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ABSTRACT OF THE DISSERTATION 

 

Chip-Scale Architectures for Precise Optical Frequency Synthesis 

 

by 

 

Jinghui Yang 

Doctor of Philosophy in Electrical and Computer Engineering 

University of California, Los Angeles, 2018 

Professor Chee Wei Wong, Chair 

 

Scientists and engineers have investigated various types of stable and accurate optical 

synthesizers, where mode-locked laser based optical frequency comb synthesizers have been 

widely investigated. These frequency combs bridge the frequencies from optical domain to 

microwave domain with orders of magnitude difference, providing a metrological tool for 

various platforms. The demand for highly robust, scalable, compact and cost-effective 

femtosecond-laser synthesizers, however, are of great importance for applications in air- or 

space-borne platforms, where low cost and rugged packaging are particularly required. This 

has been afforded in the past several years due to breakthroughs in chip-scale nanofabrication, 

bringing advances in optical frequency combs down to semiconductor chips.  These platforms, 

with significantly enhanced light-matter interaction, provide a fertile sandbox for research rich 

in nonlinear dynamics, and offer a reliable route towards low-phase noise photonic oscillators, 
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broadband optical frequency synthesizers, miniaturized optical clockwork, and coherent 

terabit communications. 

 

The dissertation explores various types of optical frequency comb synthesizers based on 

nonlinear microresonators. Firstly, the fundamental mechanism of mode-locking in a high-

quality factor microresonator is examined, supported by ultrafast optical characterizations, 

analytical closed-form solutions and numerical modeling. In the evolution of these frequency 

microcombs, the key nonlinear dynamical effect governing the comb state coherence is 

rigorously analyzed. Secondly, a prototype of chip-scale optical frequency synthesizer is 

demonstrated, with the laser frequency comb stabilized down to instrument-limited 50-mHz 

RF frequency inaccuracies and 10-16 fractional frequency inaccuracies, near the fundamental 

limits. Thirdly, a globally stable Turing pattern is achieved and characterized in these 

nonlinear resonators with high-efficiency conversion, subsequently generating coherent high-

power terahertz radiation via plasmonic photomixers. Finally, a new universal modality of 

frequency combs is discussed, including satellite states, dynamical tunability, and high 

efficiency conversion towards direct chip-scale optical frequency synthesis at the precision 

metrology frontiers. 
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Introduction 

1.1.  Microresonator-Based Frequency Combs   

Optical frequency combs, since their inception more than a decade ago [1], has brought 

widespread impacts on sciences and technologies and been awarded the Nobel Prize in 

Physics in 2005 [2,3]. Researches on optical frequency combs have led to tremendous 

breakthroughs in precision spectroscopy [4–6], frequency metrology [7,8], and astrophysical 

spectrography [9,10]. They are also promising platforms for optical communication [11,12], 

stable microwave signal generation [13], and arbitrary optical waveform generation [14]. The 

current benchmark laser systems for optical frequency combs are self-referenced femtosecond 

mode-locked lasers [15].  

However, continuous-wave (cw) pumped microresonators emerge as promising 

alternative platforms for optical frequency comb generation in the last decade leveraging on 

breakthroughs in semiconductor nanofabrications [11,16–20]. Microresonator-based 

frequency combs are generated by modulation instability and four wave mixing, facilitated by 

the high quality factors and small mode volumes of these microresonators. Microresonator-

based optical frequency combs, or Kerr frequency combs, are unique in their compact 

footprints and offer the potential for monolithic electronic and feedback integration, thereby 

expanding the already remarkable applications of frequency combs. To this end, 

microresonator-based optical frequency combs, have recently been examined in whispering 

gallery mode (WGM) structures [19,21–26] and planar ring geometries [12,27]. Planar ring 
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cavities are particularly attractive since: 1) the resonator and the coupling waveguide can be 

monolithically integrated, reducing the sensitivity to the environmental perturbation; 2) the 

resonator only supports a few discrete transverse modes, increasing the robustness of coupling 

into the designed resonator mode family; and 3) the cavity dispersion and the comb spacing 

can be engineered separately, offering the flexibility to tailor the cavity dispersion for efficient 

and broadband comb generation.    

1.2.  Dissertation Overview   

This dissertation is dedicated to several key findings in precise optical frequency 

synthesis in the silicon photonics platform. 

Chapter 2, as a comparatively independent chapter, examines the first self-sustained 

radio frequency oscillators in silicon heterostructured photonic crystal nanocavities with high 

quality factor to mode volume ratios (Q/V) [28]. The pulsation is a cooperative temporal 

response from thermal and free carrier dispersions in an optical resonator, generating radio 

frequency (RF) tones with continuous wave (cw) input. Effective tuning of the RF tones is 

enabled by laser input parameters, verified by nonlinear coupled mode theory tracking the 

dynamics of photons, free carrier populations and temperature variations.  

Chapter 3 to Chapter 8 are thorough discussions on frequency combs in silicon nitride 

microresonators towards precise optical frequency synthesis:  

Chapter 3 provides an overview on the experimental setups and methods, and discusses 

globally-normal dispersion mode-locked frequency combs and one of the shortest pulse (74 

fs) formation on chip and analyzes the mode-locking mechanism in microresonator 

combs [20]. The observation is supported by ultrafast optical characterizations and numerical 
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modeling [24,25]. With the continuous-wave driven nonlinearity, the pulses sit on a pedestal, 

akin to a cavity soliton. The importance of pump detuning and wavelength-dependent quality 

factors as well as modal interactions in shaping the pulse formation and pulse structure are 

identified. The importance of bandpass filtering effect in stabilizing and shaping the pulses in 

this dispersion regimes is demonstrated experimentally and numerically. Closed-form 

solution of the master equation with appropriate approximations is derived by variational 

method, facilitating the design of low-noise mode-locked microresonator Kerr combs.  

Chapter 4 discusses the observation and analysis of self-injection locking, one of the 

key nonlinear processes governing the comb coherence by a bichromatic pump [31]. By 

introducing a low-power on-resonance seeding laser which is phase locked to the major pump, 

we detail the observation of comb transitions into coherent states and the dynamics of self-

injection locking between different comb families. Within the locking range of 40 MHz in the 

430 GHz carrier, deterministic control of comb repetition rates can be enabled by a microwave 

synthesizer used in the phase locked loop.  

Chapter 5 demonstrates a Kerr frequency comb oscillator with electronic-detectable 

spacing, with its low phase-noise feature characterized [32]. The comb spans nearly half an 

octave with more than 3,600 coherent comb modes. Single-sideband (SSB) phase noise 

analysis reveals low phase noise floor in free-running Kerr frequency combs, -130 dBc/Hz at 

1 MHz offset for the 18 GHz carrier. The frequency stability is characterized, and the 

measured free-running Allan deviation is 2×10-8 in 1 s, consistent with the frequency 

fluctuations caused by the pump wavelength drift. Feedback stabilization further improves the 

frequency stability to 7×10-11 in 1 s. 
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Chapter 6, as continuous effort based on Chapter 5, achieves the first fully stabilized 

CMOS-compatible broadband optical frequency synthesizer with a frequency relative 

uncertainty of 2.7×10-16, down to fundamental limits [26]. The comb’s two degrees of freedom, 

one of the comb line frequencies and the comb spacing, are phase locked to a known optical 

reference and a microwave synthesizer respectively. Active stabilization on the comb spacing 

improves the RF stability by six orders of magnitude, reaching residual instrument-limited 

close-to-carrier (10 Hz) phase noise of -70 dBc/Hz and Allan deviation of 3.6 mHz/√𝜏. The 

demonstrated system provides a promising compact and reproducible platform for coherent 

spectroscopy, sensing, optical clockwork, and astronomical observations.  

Chapter 7 discusses on one of the key applications of microresonator frequency combs 

in the coherent terahertz radiation with high optical-to-THz conversion efficiencies [33]. 

Expanded stability zone of Turing rolls of Kerr frequency combs is strategically achieved by 

incorporating the local mode hybridization effect, leading to globally stable Turing pattern 

formation with enhanced pump-to-comb conversion efficiency of 45% and an elevated peak-

to-valley contrast of 100. The stationary Turing pattern is discretely tunable across 430 GHz 

on a THz carrier, with a fractional frequency sideband non-uniformity measured at 7.310-14. 

The free-running Turing roll coherence, 9 kHz in 200 ms and 160 kHz in 20 minutes, is 

transferred onto a plasmonic photomixer for one of the highest power THz coherent 

generation at room-temperature, with 1.1% optical-to-THz power conversion. Its long-term 

stability can be further improved by more than two orders of magnitude, reaching an Allan 

deviation of 610-10 at 100 s, with a simple computer-aided slow feedback control. The 

demonstrated on-chip coherent high-power Turing-THz system is promising to find 

applications in astrophysics, medical imaging, and wireless communications. 
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Chapter 8 discusses a universal modality of frequency comb, featuring the satellite comb 

formation exceeding conventional phase matching bandwidth. This is enabled by multiple 

phase matching in parametric oscillation process in the nonlinear Kerr medium through cavity 

dispersion control. The concept can lead to spectrally-wide optical frequency combs with high 

conversion efficiency in silicon nitride microresonators driven with a continuous-wave pump. 

Particularly two satellite comb clusters at  1.3 m and 2.0 m regimes are symmetrically 

generated simultaneously with the central comb. The intensities of the satellite combs are 

comparable with the first generated parametric sideband near the pump, with a demonstrated 

record high external conversion efficiency reaching up to -30 dB. The spectral positions, RF 

amplitude noise, and evolution dynamics of the satellite combs are detailed under different 

pumping conditions. The demonstrated satellite comb structures and their formation with 

multiple phase matching serve as a unique platform for carrier envelope phase stabilization as 

well as coherent light sources covering extended spectral regimes.  

Chapter 9 provides concluding remarks and future work plans.  
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Radio Frequency Self-Pulsations in Monolithic High-Q/V 

Heterostructured Photonic Crystal Cavities   

2.1.  Introduction  

Among the various building blocks on photonic chips, photonic crystal (PhC) 

waveguides and cavities are an indispensable family that have realized tremendous 

functionalities and applications since their invention of two decades [34,35]. Known as 

semiconductors of light [36], these PhC structures hold and control the photons by the 

artificially introduced detect in the periodic structures [37]. PhC cavities feature with their 

ultra-small modal volumes and long photon lifetimes, leading to their functional integrated 

devices and systems such as all-optical switch and logic gates, optical buffers [38], low-

threshold Raman lasers [39,40], cavity quantum electrodynamics [41] and sensing.  

This chapter particularly discusses the phenomena of regenerative oscillation, also 

called self-induced oscillation or self-pulsation, in the silicon photonic crystal nanocavities.  

It is a cooperative temporal response due to thermal and free carrier dispersions in an optical 

resonator, generating radio frequency (RF) tones with continuous wave (CW) input. 

Observations of regenerative oscillation in one dimensional (1D), 2D  [42–48], 2.5D and 3D 

photonic resonators [49–54] are reported in various material structures. As silicon photonic 

crystals provides a CMOS compatible platform, considerable studies on low energy switching 

and passive tuning are addressed in silicon-based devices [42,55–57], with potential in chip-

scale tunable RF oscillators towards all-optical communication systems  [58]. Optical thermal 
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and free carrier bistability were demonstrated in the monolithic photonic crystal cavities with 

high Q/V ratio, enabled by strong light-matter interaction at sub-milliwatt power levels  [39,55] 

including pulsed carrier switching [59]. Here we show our first observations of regenerative 

oscillation in a heterostructured cavity with quality factor (Q) ~ 500,000 and mode volume (V) 

~ 0.11 μm3 (Q/V ratio of ~ 107 μm-3), with threshold of 79 W continuous wave input. 

Temporal and spectral domain observation of regenerative oscillation in monolithic silicon 

heterostructured photonic crystals cavities with high quality factor to mode volume ratios 

(Q/V). The results are interpreted by nonlinear coupled mode theory (CMT) tracking the 

dynamics of photons, free carrier populations and temperature variations. We experimentally 

demonstrate effective tuning of the radio frequency (RF) tones by laser-cavity detunings and 

laser power levels, confirmed by the CMT simulations with sensitive input parameters.   

2.2.  Observations of Self-pulsations in High-Q/V Heterostructured 

Photonic Crystal Cavities   

The examined double-/multi- heterostructured photonic crystal cavities are fabricated 

via 248 nm deep-UV photolithography and reactive ion etching on 250 nm-thickness silicon-

on-insulator wafers. A scanning electron microscope (SEM) image in Figure 2-1a shows a 

typical double-heterostructure with a lattice constant (a1) of 410 nm, air hole radii 0.276a1, 

and increasing lattice constants of 415 nm and 420 nm (a2) in the cavity region; the 

waveguides with length of 112a1, width 1.0a1 and 9 layers of air-holes separated from the 

cavity. 2 μm oxide underneath the photonic crystal cavity is removed by buffered oxide wet 

etching. To achieve optimized fiber-chip-fiber coupling, inverse tapered couplers with an 

oxide over-cladding are integrated with the waveguide. Inset of Figure 2-1a shows the 3D 
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finite-difference time-domain (FDTD) simulations of the electric-field distribution, with the 

cavity modeled to have an intrinsic quality factor in excess of ~106 and modal volume Vm of 

~1.2(0/n)3 = 0.11 μm3. To sustain oscillation in silicon photonic crystals, the threshold power 

of self-pulsation steadily increases as Q/V ratio decreases. For devices with Q factor smaller 

than 100,000, regenerative oscillation is hardly observed even at 1 mW power levels.  

 

Figure 2-1. Ultrahigh-Q/V platform for self-induced regenerative oscillations.  

(a) Scanning electron micrograph of a double-heterostructured high-Q photonic crystal cavity 

(scale bar: 2 μm); (inset) 3D finite-difference time-domain calculated electric field profile (Ey) 

of the high-Q mode supported by a double-heterostructured cavity (Qin = 480,000, mode 

volume = 0.11 μm3). (b) Measured transmission spectra (wavelength scanned from low to 

high) with normalized input power from 1 μW to 1 mW. The linear transmission is measured 

at 1 μW (black symmetric lineshape). 

 

The high-Q photonic crystal cavity is characterized through spectral transmission, by 

sending the CW coherent transverse-electric light from a tunable laser onto chip through 

polarization controllers and piezoelectric-feedback-controlled lensed fibers. The average 

power level and temporal response of output light are monitored by power meter and fast 

photodetector (New Focus 1554B, 12 GHz bandwidth) respectively. The fast photodetector is 
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connected to an electronic spectrum analyzer (Agilent 5052B) and a high-speed oscilloscope 

(Tektronix, 4 GHz bandwidth) to obtain the time-domain response of the high-Q cavity. The 

environmental thermal fluctuation of the chip is minimized by a thermoelectric cooling 

module driven by a benchtop temperature controller (Thorlabs TED200C). 

The measured optical transmission spectra with different input powers are shown in 

Figure 2-1b Cavity resonance shifts from 1591.23 nm to 1591.39 nm as input power (all 

referred to the powers or estimated powers inside the cavity, same below) increases from 1 

μW to 1 mW. By curve-fitting the transmission spectrum of cold cavity, we obtain the cavity 

linewidth of ~ 6 pm and 5 dB extinction ratio, corresponding to loaded and intrinsic Q factors 

of 266,000 and 480,000 respectively. The Q factors are slightly lowered by the imperfections 

in nanofabrication  [60]. At higher input powers the cavity transmissions become asymmetric 

due to thermal hysteresis effects, indicated by the sharp transition resulting from the bistable 

states  [55,58].  

With the input power well beyond the threshold of bistability, temporal self-pulsation 

can be observed at a range of laser-cavity detunings. For an input CW laser power of 800W, 

the output self-pulsation waveform is shown in Figure 2-2a, at laser-cavity detunings of 120 

pm, 190 pm and 267 pm respectively. The dependence of oscillation periods, dip widths 

(corresponding to the pulse width of cavity mode) and duty cycles (ratio between the dip width 

and the period) on laser-cavity detunings are systematically measured and summarized in 

Figure 2-2b. The period of time domain pulsation is around tens of ns to 100 ns, with duty 

cycle varying from 20% to 60%. The upper and lower bounds of detuning in the oscillation 

region are illustrated in Figure 2-2c. Only within the bounded laser-cavity detuning ranges 

can the stable oscillation be observed, which displays decreased standard deviation of the time 
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period of temporal pulses, along with much lower phase noise and amplitude noise compared 

to the oscillatory output in other ranges (e.g. chaotic states)  [61]. Higher input power linearly 

increases the bound of detunings regions for the regenerative oscillations.  For laser-cavity 

detunings smaller than 70 pm or larger than 220 pm, the oscillation is unstable and hard to 

measure.  

Frequency domain response of the self-sustained regenerative oscillations is 

simultaneously monitored by the RF spectrum analyzer. The RF spectrum of the oscillation 

at the detuning of 160 pm is shown in Figure 2-2d; the experimental relation between the 

fundamental RF tone and laser-cavity detuning is plotted in the inset of Figure 2-2d, which 

are the Fourier transforms of the time-domain measurements such as in Figure 2-2a. As 

detuning increases, initially chaotic excitation of the oscillation stabilizes, and more coherent 

oscillatory signals are generated, until the detuning increases to the upper bound of the 

detuning. We also measured the single sideband phase noise and amplitude noise of the 

fundamental mode for regenerative oscillation. When stable temporal oscillation is generated, 

the amplitude noise level decreases by ~ 40 dBc/Hz.  
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Figure 2-2. Experimental observation of regenerative oscillations in a high-Q double-

heterostructured photonic crystal cavity, controlled by input laser power and laser-

cavity detuning.   

(a) Observed time domain periodic pulsation with laser-cavity detunings of 120 pm, 190 pm 

and 267 pm at 800 μW input power. (b) Period, dip width, and duty cycle versus detuning, 

summarized from a set of temporal observations as in panel (a). (c) Measured upper and lower 

bound of detuning range for oscillations with Q = 480,000. (d) RF spectrum at the wavelength 

detuning of 163 pm; (inset) measured fundamental RF frequency versus detuning at 800 μW 

input power. 
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2.3.  Analysis on Cavity Mode Dynamics by Nonlinear Coupled Mode 

Theory   

The temporal dynamics, phase-space diagram and frequency domain spectrum under 

different input conditions are simulated as shown in Figure 2-3. In the self-pulsation process, 

the dynamics of the cavity mode is modified by several nonlinear effects [45,56,62], i.e., 

thermo-optic effect, free-carriers dispersion and Kerr nonlinearity. The dispersion induced by 

Kerr effect is orders of magnitude weaker than the other two effects in silicon material devices. 

Competing resonance shifts therefore occurs – red shift caused by thermo-optic effect and 

blue shift by free-carriers dispersion, resulting in a modification of resonance wavelength 

temporally and periodically. We model the transmissions with time-domain nonlinear coupled 

mode theory  [63,64], where the dynamics of mode amplitude a (square root of mode energy), 

the free carrier density N and the cavity temperature shift ΔT are given by: 

      (2-1) 

        (2-2) 

        (2-3)  

where the total loss rate is 1/τt= 1/τcoup+1/τin +1/τTPA+1/τFCA. 1/τcoup and 1/τin are the loss rates 

coupled into waveguide and into free-space respectively. The free carrier absorption rate 

1/τFCA=cσN(t)/n, and the two-photon absorption rate is defined as 1/τTPA =β2c
2/n2/VTPA|a|2, 

where β2 is the effective two-photon absorption coefficient of silicon. VTPA and VFCA are mode 

volumes of two-photon absorption and free carrier absorption respectively. The parameters 

used in the numerical simulation are listed in Table 2-1. Based on the model, the cavity stored 
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energy U(fJ), free-carrier density N(m-3) and temperature variation ΔT(K) are simulated on the 

left panels of Figure 2-3; the phase diagrams of mode amplitude are shown on the middle 

panels; and the fast Fourier transform (FFT) spectrum in the frequency domain on the right. 

The selected input conditions are: (a) input power 800 μW, detuning 160 pm; (b) input power 

800 μW, detuning 30 pm; (c) input power 100 μW, detuning 30 pm, where (a) matches with 

our experimental measurements.  

Table 2-1. Parameters for coupled mode theory simulations. 

Parameter Symbol Value  

Refractive index of Si ni 3.475 

Effective index of Si neff 2.77 

TPA coefficient  β2 (m/W) 8x10-18 

Kerr coefficient n2 (m
2/W) 4.4x10-18 

Free-carrier lifetime τfc (ns) 0.5 

Constant-pressure specific heat capacity cp,Si (J/Kg K) 0.7x103 

Density of Silicon ρSi (kg/m3) 2.33x103 

Thermal resistance R (K/mW) 50 

Temperature dependence on refractive index dn/dT (K-1) 1.86x10-4 

Loaded Q Qin 266,000 

Intrinsic Q Qv 480,000 

 

To match the experimental RF fundamental mode and parameter space of detuning 

(detailed in Figure 2-5a and Figure 2-5b), we adjust the initial conditions (I. C.) of internal 

cavity energy, free carrier density and temperature variation to be non-zero for larger 

detunings (e.g. larger than 50 pm at 800 μW input power). Physically the concept is analogous 

to the initial photons inside the microcavity before the pulsation is ignited. The non-zero I. C. 
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in the model is derived iteratively in the range of temporal dynamics, e.g. in Fig. 3a, we set 

the initial condition of the mode energy to be 4 fJ, the free carrier density N to be 41021 m-3 

and the cavity temperature shift ΔT at 2.2 K; it matches well with the observed pulsation as 

shown in the RF spectrum in the inset of the right panel (the same as Figure 2-2d). As a 

comparison, zero I. C. can sufficiently initiate the self-pulsation for detunings less than 50 pm 

from simulation; the relation between duty cycle and detuning matches experiment 

qualitatively. Figure 2-3b shows the simulated self-pulsation at detuning of 30pm, with zero 

I. C., i.e. U0 = 110-15 fJ, N0 = 11019 m-3 (an estimated quiescent value for silicon), ΔT0 = 0.1 

nK. Our experimental result, however, shows unstable or chaotic oscillation with detunings 

less than 60 pm as mentioned above, even though the self-pulsation in smaller or negative 

detunings are observed or predicted in other types of devices  [48,65,66]. In the frequency 

domain, condition (b) shows a higher harmonic level indicating a lower purity of signal, which 

suggests weaker device performance. The phase diagrams of (a) and (b) are similar, both with 

complex limit cycles. At a lower input power such as in the condition (c), a purer signal is 

more likely to be excited, with only one limit cycle and lower harmonics as shown in Figure 

2-3c; however, it is not observed experimentally possibly due to the low intensity or signal-

to-noise ratios compared to condition (a).  

