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A B S T R A C T

Background: Clostridioides difficile infection is a major health threat. Healthcare institutions have 
strong medical and financial incentives to keep infections under control. Blanket testing at 
admission is in general not recommended, and current predictive models either used moderate 
sample sizes, over-inflated the number of covariates, or chose non-interpretable algorithms. We 
aim to develop models using patient data to predict positive Clostridioides difficile test results with 
discrimination performance, interpretable results, and a reasonable number of covariates that 
reflect health over a long-time span.
Materials and methods: We processed records from 157,493 University of California San Diego 
Health patients seen between January 01, 2016–July 03, 2019 with at least 6 months of medi-
cation history, excluding pregnant women, patients under 18, and prisoners. Three models (Lo-
gistic Regression, Random Forest, and Ensemble) were constructed using hyper-parameters 
selected through 10-fold cross-validation. Model performance was measured by the Area Under 
the Receiver Operating Characteristic Curve (AUROC). The model coefficients’ odds ratios and p- 
values were calculated for the Logistic Regression model, as were Gini indices for Random Forest. 
Decision boundary analysis was conducted using pair-wise false positive and false negative cases 
each model would predict at a specific threshold.
Results: Logistic Regression, Random Forest, and Ensemble models yielded test AUROCs of 0.839, 
0.851, and 0.866, respectively. Significant covariates that may affect risk include age, immuno- 
compromised treatments, past antibiotic uses, and some medications for the gastrointestinal tract.
Conclusions: The models achieve high discrimination performance (AUROC >0.83). There is a 
general consensus among different analysis approaches regarding predictors that impact patients’ 
chances of having a positive test, which may influence Clostridioides difficile risk, including fea-
tures clinically proven to increase susceptibility. These human-interpretable models can help 
distinguish significant predictors that affect a patient’s chance of testing positive, which may 
influence their Clostridioides difficile risk.
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1. Introduction

1.1. Clostridioides difficile infection and difficulty in diagnosis

Clostridioides difficile infection (CDI) is caused by the Clostridioides difficile (C. diff) bacterium and may lead to colitis, pseudo-
membranous colitis, life-threatening diarrhea, and sepsis [1, 2], especially in older, antibiotic-treated patients in long-term care [3]. 
The Centers for Disease Control and Prevention (CDC) deems CDI a major health threat [4]; in 2017, there were an estimated 223900 
cases among US hospitals, with 12800 deaths and an healthcare-associated (HA) cost of $1billion [5]. In addition to critical public 
health concerns, failure to meet the infection-specific standardized infection ratio (SIR) [6] for HA-CDI as set by CDC can damage the 
reputations of healthcare facilities and bring about consequential financial implications [7]. For example, the 2015–2017 HA-CDI rate 
at University of California San Diego (UCSD) Health was significantly worse than the 2015 national baseline SIR [8]. It is a crucial goal 
for institutions to reduce HA-CDI so as to assure quality of care, avoid financial penalties and provide superior patient outcomes.

As C. diff bacteria are highly resistant to standard hospital decontamination chemicals, highly capable to survive on surfaces 
disinfected with standard agents, and can form transmissible spores [9–11], it is appropriate to consider a proactive approach that is 
still respectful of current guidelines. One organization’s experience was that admission screening on almost all patients prevented up to 
62 % of expected cases, and resulting a gradual decrease of infections over time [12]. From a purely administrative standpoint, early 
screening may help distinguish true HA-CDI from community-onset incidents, thus improving the accuracy of CDC surveillance efforts, 
and easing performance stress on healthcare facilities. However, current guidelines do not recommend blanket testing at admission 
due to fear of overdiagnosis, and subsequently unnecessary antibiotic treatments that may lead to resistance [13]; rather, testing is 
administered at symptom onset [14]. This leads to tension between accurate diagnosis and timely intervention, given that carriers 
(those with colonization) who are asymptomatic at admission have higher risks of progressing to CDI [15], and that they may shed 
resistant spores and contribute to outbreaks [16, 17]. This practical need calls for innovative, data-driven screening methods that do 
not require upfront bio-sample testing, while still offering physicians with discriminative insights.

