries’ 2002
non-module prices, they find that although non-module prices were higher in the
countries newer to the PV market, the prices for new entrants were still lower than the
price for older programs at their onset.

Implications of misspecification of technology and geographic boundaries

Misspecification of the technology and geographic boundaries can lead to
modeling and forward costs forecast errors, in particular if module and non-module costs
are declining at different rates and their relative share of costs is changing over time.
Barbose and Dargouth (2015) find that from 1998 to 2014, module prices fell by $4.4/W
(85%) while implied non-module costs fell only by $3.7/W (52%). Schaeffer et al. (2004)
find that using national, German PV capacity, which was growing faster than global
capacity, to predict German module costs underestimates learning because the correct
market definition, global, was growing at a slower pace than development within the
country. Various researchers (Duke, Williams, and Payne, 2005; Duke, 2002; Wene
2000) comment on the potential issues with misspecification if solar PV modules and
non-module components are not the same learning system. However they do not pursue
analysis to further substantiate their conclusions.

Overestimation of the experience rate will underestimate the time needed for solar
PV costs to reach parity with fossil generation in a given market. Too low an estimate
will underestimate the role of incentives, and cumulative deployment as cost drivers.
Both outcomes will have implications for energy policy and renewable incentive program
design, technology preferences, and technology roadmaps. This issue is not unique to
solar PV, and has implications for all clean energy technology development. For
example, in the field of energy efficiency, Desroches et al. (2013) find that incorporating
learning rates into energy conservation models increases the national consumer net
present value of potential standard levels and in some cases the inclusion of a positive
experience rate is the deciding factor in an energy efficiency standard being cost-
effective.
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Revisiting experience curves for solar PV

Given the differences between module and non-module costs and markets, there is
a growing perspective that solar PV systems are composed of at least two distinct
learning systems, the module learning system, and the non-module system (Shum and
Watanabe 2008; Schaeffer 2004; IEA 2000). These systems include different actors,
value chains, and potentially a geographically different scope of experience.

Although this different framing for solar PV has been acknowledged before,
empirical evidence has been limited. Harmon (2000) notes the difficulties with estimating
the non-module cost curve including, obtaining non-module costs, the customized nature
of PV systems, and the fact that non-module costs measured in dollars per watt can be
subject to scaling factors.

Schaeffer et al. (2004) and Shum and Watanabe (2008) present empirical
evidence of learning in the PV non-module system using national, instead of global,
definitions of the geographic boundary. Schaeffer estimates non-module experience
curves for Germany and the Netherlands (1992 to 2001) using national cumulative
capacity and non-module prices. He finds similar estimates for non-module and module
learning. Similarly, Shum and Watanabe (2008) estimate a non-module learning rate for
the U.S. market using 1994 to 2003 national grid connected distributed capacity as the
experience variable. Bollinger and Gillingham (2014) use a model of installer firm
pricing behavior to quantify appropriable and non-appropriable learning-by-doing in the
California solar PV market between 2002 to 2012. They find that learning by installers
within a county can reduce non-module costs by $0.36/W with the addition of 100
installations. They also find that 1,000 installations by competitors outside of the county
reduced installer non-module costs by $0.005/W, suggesting learning spillovers from
competing installer firms. They do not identify the effect of experience from non-direct
competitors or comment on cross-state learning or learning distance decay.

These studies provide some analysis of alternatives to a global boundary for non-
module systems; however they stop short of comparing and testing boundaries smaller
than national. As such they are unable to offer evidence of the national boundary as
superior to a global, or an alternative, market definition. This paper aims to further
analyze whether a smaller market definition, specifically state, better predicts solar PV
non-module prices.

In doing this analysis I would be remiss if I did not address the potential
weaknesses with the experience curve model. Although not addressed in the majority of
existing studies, these issues may limit the effectiveness of this tool for forecasting future
non-module price declines.

First, omitted variable bias may result from experience curves’ reliance on
cumulative production as the only explanatory variable for cost declines. If there are
other explanatory variables excluded from the model, whose coefficients are non-zero,
then the coefficient on cumulative production will over or underestimate its effect. This
issue is more attenuated the more correlated with cumulative capacity these omitted
variables are. For example, exclusion of a time trend, which can be a general, albeit
imprecise, measure of technological progress, may result in cumulative production
erroneously appearing as a more significant factor. Papineau (2006) finds that adding a
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time trend to a PV module experience curve renders cumulative capacity insignificant.
Other omitted variables may include R&D expenditures and neighboring markets’
installed PV capacity, which may be relevant if there is knowledge spillover across
geographic markets.

Omitted variable bias may also result from the conflation of technology learning
and scale effects. Technology learning, such as learning-by-doing, arises from aggregate
increases in cumulative production and the development of new production functions.
Scale effects, such as economies of scale, result from increased quantity in a given period
and a more efficient use of inputs. As Papineau (2006) notes regarding the originators of
the experience curve’s approach, “The experience curve was the result of labour learning,
managerial learning, process improvement, product standardization, and economies of
scale, though they never decompose these effects to analyze their individual roles.” Only
in the case of constant returns to scale will there be no omitted variable bias from not
including a scale effect term. Some researchers, such as Solderholm and Sundqvist
(2007), have separately identified scale effect by including a current rate of output in the
model. In this paper, omitted variable bias concerns will be addressed by including in
certain specifications a time trend, current installed capacity, and a variable to represent
neighboring markets’ cumulative capacity.

Accurate use of the experience model also requires a certain degree of data
quality that may be less widely available for solar PV systems. First, the experience curve
models the effects of cumulative deployment on costs, however most studies use price as
a proxy for costs since cost data are rarely available. For example, for the ten studies
discussed in Table 3.17, all but one use price as a proxy for module and non-module PV
costs. Prices may show a different trend than costs, especially if considering a relatively
short time period and if price-cost margins are not constant in the data time series. Prices
may change for reasons unrelated to production efficiencies and input prices, which also
cause costs to change. For example, as I note in Paper 2, if there is any pass through of
government incentives, prices may change due to fluctuating incentive levels. Inclusion
of subsidy measures may control for such concerns.

The general use of cost or price data as a dependent variable may also result in an
endogeneity concern. The experience curve model assumes that cumulative capacity is an
exogenous variable. However, cumulative experience may be simultaneously determined
with price, e.g. more PV capacity built because of the price, and the price is determined
by the amount of capacity. In this case the cumulative capacity term and the error term
may be correlated. If this is so, OLS estimation of the experience curve equation will be
biased and inconsistent. Typical experience curves do not attempt to control for this
endogeneity. Due to the small number of observations, I am not able to control for this
endogeneity here.