Note that, the cavity dynamics is also in accompany with cavity resonance shift. An 

example with non I. C. condition in condition (b) is shown in Figure 2-4. The cavity stored 

energy begins to fluctuate with respect to the cavity resonance shift mediated by the initial 

photons in the cavity (blue curve). After a certain time, the cavity is driven to the periodic 

pulsation state (red curve), where a stable cycle of the relationship forms and recurs.  
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Figure 2-3. Coupled mode theory simulations of the temporal dynamics (cavity stored 

energy U(fJ), free-carrier density N(m-3), and temperature variation ΔT(K)), phase-

space reconstruction of normalized mode amplitude, and frequency domain spectrum 

respectively under selected input conditions.  

(a) input power 800 μW, detuning 160 pm, non-zero initial conditions (I. C.) (U0 = 4 fJ, N0 = 

41021 m-3, ΔT0 = 2.2 K); (b) input power 800 μW, detuning 30 pm, zero I. C. (U0 = 110-15 

fJ, N0 = 11019 m-3, ΔT0 = 0.1 nK); (c) input power 100 μW, detuning 30 pm, non-zero I. C. 

(U0 = 1 fJ, N0 = 51020 m-3, ΔT0 = 0.4 K). (a) corresponds to our experimental conditions; (inset 

of right panel of (a)) the measured RF spectrum, with the unit of dBm/Hz for y-axis.  
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Figure 2-4. Relative cavity resonance shift in accompany with cavity stored energy with 

non-zero I. C. in condition Figure 2-3b. Temporal resolution in the simulation is 1 ps.  

The cavity stored energy begins to fluctuate with respect to the cavity resonance shift mediated 

by the initial photons in the cavity (blue curve). After a certain time, the cavity is driven to 

the periodic pulsation state (red curve), where a stable cycle of the relationship forms and 

recurs. 

 

We point out that, high frequency oscillations up to ~ 2 GHz can occur as shown in the 

simulation of the temporal dynamics and FFT spectrum of Figure 2-3a, with decreased 

damping through improved thermal conductivity and cavity stored energy (as shown). 

Experimentally this is not observed due to either comparatively lower thermal conductivity in 

the device cavities or the limited data acquisition bandwidth. Similar phenomena are observed 

and explained in microdisk resonators [43], and silicon photonic crystal cavities  [66] where 

non-damped and sinusoidal GHz oscillations is obtained with material surface treatment for 

the devices introduced.  
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Figure 2-5. Comparison between simulations and experiments of self-pulsations.  

(a) Simulated up and low bound of detuning range for oscillations for Q = 480,000. Red solid 

and dashed lines show the upper bound with non-zero (U = 4 fJ, N = 41021 m-3, ΔT = 2.2 K) 

and zero (U = 110-22 fJ, N = 110-10 m-3, ΔT = 0.1 nK) initial condition (I.C.) respectively, 

corresponding to the cases for the cavity with or without initial photons before the nonlinear 

behavior occurs. Experimental results (red and blue dots) are shown as a comparison with 

simulation. (b) Simulated (line) and measured (dots) RF frequency of fundamental mode of 

self-pulsation versus detuning. (c) Threshold input power (black) and peak intracavity energy 

(blue) as functions of cavity Q factor. Experimental results marked as a solid dot/triangle. The 

threshold power for oscillation is beyond 1 mW in the cavity with Q < 100,000. (d) Free 

carrier lifetime dependent oscillation features characterized by the generated fundamental RF 

frequencies with laser-cavity detuning at 10 pm. At given conditions, the measured RF 

frequency (red star) indicates the free carrier lifetime in the high Q cavity to be 500 ps. 
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Following the initial condition treatment as mentioned above, the parameter space 

(input power and detuning) and RF frequency of the fundamental mode are obtained through 

simulation by finely adjusting parameters in the model, e.g. free carrier lifetimes and mode 

volumes. The results are shown in Figure 2-5a and Figure 2-5b with experimental data as 

comparisons respectively. Figure 2-5c depicts the simulated threshold power and cavity stored 

energy with different Q factors, which illustrates that regenerative oscillation will only occur 

in high-Q devices, with the threshold enhanced by the wavelength-scale photonic crystal 

modal volumes. The threshold Q factor for observing the oscillation in silicon based photonic 

crystals is about 110,000, at 400 W power level. Experimental data is highlighted, where the 

internally stored cavity energy is estimated to be 5 fJ  [67]. 

In order to accurately estimate the free carrier lifetime, which is a function of free 

carrier density  [43,45], we plot the dependence of the RF fundamental mode versus carrier 

lifetime, and map the experimental measurement in Figure 2-5d, where we find 0.5 ns as the 

best fit for experiments. The free carrier lifetime can be electro-optically controlled by placing 

lateral bias on the high Q cavity, for a potential voltage controlled local oscillator towards on-

chip signal processing.  

Note that this work discusses the case with cw excitation, whereas in cases with pulsed 

excitation, where the heat generated from thermal-optic effect can have time to dissipate, the 

duty cycle and repetition rate of the input can vary accordingly [68]. For instance, very low 

duty cycle excitation allows the cavity to cool down before the arrival of the next pulse, 

resulting no heating effect to the cavity; a repetition rate faster than the thermal relaxation 

time of the cavity will prohibit sufficient heat dissipation after each excitation cycle, leading 
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to accumulated heat inside the cavity and a redshift of the cavity resonance. This will offer 

another set of degree of freedom to engineer the self-induced pulsations.   

2.4.  Summary    

In this chapter, we discuss the first observations of self-sustained regenerative pulsation 

in photonic crystal heterostructured cavities with Q/V ratio of 107 μm-3, with detailed 

measurements and numerical interpretations. As the input power into the cavity increases up 

to ~ 80 μW (internal stored energy up to ~ 5 fJ), the transmission intensity self-excites into an 

oscillatory behavior in the time-domain. The period of time domain pulsation is around 100 

ns, with duty cycle varying from 20% to 60%, controllable by the input powers and detunings. 

The oscillation region is mapped onto various laser-cavity detunings versus coupled powers. 

The complete nonlinear coupled mode theory simulation illustrates the parameter space, and 

specifies the effective free carrier lifetime in the cavity.  The comparison between experiments 

and simulations under different input conditions is described and discussed. The phenomena 

and studies allow lower power operation for all-optical signal processing and yield an 

alternative approach towards tunable frequency oscillators by controlling the incident drive 

signal.    
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Mode-Locking and Ultrashort Pulse Generation from On-

Chip Normal Dispersion Microresonators 

3.1.  Introduction  

Kerr frequency comb, or termed as microresonator frequency comb or microcomb, has 

a different fundamental mechanism from the mode-locked laser based OFC. These frequency 

combs emerge as promising platforms for compact optical frequency comb 

generation [11,16,18,19,69–75] through broadband four-wave mixing (FWM). With 

anomalous group-velocity-dispersion (GVD) and self-phase modulation (SPM), optical 

solitons can be generated [76,77], and remarkably broad bandwidths [71] and RF-optical 

stability [69] have been demonstrated. Obtaining anomalous GVD broadly across arbitrary 

center frequencies, however, is challenging for microresonators [78]. Dispersion engineering 

by conformal coating [79–81] and waveguide shaping [82] are possible, but often lead to 

lower cavity optical quality factors (Qs). Alternatively, frequency comb and ultrashort pulse 

generation from normal GVD microresonators has been theoretically predicted [83–85] and 

comb-like spectra from normal GVD crystalline resonators were recently measured [86,87]. 

Further investigation into this normal GVD architecture, especially in the time-domain and 

that of coherent mode-locking, will open up new fields in chip-scale oscillators, waveform 

generation, and ultrafast spectroscopy. 

This chapter discusses our study on globally-normal GVD mode-locked frequency 

combs on-chip. The observation is supported by phase noise characterization, direct 
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frequency-resolved optical gating (FROG) pulse measurement, and numerical 

modeling [29,30]. Local dispersion disruption due to modal interactions initiates the comb, 

prior to support from the globally-normal dispersion. With the continuous-wave driven 

nonlinearity, the pulses sit on a pedestal, akin to a cavity soliton. We identify the importance 

of pump detuning and wavelength-dependent quality factors in stabilizing and shaping the 

pulse structure, to achieve a single pulse inside the cavity. All comb spectral lines are collected 

in our FROG pulse measurement and the phase-retrieved pulses demonstrate mode-locking 

down to 74 fs, one of the shortest frequency comb pulse on-chip to date. Numerical modeling 

of the comb growth and dynamics, capturing the full spectra, the measured GVD and Qs, 

confirms the feasibility of mode-locked frequency comb generation and agrees with our 

measurements. Furthermore, we demonstrate, both experimentally and numerically, the 

importance of effective spectral bandpass filtering in stabilizing and shaping the pulses 

generated in the globally-normal GVD microresonators. We obtain the closed-form solution 

of the master equation with appropriate approximations, facilitating the design of low-noise 

mode-locked microresonator Kerr combs.  

3.1.1. Si3N4 Ring Resonator, Refractive Index and Quality Factor 

Characterization  

An example scanning electron micrograph of the ring resonator and the refractive index 

of the low pressure chemical vapor deposition (LPCVD) Si3N4 is shown in Figure 3-1a. Due 

to the large refractive index of the Si3N4 waveguide, a 600 µm long adiabatic mode converter 

(the Si3N4 waveguide, embedded in the 5×5 µm2 SiO2 waveguide, has gradually changing 

widths from 0.2 µm to 1 µm) is implemented to improve the coupling efficiency from the free 
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space to the bus waveguide. The input-output insertion loss for the waveguide does not exceed 

6 dB. The refractive index is measured with an ellipsometric spectroscopy (Woollam M-2000 

ellipsometer) and the red curve is the fitted Sellmeier equation assuming a single absorption 

resonance in the ultraviolet (Figure 3-1b). The fitted Sellmeier equation, 𝑛(𝜆) =

√1 +
(2.90665±0.00192)𝜆2

𝜆2−(145.05007±1.03964)2
, is then imported into the COMSOL Multiphysics for the 

waveguide dispersion simulation, which includes both the material dispersion and the 

geometric dispersion. 

The fabrication procedure of our microresonator: First a 3 μm thick SiO2 layer was 

deposited via plasma-enhanced chemical vapor deposition on p-type 8” silicon wafers to serve 

as the under-cladding oxide. Then LPCVD was used to deposit a 725 nm silicon nitride for 

the ring resonators, with a gas mixture of SiH2Cl2 and NH3. The resulting Si3N4 layer was 

patterned by optimized 248 nm deep-ultraviolet lithography and etched down to the buried 

SiO2 via optimized reactive ion dry etching. The sidewalls were observed under SEM for an 

etch verticality of 88 degrees. The nitride rings were then over-cladded with a 3 μm thick SiO2 

layer, deposited initially with LPCVD (500 nm) and then with plasma-enhanced chemical 

vapor deposition (2500 nm). The device used in this study has a ring radius of 200 µm, a ring 

width of 2 µm, and a ring height of 0.725 µm. 

 

Figure 3-1. Scanning electron micrograph of the chip-scale ring resonator and refractive 

index measurement.  
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(a) Layout of the ring resonator with input/output mode converters with less than 3 dB 

coupling loss on each facet.  Scale bar: 50 µm. (b) Spectroscopic ellipsometer measurements 

of the refractive index of the LPCVD Si3N4 for the numerical dispersion modeling. 

 

Figure 3-2 shows the wavelength-dependent Q-factors of the ring resonator, determined 

by Lorentzian fitting of cavity resonances. The loaded Q reaches its maximum (~1.4M) at 

1625 nm and gradually decreases on both ends due to the residual N-H absorption at the short 

wavelengths and the increasing coupling loss at the long wavelengths. This effective bandpass 

filter plays an important role in pulse generation from our normal GVD microresonator. 

 

Figure 3-2. Q quantification of the resonant modes.  

The intrinsic absorption from the residual N-H bonds results in the loaded Qs’ roll-off at the 

short wavelengths (circles). Post-annealing of the Si3N4 ring resonator lowers the 

concentration of the residual N-H and reduces the roll-off (triangles). At the long wavelengths, 

the increasing coupling loss is responsible for the Q roll-off. The red curve is the fit of the 

loaded Qs, used in the numerical simulations. 
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3.1.2. Dispersion Engineering and Characterization   

Figure 3-3 shows the dispersions of the ring resonator calculated with a commercial 

full-vector finite-element-mode solver (COMSOL Multiphysics), taking into account both the 

waveguide dimensions and the material dispersion. Modeling is performed on 50 nm 

triangular spatial grid with perfectly-matched layer absorbing boundaries and 5 pm spectral 

resolution.  Since the ring radius is large, the bending loss and the bending dispersion of the 

resonator waveguide are negligible in our ring resonators [79]. The fundamental mode (TE11) 

features small normal group velocity dispersion (GVD) and small third-order dispersion (TOD) 

across the whole telecommunication wavelength range while the first higher order mode (TE21) 

possesses large anomalous GVD and large TOD. We define GVD and TOD in accordance 

with formulas 𝐺𝑉𝐷 ≡
𝜕2𝜑

𝜕𝜔2 =
𝜆3

2𝜋𝑐0
2

𝑑2𝑛

𝑑𝜆2
 and 𝑇𝑂𝐷 ≡

𝜕3𝜑

𝜕𝜔3 = −
𝜆4

4𝜋2𝑐0
3 (𝜆

𝑑3𝑛

𝑑𝜆3
+ 3

𝑑2𝑛

𝑑𝜆2
) . The 

dispersion profile of a microresonator can be tailored by the cross-sections of the waveguide. 

Some examples with a zoom-in wavelength range are summarized in Figure 3-4.    

 

Figure 3-3. Simulated GVD and TOD of the ring resonator.  

The fundamental mode features normal GVD across the whole telecommunication 

wavelength range while the first higher order mode possesses anomalous GVD. The 
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fundamental mode also features small TOD at the telecommunication wavelength range, 

beneficial for broad comb generation. 

 

 

Figure 3-4. Engineering dispersion by waveguide cross-sections.  

Simulated GVD and TOD with different waveguide heights (800 nm and 700 nm) and 

different waveguide widths (1000 nm to 2200 nm) respectively.   

The schematic diagram of the dispersion measurement setup is shown in Figure A1.  

The microresonator transmission, from which quality factor and FSR values are determined, 

was measured using a tunable laser swept through its full wavelength tuning range at a tuning 

rate of 40 nm/s. For absolute wavelength calibration, 1% of the laser output was directed into 

a fiber coupled hydrogen cyanide gas cell (HCN-13-100, Wavelength References Inc.) and 
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then into a photodetector (PDGascell). The microresonator and gas cell transmission were 

recorded during the laser sweep by a data acquisition system whose sample clock was derived 

from a photodetector (PDMZI) monitoring the laser transmission through an unbalanced fiber 

Mach-Zehnder Interferometer (MZI). The MZI has a path length difference of approximately 

40 m, making the measurement optical frequency sampling resolution 5 MHz. The absolute 

wavelength of each sweep was determined by fitting 51 absorption features present in the gas 

cell transmission to determine their subsample position, assigning them known traceable 

wavelengths [88] and calculating a linear fit in order to determine the full sweep wavelength 

information. Each resonance was fitted with a Lorentzian lineshape unless a cluster of 

resonances were deemed too close to achieve a conclusive fit with a single Lorentzian. Then, 

an N-Lorentzian fit was utilized where N is the number of resonances being fitted. The 

dispersion of the ring resonator was then determined by analyzing the wavelength dependence 

of the FSR. 

To compare the dispersion measurements with the COMSOL calculations, we 

performed two other measurements beside the one shown in the comb measurement in Figure 

3-7b. Figure 3-5a and b show the measured dispersions of the TE21 mode of the microresonator 

used in this paper (a ring width of 2 µm) and the TE11 mode of the microresonator with a 

different ring width of 1.55 µm, respectively. Both measurements show good agreements with 

the COMSOL calculations (Dmea = 2.2 MHz versus Dsim = 2.4 MHz, and Dmea = 330 kHz v.s. 

Dsim = 500 kHz). The good agreements give us confidence in the COMSOL calculations, and 

thus we use the calculated dispersions in the Kerr comb numerical simulation for the 

wavelength range not covered by the dispersion measurements (due to the unavailability of 

the suitable tunable laser). 
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Figure 3-5. Measured dispersions by swept wavelength interferometry.  

(a) Wavelength dependence of the FSR, measuring a non-equidistance of the modes, D, of 2.2 

MHz, in a good agreement with the COMSOL simulations, D = 2.4 MHz. (b) Wavelength 

dependence of the FSR, measuring a non-equidistance of the modes, D, of 330 kHz, in a good 

agreement with the COMSOL simulations, D = 500 kHz. (c) Dispersion measured at different 

wavelength scan speeds, showing the minimal effect of the temperature drift when the 

wavelength scan speed is set higher than 20 nm/s. 

It has been shown that the resonance shift due to the temperature drift is the major cause 

in the uncertainty of the dispersion measurements [89]. In our measurement setup, we actively 

control both the ambient and the on-chip temperature and the temperature drift in 2 second is 

measured to be less than 5 mK. Such a temperature drift will lead to a resonance shift that can 

be calculated by 
∆𝜐

𝜐0
= −(𝛼 +

1

𝑛

𝑑𝑛

𝑑𝑇
) ∆𝑇 , where the thermal expansion coefficient 𝛼 =

3.3 × 10−6/𝐾  and the thermo-optic coefficient 
𝑑𝑛

𝑑𝑇
= 2.45 × 10−5/𝐾  [90,91]. Thus, the 

uncertainty of our dispersion measurement setup, limited by the temperature induced 

resonance shift, is estimated to be less than 175 kHz/mode. Experimentally, we observe 

measurement errors of less than  70 kHz/mode, in good agreement with the estimation. For 

each measurement, four datasets are taken and independently fit to find the dispersion. The 

reported Ds are the average values and the measurement errors are the standard deviations of 

the four datasets. Furthermore, we also confirm the temperature drift has minimal effect when 

the wavelength scan speed is set higher than 20 nm/s (Figure 3-5c). 
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Note that, the non-equidistance of the modes in our ring resonator can be estimated as 

𝐷2 = −270 𝑘𝐻𝑧 . Compared to the resonance linewidth, 2𝛾0 = 180 𝑀𝐻𝑧 , the non-

equidistance is insignificant and thus comb spacing alterations due to mode interaction are 

pronounced in our ring resonator [92]. The frequency shift ∆𝑎 of mode a due to interaction 

with mode b can be estimated using the formula ∆𝑎= −
𝜅2

∆
, where 𝜅 is the interaction constant 

and Δis the difference in eigenfrequencies of the interacting modes (a and b) [92]. Even with 

an assumption of large Δ of 10 GHz, a small mode interaction constant 𝜅 = 0.6𝛾0 can change 

the local dispersion from normal dispersion to anomalous dispersion.  Similar effect was also 

observed and characterized in Ref. [93].  

Figure 3-6 plots the resonance frequency offsets with respect to the fundamental mode 

family (top) as well as the wavelength-dependent FSRs of the fundamental mode family 

(bottom). The zero crossings on the upper panel represent the wavelengths where the 

fundamental mode family experiences mode crossings with other higher order mode families. 

The lower panel then shows that the disruption of the dispersion continuity of the fundamental 

mode family is dominated by the mode interaction with the first higher order TE mode family. 



 

 29 

 

Figure 3-6. Frequency offset and FSR of the modal families.  

Upper panel: The resonance frequency offsets with respect to the fundamental mode family. 

Lower panel: Wavelength-dependent FSRs of the fundamental mode family. 

 

3.2.  Globally-Normal GVD Mode-Locked Frequency Combs   

The transmission of Si3N4 microring resonator under investigation is shown in Figure 

3-7a. Five modal families (3 TE and 2 TM) are identified from the transmission and each 

Lorentzian resonance is fitted to determine its frequency and Q-factor as described in session 

3.1.1. The frequency data is then used to evaluate the GVD. For the fundamental mode family, 

a loaded Q-factor of more than 106  is achieved at 1600 nm while the Q-factors at the 

telecommunications C-band wavelengths are more than 4 lower due to residual N-H 

absorption [94]. For the higher order mode families, Q-factors are orders of magnitude smaller 

and thus no Kerr comb is generated from these mode families. Q-factors are also reduced at 

longer than 1625 nm due to increasing coupling loss. Therefore, the resonator has a distinct 



 

 30 

spectrally restricted area characterized with the highest Q-factor. As discussed later, this 

feature is critical for the mode-locked pulse generation in our normal GVD microresonators. 