1.2. Current machine learning models to predict CDI and their drawbacks

To aid screening efforts, researchers have built stratification models to classify potential C. diff positive cases. Most models were 
built on data with (i) a modest number of patients (about 8000 to 36,000 patients [18, 19]), (ii) several thousand covariates (about 
1800 to 5000 features, among those are binary encoding of variables not necessarily common among all patients [20]) leading to 
difficulty in human interpretation of artificially-inflated, high-dimensional vectors, and/or (iii) predictors that bias towards a narrow 
window of near-current, or current admission data (e.g., antibiotic use within 30 days prior to testing [21]) that may fail to capture the 
accumulated effect of microbiota-alteration medications over time [22].

Due to these limitations, we sought to construct CDI predictive models that address (i) large-scale sample size, by using a signif-
icantly large number of patients (i.e., 157,493 patients) from a real-world institution such as UCSD Health, (ii) high discrimination and 
interpretable results, employing a reasonable number of core demographics and medical history covariates (i.e., 104 features) that (iii) 
better reflect each patient’s health history over a longitudinal time span (i.e., 3 years). By predicting positive test results which may 
differ from a true CDI diagnosis (i.e., it may present colonization), allowing for expert discretion from the care staff, our goal is to add 
to the physicians’ decision-support toolbox to use with other testing strategies, finding a compromise between universal testing for 
asymptomatic carriers and waiting to test until the presence of severe symptoms.

1.3. Objective

Specifically, our predictive task is to predict the first event of a positive C. diff lab test given demographic and medication history up 
to one calendar day before the ordering date of the first positive test (Fig. 1). In most cases, this meant at least two calendar days before 

Fig. 1. Prediction task, illustrating examples of Clostridioides difficile Infection (CDI) Positive test result labels versus Control ones used in our study. 
The four cases for a patient are: (A) the patient has a single positive test during the study window, in which case they are labeled as a “Positive” case; 
(B) the patient has multiple positive tests, the first of which is also used as the prediction target of “Positive”; (C) the patient has a negative C. diff 
test and serves as a “Control” label; and (D) the patient never has any C. diff test and is a “Control” as well.
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Fig. 2. Study workflow. (A) Data: Demographics and medication history of 157493 patients with at least one admission to UCSD Health between 
01/01/2016-03/07/2019 were vectorized. (B) Model Construction: Three algorithms (Logistic Regression, Random Forest, and Ensemble) were 
constructed. (C) Evaluation: The corresponding predictive performances of the models were recorded, and feature analysis carried out.
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the result would be known, allowing physicians to proactively care for potential cases before their actual test confirmations. As adult 
carriers of toxicogenic C. diff are six times more likely to develop infections [15], this early prediction of colonization may make 
significant contributions to the fight against CDI.

2. Materials and methods

The overall workflow of our study is shown in Fig. 2. There are three main parts in our workflow: Data, Model Construction, and 
Evaluation. Each part will be introduced in the following subsections accordingly.

2.1. Data

The overall data preparing process is shown in Fig. 2A. We obtained data of 157,493 patients admitted between January 01, 2016 
and July 03, 2019 (date approved by IRB# 190457CX) from the UCSD Health System. Our inclusion criteria included patients with at 
least one admission to UCSD Health facilities within the study window, whose data included at least six months of medication history. 
Our exclusion criteria included vulnerable subjects such as patients under the age of 18, pregnant women, and prisoners, as well as 
those who did not have age information. Among included patients, there were 1541 (1 %) CDI Positive test result labels defined in 
Fig. 1.

We chose a core number of covariates that encompass demographic information and medication history, which naturally reflect a 
patient’s pathophysiology and health development over time. The dataset contained 104 covariates, including (a) demographic details 
of race, age, and gender as inherited from the UCSD Health System metadata schema (10 demographic predictors), and (b) past 
medication history in the form of tabulated instances used within the time frame (94 medication predictors). Specifically, medications 
were grouped from 4420 individual names to 94 respective pharmacologic classes, to ensure computational feasibility, reduce hyper- 
dimensional imputation, and prioritize weight interpretation of features while still maintaining crucial information about a patient’s 
health conditions and progress. The pharmacologic class of a drug refers to the grouping of medications with active ingredients that are 
similar based on a combination of any three attributes: their mechanism of action, their physiologic effect, and their chemical structure 
[23].