In the previous chapter, “Pass through of solar incentive to consumers: The early
years of California’s recent wave of solar PV incentives,” I address a related endogeneity
between prices and the capacity installed at each location during this time period. As 1
note, this type of endogeneity, consumers increasing the system size to benefit from
lower unit costs, is not expected to be pronounced during this time period for the
following reasons. First, under the incentive programs, PV consumers had restrictions on
the extent to which they can use or profit from excess generation. Net metering allows

76



residential consumers to bank excess generation against their future utility electricity
purchases, but only through the calendar year. Program rules also required that systems
not be sized greater than onsite load and that applicants submit proof of twelve months of
historical electricity usage. Finally, all of the programs had a cap on system size, and a
smaller cap on system size eligible for incentives. These temporal and program
conditions reduce the economic incentive for larger sized systems. Gillingham et al.
(2014) decline to address this potential endogeneity in their analysis based on their
understanding that system sizing decisions are nearly always based on electricity
consumption and roof size. However, [ anticipate that going forward, as policies, such as
feed-in-tariffs, that allow residential consumers to export more power are adopted and as
customer-sited battery storage increases in popularity, the economic rationale to oversize
systems will increase.

Another data challenge that arises when looking at non-module costs specifically
is that these data are less available and reliable. For example, although the California
incentive programs collected module and non-module cost data in these early years of the
programs (1998-2008) the data provided were of varying, and at times poor, quality. As
such, the few studies that have done non-module price experience curves during this time
period, (Shum and Watanabe (2007), Schaeffer et al. (2004), estimate non-module prices
as the total PV system price adjusted to exclude module costs, based on a module price
index. This use of module price indexes is justified given the standardization of modules
and prices; however there is variation in module acquisition price as a function of volume
of business which is not captured by module indexes. Smaller installers and smaller
systems likely have higher module costs. As such this factor contributes to measurement
error in PV non-module experience curves.

Finally another source of varying learning rates may be different datasets, such as
data covering different time periods or different definitions of cumulative capacity. For
example, Soderholm and Sundqvist (2007) in their study of learning rates in European
wind power markets found that changing the time period of their dataset and choice of
variable of interest had significant effects on their learning curve estimates. I test for the
effect of such factors by doing sensitivities to data start and end dates and to different
definitions of installed capacity.

Paper Overview

This paper tests how the choice of geographic and technology assumptions affect
estimates of solar PV experience curves. Experience rates are generated using reduced
form regression analysis. Empirical tests for non-nested models are used to compare the
state, national, and global models. A similar analysis is conducted using multiple state
observations as a means to have a larger sample size. I hypothesize that a more local
definition of the market will be a better fit with observed cost declines. Also analyzed are
the potential impacts of installed PV capacity in neighboring states on an origin state’s
non-module prices. Given the possible issues with the experience curve model noted
above, issues, such as omitted variable bias, are corrected by including time trends, other
covariates, and fixed effects in the models. Although an advancement over current
practice, it is worth noting that inclusion of a time trend is a very imprecise way to
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control for exogenous technological change. It assumes that technological change is
monotonic, which is unlikely to be the case for something such as improvements in
internet based, remote solar PV site assessments. Such technological change tends to
occur in more fits and starts and might be better represented by a higher order functional
form. Similarly, the inclusion of a linear term for economies of scale is also likely
mispecified since economies of scale are generally considered more convex than linear.
However, the small size of this data set does lend itself to experimentation with higher
order specifications of these terms. Interestingly, most other experience curve studies fail
to include any terms to represent technological change and economies of scale. This
suggests that there is a need for future studies to be more cognizant of the conflation of
these three factors — learning, exogenous technological change, and economies of scale —
and to explore various combinations of functional forms to better approximate real world
conditions.

In this analysis, the significance of results is robust to some of these corrections
but not to all. For example once state fixed effects are introduced in the multi-state
analysis the finding of learning and state spillovers are highly insignificant. However, the
different model specifications employed provide some useful insight into the limitations
of experience curves and the caution that should be applied with using experience curve
model results to justify subsidies or government intervention.
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Study Design

The model specified below is used to estimate solar PV module and non-module cost
declines as experience, represented by cumulative installed PV capacity, increases.

CQ) _ Qb "

C@Q,) 9

Where experience (Q) is watts of cumulative installed PV systems and Cost (C)is
average module or non-module price per Watt since actual cost data are not available.”®
Of interest is the learning coefficient, b, which represents the elasticity of cost to
cumulative capacity and is also a function of initial starting conditions (C(Q,)and Q,).

Typically experience curve models include C(Q,)as a right hand side variable.

However, it is included here as part of the dependent variable to make clear that of
interest is the ratio of current costs to initial costs. This becomes more important in the
multi-state analysis when states have different initial starting costs. Taking the log of
both sides of (1) allows estimation of b using Ordinary Least Squares and equation (1)
can be represented by a straight line with slope - b, as in equation (2). As is often the case
in experience curves, cumulative capacity Q is lagged one year to account for the time
delay in learning. If learning exists, the experience coefficient b, will be negative and

significant. The Progress Ratio (PR), the usually cited value for learning, equals2™.
The PR represents what the cost will be after a doubling of cumulative capacity. For
example a PR of .95 means that costs are 95% of what they were before capacity
doubled. The complement to the PR is the Experience Rate which equals 1- 27 and is
expressed as a constant percentage cost decline as experience doubles. The term &, is an

additive disturbance term which is assumed to have a zero mean, constant variance, and
to be independent and normally distributed. The model’s reliance on a double logarithmic
representation of learning, where distance along the axes is directly proportional to the
percentage change in cumulative sales and price, makes it easier to see and compare
performance improvements. The log-log functional form has been historically utilized
for experience curves because of its high goodness of fit and simplicity relative to other
functional forms (van Sark, 2008; Griibler et al., 1999).

logg(—Q’) =a+b 1og(-g’—") +&, 2

0 0-1

28 It is common practice to use price a proxy for costs in experience curve models. See Table 3.17 for
examples.

79



In order to separate scale effects from learning effects I also employ the following model
specification that includes a term for capacity installed within a given period, g,, in this

case watts of solar PV added in a given year ¢.

og S _ 4 h 1og(2Ly 4 b, log(q,) + ¢, 3)

C(Q,) Q.

California Experience Curve Model

Equations (2) and (3) are used to estimate what geographic definition of
experience is a better predictor of costs in the California non-module market and the
global module market respectively. OLS is used to estimate non-module and module
prices using global, national, and state cumulative capacity respectively for a total of 20
model runs. For each technology set (module and non-module) four different
specifications are run for the state capacity definition and three for US and global
capacity. Also included are different additional regressors such as installed year, current
year capacity (to represent economies of scale) and average system size to address
potential omitted variable bias. Average size is only available for the state capacity data
so it is not included in the national and global models. As noted in the results and
discussion section, the findings and the ability to address omitted variable bias are
constrained by the limited data size (11 observations).

There are a few empirical tests available to compare which of these models is
superior at predicting module and non-module prices. Let us use as an example two
models for non-module prices where Model 0 has state level capacity as the main
regressor and Model 1 has US (national capacity) as the main regressor. The
encompassing model popularized by Mizon and Richard (1986) tests whether the features
of Model 1 are explained by Model 0. The test is conducted by artificially nesting the two
models and estimating coefficients for the regressors unique to Model 1, regressors
unique to Model 0, and regressors common to both models. If the coefficient on state
capacity is zero, and the coefficient on U.S. capacity is non-zero, this would imply that
the model with US capacity is superior.