Figure 3-7b shows the measured fundamental mode dispersion of the ring resonator, in a good 

agreement with our numerical modeling using a full-vectorial finite-element mode solver. 

Across the whole L-band, the fundamental mode features a normal GVD with local 

disruptions induced by mode interaction with the higher-order modes. Such change of local 

GVD facilitates the start of the hyper-parametric oscillation from our microresonator. An 

example Kerr comb spectrum is shown in Figure 3-7c, with a spectral width spanning more 

than 200 nm. The optical spectrum shows a clean mode structure with comb lines separated 

by  single free spectral range (FSR) of the fundamental mode family, without identifiable 

noise peaks between comb lines (Figure 3-3b, inset). We investigated the Kerr comb 

coherence by measuring the RF amplitude noise with a scan range much larger than the cavity 

linewidth and by performing a cw heterodyne beat note measurement [24,95]. Both 

measurements confirmed the coherence of the Kerr comb. The use of RF amplitude noise as 

a measure of low phase noise operation has been demonstrated and widely 

employed [24,77,95]. With proper change of the pump power and detuning (detailed in Figure 

3-8), the Kerr comb is driven into the low phase noise regime as shown in Figure 3-7d. The 

cw heterodyne beat note measurements are shown in Figure 3-7e. Besides the beat note of the 

cw laser with the pump laser, beat notes between the cw laser and different comb lines are 

also measured. All beat notes exhibit the same linewidth of 800 kHz, limited by coherence 

between the cw laser and the pump laser. Neither additional linewidth broadening of the comb 

lines relative to the pump nor multiple beat notes were observed, confirming the comb lines 

exhibit a similar level of phase noise as the pump. 
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Figure 3-7. Microresonator frequency comb generation and characterization.  

(a) Transmission of the cavity modes. Inset: an optical micrograph of the ring resonator. Scale 

bar: 100µm. (b) Left: wavelength dependent FSR, measuring a non-equidistance of the modes, 

𝐷2 ≡ −𝛽2𝑐𝜔𝐹𝑆𝑅
2 𝑛0⁄ , of -225kHz, in a good agreement with the simulation result from a full-

vector finite-element mode solver, 𝐷2 = −270𝑘𝐻𝑧. Right: transmission of the cavity mode 

at the pump wavelength, measuring a quality factor of 1.1 × 106. (c) Example Kerr comb 

spectrum, with a spectral width spanning more than 200 nm. (d) RF amplitude noise of the 

Kerr comb (black curve) along with the detector background (red curve), indicating the low 

phase noise operation. Inset: a zoom-in plot of the optical spectrum, showing a clean comb 

structure. (e) cw heterodyne beat notes between a cw laser and different comb lines (black: 

pump; blue: 10th mode; red: 20th mode; green: 21st mode). No linewidth broadening of the 

comb lines relative to the pump is observed, showing the comb retains a similar level of phase 

noise as the cw laser. 

 

Note that, the comb experiences several stages before driven into a coherent state. As 

we tune the pump wavelength further into resonance and more power is coupled into the 

microresonator, the bandwidth of the secondary comb families grows and the spectral overlap 

between them becomes more extensive, resulting in an increase of RF amplitude noise and 

(c)

(d)

(e)

(a) 

(b)
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merging of multiple RF spikes to form a continuous RF noise spectrum. Note that, a dedicated 

study on the dynamics of coherent state transition is detailed in Error! Reference source not 

found.. After sweeping the detuning and power levels to generate a broad comb spectrum, we 

next perform an abrupt discrete step-jump in both detuning and power to achieve the low 

phase noise state, and are able to find a set of parameters at which the RF amplitude noise 

drops by orders of magnitude and approaches the detector background noise (Figure 3-7d). 

The phase-locked comb typically stabilizes for more than three hours.  

 

Figure 3-8. Normal dispersion Kerr comb evolution.  

Growth of the RF amplitude noise and the comb spectrum (inset) are measured at four 

different pump detunings over a 30 pm range as the pump is tuned into the cavity resonance 

(from (a) to (d)).  
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3.3.  Ultrashort Pulse Formation and Characterization   

Hyper-parametric oscillation in an anomalous dispersion microresonator starts from the 

modulation instability of the intra-cavity cw light. When the intra-cavity power exceeds a 

certain threshold, the cw field becomes modulated and the modes of the resonator that is phase 

matched start to grow. Since most materials possess positive Kerr nonlinearities, anomalous 

GVD is tuned in prior resonators to satisfy the phase matching condition. Increase of the 

optical power can result in soliton formation, leading to the generation of a broad frequency 

comb and short pulses.  

Hyper-parametric oscillation as well as Kerr comb formation is also possible in the case 

of normal GVD, but a non-zero initial condition is required for frequency comb and pulse 

generation [83]. In our microresonator, the comb can be ignited due to the change of local 

GVD resulting from the mode interaction between the fundamental mode family, which has a 

normal GVD, and the first higher order mode family, which has an anomalous GVD (see 

Figure 3-7b). Mode interaction enables excitation of the hyper-parametric oscillation from 

zero initial conditions. It is possible then to introduce a non-adiabatic change to the system 

parameters and transfer the system from the hyper-parametric oscillation regime to the 

frequency comb generation regime [83]. Here a non-adiabatic change means a stepwise 

change of resonance detuning or pump power, instead of a continuous scan, in a time shorter 

than the time of the comb growth, which is much longer compared to the cavity 

lifetime [83,96]. 
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Figure 3-9. Comb characterization and FROG measurement setup.  

PC, polarization controller; PFC, pigtailed fiber coupler; PBS, polarization beamsplitter; AL, 

aspheric lens; MR, micro-resonator; FM, flip mirror; OSA, optical spectrum analyzer; BPF, 

bandpass filter; RSA, RF spectrum analyzer; BS, beamsplitter; DS, delay stage; AC, 

achromatic lens; HSGS, high-sensitivity grating spectrometer; BBO, β-barium borate. BBO 

is chosen to be the second-harmonic generation crystal because it has been shown to exhibit 

ultrabroad phase matching bandwidth at the telecommunication wavelengths [97,98].  

We measured the pulse duration via sub-femto-joule sensitive second-harmonic-

generation (SHG) non-collinear frequency-resolved optical gating (FROG) [99,100] without 

involvement of any optical amplification nor external  bandpass filtering, to minimize pulse 

distortion.  

The schematic diagram of FROG setup is shown in Figure 3-9. The cw pump started 

from an external cavity stabilized tunable laser (Santec TSL-510C). The linewidth of the laser 

is 200 kHz and the frequency stability over an hour is <120MHz. The pump power was 

increased from 8dBm to 29 dBm in an L-band EDFA (Manlight HWT-EDFA-B-SC-L30-

FC/APC). A 3-paddle fiber polarization controller and a polarization beam splitter cube were 

used to ensure the proper coupling of TE polarization into the microresonator. The total fiber-
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chip-fiber loss is 6 dB. The microresonator chip was mounted on a temperature controlled 

stage set to 60oC. The temperature stability over an hour is <0.1oC so that the change in 

coupling loss is negligible (<0.5%). The output light was sent to an optical spectrum analyzer 

(Advantest Q8384) and a photodiode (Thorlabs DET01CFC) connected to an RF spectrum 

analyzer (Agilent E4440A) for monitoring of comb spectrum and RF amplitude noise, 

respectively.  For the RF amplitude noise measurement, a 10 nm portion of the optical 

spectrum (1560 nm to 1570 nm) was filtered from the comb.  The output light can also be sent 

by a flip mirror to the FROG setup for pulse characterization. The FROG apparatus consists 

of a lab-built interferometer with a 1 mm thick β-BBO crystal and a high-sensitivity grating 

spectrometer with a cryogenically-cooled deep-depletion 1024×256 Si CCD array (Horiba 

Jobin Yvon CCD-1024256-BIDD-1LS).  The FROG setup is configured in a non-collinear 

geometry and careful checks were done before measurements to ensure only background-free 

SH signals were collected.  The use of dispersive optics is minimized and no fiber is used in 

the FROG apparatus such that the additional dispersion introduced to the pulse is only -50 fs2. 

The FROG can detect pulses with a bandwidth of >200 nm [101] and a pulse energy of <100 

aJ (10 μW average power) with a 1 second exposure time. With the sensitive FROG, no 

additional optical bandpass filtering and amplification is needed (minimizing pulse distortion), 

though there is a small amount of dispersive filtering and intensity modification with the 

coupling optics and ring-waveguide coupling. The FROG reconstruction was done iteratively 

using genetic algorithm [102]. Genetic algorithm is a global search method based on ideas 

taken from evolution and is less susceptible to becoming trapped by local extrema in the search 

space. Both the spectral amplitudes and phases are encoded as strings of 8-bit chromosomes 

and two genetic operators, crossover and mutation, are used to generate the next-generation 
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solutions. Tournament selection with elitism is employed to ensure monotonically 

convergence of the solution [103]. The FROG error is defined as 𝜀 =

√
1

𝑁2
∑ |𝑆𝑚𝑒𝑎(𝜔, 𝑡) − 𝑆𝑟𝑒𝑡(𝜔, 𝑡)|2
𝑁
𝑖,𝑗=1 , where 𝑆𝑚𝑒𝑎(𝜔, 𝑡) and 𝑆𝑟𝑒𝑡(𝜔, 𝑡) are the measured and 

reconstructed spectrograms. 

Careful checks were conducted to ensure no interferometric SH signal was collected in 

the FROG spectrogram [104]. Figure 3-10a is the spectrogram with 32 ps delay scan and it 

shows a pulse train with 8.7 ps period, the inverse of the fundamental mode family FSR 

(115.56 GHz). For better visualization, Figure 3-10a is plotted on log-scale and the bright cw 

pump component is removed in the plot. Spectral interferometric fringes are clearly visible 

for delays longer than the pulse duration. This interference arises due to the presence of the 

cw background as it can also mix with the pulse, generating two temporally-separated FROG 

signal pulses. The fringes become sparse as the delay approaches zero and the patterns depend 

on the relative phase between the cw pump and the pulse [105]. Figure 3-10b and c is the 

spectrogram measured with a finer time resolution, 4 fs, and Figure 3-10c is the reconstructed 

spectrogram with a FROG error of 2.7%. Due to the complexity of the pulses, an iterative 

genetic algorithm is developed specifically to retrieve the spectrograms. Figure 3-10d shows 

the retrieved pulse shape (red curve) and temporal phase profile (blue curve), with a 1.3 rad 

relative phase contrast observed within the pulse. The full-width-half-maximum (FWHM) 

pulse duration is measured at 74 fs, positively chirped from its transform-limited FWHM pulse 

duration of 55 fs. Due to the nature of the cw driven nonlinearity, the observed mode-locked 

pulse necessarily sits on a pedestal, analogous to a cavity soliton. 
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Figure 3-10e shows the measured optical intensity autocorrelation (AC) trace of the 

generated pulse train and the left panel of Figure 3-10f plots the zoom-in view. Of note, this 

is not an interferometric autocorrelation and thus the temporal fringes in the AC trace 

represent the actual oscillating structures of the pulse. Between the pulses, temporal fringes 

with a period of ~200 fs are clearly observed and these fringes arise from the presence of the 

primary comb lines, ~4.85 THz (42nd mode) away from the pump. In addition, the right panel 

of Figure 3-10f shows the calculated AC traces of a stable transform-limited pulse train (black 

curve) and an unstable pulse train (red curve). As the instability results in the significantly 

increased background level of the AC trace, it shows that the instability of the generated pulse 

train is minimal and provides another confirmation of the stable mode-locked pulse 

generation [106]. 

 

Figure 3-10. Pulse duration measured via sub-femto-joule sensitive second-harmonic-

generation (SHG) non-collinear frequency-resolved optical gating (FROG).  

(a) FROG spectrogram with a delay scan of 32 ps, showing a fundamentally mode-locked 

pulse train. (b) FROG spectrogram measured with a finer time resolution of 4 fs. (c) 

Reconstructed FROG spectrogram achieved by use of genetic algorithms. (d) Retrieved pulse 

shape (red curve) and temporal phase profile (blue curve), measuring a 74 fs FWHM pulse 

duration. (e) Measured AC of the generated fundamentally mode-locked pulse train. (f) Left: 
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a zoom-in plot of the measured AC. Right: the calculated ACs of a transform-limited stable 

pulse train (black curve) and an unstable pulse train showing a significantly larger AC 

background (red curve). 

 

3.4.  Numerical Simulation by Solving the Master Equation   

To shed light on the pulse generation mechanism, we first performed numerical 

simulation solving the Lugiato-Lefever equation for 512 modes [30]. Experimentally-

measured dispersion (Figure 3-7b) and wavelength-dependent Q values (Figure 3-2), 

including the local dispersion disruptions, are entered into the modeling.  

In the simulation, we present the spectrum of the resonator as  2𝜋(𝜈𝑗 − 𝜈𝑗0) 𝛾0⁄ =

𝜈𝐹𝑆𝑅(𝑗 − 𝑗0) + 𝛿𝜈𝑗,𝑗0 , where 𝜈𝑗 = 𝜔𝑗 2𝜋⁄  is the linear frequency of the mode, 2𝛾0  is the 

FWHM of the pumped mode, 𝜈𝐹𝑆𝑅 is the dimensionless local averaged free spectral range of 

the resonator (in the simplest case of no mode interaction it is 2𝜈𝐹𝑆𝑅 =

(𝜈𝑗0+1 − 𝜈𝑗0−1) (𝛾0 2𝜋⁄ )⁄ ), and 𝛿𝜈𝑗,𝑗0  is the dimensionless GVD parameter. For the 

microresonator used in this study, 𝜈𝐹𝑆𝑅 = 1283.965 and 𝛾0 = 2𝜋 ∙ 90𝑀𝐻𝑧 .). Figure 3-11 

plots the dimensionless GVD parameter as a function of mode number. In the simulation 

shown in Figure 3, the experimentally measured resonant frequencies, whenever possible, and 

Q-factors of the fundamental mode family are input directly into the model. For modes beyond 

our measurement capability, we assume the GVD is normal without higher order dispersions 

and local dispersion disruptions induced by modal interactions. Namely, 𝛿𝜈𝑗,𝑗0 ≅ −
𝐷2

2
(𝑗 −

𝑗0)
2. The procedure is justified by the good agreements between the COMSOL calculations 

and the dispersion measurements (Figure 3-7b, Figure 3-5a and Figure 3-5b) and the small 

TOD from the COMSOL calculation.   
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Figure 3-11. Dimensionless GVD parameters used in numerical modeling.  

In the simulation shown in Figure 3-12, the experimentally measured resonant frequencies, 

whenever possible, and Q-factors of the fundamental mode family are input directly into the 

model (blue curve and datapoints). For wavelength range not covered by the measurement, 

we assume the GVD is normal without higher order dispersions and local dispersion 

disruptions induced by modal interactions (red curve). 

Figure 3-12a shows the simulation results, illustrating the emergence of the first pairs 

of hyper-parametric oscillation sidebands around the ±42nd modes. A good agreement with 

the experimental emergence result (inset) is achieved. With the proper pump power and 

detuning, a fundamentally mode-locked pulse train is generated as shown in Figure 3-12b. 

The modeled FWHM pulse duration is 110 fs and the relative phase contrast is 1.7 rad 

(positively chirped), in good agreements with the FROG measurements.  

We next numerically examined idealistic nonlinear microresonators characterized by 

solely normal GVDs and symmetric wavelength-dependent Q factors to elucidate the mode-

locking physics. Figure 3-14 shows the case with larger D2 of 0.03 (or -2.7 MHz) and without 

wavelength dependence in Q factors. A phase-locked Kerr comb can be generated, but the 

pulse duration is long and the shape complex. This is because, unlike in anomalous GVD 
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microresonators, pulse broadening due to the normal GVD is not balanced by SPM and thus 

an additional mechanism has to be introduced to stabilize and shape the pulses. In Figure 3-15, 

we numerically introduce wavelength-dependent Q-factors, effectively a bandpass filter, and 

then clean mode-locked pulses are generated from the microresonator. These are dark pulses 

and the exact pulse shapes depend on the bandpass filter bandwidth. Next, when D2 is 

numerically set smaller at 0.003 (and closer to the experimental value), bright pulses can also 

be observed. Different from the case of large normal dispersion where only dark pulses exist, 

both bright and dark pulses are possible in the small normal dispersion case, depending on the 

exact combination of dispersion and bandpass filter bandwidth (Figure 3-16). Experimentally, 

the mode-mismatched coupling also plays a role in changing the pulse shape as the imperfect 

coupling [107] acts as an external filtering. A microresonator with add-drop ports will serve 

as a better platform for further investigation on the dark solitons [108]. 

It is even possible to generate square pulses directly with the correct sets of Q-factor 

profile, GVD, and detuning (Figure 3-12c). We note that the mode-locking mechanism has 

analogies, but is not identical, to the pulse generation mechanism in all-normal dispersion 

fiber lasers [109], a variant of additive pulse mode-locking [110]. We further verify that the 

temporal fringes of the pulse come from the strong primary comb lines as shown in Figure 

3-13.   
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Figure 3-12. Numerically modeled frequency comb by solving the Lugiato-Lefever 

equation.  

(a) Near the threshold and with a small red-detuning of 180 MHz, the first pairs of hyper-

parametric oscillation sidebands emerge at around the ± 42nd modes, showing a good 

agreement with the experimental result (inset). (b) With the proper pump power (260 mW) 

and red-detuning (2.5 GHz), a mode-locked pulse train is generated. The red and blue curves 

are the modeled pulse shape and the temporal phase profile, respectively. Inset: a zoom-in plot 

of the pulse shape, showing an ultrashort FWHM pulse duration of 110 fs. (c) Square optical 

pulses can also be generated directly from a normal GVD microresonator. The conditions for 

the observation of these square pulses are 𝐷2 = 0.002, red-detuning of 7.7𝛾0 , resonance 

linewidth of 𝛾𝑗 = 𝛾𝑗0[1 + 0.01(𝑗 − 𝑗0)
2] and pump power 25 times larger than the threshold. 

 

 

Figure 3-13. Temporal fringes resulting from the primary comb lines.  

Without the primary comb lines (A), the AC trace shows no temporal fringes.  When the 

primary comb lines are present (B,C), temporal fringes with a period matching the separation 

of the primary comb lines are clearly observed. 
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Figure 3-14. Kerr comb generated in a microresonator characterized by a large normal 

GVD and a wavelength independent Q-factors.  

In this simulation, we assume the microresonator has no higher-order dispersions and its GVD 

is characterized by 𝐷2 = 0.03. Furthermore, the Q-factor is assumed to be a constant across 

the whole wavelength range. The pump power is 49 times larger than the threshold and the 

resonance red-detuning is 17.4𝛾0.   

 

 

Figure 3-15. Kerr comb generated in a microresonator characterized by a large normal 

GVD and a wavelength dependent Q-factors.  

Different from Figure 3-14, here we assume the microresonator has a wavelength-dependent 

Q-factor and its resonance linewidth is in the forms of 𝛾𝑗 = 𝛾𝑗0[1 + 0.003(𝑗 − 𝑗0)
2] (top) and 

𝛾𝑗 = 𝛾𝑗0[1 + 0.01(𝑗 − 𝑗0)
2] (bottom).  The resonance red-detuning is 14.2𝛾0  and 11.5𝛾0 , 

respectively. 

To characterize the numerical artifact due to limited number of modes taken into 

consideration, we repeated the simulations for 121 modes. We observed that the solution 

(comb spectra, pulse width and shape) only has a relatively weak dependence on the number 
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of modes when the modes are more than 100 in the simulations. Furthermore, the artifact was 

mainly observed on the spectral wings. For the modes close to the carrier, the comb line 

intensities vary only by roughly 1% between simulations with 101 and 121 modes. 

 

Figure 3-16.  Kerr comb generated in a microresonator characterized by a small normal 

GVD and a wavelength dependent Q-factors.  

For microresonators possessing a small normal GVD, both bright pulse (top) and dark pulse 

(bottom) can be generated. For the bright pulse generation shown here, 𝐷2 = 0.003 and 𝛾𝑗 =

𝛾𝑗0[1 + 0.003(𝑗 − 𝑗0)
2]. The pump power is 49 times larger than the threshold and the 

resonance red-detuning is 10𝛾0. For the dark pulse generation shown here, 𝐷2 = 0.002 and 

𝛾𝑗 = 𝛾𝑗0[1 + 0.001(𝑗 − 𝑗0)
2]. The pump power is 25 times larger than the threshold and the 

resonance red-detuning is 7.2𝛾0.   

There exist multiple other solutions besides the fundamentally mode locked frequency 

combs generating short pulses. Dynamical solutions, such as breathers, are available. Multi-

pulse regimes are feasible. Sometimes multiple pulses overlap, creating unexpected pulse 

shapes. For example, it is possible to generate square pulses directly out of the microresonator 

(Figure 3-12c).  The simulation shows that tuning the profile of the Q-factors as well as the 
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GVD is a powerful way to significantly increase the capability of these microresonators to 

generate arbitrary optical pulse shape.   