2.2. Model construction

The overall modeling and hyper-parameter tuning process is illustrated in Fig. 2B. We adopted two machine learning algorithms, 
multivariate Logistic Regression (LR) and Random Forest (RF), to build the models. The two algorithms were chosen to prioritize 
human interpretability [24], helping physicians identify features of interest in a straightforward manner, and potentially suggesting 
actionable items. In particular, the numerical values of Logistic Regression coefficients can indicate their magnitudes of influence over 
prediction outcomes [25], and the Gini indices of Random Forest are linked to how the “tree” evaluates splitting of its “branches” at 
each categorical predictor as it approaches final classification [26]. These relations can intuitively reveal important features and are 
more friendly to human comprehension compared to “black box” deep learning, whose model weights and biases do not elucidate their 
predictions [27]. Another related reason we chose the two algorithms over other time-series techniques such as recurrent neural 
networks [28] or transformers [29] is due to the lack of a suitable, interpretable preprocessing approach that could be applied across 
our patient sample. The data were collected from patients with past hospital admissions, whose both length of stays and number of 
stays varied. Such differences in data frequency would require extensive imputation work [30], and may further obfuscate any human 
attempt to comprehend the connection between the original data input and the final prediction output.

We also constructed an ensemble model (Ensemble) of LR and RF, to increase the discrimination capacity [31, 32]. That is, for each 
patient, we adopted the Average Ensemble [33], which averaged the two prediction scores yielded from the LR and RF models and used 
this new average as the patient’s final predicted score for CDI positive test result. Aside from the potential gain in predictive per-
formance, this might help confirm whether the raw prediction scores of LR and RF were generally complementary (Ensemble AUC 
would increase, or at least not be substantially worse than LR/RF results) or contradictory (Ensemble AUC would show significant 
drop).

To tune the hyper-parameters of the LR and RF models, we shuffled and held out 10 % of the dataset for testing purposes 
(Appendix Figure A.1A). It is noted that due to the high imbalance between positives and controls, the loss function used 
proportionally-assigned weights to prevent the models from overlooking the minority class. Tuning of hyper-parameters for both 
algorithms was done via grid search using the 10-fold cross-validation procedure on the remaining 90 % data; at each fold, we trained 
on 81 % and validated on 9 % of data (Appendix Figure A.1B). With the selected hyper-parameters (details in Appendix Table A.1), two 
models (LR and RF) were retrained on 90 % of data (excluding the hold-out test set), and the performance of our models are evaluated 
on the hold-out 10 % of data (Appendix Figure A.1C).

For implementation, we employed the Scikit-learn framework [34] for computations. We also adopted libraries for visualization 
(Matplotlib) [35] and statistical analysis (SpiCy) [36]. We used the Python programming language. The coding task was done 
exclusively within a secured, HIPAA-compliant virtual environment.

2.3. Evaluation

The overall evaluation process is shown in Fig. 2C. For model performance, we used the Area Under the Receiver Operating 
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Characteristic Curve (AUROC) [37] as our evaluation metric. We reported two sets of AUROCs for each of the three algorithms (LR, RF 
and Ensemble). (1) Cross-Validation AUROC. We averaged the AUROCs of each algorithm’s respective 10 models that were constructed 
in the cross-validation step (that is, models that were built on 81 % of training data using the selected hyper-parameters, then tested on 
their respective folds of 9 % data). (2) Test AUROC. We recorded the AUROC of each algorithm’s final model that was built on 90 % of 
data and tested on the 10 % hold-out set.