Greene (2003) highlights two issues with this approach. First, the coefficient on
the shared regressors in the model is still a mixture of the two models. Second, and most
concerning for the models in this analysis, is that results may have high standard errors
due to high levels of collinearity between the variables in the respective models. In
addition to being on similar trajectories, a high collinearity also exists between the
capacity variables because California, the state under examination, represents the lion’s
share of US solar PV capacity in the time period (67%). When the model is run to include
all three capacities (state, US, and global) the results are insignificant and non-sensical,
with unrealistically high learning rate for state capacity and a positive coefficient on
national capacity. As such I conclude that the variables are too collinear to use the
encompassing test.
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Table 3.1

Single State Analysis Capacity Correlations

State Cumulative U.S. Cumulative  |Global Cumulative | Cumulative State
Capacity (Watts, 1-  |Capacity (Watts, 1-|Capacity (Watts, 1{System Installs ( 1-
Year Lag) , log Year Lag) , log Year Lag), log Year Lag), log

State Cumulative

Capacity (Watts, 1-Year
iLag) , log 1
U.S. Cumulative

Capacity (Watts, 1-Year
Lag) . log 0.999 1
Global Cumulative

Capacity (Watts, 1-Year
ILag), log 0.9853 0.9901 1
Cumulative State

System Installs ( 1-Year
\Lag), log 0.9906 0.9905 0.9913 1

The comprehensive approach, detailed in Greene (2003), presents alternative
models for comparing non-nested, linear models that rely on the density function as the
characterization of the data generating process. Let £,( y,| data, g, ) be the assumed

density under Model 0 and define the alternative model, Model 1, likewise as f,(y,| data,
3,)- Then a comprehensive model that subsumes both of these is:

[£,(yldata, 5)1 " [ £( y|data, g)]
f(yldata, g, B) =

Tonge oo L £yl data, g)] 7 [ £yl data, 5)] * ay,

Once the comprehensive model is estimated, a test of 4 =0 or 4 =1is used to
assess the validity of Model 0 or Model 1 respectively. I will use two versions of the
comprehensive approach, the J-test and the Cox-Pesaran test, to determine whether
Model 0 can be rejected in favor of Model 1, whether Model 1 can be rejected in favor of
Model 0, whether both should be rejected, or whether neither should be rejected. If the p-
value of each hypothesis test is significant then the model under estimation can be
rejected for the other model. These tests do not require nesting the two models in a
manner subject to collinearity concerns. My hypothesis is that global capacity will be the
best predictor of module prices, while state (more local) capacity will be a better
predictor of non-module prices.

Multi- state experience curve model

A multi-state model is used to test whether state-level experience is a significant
driver of PV non-module costs by regressing non-module cost on state capacity using an
unbalanced pooled panel data set of state level observations. I focus on non-module costs
since there is variation in average non-module costs across states. A version of the
previously specified experience curve models (2) and (3) is used for the multi-state
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analysis. The regression is run using 2004 through 2008 annual cost and capacity
observations for 13 states.

In order to control for time-varying and state-specific factors that might influence
non-module costs, time and state fixed effects are included (Model 4). Also tested is a
model including specific state-varying factors such as incentives, supplier wages,
electricity price, and current capacity instead of state fixed effects (Model 5). Model 5 is
included because given the small sample size it makes sense to also estimate learning
with this more parsimonious specification.

Model 4:

Coim, _
1og(C”m’-’ )= -+ b, log(2H=Ly + b, log EOS, , + 6, +7,
nm.

i, it,=1

Where for a given state and year, experience (Q ) is watts of cumulative installed PV
Cnm

nm,,

per Watt at initial quantity, EOS is current year capacity installed (watts) as a proxy for
economies of scale, () is time fixed effects, (7 ) is state fixed effects, and where the

it

system, Cost ( ) is average non-module price per Watt / average non-module price

coefficient, 5, , on log(&) is the percent change in non-module price due to change in
i,0,=1

cumulative capacity for U.S. non-module learning systems.

Model 5:

c‘
ity = o+, log(

( Qr_l'— ]
Cnm

LIS ful,—1

log )+b,log!;, +b,logW,, +b,logE,, +b,logS,, +bslog EOS, +6,

Where for a given state and year, experience ( Q) is watts of cumulative PV systems

installed, Cost (Cnm) is average non-module price per Watt, / is state and federal
incentives, W is average electrician wages, E is average electricity rates, S is average
system size, EOS is current year capacity installed (watts) as a proxy for economies of

9

scale, (@) is time fixed effects , and where the coefficient, 5, on log(=+1) is the
i, =1
percent change in non-module price due to change in cumulative capacity for U.S. non-
module learning systems.
I hypothesize that in both models b, will be significant and negative suggesting that

state capacity is a significant driver of non-module costs.
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Data Overview

Dependent variable: cost

PV installed cost, location, customer type, incentives, and equipment data are
from Lawrence Berkeley National Laboratory’s 2009 Tracking the Sun II 1'ep0rt.1 The
data include more than 52,000 U.S. PV systems in 15 states installed 1998 through 2008.
A subset of the data, 43,787 systems, representing 189 MW, is used to create the cost
data for this analysis. For the California analysis the data include 36,020 systems totaling
151.3 MW.

The dependent variable, Cnm, is the mean average state annual PV project-level
non-module installed cost. Non-module cost is calculated as installed cost minus module
cost. Except for the exclusion of PV system sales tax, the total installed cost reflects the
final pre-rebate price. This price paid is reported to solar PV incentive program
administrators. Installed cost is measured in dollars-per-peak-watt ($/Wp) and is used as
a proxy for system cost. Peak-watt is defined as the module’s power output under ideal
conditions.

Since limited project level PV system module cost data are available, module cost
used is the global average annual module price from Navigant Consulting’s Global Power
Module Price Index. The index price is the average of the global retail sales prices for
“Power Modules" which are defined as including modules larger than 75 watts, and
buyers who purchase modules in smaller quantities (Navigant Consulting, 2009). All
cost and incentive data are adjusted to real 2008 dollars using the monthly Consumer
Price Index.

Experience variables

State and US cumulative capacity data are from Sherwood, L. 2009. U.S. Solar
Market Trends 2008. Global cumulative installed capacity is from the International
Energy Agency PVPS reports. The experience variable is restricted to decentralized, on-
grid installations. Installations include all on-grid (residential and non-residential systems
of all sizes). The model is also tested using cumulative installs (number of systems)
lagged, instead of cumulative capacity.

During the analysis period, 1998 through 2008, California represented the
majority (67%) of US PV capacity. During this analysis period, California’s average solar
PV non-module price declined 34%, and the state underwent slightly over six doublings
in cumulative state capacity. US capacity and global capacity also doubled approximately
six times during the period. The data in the multi-state analysis include Arizona,
California, Connecticut, Massachusetts, Maryland, Minnesota, New Jersey, Nevada, New
York, Oregon, Pennsylvania, Vermont, and Wisconsin.