 

3.5.  Examination of The Spectral Filtering Effect on Mode-Locked State 

To experimentally examine the effect of wavelength-dependent Q-factors, we then re-

annealed the same microresonator at 1200oC to reduce the absorption in the shorter 

wavelengths such that the Q roll-off is less pronounced (Figure 3-2). Figure 3-17a shows the 

Kerr comb generated from the re-annealed microresonator, showing a smoother and broader 

spectrum than the one shown in Figure 1c. Similarly, the comb can be driven into a low phase 

noise state (Figure 3-17b). However, now without the effective narrow bandpass filter, mode-

locked pulses are not observed as evidenced by the high background level ( 0.85) in the AC 

trace. A phase stable state without mode-locking is also observed in another recent study using 

a different microresonator platform [111].  

 

Figure 3-17. Examination of spectral filtering effect. 

(a) Example Kerr comb spectrum from the re-annealed microresonator, showing a smoother 

and broader spectrum. (b) RF amplitude noise of the Kerr comb (black curve) along with the 

detector background (red curve). While the Kerr comb can also be driven to a low phase noise 

state, the high background level of the AC trace (inset) indicates the absence of mode-locked 

pulses. The red dashed line is the calculated AC trace assuming random spectral phases. 
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3.6.  Closed-Form Solution of The Master Equation 

Furthermore, we seek the closed-form solution of the master equation for the Kerr comb 

and pulse generation: 

𝑻𝑹
𝝏

𝝏𝑻
𝑨 +

𝒊

𝟐
(𝜷𝟐𝚺 + 𝒊

𝑻𝒄

𝛀𝒇
𝟐
)
𝝏𝟐

𝝏𝒕𝟐
𝑨 − 𝒊𝜸|𝑨|𝟐𝑨 = −(𝜶 +

𝑻𝒄
𝟐
+ 𝒊𝜹𝟎)𝑨 + 𝒊√𝑻𝒄𝑷𝒊𝒏𝒆

𝒊𝝋𝒊𝒏 

(3-1) 

where 𝐴(𝑇, 𝑡) is the electric field envelope in the microresonator, 𝑇𝑅 the cavity roundtrip time, 

𝑡 the retarded time, 𝑇 the slow time of the cavity, 𝛽2Σ the cavity GVD, 𝑇𝑐 the power coupling 

loss per roundtrip, Ω𝑓 the spectral characteristics of the coupling, 𝛾 the nonlinear coefficient, 

𝛼 the amplitude attenuation per roundtrip, 𝛿0 the resonance detuning, and √𝑃𝑖𝑛𝑒
𝑖𝜑𝑖𝑛 the cw 

pump. Here, for simplicity, we assume the intracavity bandpass filter results solely from 

wavelength-dependent coupling loss: 𝑇𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 ≈ 𝑇𝑐 [1 +
(𝜔𝑐−𝜔)

2

Ω𝑓
2 ], where 𝜔𝑐 is the frequency 

for maximal coupling.  

Assuming Gaussian input pulse and applying the variational method [112],  

{
 
 

 
 

𝑨(𝑻, 𝒕) = 𝑨𝒄 + 𝑨𝒑(𝑻, 𝒕)

𝑨𝒄 = √𝑷𝒄𝒆
𝒊𝝋𝒄

𝑨𝒑(𝑻, 𝒕) = √
𝑷𝒑

√𝝅
[𝒆𝒙𝒑 (

𝒕

√𝟐𝝉
)
𝟐

]
−𝟏−𝒊𝒒

𝒆𝒊𝝋𝒑

                                                                    

(3-2) 

where 𝑃𝑐 is the power of the cw background, 𝜑𝑐 is the phase of the background wave, 𝑃𝑝 is 

the pulse peak power (𝐸𝑝 = 𝑃𝑝𝜏 is the pulse energy), 𝑞 is the chirp, 𝜏 is the pulse duration, 

and 𝜑𝑝 is the phase of the pulse. 
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Substituting Eq. (3-2) into Eq. (3-1) and assuming that the pulse energy is much lower 

than the cw energy but the pulse peak power is much higher than the DC background 

(𝑃𝑐𝑇𝑅 𝑃𝑝𝜏⁄ ≫ 1 and 𝑃𝑝 𝑃𝑐⁄ ≫ 1), we can get the equation describing the cw background as 

√𝑃𝑐 (𝛼 +
𝑇𝑐

2
+ 𝑖𝛿0 − 𝑖𝛾𝑃𝑐) = 𝑖√𝑇𝑐𝑃𝑖𝑛𝑒

𝑖(𝜑𝑖𝑛−𝜑𝑐)                                                            

(3-3) 

and the approximate solution is 

{
 
 

 
 𝜑𝑖𝑛 − 𝜑𝑐 ≅

𝛼 + 𝑇𝑐 𝑐⁄

𝛿0

𝑃𝑐 ≅
𝑇𝑐𝑃𝑖𝑛

𝛿0
2 (1 +

2𝑇𝑐𝛾𝑃𝑖𝑛

𝛿0
3 )

                                                                                                 

(3-4) 

On the other hand, the time-dependent part of Eq. (3-1) can be written as 

{
 
 
 

 
 
 𝑇𝑅

𝜕

𝜕𝑇
𝐴𝑝 +

𝑖

2
𝛽2Σ

𝜕2

𝜕𝑡2
𝐴𝑝 − 𝑖𝛾|𝐴𝑝|

2
𝐴𝑝 = 𝑅(𝑇, 𝑡)

𝑅(𝑇, 𝑡) =
𝑇𝑐

2Ω𝑓
2

𝜕2

𝜕𝑡2
𝐴𝑝 − (𝛼 +

𝑇𝑐
2
+ 𝑖𝛿0)𝐴𝑝 +                                                 

𝑖 [𝛾 (|𝐴𝑐 + 𝐴𝑝|
2
(𝐴𝑐 + 𝐴𝑝) − |𝐴𝑝|

2
𝐴𝑝) −

𝛾

𝑇𝑅
∫ 𝐴|𝐴|2𝑑𝑡

𝑇𝑅 2⁄

−𝑇𝑅 2⁄

]

           

(3-5) 

To describe the behavior of the pulse generated in the resonator we have to find values 

of four parameters: 𝑃𝑝, 𝜑𝑝, 𝑞, and 𝜏. The parameters are connected by a set of self-consistent 

equations which can be found using variational approach [112]. We introduce the Lagrangian 

density ℒ =
𝑇𝑅

2
(𝐴𝑝

∗ 𝜕𝐴𝑝

𝜕𝑇
− 𝐴𝑝

𝜕𝐴𝑝
∗

𝜕𝑇
) −

𝑖

2
(𝛽2Σ |

𝜕

𝜕𝑡
𝐴𝑝|

2

+ 𝛾|𝐴𝑝|
4
)  and the variation of the 

Lagrangian density results in the unperturbed nonlinear Schrödinger equation 

𝛿ℒ

𝛿𝐴∗
=

𝜕ℒ

𝜕𝐴∗
−

𝜕

𝜕𝑇

𝜕ℒ

𝜕(𝜕𝐴∗ 𝜕𝑇⁄ )
−
𝜕

𝜕𝑡

𝜕ℒ

𝜕(𝜕𝐴∗ 𝜕𝑇⁄ )
=             

𝑇𝑅
𝜕

𝜕𝑇
𝐴𝑝 +

𝑖

2
𝛽2Σ

𝜕2

𝜕𝑡2
𝐴𝑝 − 𝑖𝛾|𝐴𝑝|

2
𝐴𝑝 = 0
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(3-6) 

Taking into account that 𝐴 does not depend on 𝑇 directly, we write 

𝜕

𝜕𝑇
𝐴𝑝 =

𝜕𝐴𝑝

𝜕𝑃𝑝

𝜕𝑃𝑝

𝜕𝑇
+
𝜕𝐴𝑝

𝜕𝜑𝑝

𝜕𝜑𝑝

𝜕𝑇
+
𝜕𝐴𝑝

𝜕𝑞

𝜕𝑞

𝜕𝑇
+
𝜕𝐴𝑝

𝜕𝜏

𝜕𝜏

𝜕𝑇
 

(3-7) 

From Eqs. (3-2), (3-6) and (3-7), we can write the Lagrangian of the system and the 

Lagrangian equations as 

𝐿 = −𝑖
𝛽2Σ𝑃𝑝

4𝜏
(1 + 𝑞2) −

𝑖

2√2𝜋
𝛾𝑃𝑝

2𝜏 +                             

𝑖

4
𝑃𝑝𝑇𝑅 [2𝑞

𝜕𝜏

𝜕𝑇
− 𝜏 (

𝜕𝑞

𝜕𝑇
− 4

𝜕𝜑𝑝

𝜕𝑇
)]

 

(3-8) 

𝑑

𝑑𝑇
(
𝜕𝐿

𝜕𝑟𝑗̇
) −

𝜕𝐿

𝜕𝑟𝑗
= ∫ (𝑅∗

𝜕𝐴𝑝

𝜕𝑟𝑗
− 𝑅

𝜕𝐴𝑝
∗

𝜕𝑟𝑗
)

∞

−∞

𝑑𝑡 

(3-9) 

where 𝑟𝑗̇ = {𝜕𝑃𝑝 𝜕𝑇⁄ , 𝜕𝜑𝑝 𝜕𝑇⁄ , 𝜕𝑞 𝜕𝑇⁄ , 𝜕𝜏 𝜕𝑇⁄ } and 𝑟𝑗 = {𝑃𝑝, 𝜑𝑝, 𝑞, 𝜏}. 

Again, under the assumption that the pulse energy is much lower than the cw energy but 

the pulse peak power is much higher than the DC background (𝑃𝑐𝑇𝑅 𝑃𝑝𝜏⁄ ≫ 1and 𝑃𝑝 𝑃𝑐⁄ ≫ 1), 

we can get the equations describing the Gaussian pulse as 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝑇𝑅

𝑑𝐸𝑝

𝑑𝑇
= −𝐸𝑝 [𝑇𝑐 + 2𝛼 + 𝑇𝑐

1 + 𝑞2

2Ω𝑓
2𝜏2

+

2√2

(𝜋(9 + 𝑞2))
1 4⁄

𝛾√𝑃𝑝𝑃𝑐𝑠𝑖𝑛(𝜑𝑐 − 𝜑𝑝 − 𝜑𝑞)]

𝑇𝑅
𝑑𝜑𝑝

𝑑𝑇
=
𝛽2Σ
2𝜏2

+
5

4√2𝜋
𝛾𝑃𝑝 − 𝛿0 −

𝑞𝑇𝑐

2Ω𝑓
2𝜏2

𝑇𝑅
𝑑𝑞

𝑑𝑇
= −

𝑇𝑅
𝐸𝑝

𝑞
𝑑𝐸𝑝

𝑑𝑇
+
𝛽2Σ
𝜏2

(1 + 𝑞2) +
1

√2𝜋
𝛾𝑃𝑝 − (𝑇𝑐 + 2𝛼 +

3

2
𝑇𝑐
1 + 𝑞2

Ω𝑓
2𝜏2

)𝑞         

𝑇𝑅
𝑑𝜏

𝑑𝑇
= −

𝑇𝑅
2𝐸𝑝

𝜏2
𝑑𝐸𝑝

𝑑𝑇
+ 𝛽2Σ𝑞 − 𝑇𝑐

3𝑞2 − 1

4Ω𝑓
2 −

𝜏2

2
(𝑇𝑐 + 2𝛼)

√3 − 𝑖𝑞 = (9 + 𝑞2)1 4⁄ 𝑒𝑖𝜑𝑞
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(3-10) 

Further assuming that 𝑞2 ≫ Ω𝑓
2𝜏2 ≫ 1, we finally reach the approximate solution 

𝑬𝒑 ≈
𝟖√𝟏𝟎𝝅

𝟏𝟓

𝜷
𝟐𝚺

𝟑
𝟐 𝛀𝒇

𝟐√𝜹𝟎

𝑻𝒄𝜸
     

(3-11) 

𝝉 ≈
𝟐√𝟓

𝟑

𝜷
𝟐𝚺

𝟑
𝟐 𝛀𝒇

𝟐

𝑻𝒄√𝜹𝟎
                  

(3-12) 

𝒒 ≈
𝟒𝜷𝟐𝚺𝛀𝒇

𝟐

𝟑𝑻𝑪
                      

(3-13) 

𝑠𝑖𝑛(𝜑𝑐 −𝜑𝑝 − 𝜑𝑞) ≅ −
9

64√5

(1 + 𝑞2)(2(9 + 𝑞2))
1 4⁄

𝑇𝑐
3√𝛿0

𝛽2Σ
3 Ω𝑓

6√𝛾𝑃𝑐
 

(3-14) 

By fitting the measured Q-factor (Figure 3-2) of the 20 modes around Qmax with the 

wavelength-dependent coupling loss profile defined above, a filter bandwidth of 2.3 THz is 

found. A chirp 𝑞 of 1.6 is then obtained after the filter bandwidth and the other measured 

parameters (𝑇𝑐 = 0.003, 𝛽2Σ = 17.14 𝑓𝑠2 ) are entered into equation (3-13). This chirp is 

close to that obtained from the FROG measurement (𝑞 = 1.5), and the resulting calculated 

FWHM pulse duration (98 fs) is close to our measurements.   

While the total power in the microresonator reduces as the pump detuning gets larger, 

equations (3-11) and (3-12) show the pulse energy actually increases and the pulse duration 

gets shorter. Overall, the pulse quality improves. It illustrates the active role of pump detuning: 

it is not simply a parameter that controls the coupled power in the microresonator, but an 

important physical factor that determines the pulse duration and energy distribution between 

the pulse and cw background. Furthermore, the closed-form solutions show that the pulse 
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generated from a normal GVD microresonator is always chirped [equation (3-13)], and a 

narrower bandpass filter is necessary to keep the pulse short when the dispersion increases. 

3.7.  Summary   

In this chapter, we discuss the generation of mode-locked pulses from on-chip normal 

dispersion microresonator, supported by phase noise characterization, FROG pulse 

measurement, and numerical modeling with exact experimental parameters. The excitation of 

the hyper-parametric oscillation is facilitated by the local dispersion disruptions induced by 

mode interactions. Then the system is driven from the hyper-parametric oscillation to the 

mode-locked pulse generation by a proper change of the pump power and detuning. The phase 

retrieval from the FROG measurement reveals a 74 fs fundamentally mode-locked pulse 

sitting on a cw background. Numerical modeling of the cw-driven nonlinear microresonator, 

capturing the full spectra with the measured GVD and Qs, confirms the feasibility of mode-

locked pulse generation and agrees with our measurements. We show, both experimentally 

and numerically, the importance of pump detuning and effective bandpass filtering in 

stabilizing and shaping the pulses generated from normal GVD microresonators. Finally, we 

present the closed-form solution of the master equation under appropriate approximations, 

facilitating the design of mode-locked pulse generation from microresonators.   
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Optical Frequency Synthesis with Bichromatically-Pumped 

Coherent Kerr Frequency Comb 

4.1.  Introduction  

Chip-scale frequency combs attract significant interests in a broad range of fundamental 

sciences and applications. A frequency comb links the frequency stability from microwave to 

optical spectral range, serving as a frequency gear for precision frequency synthesis and 

clockwork. Enabled by advances in frequency stabilization techniques, a real frequency comb 

can be achieved by phase-locking its spectrum to optical or microwave references. Based on 

these theories and techniques, frequency combs generated from a bichromatic pump has 

become an intriguing topic, advantaging on the additional control field with the threshold-less 

operation as frequency comb generation, and the possibility to achieve digitalized tuning of 

an optical frequency synthesizer. We here report our study of the coherent comb formation by 

introducing a low-power (10% of pump power) on-resonance seeding. Assisted by this 

artificially introduced seed pump, we detail the observation of comb transitions from 

incoherent to coherent state and the dynamics of self-injection locking between different comb 

families. A locked range of 40 MHz is achieved in the ~ 230 GHz carrier, leading to 

deterministically controlled comb repetition rates by the seeding laser detuning. The 

frequency stability measurement proves that the seeding pump does not introduce additional 

noise to the system. The work paves the way towards all-optical tunable comb oscillator for 

chip-scale RF-optical clockwork.  
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4.2.  Experimental Design  

The comb formation with a bichromatic pump is schematically shown in Figure 4-1, 

where the bichromatic pump consists of a pump laser and a seeding laser. Both lasers can be 

phase-locked to the reference fiber frequency comb (Menlo System FC1500-250-WG Optical 

Frequency Comb, referred as Menlo comb, same below) by a servo controller (Newport 

LB1005) respectively as shown in Figure 4-2b. Turing pattern state is chosen owing to its 

pristine structure without triggering sub-comb formation [33], as schematically shown in 

Figure 4-2a. Such a comb state maintains a clean structure with the comb spacing of 4 free-

spectral-ranges (FSRs) without triggering the sub-comb modes.   

After the spontaneous comb is generated with the pump laser only (dark blue lines in 

Figure 4-2a), we lock the pump laser to a Menlo comb mode, resulting a fixed beat note of fp; 

then we inject the seeding laser around 2-FSR away from the pump, such that a new family 

of comb lines (red lines) are generated, where two separated comb lines (dark blue solid line 

and red dashed line) may exist in the same resonance. We detune the seeding by tuning the 

microwave synthesizer employed to lock the seeding laser in order to examine the dynamics 

as discussed below. In this method, the coherence of bichromatic pump maintains in the 

detuning process.  

The two lasers employed are Santec TSL-510 and New Focus Velocity 6730, where the 

former serve as the pump and latter the seeding. The instantaneous linewidth of the two lasers 

(Gaussian fitted ~ 370 kHz and instrument limited 6 Hz, respectively) after stabilization are 

shown in Figure 4-2a. In this study, the seeding power is chosen to be 10% compared to the 
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pump; and when the detuning changes, the power of the seeding laser is slightly adjusted to 

maintain the output seeding power level after the amplifier.  

 

Figure 4-1. Experimental scheme for coherent comb generations via bichromatic pump.  

Both the pump and seed laser are locked to optical reference (Menlo comb). Inset: microscopc 

image of the microring resonator, scale bar 100 µm.    

 

 

Figure 4-2. Comb states chosen and approach to realize bichromatic pump.  

(a) A Turing pattern comb with 4 free-spectral-ranges (FSRs) is chosen for the observation, 

where the seed laser will be injected spaced with 2 FSRs from the pump (2nd azimuthal mode). 

1 W 

EDFA

comb

Pump laser

Servo controller 

f

Microwave 

synthesizer 
Mixer

Seed laser
Optical 

reference

Servo controller 

f

2 FSRs4 FSRs

Pump 

. . . . . . 

Seed

(b) 

… …

-20 -10 0 10 20

-40

-20

0

 

R
F

 i
n

te
n

s
it

y
 (

d
B

)

Frequency (MHz)

-400-200 0 200 400

-60

-40

-20

0

 

R
F

 i
n

te
n

s
it

y
 (

d
B

)

Frequency (Hz)

fp

fs

Spacing 
control

Tunable 
cw laser

EDFA

Polarization controller

Mixer 

Spectrum 
analyze 

Counter 
Mixer 

Spacing 
control

Tunable 
cw laser

EDFA

Polarization controller

Mixer 

Spectrum 
analyze 

Counter 
Mixer 

seed 

Pump

Microwave 

Synthesizer 

Synchronized 

Reference comb

1200 1400 1600 1800

0

100

200

300

400

500

 

G
V

D
 (

fs
^

2
/m

m
)

wavelength (nm)

-3000

-2000

-1000

0

T
O

D
 (

fs
^

3
/m

m
)

-15 -10 -5 0
0

5000

10000

15000

20000

25000

In
tr

a
c
a

v
it
y
 p

o
w

e
r 

(m
W

)

Normalized detuning (d)

 single pump

 bichromatic pump

fc

(a) 

(c) (d) 



 

 53 

(b) Scheme for tuning the seed laser by a microwave synthesizer. After the comb in (a) 

generated (blue), the pump laser is phase locked to Menlo comb, while the seed is injected to 

the 2nd azimuthal mode and phase locked to Menlo comb too. The detuning of the seeding is 

adjusted by the microwave synthesizer used for the phase locking. (c) The dispersion profile 

simulated by COMSOL module, featuring with high third-order dispersion (TOD) for 

maintaining a Turing comb. (d) Thermal load examination under single pump (black solid 

line) and bichromatic pump (red dashed line), where the seed laser is 2 FSRs spaced with the 

major pump.  

 

4.3.  Noise States Transition and Dynamics Of Injection Locking 

As the seeding goes from blue side to red side of the resonance, the RF tone firstly 

decreases and then clamps to zero in a certain range, then increases at the red detuning side. 

At detuning of Δ2, the full comb is in coherent states, as shown in Figure 4-3. Self-injection 

locking is the fundamental mechanism that drives the Kerr frequency comb into a coherent 

state. In this bichromatically-pumped comb, there are two comb families (I) generated from 

spontaneous four-wave-mixing (FWM) from the pump, i.e. the primarily comb lines; (II) 

generated from stimulated FWM between (I) and the seeding, i.e. the red dashed lines. The 

comb will be driven to a new coherent state when (I) and (II) commensurate. Hence by 

monitoring the offset of two comb lines in the same resonance where the primary comb line 

is generated (orange dashed box), one can observe this dynamical transitions of noise states. 

Figure 4-4a shows the offset measurement by changing the seeding detuning, where at the 

certain detuning range of ~ 40 MHz, the offset between the two comb lines turns to zero, 

indicating the two lines get injection-locked [113], i.e. the whole comb is driven to a new 

coherent state with 2-FSR comb spacing.  