Additionally, we conducted exploratory data analysis to understand the demographic characteristics of the study population. 
Afterwards, on the LR final model, we performed coefficient significance analysis to record the magnitudes and corresponding odds 
ratios (which were mathematically derived from and thus representative of the coefficient magnitudes), and p-values. For this coef-
ficient significance assessment, we first conducted a univariate analysis, then a multivariate analysis. The initial step of univariate 
analysis was simply to confirm the overlapping of magnitude and statistical significance of each predictor with the results seen in the 
main multivariate approach, if any, other than to exclude predictors with high P-values from being considered in the multivariate 
analysis step. In addition, as it has been shown that correlations among classes of drugs may contribute to certain changes in a patient’s 
gut health [38, 39] and enhance toxin production in some strains [40], and thus may affect the chance of CDI in that patient, we did not 
test for covariate independence. On the RF model, we recorded the Gini importance index [41] of each feature, to capture variables 
that may hold more weights in affecting the risk of CDI [42]. We also conducted a decision boundary analysis to reevaluate the 
conventional discrimination threshold of 0.5, taking into consideration that physicians may want to be more proactive and assertive 
when it comes to weighing the cost of a false positive versus that of a false negative prediction. For the three final models, we used the 
shift in predictions as this threshold changes between 0 and 1 at intervals of 0.01, by recording the pairwise numbers of false positive 
and false negative cases predicted at each threshold. This was for easy visualization of such trade-offs as compared to the ROC 
(Receiver Operating Characteristic) curve.

3. Results

3.1. Demographic characteristics

The distributions of gender (female versus non-female, which may include unidentified genders) between the Positive and Control 
groups did not seem to have a stark difference. Meanwhile, the proportion of patients in the Positive group that were White was 
statistically higher than that of the Control group, and so was the mean age of the Positive group (58.43) versus the Control group 
(53.59). With regards to their medical histories, on average, patients in the Positive group had more medication units per patient. 
Table 1 summarizes the patient characteristics of our dataset.

3.2. Model performance

For the Cross-Validation AUROC, the LR algorithm yielded an average AUROC of 0.793 (95 % Confidence Interval (CI) = (0.763, 
0.823)); the RF algorithm’s average AUROC was 0.833 (95 % CI = (0.805, 0.861)); and the Ensemble’ average AUROC was 0.828 (95 
% CI = (0.802, 0.854)). For the Test AUROC at the step of testing on the hold-out set, the final LR and RF models achieved AUROCs of 
0.839 and 0.851, respectively. The final Ensemble model that combined the decisions of LR and RF algorithms yielded an AUROC of 
0.866 (Fig. 3). In short, all our three constructed models demonstrated strong predictive powers, as shown by their AUROC scores 
along either construction step.

3.3. Feature analysis

For feature analysis, Table 2 shows a list of top 20 features as ranked by the lowest p-values (p < 0.0001), and their corresponding 
LR odds ratios in the multivariate analysis step (Table 2A). Similarly, Table 2B shows 20 features as ranked by the highest Gini indices. 
See Appendix B for the complete list of features, which entails their corresponding AUROCs, p-values and odds ratios in the LR uni-
variate analysis step; their p-values and odds ratios in the LR multivariate analysis step; and the ranking of their corresponding Gini 
indices.

Table 1 
Demographic backgrounds of the two Positive and Control groups.

Patient Characteristics Positive Control

Number of cases (N) 1541 155,952
Gender female vs non-female (n) 734 (47.63 %) 77,463 (49.67 %)
Race White vs non-White (n)* 923 (59.9 %) 87,130 (55.9 %)
Mean age (mean, standard deviation)* 58.43 (17.23) 53.59 (18.99)
Median age 60.2 54.93
Number of medication units (mean, standard deviation)* 84.95 (107.3) 28.77 (57.84)

Asterisks (“*”) indicate Statistically different at p < 0.001.
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3.4. Decision boundary analysis

The trade-off curves (Fig. 4) show the effects as the threshold changes between 0.4 and 0.6 at intervals of 0.01, for each of the 
models LR (Fig. 4A), RF (Fig. 4B) and Ensemble (Fig. 4C). Each point on the curve illustrates the paired numbers of false negatives and 
false positives that the Ensemble model would have predicted on the hold-out set at that threshold. See Appendix C for the full trade-off 
curve with decision boundaries ranging from 0 to 1.