29 See Wiser et al. (2009), for full trends report.
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Controls: other average state-year variables

The data also include information on system installation year, average system
size, and average after-tax incentives that is used in the estimations. State-year mean
hourly electrician’s wages and mean annual retail electricity rates are from the
Department of Labor’s Occupational Employment Statistics (OES) Survey and US
Energy Information Administration respectively.

Data screening

The analysis is restricted to states for which cost data and the installs are known.
The dependent variable is the average installed cost in a given state and year, and so
excluded from the data are any state-year observations with fewer than twenty underlying
system observations (21 state year observations composed of 161 PV system
observations are excluded). Also excluded are the 2008 NJ SREC program systems due
to lack of incentive data.

To avoid excessive influence of outliers, to eliminate data errors, and to provide a
more homogenous technology set, the following types of systems are removed to create
state-year average data: systems with missing data, installed price less than $3/Wpc.stc,
installed price > $30/pc-stc, Systems greater than 10 kW, price net of subsidy less than
zero, battery-operated systems, thin-film or hybrid technologies, and Building Integrated
Photovoltaics. The data include residential, commercial, government and non profit
systems, but for observations with consumer segment not known, it is assumed that
systems less than or equal to 10kW are residential, i.e. all the data in the final data set.
Due to lack of data, inverter costs are not excluded from non-module costs; however
inverter prices should not be different across states since inverters are part of a national
market.

Tables 3.2 through 3.5, and graphs 3.1 and 3.2, present data, regression variables,
and plots of dependent variables and variable of interests for the California and the multi-
state models.

Table 3.2
Data for Califomnia Analysis
Year Non-Module | Initinl Nan- | Medule Price |Initial Medule [State Cumulative |U.S. Cumuiative |Global State Capacity Tus Capacity Global Capacity |Mean System
Price $W  |Module Price |§/W Prico $W Capacity (Watts, |Capacity (Watts, |C ive Instalied in d in b fled in Slze (Watts)
W 1-¥ear Lag) 1-Year Lag) pacity (Watts, |C: Year Curment Year Current Year
1-Year Lag) {watts) (watts) (watts)

36,80 5404 =X 1,766,000

56,80 a7 S84 4

$6.80 74 $4.54 5 10,878,458

$5.80 23 34.94 14,877 24

$6.20 $389 5454 25.311,100 22726551  296,.243,000)

$532 $5.80 $163 S4.94 [ 35742220]  45304661]  426:205,000

2004 $4.35 $6.60 382 404 B7.771,171

2005 $3.77 36,80 2.02 KT 116,508,161 151,007,810

2006 $3.76 36,60 216 5404 182271441

2607 $388 $6.80 413 o4 753,514,122 334,514,449 | 61815.760] 152,142,060 1,246 565,000]
2008 414 $6.50 365 494 345,330,483 485,956,512] 6 i

*All data average valus for stale year excepl for cumulative capacily and current year capacily veriables
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Table 3.3

Regression Variables Summary for California Analysis (11 observations)
Variable Mean Std. Dev. Min Max|
Non-Module Price/Initial Non Module
Price 0.7 0.2 0.6 1.0
Module Price/Initial Module Price 0.8 0.1 0.7 1.0
State Cumulative Capacity (Watts, 1-Year
Lag) / Initial State Cumulative Capacity
(Watts, 1-Year Lag) 27.7 34.9 1.0 102.0
U.S. Cumulative Capacity (Watts, 1-Year
Lag) / Initial U.S. Cumulative Capacity
(Watts, 1-Year Lag) 20.3 25.3 1.0 76.8
Global Cumulative Capacity (Watts, 1-
Year Lag) / Initial Global Cumulative
| Capacity (Watts, 1-Year Lag) 18.8 21.2 1.0 63.2
Cumulative State System Installs ( 1-Year
Lag) / Initial Cumulative State System
Installs ( 1-Year Lag) 39.0 41.6 1.0 123.6
State capacity watts installed in current
year 47,300,000 54,000,000 956,696] 179,000,000
U.S. capacity watts installed in current
year 68,900,000 84,300,000 1,852,520 277,000,000
Global capacity watts installed in current
year 739,000,000] 724,000,000 51,800,000 2,200,000,000
Installation Year 2003 3.3 1998 2008
Mean System Size (Watts) 36 0.8 2.5 45
Graph 3.1

CA Non-Module Price and State Capaclty
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* Plots for California non-module price versus global and national cumulative capacity are similar.
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Table 3.4

Data fo

1 Multi-Stato Analysis
state year Non- Initial Non- |Non-Module|Cum. Capacity Initial Cum. State Mean System [Mean Mean Hourly |[Mean Retail
Module |Module Price/ Initial |(Watts, 1-Year Capacity Capagity Slze (Watts) |Incentive |Electrician's |Electricity Price
Price Price $/W  |Non-Module [Lag) (Watts, 1-Year |Installed in Wage $/kKWh
$iw Price $/W Lag) Current
4.0 1.00 9,874,670 9,874,670] 2,341,000 435 4.19 20.39
4.0 0.93 12,300,000 9,874,670] 1,558,000 3,280 4.03 .29
4.0 0_99| 13,800,000 ,874,670] 2,148,000 4,212 4.39 .30
4.0 0.86] 16,100,000 ,874.870] 2,802,000 4,793 $3.93 B8
4.0 0.90] 18,900.000 .B74670] 5420000 5.218] §3.62 $20.36
§6.80 0.64 67,800,000 .386,826] 48,738,900 4,103] $3.76 $27.21
$6.80 117,000,000] },386,825] 65,763,280 4,180] 3.15 $26.37
$6.80 A 182,000,000 ,386,825] 71,243,280 4,381 3.22 $26.84
$6.80 .57 254,000,000] 388,825 §1.815,760) 4471 $2.89 $26.57
§6.80 0.61 345,000,000 -386,825] 178,696,520 4418 $2.55 $26.85
4.4 .00 224,850 224,850] 672,000 2502|8517 §26.38
4.4 .00 901,710] 224,950 2,525 000) 5,053 4.93 $26.06
4.45 A1 3,442 650 224,850  5,283,000) 5,521 4,74 $25.70
§6.83 .79 586,800] 303,000 583,000 2,732 $5.37 $29.27
$6.83 .78 1,189,800 303,000 640,000 080 $5.39 $27.87
$6. .78 .810,27. 303,000] 1,452,000 3,110 $5.28 §27.95
£6. 0.78 3,262,07 303,000] 1,381,000 . 306] $5.18 §27.37
56, 0.73 4,643,072 303,000] 2,884,000 3,856 54.68 327.59
$6.48 1.00 372,790 372,790 9,000 548 $2.56 524.15
$8.48 0 475,310| 372,790] 321,000 614 §2.51 $23.88
$6.48 0 07,720 372,790 ; §24.08
- - R
$3.14 1.00] 51,940 53025
$3.14 1.39[ 237 &70| 28.33
$3.14 .59 355,430 27.67
MN|  2008] §5.78 $3.14 34 658,360 $27.14
N oo4| 3526 564 0.93 800,000 858,000 $32.46
NJ 005 4. 74 $5.64 X Nl 536,000 858,000 531.28
NJ 006| 4.48 $5.84 .78 456,000 858,000 5308
N 007] _ $4.54 35,64 81 27,300,000 558,000 31
M| 2008 5.06 $5.64 0.90 47,800,000 858,000 K §30.
V] 2005] $5.31 $5. 1.00 375,871 375,871 3,267] $5.03 525.3
v 2006 34,45 $5. A 917,150, 75,87 4,:I_17 4.24 $25.02
V] 2007| 5.17 $5. 3.281 S1B| 75,87 2,336,000 4,061 3.72 $27.40
NV 2008] 5.16 $5. 18,200,000] 375,871 15,917,000 4,244 3.29 $26.96
Y 2004 §5.46 $5.69 1,753,720 529,770 3,786/ 5,43 $30.42
Y| 005| $5.04 $5.69 753,720 ,021,960 4,58 .20 $30.47
Y| 006  $5.01 $5.69 753,720 967,650 4,614 6 30.80
Y 007 54.94 $5.69 753,720 ,783,900 5,13 .44 31.23
Y 2008 §5.00 $5.68 1,753,720 027,000 4,876 ? 32.04
4.4 260,000 358,000 944 4.35 $29.17
4.4 260,000 353,000 ,290) 3.95 $28.62
4.4 260,000 529,000 183 4.55 $28.57
4.4 260,000] _ 1,123,000] 103 4.78 $28.61
4.4 260,000] 4,832,000 481 34.82 $20.62
6.6 318,800 18,800| 128,000 323 §5.20 $25.82
6.6 446,600 18,800 167,000 394 $5.56 $26.77
$6.68 613,500 18,800 221,000 3,666 $6.12 §28.91
$6.68 834,500 18,800 103,000 4.455 $5.68 527.09
;4,84 70,700 170.700 186,000 . 785 £2.76 19.29 |
484 0,600 170,700 44,000 .010] _$2.98 15.89
14,84 480,600 170,700 100,000 784 52,78 19.50
54.84 716,500 170.700 238,000 3,235 §2.55 19.70
3304 44,000] 344.000] 85,000 B0| 233 $248
$3.94 428,000 344,000 59,000 222 $2.88 §25.0¢
53,94 488,000 344,000/ 258,000 341 $3.88 224,56
$3.94 746,000 344,000 643,000 618 $3.13 524,60
§3.94 1,389,000 344,000{ 1,688,000 894 $3.55 §24.79
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Table 3.5