 

 54 

 

 

Figure 4-3. Examples of optical spectra and corresponding radio-frequency noise when 

adjusting the detunings (Δ1, Δ2 and Δ3) of the seed laser. 

As the seeding goes from blue side to red side of the resonance, the RF tone firstly decreases 

and then clamps to zero in a certain range, then increases at the red detuning side. At detuning 

of Δ2, the full comb is in coherent states.  

 

4.4.  Coherent Comb with Controllable Repetition Rates 

To further demonstrate the coherent state, we conduct the equidistance measurement. 

By adjusting the repetition rate of Menlo comb, we make sure that the pump, seeding and the 

monitored comb mode sit on the same side of the closet Menlo comb modes (with a beat note 

from 0 to 125 MHz)  [16,20]. In theory fp, fs and fc satisfy the relation (𝑓𝑐 − 𝑓𝑝)/(𝑓𝑠 − 𝑓𝑝) =

2 + 𝜀. As fp is fixed and fs is detuned by the synthesizer, stability of fc is a measure of the 
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equidistance. A fitted slope of ~ 2 indicates the state being examined is a coherent state and 

that the repetition rate of the comb is effectively controlled by the seeding detuning. The Allan 

deviation for one detuning at different integration times is plotted in Figure 4-5 by comparison 

with that of the pump. The close levels between the pump and the monitored comb show that 

the coherence of the newly generated comb is only limited by the pump source.  

 Note that it is hard to tune the seeding through microwave synthesizer by more than 

100 MHz directly, due to the limited range of receiving signal for laser diode current 

modulation. We overcome it through adjusting the locking point in the servo controller when 

the control signal reaches the limit, such that the fs can be continuously tuned. The absolute 

value of fs hence changes in each adjustment, and is normalized to starting frequency in the 

analysis.      

 

Figure 4-4. Observation of self-injection locking regime and controllable comb spacing 

by the seeding through a microwave frequency.  

(a) A self-injection locking range of 40 MHz is observed in the 230 GHz comb. (b) The 

measured comb spacing changes versus the microwave frequency used for frequency  

synthesis. A fitted slope of 2 indicates that the new comb spacing follows with the microwave 

frequency synthesizer.  
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Figure 4-5. Measured Allan deviation of pump source (black square) and the monitored 

comb (red dot).  

 

We provide a numerical simulation based referred to [114], by deriving the intracavity 

power on the two resonances at pump and seed. The coupled equation as below, where 𝜂𝑒𝑥𝑡 

represents power coupling efficiency  
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The calculated powers versus detunings are shown in Figure 4-2d. The overlap of the 

two curves indicates that adding a seed laser far away from the pump resonance won’t 

influence the pump modal dynamics thus maintain the comb dynamics. This also verifies that 

the 40 MHz range comes from injection-locking, instead of increased loaded power inside the 
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cavity. Hence the presented scheme allows tolerance from resonance shift, e.g. induced by 

environmental changes such as thermal drift, up to 40 MHz.  

We here show the process of self-injection locking between two comb mode families, 

one of which artificially introduced by an external optical pump with controlled properties. In 

more complex comb dynamics [113,115], the self-injection locking occurs between different 

comb mode families, governing the comb coherent states transitions, and is a key nonlinear 

process in frequency comb synthesis between multiple optical spectral ranges.  

4.5.  Summary  

We have experimentally shown that a coherent Kerr frequency comb can be generated 

using a bichromatic pump, where the spacing can be controlled by a seeding laser pumped at 

another resonance with 10% power compared to the primary pump. The dynamical study on 

transition between incoherent and coherent comb states helps to understand the self-injection 

locking mechanism as well as demonstrate deterministic control of the coherent comb 

formation through another low-power laser.   
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A Low-Phase-Noise 18 GHz Kerr Frequency Microcomb 

Phase-Locked Over 65 THz 

5.1.  Introduction  

This chapter discusses a low-phase-noise Kerr frequency comb generated from a silicon 

nitride spiral resonator. With the small and flattened group velocity dispersion, the 18 GHz 

Kerr frequency comb spans nearly half an octave and contains a record-high number of comb 

lines at more than 3,600. Spectral modulation induced by mode interactions is also evidently 

observed. A single bandwidth-limited RF beat note is observed and the single-sideband (SSB) 

phase noise analysis reveals the lowest phase noise floor achieved to date in free-running Kerr 

frequency combs, -130 dBc/Hz at 1 MHz offset for the 18 GHz carrier. The long-term 

frequency stability is characterized and the measured free-running Allan deviation is 2×10-8 

in 1 s, consistent with the frequency fluctuations caused by the pump wavelength drift. 

Feedback stabilization further improves the frequency stability to 7×10-11 in 1 s. 

5.2.  An 18 GHz Frequency Comb Generated in A Silicon Nitride 

Microring  

Figure 5-1a shows an optical micrograph of the silicon nitride spiral resonator and the 

cavity dispersion simulated with full-vector finite-element mode solver. The microresonator 

is fabricated with CMOS-compatible processes for the low-pressure chemical vapor 

deposition of the nitride and it is annealed at a temperature of 1200oC to reduce the N-H 
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overtone absorption. The spiral design ensures the relatively large resonator fits into a tight 

field-of-view to avoid stitching and discretization errors during the photomask generation [27], 

which can lead to higher cavity losses. Bends in the resonator have diameters greater than 160 

μm to minimize the bending-induced dispersion. The waveguide cross-section is designed to 

be 2 μm  0.75 μm so that not only the group velocity dispersion (GVD) but also the third 

order dispersion (TOD) is small in this microresonator. The small and flattened GVD is critical 

for broadband comb generation [116]. Figure 5-1b shows the pump mode is critically coupled 

with a loaded quality factor approaching 660,000 (intrinsic quality factor at 1,300,000). A 

tunable external-cavity diode laser (ECDL) is amplified by an L-band erbium doped fiber 

amplifier (EDFA) to 2W and then coupled to the microresonator with a single facet coupling 

loss of 3 dB, resulting in a coupled pump power 5 times higher than the threshold pump power. 

A 1583-nm long-pass filter is used to remove the amplified spontaneous emission noise from 

the EDFA. Both the pump power and the microresonator chip’s temperature are actively 

stabilized such that the fluctuation of the on-chip pump power is less than 10-3. A 3-paddle 

fiber polarization controller and a polarization beam splitter cube are used to ensure the proper 

coupling of TE polarization into the microresonator. To obtain the Kerr frequency comb, the 

pump wavelength is first tuned into the resonance from the high frequency side at a step of 1 

pm (~118 MHz) until a broadband comb is observed on the optical spectrum analyzer. 

Importantly, it is then necessary to switch to fine control of the pump wavelength at a step of 

<5 MHz in order to drive the comb from a noisy state to a phase-locked state. At the output, 

5-nm WDM filters are used to notch the pump and a dispersion compensating fiber jumper is 

used to properly cancel the dispersion introduced by the WDM filters. An example of the Kerr 

frequency comb is shown in Figure 5-1c, spanning nearly half an octave (65 THz, defined as 
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60 dB below the maximum comb line power) and covering multiple telecommunication bands 

(E, S, C, L and U bands) with the comb spacing of 17.986 GHz. Of note, the generated Kerr 

frequency comb contains more than 3,600 comb lines, the record large number of Kerr comb 

lines made possible by the small and flattened GVD. 

Two TE modes with different free spectral ranges (18 and 17.4 GHz) are supported in 

the spiral resonator and their resonance wavelengths periodically get close to each other with 

a period of  4 nm. Figure 5-2a (top) plots the resonance wavelength offsets of the second-

order mode family with respect to the fundamental mode family. The zero crossings (red 

horizontal line) represent the wavelengths where the resonances of the two mode families are 

supposed to be degenerate. However, the degeneracy is lifted due to the mode interaction, as 

evidenced by the openings in the resonance wavelength offsets around the zero crossings. 

Such anti-crossing phenomena leads to the local disruption of dispersion and modifies the 

phase matching condition of the comb generation process [20,92,117,118]: 

∆𝑘(𝜔𝐹𝑆𝑅𝜇) = 𝛽2𝜔𝐹𝑆𝑅
2 𝜇2 + 𝜅(𝜔𝐹𝑆𝑅𝜇) + 𝛾𝑃𝑖𝑛𝑡 − 𝛿 

where 𝛽2  is the GVD, 𝜔𝐹𝑆𝑅  the free spectral range, 𝜇  the mode number, 𝜅(𝜔𝐹𝑆𝑅𝜇)  the 

periodic local dispersion disruption by the mode interaction, 𝛾 the nonlinear coefficient, 𝑃𝑖𝑛𝑡 

the intracavity pump power, and 𝛿 the pump wavelength detuning. While the local dispersion 

disruption is 2 to 3 GHz, the GVD is only 20 fs2/mm and it takes  1,000 modes before the 

GVD induced phase mismatch becomes comparable to that induced by the mode interaction. 

Thus the phase matching condition around the pump should be dominated by the mode 

interaction, as evidently shown in Figure 5-2a where the correlation between the zero 

crossings (top) and the local maxima of the Kerr frequency comb (bottom) is observed. Figure 

5-2b shows the simulated Kerr frequency comb obtained by numerically solving the Lugiato-
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Lefever equation for 3500 modes, including the local dispersion disruptions [20]. The broad 

bandwidth and the apparent 4-nm periodic spectral modulation agree with the experimental 

observation. The dynamics of mode interaction effect in shaping the comb formation is 

discussed in details in Turing pattern comb in session 7.2.2.  

 

Figure 5-1. A phase-locked 18 GHz Kerr frequency comb spanning over 65 THz.  
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(a) Simulated group velocity dispersion (GVD) and third order dispersion (TOD) of the ring 

resonator, featuring small TOD which is beneficial for broad comb generation. Inset: An 

optical micrograph of the spiral resonator, with a total cavity length of 8.04 mm and a mode 

area of 1.3 μm2. Adiabatic mode converters (the dark bars on the side of the chip) are 

implemented to improve the coupling efficiency from the free space to the bus waveguide (the 

bottom straight line across the chip). Scale bar: 250 μm. (b) Example critically-coupled 

resonant pump mode at 1595.692 nm, with a 285 MHz loaded cavity linewidth. Black dots 

are the measured data points and the red curve is the fitted Lorentzian lineshape. (c) Example 

generated Kerr frequency comb, with a broad spectrum spanning nearly half an octave at 65 

THz and covering multiple telecommunication bands (E, S, C, L and U bands). (d) Zoom-in 

views of the comb spectra from 1446.5 nm to 1455 nm (blue), 1565 nm to 1575 nm (green), 

and 1793.5 nm to 1806.5 nm (red). Even in the wings of the spectrum, native-FSR-spacing 

comb lines are clearly observed. 
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Figure 5-2. Mode interaction induced spectral modulation of the Kerr frequency comb.  

(a) Resonance frequency offsets of the second-order mode family with respect to the 

fundamental mode family (top) as well as the zoom-in view of the Kerr frequency comb 

(bottom). (b)  Simulated Kerr frequency comb by solving the Lugiato-Lefever equation, also 

showing a 4-nm periodic spectral modulation when the local dispersion disruptions are 

included in the model. 

5.3.  Phase Noise Measurement of The Photonic-Microwave Oscillator   

Figure 5-3a shows the RF amplitude noise spectra of the Kerr frequency comb [24,119]. 

When the primary comb line spacing is incommensurate with the fundamental comb spacing, 

multiple RF peaks will occur due to the beating between different comb families (Figure 5-3a 

inset). Next, with fine control of the pump wavelength, the offset between different comb 

families can be made zero such that the RF amplitude noise spectrum shows no excess noise 

(Figure 5-3a). To characterize the RF beat note of the 18 GHz Kerr frequency comb, a high-

speed photodetector is used to demodulate the frequency comb at 17.986 GHz, and an 18.056 

GHz local oscillator is used to downmix the electronic signal to the baseband for analysis. 

Figure 3b plots the RF spectra of the beat notes from three different filtered spectral regions 

of the comb (black curve: whole spectrum excluding the pump; blue curve: 1529 to 1538 nm; 

red curve: 1555 to 1564 nm). The pedestal below 500 kHz offset frequency comes from the 

18.056 GHz local oscillator. All three measurements show bandwidth-limited beat notes at 

17.986 GHz, characteristic of an equidistant Kerr frequency comb as those of a non-

equidistant comb will either reside at distinct frequencies or show different linewidths and 

phase noise characteristics (Figure 5-4) [27]. A second-harmonic-generation optical intensity 

autocorrelation is implemented to characterize the temporal structure of the phase-locked Kerr 

frequency comb and the result is shown in Figure 5-3c. The trace has a contrast of  2, 
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characteristic of a comb without a clean circulating high-peak power pulse. Recently, a phase-

locked Kerr frequency comb without mode-locking is also observed in a WGM 

microresonator [26] and the self-injection locking is shown to be the underlying mechanism 

for driving the Kerr frequency comb into a phase-locked state [25,26]. Compared to smaller 

microresonators where mode-locking are demonstrated [77,120], self-injection locking plays 

a more important role in low-repetition-rate Kerr frequency combs because the more frequent 

local dispersion disruptions impede the mode-locking from occurring [121]. 

Figure 5-4shows the SSB phase noise spectra of the RF beat notes. To probe the 

possibility of degraded phase noise for different spectral slices of the comb due to the 

complicated nonlinear comb generation process [24], here again we measure the phase noises 

at three different spectral regions (A, blue curve: 1529 to 1538 nm; B, red curve: 1555 to 1564 

nm; C, black curve: whole spectrum excluding the pump). Compared to the comb lines in the 

region A, the comb lines in the region B are characterized by their higher optical power and 

better amplitude uniformity. However, the phase noise results show that the mechanism for 

phase noises at different parts of the Kerr frequency comb is identical and the minutely better 

phase noise floor of the region B and C is a direct consequence of the higher comb power. 

The olive line shows the phase noise of the local oscillator used for downmixing the RF beat 

note of Kerr frequency comb and it is worth mentioning that the phase noise of the comb beat 

note becomes comparable or better than that of the commercially available high performance 

microwave local oscillators for offset frequencies higher than 20 kHz. The record low phase 

noise floor of -130 dBc/Hz, as well as the record large number of Kerr comb lines, can be 

well-suited for further improving the high-capacity coherent data transmission with advanced 

phase modulation techniques [12]. For offset frequency below 10 kHz, the phase noise is 
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dominated by frequency flicker (30 dB/decade) which can be accounted by noise induced 

from the wavelength drift of the pump laser. 

 

Figure 5-3. Offset and noise characteristics of the phase-locked 18 GHz comb.  

(a) RF amplitude noise of the offset-free Kerr frequency comb. Inset: an example RF 

amplitude noise of the Kerr frequency comb showing multiple peaks due to the beating 

between different comb families. The comb is tuned to be offset-free by fine control of the 

pump wavelength. (b) RF spectra of the beat notes from three different filtered spectral regions 

of the comb (black curve: whole spectrum excluding the pump; blue curve: 1529 to 1538 nm; 

red curve: 1555 to 1564 nm). All three measurements show bandwidth-limited beat notes at 

17.986 GHz, characteristic of a phase-locked comb. The pedestal below 500 kHz offset 

frequency comes from the local oscillator used for downmixing the 17.986 GHz beat note. (c) 

Optical intensity autocorrelation of the phase-locked Kerr frequency comb. The trace has a 

contrast of ~ 2, characteristic of a comb without a clean circulating high-peak power pulse. 
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Figure 5-4. Single-sideband (SSB) phase noises of the beat notes from different spectral 

regions of the comb.  

Three filtered spectral regions of the comb with the comb lines are shown in the inset (blue 

curve: 1529 to 1538 nm; red curve: 1555 to 1564 nm). The black curve shows the whole 

spectrum excluding the pump. All SSB phase noise spectra show a very low phase noise floor 

of -130 dBc/Hz at 1 MHz offset from the carrier. For offset frequency below 10 kHz, the phase 

noise has a roll-off of 30 dB/decade (purple dashed line). The olive curve is the SSB phase 

noise of the local oscillator used for downmixing the 17.986 GHz beat note. 

 

5.4.  Allan Deviation Characterization and Stability Improvement  

Figure 5-5 shows the Allan deviation of the free-running (open squares) and the 

stabilized (closed squares) Kerr frequency comb spacing. The free-running Allan deviation is 

measured at 210-8 in 1 s, increase to 110-7 in 10 s, and then gradually decrease to 510-8 in 

100 s. As the detuning changes the intracavity power, the comb spacing linearly shifts by 57 

Hz per MHz of pump wavelength detuning in our microresonator (Figure 5-5 inset). On the 

other hand, the instability of the employed pump laser wavelength is characterized by 

measuring the heterodyne beat note between the pump laser and a tooth of a fiber frequency 

comb. The estimated comb spacing instability caused by the pump wavelength drift is also 
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plotted in Figure 5-5 (red diamond) and it shows the pump wavelength drift is the main noise 

source limiting the long term stability of the Kerr frequency comb spacing. Finally, a 

proportional-integral feedback stabilization of the comb spacing by controlling the pump 

wavelength is implemented to improve the long-term stability by more than two orders of 

magnitude, reaching 710-11/τ0.84, comparable to that of a commercially available high 

performance microwave oscillator. 

 

Figure 5-5. Allan deviation of the free-running (open squares) and the stabilized (closed 

squares) Kerr frequency comb spacing.  

In free running mode, the comb spacing stability is limited by the fluctuation resulting from 

the pump laser wavelength drift (red diamond). Feedback stabilization is achieved by 

monitoring the comb spacing and controlling the pump laser wavelength to compensate the 

errors with a proportional-integral controller. Inset: The comb spacing as a function of the 

pump wavelength detuning, determined at 57 Hz/MHz in our microresonator. 
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5.5.  Conclusion  

In summary, we report a low-phase-noise Kerr frequency comb generated from a silicon 

nitride spiral resonator. The 18 GHz Kerr frequency comb spans nearly half an octave and 

contains a record-high number of comb lines at ~3,600. We study the SSB phase noise and 

report the lowest phase noise floor achieved to date in Kerr frequency combs, -130 dBc/Hz at 

1 MHz offset for 18 GHz carrier. Limited by the wavelength drift of the employed pump laser, 

the free-running Allan deviation is measured at 210-8 in 1 s and it is improved to 710-11 at 

1 s by a feedback control of the pump wavelength. With half-octave-spanning bandwidth, 

record large number of Kerr comb lines, and record low phase noise floor, the reported system 

is a promising compact platform not only for achieving self-referenced Kerr frequency combs 

but also for improving high-capacity coherent telecommunication systems. Although 

ultrashort pulses are not generated directly from this microresonator, the high-coherence phase 

locking property lends itself to pulse shaping technique for harvesting the temporal features 

of the Kerr frequency comb [14].   
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A Broadband Chip-Scale Optical Frequency Synthesizer at 

2.7×10-16 Relative Uncertainty 

6.1.  Introduction 

This chapter, as continuous work based on the last chapter, discusses the first fully 

stabilized CMOS-compatible chip-scale Kerr microcomb with a frequency relative 

uncertainty down to 2.7×10-16. The silicon nitride spiral resonator is designed and fabricated 

to generate a Kerr microcomb, at 18 GHz native spacing and spanning more than 8 THz over 

more than 400 comb lines. The comb’s two degrees of freedom, one of the comb line 

frequencies and the comb spacing, are phase locked to a known optical reference and a 

microwave synthesizer respectively. Active stabilization on the comb spacing improves the 

RF stability by six orders of magnitude, reaching residual instrument-limited close-to-carrier 

(10 Hz) phase noise of -70 dBc/Hz and Allan deviation of 3.6 mHz/√𝜏 . In the optical 

frequency, forty-six lines of the Kerr microcomb subset are selected and compared against the 

current benchmark fiber laser frequency comb and the frequency relative uncertainty of the 

stabilized Kerr microcomb is demonstrated down to 50 mHz. The reported system is a 

promising compact platform for coherent Raman spectroscopy [122], optical clockwork [7], 

coherent communications [123], arbitrary waveform generation [124], and astrophysical 

spectrography [9,10,125]. 
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6.2.  Device Characterization and Kerr Comb Generation  

Figure 6-1a shows the experimental setup for the Kerr microcomb generation and 

stabilization. The silicon nitride spiral resonator is fabricated with CMOS-compatible 

processes and the waveguide cross-section is designed to have small and flattened group 

velocity dispersion for broadband comb generation. Planar ring geometry is employed because 

of the reduced sensitivity to the environmental perturbation, along with the fewer discrete 

transverse resonator modes, and the flexibility to tailor the cavity dispersion for efficient and 

broadband comb generation. Detailed properties of the microresonator is shown in Figure 6-2. 

Figure 6-2a shows a cross-section scanning electron micrograph of the microresonator 

waveguide, with an estimated 82 to 88 slope of the vertical sidewalls. The refractive index 

of the low pressure chemical vapor deposition (LPCVD) Si3N4 film was measured with an 

ellipsometric spectroscopy (Woollam M-2000 ellipsometer) and then fitted with the Sellmeier 

equation assuming a single absorption resonance in the ultraviolet. The fitted Sellmeier 

equation, 𝑛(𝜆) = √1 +
2.90665𝜆2

𝜆2−145.050072
, and the sidewall angle were both imported into the 

COMSOL Multiphysics for the microresonator design. Figure 6-2b shows the modeled free 

spectral range (FSR) of the first two TE modes of the microresonator. While the fundamental 

mode features a FSR of 17.9 GHz, the TE2 mode has a slightly lower FSR and thus the 

resonances of the TE2 family approaches that of the fundamental family about every 4 nm 

(
𝐹𝑆𝑅2

∆𝐹𝑆𝑅
= 460𝐺𝐻𝑧 ). The mode interaction when the resonances are close leads to local 

disruption of the phase matching condition [92,117,118] and results in the periodic amplitude 

modulation on the Kerr comb spectrum (Figure 6-1b).  
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Figure 6-1. A stabilized chip-scale optical frequency comb.  