4. Discussion

4.1. Findings

In general, the high AUROC scores of three models that persisted in both the cross-validation and the testing phase imply that they 
can be adopted to support the prediction of positive CDI test results. During cross-validation, the average AUROC of the RF algorithm 

Fig. 3. AUROC curves of three final models: Logistic Regression, Random Forest, and Ensemble.

Table 2 
Results of feature analysis on the Logistic Regression and Random Forest models. A) Top 20 features with p < 0.001 in LR multivariate analysis ranked 
by the lowest P-values. B) Top 20 features as ranked by their RF Gini indices.

A) Logistic Regression Multivariable Analysis B) Random Forest Feature Importance

Feature Odds Ratio Feature Gini Index
Age 1.0144 Minerals & electrolytes 0.1507
Misc. anti-infectives 1.2558 Misc. anti-infectives 0.1493
Ophthalmic 0.8889 Unassigned group 0.0686
Anticoagulants 0.9377 Antiemetics 0.0396
Misc. GI 1.1577 Analgesics - opioids 0.0369
Fluoroquinolones 1.2250 Diuretics 0.0319
Tetracyclines 0.7735 Age 0.0295
Analgesics - opioids 1.0242 Anticoagulants 0.0261
Local anesthetics - parenteral 1.0816 Local anesthetics - parenteral 0.0256
Minerals & electrolytes 1.0265 Fluoroquinolones 0.0190
Toxoids 0.5740 Assorted classes 0.0190
Laxatives 0.9268 Misc. GI 0.0179
Antidiarrheals 2.3529 Antihistamines 0.0172
Anti-rheumatic 0.9299 Penicillins 0.0171
Gout 1.2108 Corticosteroids 0.0164
Antineoplastics 0.9684 Ulcer drugs 0.0158
Unassigned group 1.0391 Hematopoietic agents 0.0149
Penicillins 1.1491 Misc. Hematological 0.0147
Diagnostic products 0.9326 Antineoplastics 0.0144
Other or mixed races 0.8294 Analgesics - non-opioids 0.0142
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Fig. 4. The trade-off between the number of false negatives and false positive cases as the discrimination threshold changes between 0.4 and 0.6 for 
each algorithm. (A) Logistic Regression. (B) Random Forest. (C) Ensemble.
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was highest among the three models, while during testing the Ensemble algorithm outperformed the other two. In general, they all 
show relatively high discrimination results (AUROC between 0.793 and 0.866), and the fact that Ensemble AUC did not exhibit a stark 
drop shows that the two LR and RF algorithms tended to yield complimentary predictions. These AUROC scores are higher than those 
obtained from models built on smaller sample sizes and/or with more covariates (0.75–0.82 of AUROC in existing studies [18 20]).

Among covariates with a low p-value in the LR final model, there are clinically seen factors that may affect a patient’s CDI risk such 
as age [43], historic use of drugs in the anti-infective class (penicillins, fluoroquinolones) [44–46], implied immune-compromise 
conditions through cancer medications and their subsequent side effects of diarrhea resulting in more testing [47], and indications 
of past gastrointestinal (GI) issues (Misc. GI). This agreement is again repeated in the RF model, shown through the relatively similar 
ranking of their Gini indices. The consistency with regards to which feature may have a higher predictive power among such ap-
proaches suggests that the models are clinically useful for physicians. Moreover, the high impact of antibiotic use is again confirmed, 
which may help to caution physicians against over-prescribing of antibiotics for susceptible patients. A study finds that reducing 
patient’s susceptibility to CDI, with which antibiotic treatments can increase risk of colonization and subsequent progression to disease 
[48], is more effective in combating CDI as compared to lowering the transmission rate [49].