Regression Variable Summary for Multi-State Analysis (67 observations
Variable Mean Std. Dev, Min Max

Non-Module Price/Initial Non
Module Price 0.95 0.24 0.55 1.84
State Cumulative Capacity (Watts,
1-Year Lag) / Initial State
Cumulative Capacity (Watts, 1-

Year Lag) 10.99 19.76 1,00 101.96
State capacity watts installed in
current year 10,700,000 29,100,000 59,000 179,000,000
Installation Year 2006 1 2004 2008
Mean System Size (Watts) 4.0 1.2 2.2 7.1
Mean Incentive $4.20 $1.17 $2.30 $6.28
Mean Electrician's Wage $26.39 $3.60 $19.29 $32.46
Mean Retail Electricity Price $0.13 $0.03 $0.08 $0.20
Graph 3.2
Multi-state Non-Module Price and Cumulative Capacity 2004-2008
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Results and Discussion

California Model — Non Module Experience Curve

Estimates for California non-module experience curves that use different
cumulative installed capacities are presented in Table 3.6. The progress ratios resulting
from the state level specifications range from .84-.92, US capacity specifications progress
ratios range from .79-.91, and global capacity progress ratios range from .90-1.11. These
are overall consistent with module and non-module progress ratios in the literature, albeit
it on the higher ends of estimates. The progress ratio estimates are particularly high using
global capacity, although this is not very surprising given that global capacity was not
expected to be as a good a predictor of non-module price as state and national capacity.
This appears true given the lack of significance in global capacity in 2 of the 3 related
models (models 8-10) and the lower R-squareds for the models using global capacity.
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Given the limited data, it is difficult to draw conclusions about the rate of learning from
the progress ratios.

My key hypothesis is that local capacity is a better predictor of non-module costs
than larger geographic boundaries. Consistent with this hypothesis, the models that
regress non-module prices on state capacity and additional controls (models 1-4) have a
better goodness of fit (higher R-squared) than each of the comparable state and global
models (models 5-10). However, it is not possible to determine by comparing the
absolute values of the R-squared whether the differences between the models are
statistically significant. As such the J-test and Cox-Pearson models are used to test
whether it is possible to reject the hypothesis that the state capacity models (models 1-4)
are a better predictor than the US capacity and global capacity models.

Before reporting on these tests let me say a word about the significance of the
covariates. For the state capacity models, the coefficient on state capacity is significant
even with the inclusion of a time trend, current year capacity, and average size variable.
The estimates for economies of scale are not precisely estimated.

Table 3.6
Non-Module Price ($/Wp) Learning and Various Geographic Boundarios msmnnnt
5 -'- smn(:] Us - u?m_"ﬁ"s' - G{uh:l Oloh:l lnhlnl
Cum. Capacily Slate-log, 1-Yr lag -0.124*** 1.0.242* -0.241* -0.252*
1(0.0136) 1(0.107) 0.115) (0.117)
Md Year 0.0622 0.0478 0.0804 0.0979 0.0871 -0.0468 -0.0511
1(0.0563) LO 0685)  |{0.0621) 1(0.0802) tw) {0.204; 1(0.208)
Slale Current Year Capacily Installed 0.0263
0.0431)
Mean Systom Size, 0.118
1(0.328)
Cum, Capacily U.S. -log, 1-Yr lag -0.137+* 1-0.343* -0.330
l©.0164) |©.167) |(0.180)
US Current Year Capacily Installed 0.0483
0.0673)
Cum. Capacity Global-log. 1-Yrlag -0.149*** 1.0.03684 0.149
r§0.0164) 0.471) _ 1(0.504)
|Global Current Year Capacity Instalind -0.204
0.125!
Constan -0.0347 -124.4 -95.91 -121.0 -0.0283 -195.8 -134 9 0.0157 93.52 105.8
1(0.0302) |(112.5) (136.68)  1(124.1)  [(0.0302) |(180.4) [(202.7) |(0.033B) |(406.6) [(412.2)
Qbservalions 11 11 11 11 11 11 11 11 11 11
Adjusted R-Squared 0.884 0.891 0.880 0.877 0.8687 0.880 0.868 0.821 |0 800 0.814
Progress Rallo 0.82 0.85 ’U_E_ 084 0.91 079 0.80_ 0.80 0.97 1.11

The J-test and the Cox-Pearson test for non-nested linear models are used to
compare the state capacity model with the US and global capacity models. Since average
size is not available for all models and current installed capacity is not significant in the
models, I test only specifications 2, 6, and 9.