(a) Measurement setup schematic for the generation and stabilization of the chip-scale optical 

frequency comb. To stabilize the comb’s first degree-of-freedom, an ECDL is phase-locked 

to an optical reference, here a mode of a stabilized fiber laser frequency comb, and then 

amplified to 2 W to pump the Si3N4 microresonator. To stabilize the comb’s second degree-

of-freedom, the Kerr comb spacing, fR,KC, is monitored by sending the comb to a high-speed 

photodetector (3 dB bandwidth more than 15 GHz) and downmixing the electronic signal to 

the baseband with a local oscillator at fLO = 18 GHz. A fiber electro-optic modulator (EOM) 

controls the pump power and stabilizes the comb spacing.. 𝛿: frequency difference between 
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the pump and the adjacent fiber laser frequency comb line. ∆= 𝑓𝑅,𝐾𝐶 − ⌊𝑓𝑅,𝐾𝐶 𝑓𝑅,𝐹𝐹𝐶⁄ ⌋𝑓𝑅,𝐹𝐹𝐶. 

FFC: erbium fiber laser frequency comb; PD: the photodetector; G: grating; PH: pinhole; and 

FPC: fiber polarization controller. (b) Example stabilized Kerr frequency comb spectrum, 

consisting of more than 400 comb lines in the telecommunication wavelength range. The 

horizontal (red) dashed line denotes the 1 μW per comb line power level. Left inset: optical 

micrograph of the spiral microresonator. Scale bar: 250 μm. Right inset: comb lines with 

native spacing at the cavity’s free-spectral range are clearly observed. 

 

Figure 6-2c and d show the modeled group velocity dispersion (𝛽2, GVD) and third 

order dispersion ( 𝛽3 , TOD). The non-equidistance of the cold cavity modes, 𝐷 =

(𝜔𝑚+1 − 𝜔𝑚) − (𝜔𝑚 − 𝜔𝑚−1), can be calculated using the equation 𝐷 = −
(𝛽2𝐿)

2𝜋
𝜔𝐹𝑆𝑅
3 +

(𝛽2𝐿)
2

4𝜋2
𝜔𝐹𝑆𝑅
5 −

(𝛽3𝐿)

4𝜋
𝜔𝐹𝑆𝑅
4 , where L is the cavity’s length and 𝜔𝐹𝑆𝑅 is the cavity’s free spectral 

range. 

Due to the large refractive index of the Si3N4 waveguide, a 600 µm long adiabatic mode 

converter (the Si3N4 waveguide, embedded in the 5×5 µm2 SiO2 waveguide, has gradually 

changing widths from 0.2 µm to 1 µm) is implemented to improve the coupling efficiency 

from the free space to the bus waveguide. The input-output insertion loss for the waveguide 

does not exceed 6 dB.   

The loaded quality factor Q of the pump mode is 660,000 (intrinsic Q ~ 1,300,000) and 

1 W of pump power is critically coupled to the microresonator, resulting in a maximum 

coupled pump power 5 times higher than the threshold pump power. The pump wavelength is 

1598.7 nm. A 1583-nm long-pass filter removes the amplified spontaneous emission noise 

from the EDFA. The microresonator chip temperature is actively stabilized to +/- 10 mK. A 

3-paddle fiber polarization controller and a polarization beam splitter cube are used to ensure 
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proper coupling of the TE polarization into the microresonator. To obtain the Kerr microcomb, 

the pump wavelength is first tuned into the resonance from the high frequency side at a step 

of 10 pm until primary comb lines are observed on the optical spectrum analyzer, prior to fine 

control to drive the comb from a noisy state to a phase-locked state. The threshold pump power 

is estimated to be 200 mW using the equation 𝑃𝑡ℎ =
𝜋

8𝜂

𝑛0

𝑛2

𝜔𝑝

𝜔𝐹𝑆𝑅

𝐴

𝑄2
, where A=1.3μm2 is the 

mode area, η=0.5 is the coupling parameter, 𝜔𝑝  is the pump frequency, and 𝜔𝐹𝑆𝑅  is the 

cavity’s free spectral range [25]. 

The output is first short-pass filtered using a 1550/1590 nm wavelength division 

multiplexer and then boosted in power with a 13 dBm C-band preamplifier to increase the 

signal to noise ratio (SNR) of the photodetector signal. Figure 6-1b shows the Kerr microcomb 

spectrum, spanning more than 8 THz and consisting of more than 400 comb lines.  

 

Figure 6-2. Properties of the Si3N4 microresonator.  
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(a) Scanning electron micrograph of the waveguide cross-section. Scale bar: 500 nm. (b) 

Modeled free spectral range of the first two TE modes of the chip-scale optical frequency 

comb. (c) Modeled group velocity dispersion of the fundamental mode, measuring a GVD of 

3.5 fs2/mm at the pump wavelength. (d) Modeled third order dispersion of the fundamental 

mode, measuring a TOD of -84 fs2/mm at the pump wavelength. 

 

To ensure the Kerr microcomb is driven from a noisy state to a phase-locked state [32] 

and to verify it is not consisted of many sub-comb families with offsets [115,126], RF 

amplitude noise and fundamental beat note of different filtered Kerr microcomb segments are 

monitored.  

As the pump wavelength was tuned into the resonance from the high frequency side, we 

first observed multiple RF spikes because the primary comb line spacing is incommensurate 

with the fundamental comb spacing. The state with incommensurate spacing was unstable and 

it made frequent transition to high-noise state characterized by elevated RF amplitude noise 

(45 dB higher than the phase-locked comb state). Next, with fine control of the pump 

wavelength (10 MHz/step), the offset between different comb families can be made zero such 

that the RF amplitude noise spectrum showed no excess noise (Figure 6-3). The phase-locked 

comb typically stabilized for hours. 
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Figure 6-3. RF amplitude noise spectra of the high noise state and the low noise phase-

locked comb state.  

With the proper pump wavelength, RF amplitude noise dropped by 45 dB and approached the 

detector background noise, indicative of the transition into a phase-locked state. 

 

To verify the Kerr frequency comb is continuously equidistant, not consisted of many 

sub-comb families with offsets [24], we measured the comb spacing and the amplitude noise 

of various different filtered segments of the Kerr frequency comb (1553.5-1554.5nm, 1555-

1556nm, 1556.2-1557.2nm, 1558-1559nm, 1560-1561nm, 1561.7-1562.7nm, 1563.5-

1564.5nm, 1566-1567nm, 1568.5-1569.5nm, 1570.5-1571.5nm, 1572.3-1573.3nm, 1574-

1575nm, 1577-1578nm 1578.5-1579.5nm, 1580.3-1581.3nm). The comb spacing was 

measured to be identical at 17.9 GHz within the RBW of 390 kHz (Figure 6-4a) and 1 kHz 

(Figure 6-4b) for the 15 filtered comb segments from 1553.5nm to 1581.3nm. No other peaks 

were observed. Absence of sub-comb families with offset frequencies was also independently 

confirmed by the amplitude noise measurements, showing no peaks and excess noise above 

the detector background noise. The Kerr microcomb’s continuous equidistance was thus 

verified. 
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Figure 6-4. Confirmation of continuously equidistant Kerr frequency comb.  

(a) Comb spacing spectra of 15 filtered comb segments with scan ranges of 1 GHz. (b) Comb 

spacing spectra of 15 filtered comb segments with scan ranges of 1 MHz. (c) Amplitude noise 

spectra of 15 filtered comb segments with a scan range of 1 GHz. 

 

6.3.  Frequency Comb with Full Stabilization  

To stabilize the Kerr microcomb, one of the comb lines and the comb spacing are phase 

locked to a known optical reference and a microwave synthesizer, respectively. In our system, 

the known optical reference is derived from an approximately 200 Hz stabilized erbium fiber 

laser frequency comb (FFC; Menlo Systems) which is also used as a calibration standard later 

to assess the uncertainty of the Kerr microcomb. As shown in the Figure 6-1a, 1% of the pump 

mode, which is also the strongest Kerr microcomb line, is tapped and beat with the optical 

reference on a photodetector. To ensure the beat note has sufficient SNR for reliable feedback 
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stabilization (more than 35 dB with 100 kHz RBW), a 0.2 nm narrow bandwidth 

monochromator is built to filter the FFC before it is beat with the pump. Figure 6-5a is the 

free-running beat note, showing a few MHz pump frequency drift in one second. For high 

bandwidth control of the pump frequency, the diode current of the external-cavity diode laser 

(ECDL) is directly modulated. Such high bandwidth feedback control, however, has a tradeoff 

of amplitude modulation of the pump power and consequently excess instability in the comb 

spacing.  

After the Kerr frequency comb was driven into the low phase noise state, we 

characterized the dependence of the comb spacing on the pump properties by adding a 0.1 Hz 

sinusoidal change of either pump frequency or pump power and measuring the corresponding 

comb spacing oscillation amplitude with a frequency counter. Figure 6-6b depicts the 

dependence of comb spacing on pump power. This effect is partly compensated by saturating 

the erbium doped fiber amplifier and later eliminated by the second feedback loop on the 

comb spacing. Figure 6-5b shows the stabilized beat note, illustrating a clear single peak at 

the center with uncompensated noise above the feedback bandwidth of 300 kHz. The beat has 

a 70 MHz offset to allow RF amplification for higher SNR in the feedback loop. Figure 6-5c 

is the zoom-in view of the stabilized beat note, showing a resolution limited linewidth of 6 

Hz. To quantify the long-term stability of the locked pump frequency, the beat signal is 

analyzed by a frequency counter and the counting results are shown in Figure 6-5d. The pump 

frequency remains steady over 1000 seconds with the standard deviation of 1 mHz and the 

peak-to-peak deviation of 5 mHz. 
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Figure 6-5. Stabilizing the pump frequency to the mHz level residual error and time 

domain picture of the phase-locked Kerr comb.  

(a) Free-running beat note between the pump and the fiber laser frequency comb. To obtain a 

sufficient signal-to-noise ratio for reliable feedback stabilization (more than 35 dB with 100 

kHz RBW), a 200 pm bandwidth monochromator is built to filter the fiber laser frequency 

comb before it is mixed with the pump. Sweep time is 10 ms. (b) RF spectrum of the stabilized 

beat note with 1 kHz RBW. Control of the pump frequency is achieved by modulating the 

ECDL diode current, with 300 kHz bandwidth. (c) RF spectrum of the stabilized beat note 

with 6 Hz RBW, showing a resolution limited linewidth of 6 Hz. (d) Frequency counting of 

the stabilized beat note with a gate time of 1 s. The standard deviation over 1000 seconds is 1 

mHz, instrument-limited by the stability of the frequency counter. (e) Optical intensity 

autocorrelations of the phase-locked Kerr frequency comb at different delays, showing 

evidently the repetitive structures and excluding the possibility of noise correlation. Inset: RF 
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spectrum of the free-running comb spacing with a scan range much larger than the cavity 

linewidth (290 MHz). The comb is tuned to enter the phase-locked state by fine control of the 

pump frequency. 

 

Figure 6-6. Dependence of the comb spacing on the pump properties.  

(a) The comb spacing as a function of the pump frequency change, determined at 57 Hz/MHz 

in our microresonator. (b) The comb spacing as a function of the pump power change in the 

ring, determined at 8.1 MHz/W in our microresonator. 

 

The comb spacing of 17.9 GHz is directly measurable by sending the output to a high 

speed photodetector (3 dB bandwidth of more than 15 GHz). An 18 GHz local oscillator is 

used to downmix the electronic signal to the baseband for analysis. The inset of Figure 6-5e 

plots the free-running comb spacing beat with a scan range of 1 GHz, showing a clean single 

peak characteristic of an equidistant Kerr microcomb. Details to confirm the continuous 

equidistance of the Kerr microcomb are summarized in Figure 6-4. Figure 6-5e illustrates the 

non-collinear second-harmonic-generation optical intensity autocorrelation to reveal the time 

domain picture of the Kerr microcomb. Careful checks are done to make sure no collinear 

second-harmonic background is collected in the setup. Even though the Kerr microcomb is 

operated in a low noise state, clean circulating mode-locked pulses are not formed as 

evidenced by the elevated AC background of nearly half of the peak. Furthermore, the 

autocorrelation measurements are performed at three different delays, showing evidently the 



 

 80 

repetitive temporal structures of the Kerr microcomb and excluding the possibility of noise 

correlation. Here, a fixed phase relationship between different comb lines is obtained, but the 

phase relationship may contain some abrupt changes associated with the local dispersion 

disruptions. Thus mode-locking is prohibited and δ−Δ matching becomes the underlying 

mechanism for driving the Kerr microcomb into a low noise state  [24,25,126,127].  

The comb spacing is then phase locked and stabilized to a microwave synthesizer by 

controlling the pump power with a fiber electro-optic modulator (EOM). Pump power is an 

effective way to control the comb spacing through thermal expansion and thermo-optic effects 

{Citation} and nonlinear phase accumulation. Figure 6-7a shows the stabilized beat note, with 

a resolution limited linewidth of 6 Hz and a low close-to-carrier phase noise. To characterize 

the frequency stability of the comb spacing, single sideband (SSB) phase noise spectra and 

Allan deviations are measured and shown in Figure 6-7b. Free running with none of the 

feedback loops engaged, the phase noise of the comb spacing shows a 𝑓−3.5 dependence on 

the offset frequency in the vicinity of the carrier. Such close-to-carrier behavior suggests the 

phase noise is currently dominated by a mixture of technical noise of frequency flicker (30 

dB/decade) and frequency random walk (40 dB/decade), rather than limited by quantum noise 

phase diffusion [128]. Since the microresonator is not thermally insulated from the 

environment, its interaction with the fluctuating ambient temperature results in the random 

walk of the comb spacing. Meanwhile, the pump wavelength drift leads to the flicker noise 

mediated by the residual optical absorption in the microresonator [107]. Such technical noise, 

however, can be removed by phase locking the beat note to a high performance microwave 

synthesizer. As shown in Figure 6-7b, the resulting close-to-carrier phase noise can reach the 
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level of -70 dBc/Hz at 10 Hz with a 𝑓−1.5 dependence on the offset frequency, limited only 

by the noise of the microwave synthesizer. 

 

Figure 6-7. Stabilizing the comb spacing to the mHz level residual error.  

(a) RF spectrum of the stabilized comb spacing, showing a resolution limited linewidth of 6 

Hz. Control of the comb spacing is achieved by modulating the pump power via a fiber EOM. 

(b) Single-sideband (SSB) phase noises of the free-running (black curve) and stabilized (red 

curve) comb spacing. Free running, the phase noise of the comb spacing shows a f 
−3.5 

dependence on the offset frequency in the vicinity of the carrier. Such technical noises can be 

removed by phase locking the beat note to a high performance microwave synthesizer and the 

resulting close-to-carrier phase noise can reach the level of -70 dBc/Hz at 10 Hz with a f 
−1.5 

dependence on the offset frequency (pink dashed curve), limited only by the microwave 

synthesizer. For offset frequencies above 10 kHz, on the other hand, the phase noise of the 

comb spacing is better than that of the 18 GHz local oscillator used for downmixing the 

electronic signal (gray dashed curve) and the measurement is thus instrument limited. Phase 

noise estimated from Eq. 1 is −148 dBc/Hz at 1 MHz and it grows with a f 
−2 dependence on 

the offset frequency. The estimated phase noise reaches −108 dBc/Hz at 10 kHz and starts to 

exceed the noise level of the 18 GHz local oscillator, matching the experimental observations 

(blue curve). Inset: Allan deviation of the comb spacing under free-running (black open 

squares), pump frequency stabilization (red semi-open squares) and full stabilization (blue 

closed squares). The fully stabilized comb spacing shows a consistent trend of 3.6 mHz/√𝜏 

(green dashed line) when the gate time is in the range from 0.5 s to 200 s. The gray line denotes 

the counter-limited Allan deviation. 
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In terms of the stabilization approach, alternatively a rubidium locked diode laser at 

1560 nm can also be used as the optical reference for phase locking one of the comb 

lines [129–131]. As Si3N4 microresonators suffer from lower Q at optical C-band due to 

residual N-H absorption [20], we prefer to pump the microresonator at optical L-band for low 

threshold comb generation. In the alternative scheme, the 1560 nm comb line is thus only 

accessible after the microresonator when the Kerr microcomb is generated (Figure 6-8). Here 

the 1560 nm comb line was selected by a narrowband monochromator and beat with the 

optical reference on a photodetector after the comb generation stage. The rest of the setup was 

the same as the one shown in Figure 6-1a. Figure 6-8b shows that the beat note can be equally 

well stabilized to a resolution limited linewidth of 6 Hz. 

 

Figure 6-8. Schematic of the alternative experimental setup for generation and 

stabilization of the chip-scale optical frequency comb.  

(a) After the microresonator, the 1560 nm comb line was selected by a narrowband 

monochromator and beat with the optical reference on a photodetector. The rest of the setup 

was the same as the one shown in Figure 6-1a. (b) RF spectrum of the stabilized beat note, 

showing a resolution limited linewidth of 6 Hz. Control of the comb line frequency was 

achieved by modulating the diode current of the ECDL. OBPF: optical bandpass filter. 
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6.4.  Out-of-Loop Characterization of Fully-Stabilized Chip-Scale 

Optical Frequency Comb Synthesizer  

For offset frequency above 10 kHz, the phase noise of the fully stabilized comb spacing 

is better than that of the 18 GHz local oscillator used for downmixing the electronic signal. 

The measurement is instrument limited to the level of ≥ −108 dBc/Hz from 10 kHz to 300 

kHz and −130 dBc/Hz at 1 MHz. It is therefore informative to calculate the theoretical limit 

of the phase noise at large offset frequencies and compare with the measurement. Using the 

equations with the pump-resonance detuning of 
𝑇𝑅𝛾

2

𝐷
 derived in Ref.  [128] and assuming 

(
𝑓

𝛾
)
2

≪ 1, we obtain the lower limit of the phase noise expressed as 

𝓛(𝒇) ≈
𝟐√𝟐𝝅ℏ𝒄𝒏𝟐

𝒏𝟎
𝟐𝑽𝟎

𝑸𝟐 [
𝟐𝟑

𝟐𝟒
+ (

𝟒+𝝅𝟐

𝟗𝟔𝝅𝟐
)
𝜸𝟐

𝒇𝟐
]    (6-1) 

where 𝐷 ≡ (𝜔𝑚+1 − 𝜔𝑚) − (𝜔𝑚 − 𝜔𝑚−1), Q, n0, n2, V0, 2γ, and f are the non-equidistance 

of the cold cavity modes, quality factor, linear refractive index, nonlinear refractive index, 

mode volume, FWHM resonance linewidth, and frequency offset from the 17.9 GHz carrier 

respectively. For our spiral microresonator, the estimated phase noise at 1 MHz is −148 

dBc/Hz and it grows quadratically with the inverse of the offset frequency. The estimated 

phase noise reaches −108 dBc/Hz at 10 kHz and starts to exceed the noise level of the 18 GHz 

local oscillator, matching the experimental observations. Of note, Eq. 𝓛(𝒇) ≈

𝟐√𝟐𝝅ℏ𝒄𝒏𝟐

𝒏𝟎
𝟐𝑽𝟎

𝑸𝟐 [
𝟐𝟑

𝟐𝟒
+ (

𝟒+𝝅𝟐

𝟗𝟔𝝅𝟐
)
𝜸𝟐

𝒇𝟐
]    (6-1) derivation requires a single-moded microresonator and 

the Kerr microcomb to be mode-locked, and hence only serves as a lower limit to our 

measurements. 
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Figure 6-7b inset plots the Allan deviations of the comb spacing under different 

conditions. After the comb spacing is downmixed with the 18 GHz local oscillator, the beat 

frequency is counted with a Λ-type frequency counter. Allan deviation is then estimated using 

the equation 𝜎𝐴(𝜏) = √
1

𝑀
∑

(𝑦̅𝑖+1−𝑦̅𝑖)
2

2
𝑖=𝑀
𝑖=1 , where τ, 𝑦̅𝑖, and 𝑀 = 𝑚𝑖𝑛 {60, [

1000

𝜏
]} are the gate 

time, the fractional frequency, and the number of samples respectively [132]. Free running, 

the Allan deviation increases as 𝜏1/3  as the result of technical noise including the pump 

wavelength drift and the fluctuating ambient temperature (black open squares). Pump 

frequency stabilization reduces the increase of Allan deviation over the gate time, but 

interestingly the level of Allan deviation remains unimproved because of the additional pump 

power fluctuation from the employed pump frequency control (red semi-open squares). With 

pump power feedback control, the active stabilization on the comb spacing improves the long-

term stability by six orders of magnitude, reaching 3.6 mHz/√𝜏 (blue closed squares). The 

residual comb instability is limited by the microwave synthesizer and close to the counter limit 

at 1 second gate time. 