The discrimination threshold analysis curves, on the other hand, render a visually intuitive tool to aid physicians, infection control 
professionals and laboratory medicine teams in deciding their own testing policies. Specifically, these team members can use the 
curves to precisely determine an appropriate threshold value that can minimize the number of false negatives while reducing false 
positives as compared to their neighbors, such as the threshold of 0.55 for Logistic Regression (about 100 false positive cases reduced), 
or 0.48 and 0.56 for the Ensemble model (about 50–100 false positives reduced). Hospital administrators can also use the curves in 
their cost analysis studies [50]; for example, the threshold values can help estimate the savings or expenses associated with reas-
sessment of diagnosis [51]. It is known that in terms of healthcare cost, a CDI-positive inpatient with health plan incurs about $21,000 
more in treatment charge than an inpatient without CDI [52]. This number is even higher when the CDI is recurrent [53]. At the same 
time, the cost of a CDI stool test ranges from $15 to $128 (pricing current as of 2021) [54]. Therefore, when coupled with experiences 
and real-life knowledge of previous cases in their practices, a threshold-adjusted model may supply healthcare providers with 
discretionary insights to balance between over-treatment and under-diagnosing. This is a lesson transferable to other serious infections 
where any false negative case may cause great, unintended harm, yet the effort to minimize false negative might trigger more false 
positives than desired, such as COVID-19 [55].

From a practical viewpoint, the predictions may help guide clinical workflow decisions, such as the utilization of preemptive 
decontamination methods on both organic and inanimate surfaces, and better tracing of patient movement within the care facility, 
should a patient be considered of higher risk. For example, a recent study traced CDI back to a single CT scanner in a large academic 
hospital [56], highlighting the need for preventative measures even without obvious signs of spread.

4.2. Limitations

The limitations of our study include: 

(1) Selection of algorithms and model calibration. To encourage ease of intuitive human interpretability, we used LR, RF and Ensemble 
which are well-known highly interpretable predictive models. We are yet to utilize other ML algorithms such as deep learning 
(e.g., RNNs and transformers), nor to adopt other ensemble methods such as boosting [57] and stacking [58]. We are also yet to 
measure the calibration of our models using metrics such as estimated calibration index (ECI) [59], to calibrate our models 
using methods such as isotonic regression [60, 61], or to experiment on different data balancing strategies such as down-
sampling/upsampling [62].

(2) Potential feature codependency. We did not investigate possible intercorrelations among pharmacologic class predictors in our 
models. This may need further analysis to see how specific interactions affect CDI risk.

(3) In-practice deployment. We did use real patient data to build our models, while deploying our models in a true clinical workflow 
requires more investigation. Further work may be needed to validate whether our predictions would apply to high-risk patients 
who would conventionally not be tested by the clinical teams.

(4) Deployment and broader evaluation of the predictive models. Currently, we only evaluated our model on retrospective patient data 
from UCSD. We are yet to deploy the model at UCSD or evaluate the performance of the models in other institutions or countries.

(5) Distinction between colonization and infection. The models predict positive test results, both true infection and colonization with 
C. diff. While colonization does have a strong positive association with true infection, this relationship is not perfect. We are yet 
to further analyze the correlation between colonization and explicit infection.

(6) Cost analysis. We have yet to investigate the potential cost associated with the adjustment of the discrimination threshold, such 
as information on the labor and financial expenses associated with surveilling near-threshold patients, and to yield a full cost 
analysis.

5. Conclusions

Our machine learning models using large-scale, longitudinal patients’ medication history and demographic backgrounds can 
predict the first positive CDI test results with high performance. Our models are built on a large dataset of 157493 real-world UCSD 
Health patients and capture the underlying demographic and medical information of each patient’s health over a 3-year time window, 
using a reasonable number of 104 covariates. The models achieve strong AUROCs between 0.839 and 0.866, and their face validity is 
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highlighted as they find clinically-attested factors that may increase a patient’s risk for CDI, such as age, antibiotic uses, cancer and/or 
GI-related conditions. Their discrimination threshold analysis aids physicians in deciding their own level of precaution. This is a 
transferable lesson to other infectious diseases such as Coronavirus Disease 2019 (COVID-19), as it considers the starkly different 
weights of false negatives and false positives. Specifically, as both CDI and COVID-19 tend to affect people with pre-existing conditions 
and/or comorbidity, early screening using our developed predictive models may help prevent disease outbreaks and mitigate severe 
consequences beyond the initial infections. This in turn could improve patient care, limit healthcare-associated cost, and boost hospital 
performance with regards to meeting CDC goals.
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