Comparing the state capacity model (M1) and US capacity model (M2), as
reported in Table 3.7, the insignificant p-values of the J-test show neither model can be

88



rejected. However, the Cox-Pesaran significant p-value for Ho:M2 means Model 2 with
US capacity can be rejected in favor of Model 1 with state capacity. This suggests that
the model with state capacity is a better predictor of non-module prices.

Table 3.7

Competing Models: State and U.S. Capacity
M1:Y=[Non-Module Price, log] X=[ Cumulative Capacity State-log, 1-Yr lag; Installed Year]
M2: Y=[Non-Module Price, log]  X=[ Cumulative Capacity US-log, 1-Yr lag; Installed Year]

J test for non-nested models

Dist Stat P>[Stat]
HO:M1 / H1:M2 t(7) -0.85 0.425
HO:M2 / H1:M1 t(7) 1.25 0.252

Cox-Pesaran test for non-nested models

Dist Stat P>[Stat]
HO:M1 /H1:M2 N(0.1) 0.96 0.169
HO:M2 / H1:M1 N(0,1) -1.54 0.061

Comparing the state capacity model (M1) and global capacity model (M2), Table
3.8, the significant p-value for the J-test for Ho: M2 suggests the global capacity model
can be rejected in favor of the state capacity model. Similarly, the significant Cox-
Pesaran test for Model 2 only finds the global capacity model can be rejected in favor of
the state capacity Model 1. Both Tables 3.7 and 3.8 suggest that my hypothesis that more
local capacity is a better predictor of non-module prices than US and global is correct.
However, given the collinearity of inputs and the small sample size these findings are not
conclusive. These results are similar when using cumulative solar PV system installations
(counts) and time series sensitivities.

Table 3.8

Competing Models: State and Global Capacity
M1:Y=[Non-Module Price, log] X=[ Cumulative Capacity State-log, 1-Yr lag; Installed Year]
M2: Y=[Non-Module Price, log]  X=[ Cumulative Capacity Global-log, 1-Yr lag; Installed Year]

J test for non-nested models

| Dist Stat P>[Sta]
HO:M1 / H1:M2 {7) 0.95 0.373
HO:M2 / H1:M1 {7) 2.64 0.034
Cox-Pesaran test for non-nested models
| Dist Stat P>[Stat]
HO:M1 / H1:M2 N(0,1) 0.4 0.344
HO:M2 / H1:M1 N(0,1) -113.84 0.000

Single-state module experience curve

A similar analysis is conducted for module learning. Module costs are regressed
on state, national, and global cumulative PV capacity. As expected, the specifications
with global capacity and time trend (8 and 9) have a higher R-squared than the
comparable state and national models and models. Global capacity Model 10, which
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includes the current capacity economies of scale term, unexpectedly has a worse fit than
the comparable state and national models (3 and 6). However, neither global capacity nor
current capacity is significant in Model 10. The progress ratios for global capacity are
inline with the literature. However, similar to the discussion of progress ratios for non-
modules, the limited sample size also limits what conclusions can be drawn from these
progress ratios about the rate of learning. Table 3.9 presents the regression results.

Although the module regression results are seemingly less conclusive, the J-test
and the Cox-Pearson test are used to compare the global module capacity model with the
California and US capacity models. In table 3.10, which compares the global capacity
model (M1) and state capacity model (M2), the insignificant p-values of the J-test show
neither model can be rejected. However, the Cox-Pesaran significant p-values for both
models suggest both models can be rejected, although notably the p-value for Model 1
(global) is less significant.

In Table 3.11 comparing the global capacity model (M1) and US capacity model
(M2), the insignificant p-values of the J-test suggest neither model can be rejected as the
correct specification. However, the Cox-Pearsan test shows Model 2 with US capacity
can be rejected in favor of Model 1 with global capacity. This provides some suggestion
that global capacity is a better predictor of module prices, but as noted the test findings
are weak and not consistent. Moreover, the only control for exogenous technological
change included is a time trend. A more flexible control for an exogenous trend, such as
a quadratic time trend, could further mute any significant results.

Table 3.9
CA Module Price ($/Wp) Learning and Various Geographic Boundaries {1998-2008)
(1) (2) (3) 4 (5) (6) 0] (8) (9 (10
State State Slate State us Us us Global Global Global
Cum. Capacity State-log, 1-Yr lag -0.0443*** 0.0917  |0.0908™ |0.167™
(0.0125) 1{0.0838) [(0.0338) }(0.0606}
Installed Year -0.0720** |0.00435 |-0.0504" -0.104** 10.0392 0.163 0,162
(0.0312) |(0.0230) |{0.0307) (0.0419) [(0.0295) (0.123) (0,133)
State Current Year Capacity Installed -0,139"**
{0.0190)
Mean System Size,log -0.815™
(0.244)
Cum. Capacity U.S. -log, 1-Yr lag -0.0497***10.169 0.107**
(0.0135) |(0.0935) {(0.0421)
US Current Year Capacity Installed -0,224™
(0.0260)
Cum. Capacity Global-log, 1-Yr lag -0.0594***|-0.444 -0.432
(0.0135) [(0.287) (O.SST
Global Current Year Capacity Installed -0.0136
{0.163)
Constant -0.0709 143.8* -6.768 119.4* -0.0668 |207.2" |-75.03 -0.0393 |[-324.7 -323.9
(0.0383) |(62.38) (45.75) (61.21) (0.0380) |(83.69) (58.73) (0.0336) |(246.2) (266.3)
Observations 11 11 11 11 11 11 11 1 11 11
Ad'[usted R-Squared 0.435 0.491 0.929 0.778 0.446 0.517 0.942 0.527 0.569 0.508
Progress Ratio 1.00 1.07 1.06 1.22 0.97 1,12 1.08 0.96 0.74 0.74
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Table 3.10

Competing Models: Global Capacity and State Capacity
M1:Y=[Module Price, log] X=[ Cumulative Capacity Global-log, 1-Yr lag; Installed Year]
M2: Y=[Module Price, log] X=[ Cumulative Capacity State-log, 1-Yr lag; Installed Year]

J test for non-nested models

| Dist Stat P>[Stat]
HO:M1 / H1:M2 (7) 0.8 0.45
HO:M2 / H1:M1 H(7) 1.34 0.223

Cox-Pesaran test for non-nested models

| Dist Stat P>[Stat
HO:M1 / H1:M2 N(0,1) -1.3 0.097
HO:M2 / H1:M1 N(0,1) -5.62 0.000

Table 3.11

Competing Models: Global Capacity and U.S. Capacity
M1:Y=[Module Price, log] X=[ Cumulative Capacity Global-log, 1-Yr lag; Installed Year]
M2: Y=[Module Price, log] X=[ Cumulative Capacity U.S.-log, 1-Yr lag; Installed Year]

J test for non-nested models

Dist Stat P>[Stat]
HO:M1/H1:M2 H7) 0.88 0.409
HO:M2 / H1:M1 t(7) 1.17 0.281
Cox-Pesaran test for non-nested models
Dist Stat P>[Stat]
HO:M1 /H1:M2 N(0,1) -1.26 0.103
HO:M2 / H1:M1 N(0,1) -31.5 0.001

Multi-state non-module experience curve

Using an unbalanced panel of 57 annual state and capacity observations from 13
states, OLS is now used to estimate the effect of state experience on annual average non-
module prices. The data set (Table 3.4) includes state-year observations from 2004
through 2008 only. All states have five observations except for Minnesota, Nevada,
Pennsylvania, and Vermont, which have four observations, and Connecticut and
Maryland which have three observations. The larger data set offers more observations,
but also the non-module prices may be affected by various state and time varying factors
such as labor costs, electricity prices, and building permits. To partially control for these
factors state and time fixed effects are included.