To assess the uncertainty of the fully stabilized Kerr microcomb, we use the Menlo FFC 

as the calibration standard and measure the out-of-loop frequencies of forty-six Kerr 

microcomb lines around 1576 nm (Figure 6-9a) by beating each comb line with the adjacent 

FFC mode as shown in Figure 6-1a. When the comb spacings of the FFC and Kerr microcomb 

are made unequal, the beat frequencies should strictly follow the relationship of 

𝒇𝒃𝒆𝒂𝒕
𝒏 = 𝜹 + 𝒏(𝒇𝑹,𝑲𝑪 − ⌊

𝒇𝑹,𝑲𝑪

𝒇𝑹,𝑭𝑭𝑪
⌋ 𝒇𝑹,𝑭𝑭𝑪)    (6-2) 

where δ is the beat frequency at the pump mode, 𝑓𝑅,𝐾𝐶 is the Kerr microcomb spacing, and 

𝑓𝑅,𝐹𝐹𝐶 is the FFC comb spacing. Deviation from this expression poses an upper bound on the 
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frequency uncertainty of the Kerr microcomb. Figure 6-9b shows two example histograms of 

the frequency counting measurement. 600 counts are accumulated at 1 second gate time for 

the statistical analysis and the Gaussian curve fitting is implemented to derive the mean values 

and standard deviations. Counting results on all forty-six comb lines are shown in Figure 6-9c. 

The mean values of the comb frequencies stray from the ideal with a 190 mHz peak-to-peak 

deviation and a 50 mHz standard deviation. The relative frequency uncertainty of the 

stabilized chip-scale frequency comb is thus calculated at 2.7×10-16, referenced to the optical 

carrier at 188 THz. Of note, the 17.9 GHz comb spacing generated directly from the 

microresonator is compatible for high resolution astrospectrography and thus sophisticated 

Fabry-Perot (FP) filtering cavities, which limits the precision of state-of-the-art 

astrocomb [9,10,125], is circumvented. Due to the residual FP cavity dispersion and 

fluctuations of the FP cavity resonance, leading to changes in the extraneous-line suppression, 

the uncertainty of the astrocomb line frequency is typically degraded to kHz level [9,10,125]. 

The uncertainty, σ, then translates linearly to the systematic error, ε, in astrophysical velocity 

measurements with an approximate relation of 𝜀 ≅
𝜎

𝑓𝑝
∙ 𝑐 [9]. Thus, the 50 mHz frequency 

uncertainty of the Kerr microcomb can potentially improve the precision in astrophysical 

radial velocity measurements by orders of magnitude. 
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Figure 6-9. Out-of-loop characterization of the fully-stabilized chip-scale optical 

frequency comb.  

(a) To quantify the uncertainty of the stabilized chip-scale optical frequency comb, each of 

the comb lines from 1578.4 to 1573.6 nm (m=1 to m=33) and from 1570.5 to 1568.7 nm (m=54 

to m=66) is mixed with the fiber laser frequency comb and the beat frequency is counted with 

a gate time of 1 second. The beat frequencies should change progressively by Δ, where ∆=

𝑓𝑅,𝐾𝐶 − ⌊𝑓𝑅,𝐾𝐶 𝑓𝑅,𝐹𝐹𝐶⁄ ⌋𝑓𝑅,𝐹𝐹𝐶, and the deviation from this relationship poses an upper bound 

on the frequency uncertainty of the chip-scale optical frequency comb. (b) Example 

histograms of the frequency counting measurement on the 1st and 2nd modes (m). 600 counts 

are accumulated for the statistical analysis. The red lines are the Gaussian fits to the 

histograms. (c) Counting results on the optical frequencies of 46 comb lines. The centroid of 

the comb frequencies stray from the ideal with a 190 mHz peak-to-peak deviation and a 50 

mHz standard deviation. The frequency relative uncertainty of the fully stabilized chip-scale 

optical frequency comb is thus calculated at 2.710-16, referenced to the 188 THz optical 

carrier. 
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6.5.  Summary  

This chapter discusses the first fully stabilized CMOS-compatible solid-state optical 

frequency comb. Based on the silicon nitride spiral resonator, a native 18 GHz Kerr 

microcomb is generated and its single-sideband phase noise reaches the instrument limited 

floor of -130 dBc/Hz at 1 MHz offset. The comb’s two degrees of freedom, one of the comb 

line frequencies and the comb spacing, are phase locked to a known optical reference and a 

microwave synthesizer respectively, reaching an instrument limited residual comb spacing 

instability of 3.6 mHz/√𝜏. Forty-six Kerr microcomb lines are compared with the current 

benchmark FFC and the relative frequency uncertainty of the fully stabilized Kerr microcomb 

is measured down to 2.710-16. The reported system is a promising scalable platform for 

coherent Raman spectroscopy, high-precision optical clockwork, high-capacity coherent 

communications, arbitrary waveform generation, and astrophysical spectrography.    
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Globally Stable Microresonator Turing Pattern Formation for 

Coherent High-Power THz Radiation On-Chip 

In nonlinear microresonators driven by continuous-wave (cw) lasers, Turing patterns 

have been studied in the formalism of Lugiato-Lefever equation with emphasis on its high 

coherence and exceptional robustness against perturbations. Destabilization of Turing pattern 

and transition to spatio-temporal chaos, however, limits the available energy carried in the 

Turing rolls and prevents further harvest of their high coherence and robustness to noise. Here 

we report a novel scheme to circumvent such destabilization, by incorporating the effect of 

local mode hybridizations, and attain globally stable Turing pattern formation in chip-scale 

nonlinear oscillators with significantly enlarged parameter space, achieving a record high 

power conversion efficiency of 45% and an elevated peak-to-valley contrast of 100. The 

stationary Turing pattern is discretely tunable across 430 GHz on a THz carrier, with a 

fractional frequency sideband non-uniformity measured at 7.310-14. We demonstrate the 

simultaneous microwave and optical coherence of the Turing rolls at different evolution stages 

through ultrafast optical correlation techniques. The free-running Turing roll coherence, 9 kHz 

in 200 ms and 160 kHz in 20 minutes, is transferred onto a plasmonic photomixer for one of 

the highest power THz coherent generation at room-temperature, with 1.1% optical-to-THz 

power conversion. Its long-term stability can be further improved by more than two orders of 

magnitude, reaching an Allan deviation of 610-10 at 100 s, with a simple computer-aided 

slow feedback control. The demonstrated on-chip coherent high-power Turing-THz system is 

promising to find applications in astrophysics, medical imaging, and wireless communications. 
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7.1.  Introduction  

7.1.1. Revisit of Kerr Frequency Comb Evolution Dynamics  

The spontaneous formation of stationary periodic patterns from homogenous 

background firstly elucidated by Turing has served as the basis for developmental biology 

morphogenesis, chemical kinetics far-from-equilibrium, and the formation of fractals and 

chaos in nonlinear dynamics [133–135]. Of both conceptual importance and practical interest, 

optical Turing pattern formation has been theoretically proposed and investigated in cw-laser-

pumped Kerr-active microresonators [85,86,136], with emphasis on its high coherence and 

exceptional robustness against perturbations. Generally the Kerr-active microresonator is 

designed to possess anomalous group velocity dispersion (GVD) for convenient phase 

matching fulfillment and the formation dynamics of the spontaneous patterns can be described 

by the Lugiato-Lefever equation [137]. As the driving laser is frequency tuned into the cavity 

resonance from the blue side, stable Turing rolls first spontaneously emerge from the 

background, then quickly destabilize into spatio-temporal chaos [96,138], and eventually 

transition into dissipative Kerr solitons [20,76,108,139,140] or Kerr frequency 

comb [72,141,142] (Figure 7-1).  
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Figure 7-1. Evolution dynamics of a Kerr frequency comb under 100 mW on-chip power 

in (a) temporal domain and (b) spectral domain in a 116 GHz microresonator.  

The horizontal axis is the azimuthal direction, mapped with cavity round-trip time; the vertical 

axis is the pump-resonance detuning, normalized with cavity linewidth. A typical evolution 

includes Turing pattern, chaotic oscillation, soliton interaction and soliton or soliton 

molecules. Spontaneous Turing pattern, after formed, is quickly collapsed into spatio-

temporal chaos, and eventually transformed into soliton molecules with a proper scan protocol 

of pump detuning. 

 

7.1.2. Stability Map of Turing Comb in Anomalous Dispersion  

We note that the Turing roll in this dispersion regime, despite its optimally coherent 

properties [143], only exists in a limited phase space and its quick destabilization into chaos 

limits the attainable power conversion efficiency (Figure 7-2), preventing further harvest of 

the high coherence and the noise robustness of the Turing pattern. 
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Figure 7-2. Stability diagram and pump-to-comb power conversion.  

(a) Stability diagram of the Turing pattern in the anomalous GVD regime. Light blue: region 

of stable Turing pattern; yellow: region of breathers and spatio-temporal chaos; red: region of 

soliton and soliton molecules. The comb evolution dynamics along the dashed line is shown 

in Figure 7-1). (b) Pump-to-comb power conversion efficiency along the white dashed line in 

(a), showing only 8% maximum power conversions to Turing pattern before destabilization 

and transition to chaos happens. 

 

7.2.  Realization of Preventing Turing Comb Destabilization with high-

efficiency conversion   

7.2.1. Expanding Turing Pattern Stability Zone with Mode 

Hybridization Mediated Phase Matching  

To expand the stability zone and attain higher power conversion, we approach the 

spontaneous Turing pattern formation in a distinctly different way. Our Kerr-active 

microresonator is designed to possess a large globally normal GVD of 100 fs2/mm (Figure 
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7-3) and thus phase matching is strictly forbidden unless local dispersion anomalies are 

introduced to the system, providing additional GVD to balance the nonlinearity locally. In our 

high Q microresonator (loaded quality factor of 3.7×105), such anomalies result from the 

hybridization of two transverse modes (TM11 and TM21) with distinct free spectral ranges 

(FSRs) when their resonant frequencies are in the vicinity of each 

other [32,87,92,118,144,145]. The spectral position of the mode hybridization defines the 

Turing pattern formation dynamics and it can be changed by the design of the FSR difference. 

As the balance between the GVD and the Kerr nonlinearity is only fulfilled locally in the 

confined spectral range where mode hybridization occurs, sub-comb growth and subsequent 

destabilization of the Turing pattern is avoided (Figure 7-4). By enabling the deeper driving-

into-resonance without transition into chaos or soliton states, the conversion efficiency from 

pump to Turing pattern can thus be significantly enhanced in our system. The mode 

hybridization mediated phase matching – by adjusting the relative frequency between the 

pump mode and the mode hybridization position – further enables the repetition rate of the 

Turing roll to be discretely tunable. Moreover, the Turing roll spectra can exhibit controllable 

asymmetry through registering the pump mode on different sides of the first local-mode 

hybridization region 1 (Figure 7-9a). 
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Figure 7-3. Group velocity dispersion (GVD) of microring resonators for spontaneous 

Turing pattern formation, featuring large normal GVDs of +100 fs2/mm.  

The ring radius is designed to be large enough (more than 160 μm) such that the bending-

induced dispersion is negligible. Measured GVDs at 1603 nm (circles with error bars) 

show good agreements with the numerical modeling. Inset: scanning electron 

micrograph of the nonlinear ring resonator. 

 

 

Figure 7-4. Simulation of the Turing roll in the normal dispersion microresonator (1300 

fs2), where the Turing roll is excited by local mode hybridization.  

The red arrow points to the mode where local dispersion disruption is introduced in the 

Lugiato-Lefever model. It shows an apparent asymmetry and can be tuned further into 

resonance without triggering the sub-comb growth and the associated Turing pattern 

destabilization, expanding the stability zone and opening the route to harness Turing pattern's 

high coherence and exceptional robustness at high optical powers. Note that the pump-

resonance detuning used in the simulation is referenced to the cold cavity resonance 

frequency. 

 

Here we demonstrate for the first time the scheme of incorporating the mode 

hybridization effect to attain globally stable microresonator Turing patterns in chip-scale 

nonlinear nitride cavities with significantly enlarged parameter space, achieving an 

unprecedented pump depletion and a record high power conversion efficiency of 45% with an 

elevated peak-to-valley contrast of 100. We interrogate the commensurate and coherent nature 

of the spontaneous dissipative structure with ultrafast optical intensity autocorrelation, 

δ1 /u = 0 δ2 /u = 0.47 δ3 /u = 0.93 δ4 /u = 1.4
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microwave spectral noise analysis, and heterodyne beating against a benchmark fiber 

frequency comb. The fractional frequency sideband non-uniformity of the Turing pattern is 

measured at 7.3×10-14, with a short-term (200 ms sweep time) linewidth of 9 kHz and a long-

term (over 20 minutes) fluctuation of 160 kHz in the free-running mode. The long-term 

stability can be further improved by more than two orders of magnitude, reaching an Allan 

deviation of 6×10-10 at 100 s, with a simple computer-aided slow feedback control. Towards 

THz applications, we then transfer the Turing pattern optical coherence to the THz carrier 

through a plasmonic ErAs:InGaAs photomixer, generating up to 600 W THz radiation power 

at room temperature. The carrier frequency is discretely tunable over a broadband from 1.14 

THz to 1.57 THz. The demonstrated coherent high-power Turing-THz system offers the 

potential to be the room temperature on-chip THz local oscillator for astrophysics, medical 

imaging, and wireless communication [146–151]. 

Here a TM-polarized cw laser with an optical power of 29.5 dBm is frequency tuned 

from the blue side of the cavity resonance to trigger the Turing pattern formation. The 

measured spectra of the spontaneous Turing patterns generated from ring resonators with 

different radii are shown in Figure 7-9a, with the pump illustrated in blue and the mode 

hybridization positions labeled as red dashed lines. Despite very similar GVD (2) from 

different radii ring resonators, the Turing patterns show spectral shapes distinct from each 

other. Specifically, the spectral lines on the side of the first mode hybridization position are 

suppressed due to the increasing phase mismatch associated with the mode hybridization 

induced local dispersion disruption. With the first sideband pair (m =  1) phase matched due 

to the additional contribution from the mode hybridization on mode 1, then the phase matching 

condition can be written as: 
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∆𝑘(2𝜔0 − 𝜔1 − 𝜔−1) = 𝛽2∆
2 + 𝛾𝑃𝑖𝑛𝑡 − 𝜀 = 0 , 

where ε represents the contribution from the mode hybridization,  the Turing roll repetition 

rate,  the nonlinear Kerr coefficient, and Pint the intracavity power. Here 𝑘1 = 𝑘0 + 𝛽′∆ +

𝛽2

2
∆2 + 𝜀 , and 𝑘𝑚 = 𝑘0 + 𝛽′(𝑚∆) +

𝛽2

2
(𝑚∆)2 , where ’ is the group velocity. Then the 

phase matching condition for the first cascaded FWM on either side of the pump can be 

written as: 

∆𝑘(2𝜔1 − 𝜔2 − 𝜔0) = 𝛽2∆
2 + 𝛾𝑃𝑖𝑛𝑡 + 2𝜀 = 3𝜀 

∆𝑘(2𝜔−1 − 𝜔0 − 𝜔−2) = 𝛽2∆
2 + 𝛾𝑃𝑖𝑛𝑡 = 𝜀 . 

The phase mismatch on the side of the mode crossing position is three times larger than the 

other process and thus the symmetry of the Turing roll spectra is broken. Similar symmetry 

breaking by mode hybridization has also been demonstrated in the microwave photonics 

recently [152]. Turing roll repetition rates also show dramatic variations,  640 GHz in the 

180 μm radius ring and  1.72 THz in the 160 μm and 200 μm rings, that cannot be solely 

explained by the change in the cavity round-trip time. These features are direct consequences 

of the unique phase matching configuration employed in our design, with critical roles in the 

efficient coherence transfer from Turing pattern to THz radiation detailed in Chapter 7.5. Note 

that, the mode hybridization induced local dispersion disruption ε can be dynamically tuned 

by changing the temperature of the microresonator, thereby providing an additional dimension 

to control the Turing pattern formation dynamics. The dynamics is detailed in Session 7.2.2.  
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7.2.2. Dynamic Tuning of Mode Hybridization by Device 

Temperature Control 

The two transverse mode families can be solved by 3D finite-element analysis [153], as 

shown in Figure 7-5. Mode 0 is where the resonance frequencies of the two mode families 

(ω11 and ω12) cross each other. The exact crossing point is determined by the distinct free 

spectral ranges (FSRs) of the two transverse modes (TM11 and TM21), and it can be tuned by 

design of the waveguide geometry. Here without considering modal interaction effect, as 

Figure 7-5b shows, the frequency difference can be simply expressed as Δeig/2π =

(𝜔11 − 𝜔12)/2𝜋 and it has a linear relationship with the mode number. 

 
Figure 7-5. Numerically modeled cavity resonances and mode crossing without mode 

coupling effect.   

(a) Resonance frequencies of TM11 (ω11/2𝜋, black square) and TM12 (ω12/2𝜋, red dot) at the 

temperature of 60 oC. (b) Frequency difference between TM11 and TM12 mode, i.e., Δeig/2π, 

showing a linear relationship with mode number. The crossing point between the two mode 

families is a function of FSR difference and can be tuned by design of the waveguide 

geometry. 
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In real devices, however, the two modes can couple with each other when their 

resonance frequencies are close, owing to imperfections in material growth, waveguide cross-

section, and bending geometry. Figure 7-6a plots the experimentally measured and fitted 

resonance frequencies for the two modes at the temperature of 60 oC. Figure 7-6b shows the 

frequency differences calculated from the measurements at two different temperatures of 60 

oC and 70 oC respectively; at mode 0, the cavity mode experiences a frequency shift Δm, 

leading to an offset from the otherwise linear relationship (blue lines) between the frequency 

difference and the mode number. Note that, Figure 7-6c shows that Δm  is inversely 

proportional to Δeig and their exact values are temperature dependent. Both relationships are 

consistent with the coupled mode theory elaborated later in details. 
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Figure 7-6. Experimentally measured two transverse mode families with mode coupling 

effect under different temperatures.  

(a) Experimentally measured resonance frequencies of TM11 (black square) and TM12 (red 

dot) at the temperature of 60 oC. (b) Frequency difference between TM11 and TM12 at 60 oC 

(left) and 70 oC (right). (c) Zoom-in frequency difference around mode 0. The linearly fitted 
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value at mode 0 is the frequency difference between the two eigenmodes Δeig/2π, 0.83 GHz 

at 60 oC and 1.63 GHz at 70 oC, without considering the modal interaction effect; the 

additional offset from the measurement (red dot) shows the modal frequency shift induced by 

mode hybridization ∆m/2π, 0.29 GHz at 60 oC and 0.15 GHz at 70 oC.  

From the coupled mode theory, Δeig and ∆m have a fixed relationship in a given device 

Δm = −
κ2

Δeig
 [20,92], where κ is the mode interaction constant. Note that, while it is very 

challenging to control the mode interaction constant, adjusting Δeig through either waveguide 

design or dynamic temperature tuning is an effective way to engineer the overall effect of 

mode hybridization. When the magnitude of temperature tuning is sufficiently high, it can 

even shift the mode hybridization position, a phenomenon that is later utilized for discrete 

tunability of THz frequency. A summary of all measured Δeig at the temperature ranging from 

30 oC to 90 oC are shown in Figure 7-7 (red dots). An analytic fit is performed based on the 

relation R0(1 + αΔT)n0 (1 +

1

n0
dn

dT
ΔT)ω = mc [153], where R0 is the original ring radius, 

n0 the original index, ΔT the temperature change, m the mode number, 
dn

dT
 the thermal optic 

coefficient, and α the thermal expansion coefficient [154]. A better fit to the measurement 

data points (blue line) can be obtained by adjusting 
dn

dT
 from 2.45×10-5 / oC as reported in the 

literature [154] to 1.76×10-5 / ˚C. To further validate our results, we calculate the mode 

interaction constant κ  as a function of temperature using the measured Δeig  and ∆m . As 

expected, κ is practically temperature invariant from 50 oC to 70 oC, with a mean value of 2.1 

GHz and a standard deviation of 2 % (Figure 7-8). 
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Figure 7-7. Measured eigenmode frequency difference 𝚫𝐞𝐢𝐠  with respect to device 

temperature tuning with a fitted linear relationship.   

Tuning of Δeig through chip temperature control changes the mode hybridization effect. Δeig 

shows a linear relationship with temperature. When the chip temperature is increased to more 

than 75 oC, the mode hybridization effect shifts to the adjacent mode. 

 
Figure 7-8. Mode interaction constant 𝛋 derived from experimental measurements.  

Mode interaction constant κ  is derived using the relation Δm = −
κ2

Δeig
. Across all 

temperatures, the κ is consistently 2.1 GHz with 2% standard deviation. 
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To complete this discussion, we quantitatively examine the mode hybridization 

mediated phase matching as outlined in Session 7.2.1. The wavenumber with mode 

hybridization effect (k1) and without mode hybridization effect (k1o) can be written as: 

 k1 = k0 + β′(∆ + Δm) +
β2

2
(∆ + Δm)

2 

 k1o = k0 + β′∆ +
β2

2
∆2     

hence the phase mismatch induced by mode hybridization can be expressed as  ε = k1 −

k1o ≈ β′∆m + β2Δ ∙ ∆m . Consequently, a modal frequency shift of ∆m≈
β2Δ

2+γPint

β′
 is 

required to satisfy the phase matching condition, ∆k(2ω0 −ω1 −ω−1) = β2∆
2 + γPint −

ε = 0. Plugging in the measured ∆m/2π, ∆/2π, 𝛽2, 𝛽′, and 𝛾, we find that the required intra-

cavity power of 15 W is in a good agreement with the experiment. 