Table 3.12 presents the results from a regression of average state non-module
costs on state cumulative capacity and control variables. With the inclusion of state and
time fixed effects state capacity is not a significant variable. Cumulative state capacity is
also not significant using the more parsimonious model (specification 3) that includes
time fixed effects and controls for specific state-varying factors such as electricity prices,
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electrician wages, and average incentives. However, it is interesting that current state
capacity installed, which is a proxy for economies of scale, is significant using the more
parsimonious model. Given these results I cannot conclude with the pooled panel data
set that state capacity is a better predictor of non-module prices than national or global
capacity.

Table 3.12
Multi-state Non-Module Price Learning and State Level Capacity
() (2) (3)
OLS OLS OLS
Cum. Capacity State-log, 1-Yriag |0.0351 0.0374  1-0.0303
(0.0363) [(0.0384) |(0.0456)
Current State Capacity Installed -0.0172  |-0.0741™
(0.0319) |(0.0347)
Mean System Size,log 0.142
(0.163)
Mean Incentive,log -0.133
(0.148)
Mean Electrician's Wage.log 0.138
(0.200)
Mean Retail Electricity Price,log -0,925
(0.847)
Constant -0.661*** |-0.365 0.585
(0.136) |(0.532) [(0.718)
Observations 57 57 57
Adjusted R-squared 0.770 0.766 0.351

Specifications 1 and 2 Includes time and state fixed effects.
Specification 3 only includes time fixed effects.

Spillover Analysis

The experience curve model assumes knowledge spillover across states does not
exist, i.e. cumulative solar PV capacity and learning in one state does not affect costs in
another. However, knowledge spillover can occur across regional and firm boundaries.
The exclusion of capacity from states where spillovers originate presents an omitted
variable problem in the multi-state analysis. If such knowledge spillovers are present,
then a multi-state experience curve analysis may overestimate the effect of an individual
state’s capacity on in-state non-module costs.

This section demonstrates how one can test for the presence of regional state
spillovers and estimate whether spillovers or state capacity (endogenous learning) have a
greater effect on a state’s solar PV non-module costs. This analysis is conducted with the
multi-state data set, although I acknowledge that, given the inconclusive findings of the
multi-state analysis, identifying a spillover effect with this data is unlikely. For non-
module costs I hypothesize that state spillovers will be positive, but limited since not all
knowledge is appropriable. The impact of other state capacity is expected to be greater on
a state’s non-module costs if the state of interest has a relatively smaller market than
neighboring states.

Schaeffer et al. (2004) offer anecdotal evidence of spillovers across European
countries non-module prices. They find that although in Europe non-module costs are
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mainly national, there is some international spillover. Comparing four countries’ 2002
non-module prices, they find that although non-module prices were higher in the
countries newer to the PV market, the prices for new entrants were still lower than the
price for older programs at their onset. I conduct the same comparative analysis for 2004
and 2008 non-module costs for states that are both new entrants and well-established in
the PV market. Time in the market is determined to be the number of years the state has
had an active PV subsidy program. For the majority of states the market duration is the
same. The tables below show the state, market duration, and average non-module price.
Observations are sorted by duration in years.

Table 3.13
Program Duration and Non-Module Price Ranking 2004
Price rank
(lowest to 2004 Non-
Duration highest) St_ag Module Price
7 5|CA $4.35
3 1|MN 3.14
3 3|Wi 3.94
3 4|AZ 4.01
3 8|MA $5.38
3 10|PA $6.68
2 2|OR $3.63
2 7|NJ $5.26
2 9|NY $5.46
1 6|VT $4.84

Table 3.14
Program Duration and Non-Module Price Ranking 2008
Price rank
(lowest to 2008 Non-
Duration highest) State Module Price
11 2|CA $4.14
7 1|AZ 53.61
7 5|MA 54.99
7 10| WI 55,40
7 12|MN $5.78
6 3|CT $4.94
6 4|OR $4.94
6 6|NY $5.00
6 7INJ $5.06
5 8INV $5.16
5 11|VT $5.75
4 9|MD $5.40

A clear pattern between time in the market and non-module cost does not emerge.
New entrant states are not necessarily starting with lower non-module prices. The states
with the most experience do not consistently have the lowest cost. In 2004, states with
the most experience had non-module costs in the middle of the pack of states. The state
with one year of experience was also not the most expensive. In 2008, states with the
most experience had the lowest costs as well as the highest cost. Comparing states with
the same duration in the different time periods, California with seven years experience in
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2004 and Massachusetts with seven years in 2008, we see Massachusetts’ costs are
higher, suggesting that cross-state spillovers may be limited. These findings are
consistent with findings by Gillingham et al. (2014) that county average price and time in
the market are not well correlated. In an examination of the heterogeneity of PV prices
across the United States the authors find that counties with high average prices are
sometimes relatively large markets and in other instances very small.

One element missing from this analysis is the likelihood that knowledge is more
transferable across neighboring geographies. With geographically contiguous states there
is a higher likelihood of fluidity between labor markets and information sharing across
regulatory and PV subsidy program administrators. The direction of this knowledge
spillover is likely one direction — from a state with larger cumulative installed capacity to
a state with lower installed capacity.

Table 3.15
Contiguous States with Cumulative PV Capacity
Greater than Origin State 2004-2008
State Contigious States
AZ CA
CA N/A
CT RI (2004-06).MANY
MA NY
MD DE.PA
MN WI
NJ NY (2004-05)
NV CA,AZ (2004-07),0R (2004-
06).UT (2004-05),ID (2004-05)
NY NJ (2006-08)
OR CANV (2007-08)
PA DE (2004) NY.NJ
VT MANY
WI 1L

Table 3.16 presents multi-state regression results for model specifications of the
pooled panel data set that include cumulative capacity from contiguous states with greater
installed capacity. Contiguous states are used as a measure of exogenous sources of
knowledge and as a crude measure for managing the distance decay of information. With
this method there is a greater likelihood of under estimating distance decay in the western
states that cover larger geographical territories. Conversely, there is a likelihood of
omitting relevant state spillovers in the northeastern states by only using contiguous
states since there can be a short geographical distance between non-contiguous states.

Table 3.16 Model 2 shows that an individual state’s and neighboring state
capacity are not significant in a model with time and state fixed effects. This is not
surprising given that state capacity is not significant in the initial multi-state regression
(Model 1). Given these results, no finding can be made that contiguous state capacity
impacts a state’s non-module costs.

94



Table 3.16

Multi-state Non-Module Price ($/Wp) Learning and State Level|
Capacity with Contiguous State Capacity (2004-2008) Non-
Module Price Learning and State Level Capacity
() (2) (3)

Cum. Capacity State-log, 1-Yr

lag 0.0351 0.0351 -0.0247
(0.0363) [(0.0363) [(0.0451)
Current State Capacity Installed -0.0731*
(0.0353)
Mean System Size,log 0.161
(0.174)
Mean Incentive,log -0.160
(0.182)
Mean Electrician's Wage.log 0.158
(0.209)
Mean Retail Electricity Price,log -0.826
(0.950)
Neighbor States Cumulative
Capacity - log, 1-Yr lag 0.00207 |0.00240
(0.00346) {(0.00619)
Constant -0.661*" [-0.679*™* 10.476
(0.136)  |(0.142)  [(0.816)
Observations 57 57 57
Adjusted R-squared 0.770 0.765 0.339

Specifications 1 and 2 Includes time and state fixed effects.
Specification 3 only includes time fixed effects.

Conclusions and Policy Implications

Using a data set of PV system prices in 13 states, and a longer time series of PV price
data for California, some evidence is found that cumulative capacity at the state level is a
better predictor of non-module costs than U.S. or global capacity. However, given data
limitations it is not possible to determine whether a geographic boundary smaller than
state is superior for estimating non-module learning. For example, learning may be best
estimated using city level installed capacity or using a weighting of different capacities.

Understanding the influence of a geographic boundary on learning has implications
for local policymakers. If non-module costs are influenced by city level actions to expand
solar PV capacity, a city council may have more motivation to institute local solar PV
subsidies or fast track permitting. However, if the local costs are just as easily affected
by expanding state level capacity and subsidies, or are a function of global trends, city
regulators may focus instead on directing scarce local resources towards other initiatives.

Since learning rates factor into private and government technology investments and
energy planning decisions, estimates for learning geographic boundaries should be
regularly updated to reflect changes to the industry that may alter the geographic sphere
of influence. For example, certain costs, such as permitting, which are currently
influenced by more local capacity developments, may become more influenced by state
and national markets as statewide permit models are developed or as industry adopts best
practices. Moreover, non-module costs have also declined due to greater systems
integration in advance of field deployment. As Harmon (2000) notes, in the past, PV
systems have been assembled in the field (versus the factory) from diversely sourced
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materials and hardware. Trends towards increased standardization of non-module cost
components may lead to a smaller portion of total costs subject to a local learning curve.

Experience curve models should be expanded to disaggregate the impact of learning
from economies of scale since this may have an impact on what percent of costs declines
are appropriable and how impactful state incentives can be. If economies of scale are a
greater price driver than endogenous learning, then there is less argument for government
support because those cost reductions are fully appropriable, and hence will be pursued
by firms. Moreover, if cost declines are being driven purely by economies of scale, these
companies will not see cost declines after they reach a minimum efficiency. In this case,
overall incentives designed on a composite learning estimate will underperform and not
spur expected market cost declines. This paper’s proxies for economies of scale, current
capacity installed and average system size, are in most specifications not significant.
However, further studies should develop better, higher order proxies in order to parse out
the relationship between learning-by-doing and economies of scale.

In addition to whether growth in local capacity drives non-module prices, local
regulators will also be interested in this paper’s discussion of knowledge transfers over
jurisdictional boundaries. Further exploration is warranted regarding the possibility that
neighboring state capacity may have a greater impact on a state’s non-module prices.
Neighboring state spillovers may be an explanation for why some states take a “wait and
see” approach to demand pull policies and defer to other states, such as a California, to be
the first mover with implementing policies to grow clean energy markets. If learning is
not all appropriable then this may prove to be a disincentive for some locales to be early
technology investors. Such spillovers are particularly disadvantageous to the originating
locale when technologies are still far from competitiveness (Bagnall and Boreland, 2008).
Further research is warranted on how experience spills over across jurisdictions and
whether the prevalence of non-module costs results in unique patterns of information
decay or discontinuous jumps in learning.

Arguably there are several other factors besides in-state and neighboring state
capacity that affect local installed price. Various works including Gillingham et al.
(2014) and Barbose and Dargouth (2015) opine on such factors including labor,
incentives, electricity prices, and consumer willingness to pay for solar PV. However, the
attempt of this paper is not to explain all the sources of solar PV price declines but to
examine how well the experience curve model is suited to forecast overall non-module
price declines. This analysis has shown that although they can be informative,
experience curve models can also be inaccurate and inconclusive for a variety of reasons
including data errors, omitted variables, and model misspecification. In particular,
practitioners using experience curve models to forecast solar PV non-module prices
should thoroughly consider how the geographic boundary of the market is defined, the
relationship between price and cost, possibly endogenous relationship between prices and
capacity, and the quality and time series of data available.
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Paper 3 Appendix

Table 3.17

Relevant Solar PV Experience Curve Studies

distributed PV)

Authors and Study  |Technology Boundary Learning ".l“ime Period "-I'otal years |Model factors 'T)ependent Variable and Experience Variable |Progress Ratios
Year System
Geographic
G. Cody and T Tiedje |Module Global 1976-1988 13 price; capacity |$Wp (price); global cumulative sales capacity 0.78
(1997)
C. Harmon (2000) Module Global 1968-1998 31 price; capacity |$Wp (price); global cumulative sales capacity 0.798
IEA (2000) Module Global 1976-1996 21 price; capacity |$Wp (price); global cumulative sales capacity 0.84
IEA (2000) Total PV System (electricity  |European Union|1985-1995 11 price; capacity |$Wp (price); global cumulative sales capacity 0.65
cost)
V. Parente (2002) Module Global 1981-2000 20 price; capacity |$Wp (price); global cumulative sales capacity 0.772 (.798 for 1981
1990 and .774 19914
2000)
G. Schaeffer et al. |Module Germany, 1976-2001; 26; 14 price; capacity |$Wp (price); national cumulative capacity 80, .74
(2004) Netherlands 1988-2001
G. Schaeffer et al. Non-module Balance-of- Europe, 1992-2001 10 price; capacity |German non-module price equal to average of total | 80 (Europe), 78
(2004) Systems (total system minus  |Germany, system price minus module price (from Photex (Germany),
module), limited to residential |Netherlands dataset). Dutch non-medule price equal to total 81(Netherlands);
roof-top grid connected system price minus estimated module prices 76 (non-inverter,
systems less than 100kWp non-module)
M. Papineau (2006)  |Module United States, [1992-2000 9 cost; capacity; |Module cost as dollar per watt produced for 15 PV |.77 - .90
Germany, time manufacturers (cost, not price); average U.S,,
Japan, German, and Swiss average module price
Switzerland Experience variables used include country-level
cumulative capacity, cumulative electricity
R. Swanson (2006) Module Global 1979-2005 27 prics; capacity |$Wp (price); national cumulative capacity 0,80
K. Shum and C Non-module Balance-of- United States  |1994-2003 10 price; capacity |$Wp (price); national cumulative capacity 0.825
Watanabe (2007) Systems (grid-connected
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