7.2.3. Globally Stable Turing Pattern Formation  

We focus the analysis on the results generated from the 160 μm radius ring because of 

its energy concentration in the wavelength range shorter than 1570 nm, overlapping better 

with the spectral response of our plasmonic photomixer discussed later. Figure 7-9b and c 

shows the pump and total transmitted intensities, measured simultaneously for different 

detunings. The pump transmission shows a triangular tuning curve with a strong dip from 

normalized unity into  10% of the original transmission, while total transmission shows only 

a small drop from 48% to 41% – this provides the evidence of the efficient total energy transfer 

from the pump into the complete Turing pattern sidebands. To examine this further, Figure 

7-9d plots the corresponding Turing roll spectra at different detuning stages: stable 

spontaneous Turing pattern are observed without any sign of destabilization at all detunings. 
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The power conversion efficiency, defined as the integrated power of the output Turing roll 

divided by the on-chip pump power, reaches as high as 45% at the stage III. Closer to 

resonance at the stage V, an even stronger pump depletion is achieved, with the pump intensity 

2-dB lower than even the first modulation sidebands. 

 

Figure 7-9. Turing rolls generated in microring resonators.  

(a) Turing rolls generated from ring resonators with different radii. Even though the GVD of 

the ring resonators differ by less than 2 fs2/mm, the TM11-TM21 mode hybridization positions 
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b c
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(red dashed lines) with respect to the pump (blue lines) shift due to the change in the ring radii, 

resulting in abrupt dispersion variations locally and very different spontaneous Turing patterns. 

The Turing roll repetition rates are 1.72 THz (12×FSR) for the 160 μm radius ring, 0.64 THz 

(5×FSR) for the 180 μm radius ring, and 1.72 THz (15×FSR) for the 200 μm radius ring. (b) 

Pump-cavity transmission as a function of the pump wavelength, labeling the detunings where 

different Turing roll stages are generated. Inset: The cold resonance of the pump mode, 

measuring a loaded Lorentzian linewidth of 500 MHz and a loaded quality factor of 3.7×105. 

(c) Total cavity transmission as a function of the pump wavelength in the range where Turing 

roll is generated. Compared to the pump-cavity transmission, the total cavity transmission 

shows a less apparent decrease as the pump is tuned into the resonance, confirming an efficient 

power conversion from the pump to the generated Turing lines. (d) Example Turing roll 

spectra at different stages. At stage V, even a highly depleted pump close to the resonance is 

observed in the measurement, illustrated in the dashed box. 

 

Note that, here the pump-to-comb power conversion efficiency is defined as: 

𝜂 =
∫ (𝐼𝑜𝑢𝑡 − 𝐼𝑏𝑘𝑔)𝑑𝑡
𝑇

0

𝑇
 

as illustrated in Figure 7-10. In the calculation, we only consider the optical power of the 

Turing pattern carried by the output bus waveguide. This definition of power conversion 

efficiency, rather than slope efficiency or internal efficiency, is adopted in this manuscript 

because it provides a more transparent measure to calculate the total available power for real-

world applications. 
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Figure 7-10. Illustration of external pump-to-comb conversion efficiency. 

 

7.3.  Terahertz Frequency Coherence Characterization   

To investigate the temporal structure of the Turing patterns at different evolving stages, 

we conduct a series of ultrafast optical intensity autocorrelation (IAC) measurements, as 

shown in Figure 7-11a. At all the stages, stable and strong quasi-sinusoidal oscillations are 

each observed. While pumping closer to resonance results in monotonic increase in the pump 

depletion (Figure 7-9d), counterintuitively the IAC traces show a discernible minimum 

background between stage II and stage III. As elaborated later, it is a direct consequence of 

strong pump depletion. At stage III, a peak-to-valley intensity contrast ratio of more than 100 

is achieved, as shown in Figure 7-12. We perform extensive measurements to examine the 

coherence of the spontaneous Turing formation, illustrated in Figure 7-11b to e. The RF 

amplitude noise spectra of the Turing pattern up to 3 GHz, six times the cavity linewidth, 

α
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shows an absence of RF peaks and a noise level at the instrumentation detection background 

limit, indicative of the existence of a single Turing roll family with commensurate repetition 

rates (Figure 7-11b).  

We further heterodyne beat the Turing sidebands (m =  1 and pump) against a 

benchmark fiber frequency comb (see Appendix II) and perform ratio counting of the 

sidebands to interrogate the frequency uniformity, which sets the fundamental limit on the 

coherence transfer from the Turing pattern (Figure 7-11c). When the Turing roll repetition 

rate is made non-divisible by the fiber frequency comb spacing, the beat frequencies of 

consecutive sidebands will be an arithmetic sequence. Namely, 𝛿2 = 𝛿1 + ∆= 𝛿0 + 2∆. Here 

we make the common difference, Δ, to be 1 MHz. Ideally, the ratio between 𝛿2 − 𝛿0 and 𝛿1 −

𝛿0, R, should be 2 and deviation from this ratio, 𝜀𝑅, is a measure of the sideband frequency 

non-uniformity, 𝜀 = 𝜀𝑅 ∙ ∆. Excellent sideband uniformity of the Turing pattern is observed 

at all evolving stages with the average non-uniformity measured at 125 mHz, 7.3×10-14 when 

referenced to the Turing pattern repetition rate at 1.72 THz (Figure 7-11c). Figure 7-11d next 

shows the self-heterodyne beat note of the first sideband (see Appendix III), demonstrating 

the Turing lines down to a pump-coherence-limited linewidth of 500 kHz. The linewidth 

measurements independently confirm the good coherence of the Turing rolls at all detunings. 

Figure 7-11e also shows the real-time power monitoring of the four strongest sidebands. All 

sidebands present similar intensity noise of less than 1% (integrated from 100 Hz to 100 MHz) 

and no cyclic energy exchange between sidebands is observed, excluding the possibility of 

breathing dynamics with conserved total power and supporting the evidence of stationary 

Turing pattern formation with extensive stability zone.  
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Figure 7-11. Turing pattern coherence characterization.   
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(a) IAC traces of the Turing rolls at different stages. The red dashed lines are the ideal traces 

calculated from the spectra, while the black curves are the measured traces. As the sidebands 

grow, the deviations between the measured and calculated IAC traces also increase. (b) To 

examine the emergence of incommensurate sub-combs, RF amplitude noise spectra of the 

Turing rolls (black curve) along with the detector background (red curve) are measured up to 

3 GHz, six times the cavity linewidth. No apparent amplitude noise is observed, verifying the 

existence of the commensurate sub-combs. Inset: zoom-in RF amplitude noise spectra up to 

250 MHz, at the instrumentation detection noise floor. (c) To probe the equidistance of the 

Turing rolls, the beat notes between the three Turing roll sidebands (pump, m = 1, and m = 2) 

and the adjacent fiber laser frequency comb lines are measured and the ratio errors are 

presented. The small deviation from the ideal ratio R of 2 [R defined in the main text as (𝛿2 −

𝛿0)/(𝛿1 − 𝛿0)] verifies Turing pattern’s excellent uniformity. The average non-uniformity is 

measured at 125 mHz, or 7.3×10-14 when referenced to the Turing pattern repetition rate at 

1.72 THz. (d) The linewidth of the 1st sideband is measured at 500 kHz, limited by the 

coherence of the pump laser, by the self-heterodyne technique at different stages. No linewidth 

broadening is observed, independently confirming that the coherence of the Turing roll is 

maintained at all evolving stages. (e) Power fluctuation of individual sidebands at the stages 

I (left) and V (right) with a sampling rate of 250 MHz, ruling out the possibility of breathing 

solutions. 

 

 

Figure 7-12. Measured intensity profile of the sub-picosecond Turing roll, showing a 

quasi-sinusoidal oscillation with a more than 100 contrast.  
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Measured intensity autocorrelation (IAC) profile of the Turing roll at the stage III. Due to the 

efficient energy conversion from the pump to the first sideband pair, the Turing roll features 

a quasi-sinusoidal intensity profile with a negligible background of less than 1% of the peak 

intensity. Nearly background-free operation is important for efficient on-chip THz generation 

as it reduces the risk of thermal breakdown at high optical pump powers. 

To examine whether the temporal shape of the spontaneous Turing pattern is subjected 

to the perturbation in the initial condition and the pump detuning scan, we performed the IAC 

measurements at three different tuning speeds and two independent starts. Each of the Turing 

IAC dynamics remains identical to each other as shown in Figure 7-13, illustrating the good 

robustness of the Turing patterns. Unlike the microresonator soliton generation where the 

initial condition and the tuning speed play key roles in determination of the soliton states, here 

the Turing roll always evolves in the identical route and is robust against perturbations in 

initial conditions and pump wavelength tuning speeds. To understand the dynamics better, 

ideal IAC traces from transform-limited Turing patterns are superimposed onto the measured 

IAC traces (Figure 7-11a; in red). As the Turing pattern is driven closer to resonance, there is 

increasing discrepancy of the measured pattern from the transform-limit. The change of 

temporal shapes without the coherence loss implies that the spectral phase of the Turing 

pattern varies at the different evolving stages and thus different external phase compensation 

strategies are necessary if the temporal properties of the Turing pattern are to be fully utilized. 

The spectral phase variation can be understood as the consequence of the pump phase slip 

around the resonance. The relationship between the output and the intracavity pump power 

can be written as: 

𝐴𝑝,𝑜𝑢𝑡 = −
𝛾𝑐−𝛾𝛼−𝑖𝛿

√2𝛾𝑐
√𝑇𝑅𝐴𝑝,𝑐𝑎𝑣 , 
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where γc and γα are the half-width half-maximum linewidths associated with the coupling 

losses and the intrinsic cavity losses respectively. In our microresonator, γc = 160 MHz and γα 

= 90 MHz. The output pump will experience a π phase shift as it traverses through the 

resonance (Figure 7-15a). Such phase slip is due to the interference between the intracavity 

and the input pump and thus the other sidebands of the Turing roll will not experience such a 

phase shift. This additional pump phase slip results in the observed change of temporal 

structure. The distinct responses to dispersion (illustrated in Figure 7-14; aiding between 

different Turing states) are well captured by considering the pump phase offset (Figure 7-15b). 

Note that, most of the phase slip happens very close to cavity resonance and thus the 

observation of its effect is attributed to the unique design of our microresonator, which utilizes 

the local mode hybridization to fulfill the phase matching of spontaneous Turing pattern 

formation and greatly suppresses the Turing pattern destabilization even when the pump is 

deep into the resonance. 

 

Figure 7-13. Identical intensity autocorrelation (IAC) measured at different scanning 

speeds and different starts.  

(I) (III) (V)
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At three different scanning speeds (black curve: 1 nm/s; red dashed curve: 0.3 nm/s; blue 

dashed curve: 0.1 nm/s) and two independent starts (top and bottom), the Turing roll shows 

the identical generation route. 

 

Figure 7-14. The effect of the added dispersion on temporal structure of the Turing 

pattern at different stages.   

IAC traces of the Turing rolls at two different pump detunings (p = 1603.28 nm and p = 

1603.40 nm) with two external dispersion compensation. Here D1 and D2 use 60 cm and 90 

cm SMF-28 fibers as the external dispersion elements, respectively. 

 

Figure 7-15. Pump-cavity phase slip and its effect on temporal structure of the Turing 

pattern. 

a b
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(a) Phase offset between the intracavity and output pump light, showing a π phase slip around 

the resonance. (b) IAC traces calculated by adding π/2 to the pump wavelength for p = 

1603.40 nm, showing a good agreement with the measurements shown in Figure 7-14. 

To characterize the stability of the free-running Turing roll repetition rate, which 

determines the linewidth and fluctuation of the THz radiation, we beat the pump and one of 

the sideband with the adjacent fiber laser frequency comb lines and electrically mix the two 

signals to get the beat note at the frequency difference as shown in Appendix II. Figure 7-16 

shows the long-term frequency fluctuation, measuring a root-mean-square frequency 

fluctuation of 160 kHz over 20 minutes. The left inset shows the linewidth of the beat note 

with a sweep time of 200 ms, measuring a narrow FWHM linewidth of 9 kHz; the right inset 

shows the frequency stability of the beat note, measuring an Allan deviation of 1.15×10-8∙ √𝜏 

when referenced to the THz carrier. 

 

Figure 7-16. Long term frequency fluctuation of the 1st sideband with respect to the 

pump in the free-running mode, showing the repetition rate fluctuation of 160 kHz over 

20 minutes.  

The left inset shows the linewidth of the beat note with a sweep time of 200 ms, measuring a 

narrow FWHM linewidth of 9 kHz; the right inset shows the frequency stability of the beat 

note, measuring an Allan deviation of 1.15 × 10−8 ∙ √𝜏 when referenced to the THz carrier. 
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7.4.  Long-Term Stability Improvement   

The long-term stability of the Turing frequency comb can be further improved by a cost-

effective computer-aided slow feedback control of the Turing sideband power. The feedback 

bandwidth is about 1 Hz. As the microresonator is housed in a temperature-controlled 

enclosure, we attribute the instability of the Turing roll repetition rate mainly to the effects 

associated with the fluctuation of intra-cavity power, which at the same time has major impact 

on the Turing sideband power. Therefore, by stabilizing the Turing sideband power, the 

fluctuation of intra-cavity power is reduced and consequently the long-term stability of Turing 

roll repetition rate is improved. The setup is schematically show in Figure 7-17. When the 

feedback loop is engaged, the frequency stability is significantly improved as shown in Figure 

7-18a. Figure 7-18b shows the Allan deviation after stabilization, measuring an improvement 

of more than two orders of magnitude and reaching 6×10-10 at 100 s with an inverse linear 

dependence on the gate time.  

 

Figure 7-17. Turing pattern frequency stabilization setup. 
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The first Turing sideband is filtered out and sent to a photodetector to monitor the power 

fluctuation. A computer program is used as the loop filter that takes in the Turing sideband 

power fluctuation as the error signal and outputs the control signal to modulate the pump 

power. The computer-aided slow feedback loop has a bandwidth of 1 Hz. 

 

Figure 7-18. Long-term stability improvement with slow-feedback engaged.  

(a) Long term frequency fluctuation of the 1st sideband with respect to the pump without (red) 

and with (blue) engaging the computer-aided slow feedback control, counted with a gate time 

of 1 second. (b) Allan deviation of the stabilized THz frequency, measuring a plateau of 

1.2×10-8 for gate times shorter than 5 second and a roll-off of 6 × 10−8 𝜏⁄  for longer gate 

times.  

Alternatively, the fluctuation of intra-cavity power can be retrieved by coupled light 

from a drop port [108] or intra-cavity field that is counter-propagating inside the resonator. 

The counter-propagating field, i.e. the back-scattered field seen from the input, can be 

retrieved by placing a circulator before the input collimation. Note that, the power ratio 

between forward and back-scattered comb depends on mode coupling effect [155], which 

varies across different comb modes and may also lead to mode splitting at some modes. The 

latter isn’t observed in this comb structure. An example comparison of forward and backward 

propagating frequency comb is shown in Figure 7-19, where the backward scattered total 

comb power is around 13 dB lower than the forward comb. By continuously tuning the laser 
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frequency and simultaneously monitoring the change of THz comb spacing and the back 

scattered power, a linear relation of 7.170 × 1010𝑀𝐻𝑧/𝜇𝑊, i.e. 71.7 kHz/W, is found with 

1% standard deviation. This should give similar performance as the method above.   

 

Figure 7-19. Terahertz frequency change as a function of back scattered comb power.  

(a) Simultaneously measured spectra of forward Turing comb and backward scattered comb. 

(b) Relation between THz comb spacing and the back scattered comb power, with a fitted 

slope of 71.7 kHz/W.  

 

7.5.  Efficient Terahertz Radiation by Plasmonic Enhanced Photomixers  

The robustness, tunability, good coherence, and high efficiency of the demonstrated 

Turing roll make it an excellent photomixer pump for narrow linewidth tunable THz radiation. 

Different from deriving the pump from a mode-locked laser [150], the Turing pattern offers 

the advantage of efficient power use and reduced system complexity as its quasi-sinusoidal 

intensity profile (Figure 7-12) is directly applicable as a photomixer pump. Other 

demonstrated photomixer pump source until now [156] include independent lasers with 

frequency stabilization [157,158], single laser with active high-speed phase modulation [151] 
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and tunable dual-mode lasers [159–163]. While phase-locking two independent lasers to 

external frequency references can potentially provide the ultimate coherence, it suffers from 

greatly increased system complexity. Using a single laser with active phase modulation 

simplifies the system, but high-speed phase modulation with a bandwidth higher than 1 THz 

is technologically challenging. Tunable dual-mode laser is attractive in its compact footprint 

and broadband tunability, but it has a large long-term frequency drift due to the uncommon 

paths taken by the two modes and solving it again requires a sophisticated phase-locking 

technique. The demonstrated Turing roll provides an alternative platform as it not only is 

intrinsically compatible with high power operation but also offers a balance between highest 

coherence and lowest system complexity. 

To convert the Turing pattern into the THz radiation, we fabricate an ErAs:InGaAs 

plasmonic photomixer (Figure 7-21a) which features a good spectral response from 0.8 to 1.6 

THz due to the logarithmic spiral antenna design [164]. The plasmonic contact electrode 

gratings are designed to have 200 nm pitch, 100 nm metal width, 5/45 nm Ti/Au height, and 

250 nm thick silicon nitride anti-reflective (AR) coating. They are patterned with electron-

beam lithography followed by deposition of Ti/Au and liftoff. A 250 nm silicon nitride anti-

reflective coating is then deposited with PECVD. Contact vias are patterned with optical 

lithography and etched via dry plasma etching. Finally, the logarithmic spiral antennas and 

bias lines are patterned again with optical lithography, followed by deposition of Ti/Au and 

liftoff. The fabricated plasmonic photomixers are then mounted on a hyper-hemispherical 

silicon lens to improve the THz radiation collection.  

The setup for THz radiation generation is schematically show in Figure 7-20. A C/L 

WDM filter, followed by an erbium doped fiber amplifier (EDFA), is used to selectively 
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amplify the Turing pattern sidebands in the 1530 to 1565 nm C-band range. Of note, the EDFA 

is necessary only because our current Si3N4 microresonator has a strong Q-factor roll-off in 

C-band and thus we are limited to pump it in the L-band. Figure 7-21b shows four examples 

illustrating the tunability of the Turing roll repetition rate (1.14 to 1.57 THz) by adjusting 

pump wavelength and device temperature, which in turn determines the THz frequency, by 

tuning the chip temperature or the pump wavelength. Efficient photomixing [165] is achieved 

based on a logarithmic spiral plasmonic antenna design [164] for efficient THz radiation 

generation. To achieve the highest photomixing efficiency, both the focus spot size and the 

position of the optical pump were adjusted to maximize the induced photocurrent level. The 

generated THz radiation was then measured with a liquid helium-cooled silicon bolometer. 

Lock-in detection technique was implemented to reduce the noise level and obtain a more 

reliable reading of the THz radiation power.  

 

Figure 7-20. THz radiation generation setup. 

 

Figure 7-21c plots the room-temperature radiated THz power as a function of the optical 

pump power, showing a nearly quadratic dependence even at the maximum available pump 
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power of 54 mW, without much saturation roll-off in the THz generation. Up to 600 μW THz 

radiation power is generated with an optical-to-THz power conversion efficiency of 1.1%.  

 

Figure 7-21. Efficient terahertz radiation by plasmonic enhanced photomixer.  

(a) Scanning electron micrographs of the fabricated plasmonic photomixer with a logarithmic 

spiral antenna integrated with plasmonic contact electrodes on an ErAs:InGaAs substrate. 

Scale bars from left to right: 100 μm, 10 μm, and 3 μm. (b) Turing roll repetition rate, and 

hence the generated THz frequency, can be tuned by changing the pump wavelength and the 

resonator temperature. (c) THz radiation power as a function of optical pump power. Power 

conversion efficiency of 1.1 % can be obtained with an optical pump power of 54 mW. 

 

7.6.  Summary  

The chapter begins with reviewing evolution dynamics of Kerr frequency comb 

formation and the uniquely high stability and high robustness of Turing pattern, discusses the 

scheme and measurement results to effectively circumvent Turing pattern destabilization and 
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enhance energy conversion towards real world applications, and demonstrates the high 

efficiency optical-to-THz conversion by plasmonic photomixer.   

We incorporate mode hybridization mediated phase matching techniques to attain 

globally stable microresonator Turing patterns in chip-scale silicon nitride microcavities with 

significantly enlarged parameter spaces, achieving an unprecedented pump depletion and a 

record high power conversion efficiency of 45% with an elevated peak-to-valley contrast of 

100. The techniques also lead to controllable asymmetry in the Turing roll spectrum. The 

fractional frequency sideband non-uniformity of the Turing pattern is measured down to 

7.3×10-14, with a short-term (200 ms sweep time) linewidth of 9 kHz and a long-term (over 

20 minutes) fluctuation of 160 kHz in the free-running mode. The long-term stability can be 

further improved to sub-kHz with a simple computer-aided slow feedback control. We 

observe the temporal shapes of the Turing patterns change with respect to pump detuning, not 

because of the coherence loss but the pump phase slip near the cavity resonance. The 

robustness, tunability, good coherence, and high efficiency of the demonstrated Turing pattern 

make it an excellent photomixer pump for narrow linewidth tunable THz radiation. Pumping 

a novel ErAs:InGaAs plasmonic photomixer, we then transfer the Turing pattern optical 

coherence to the THz carrier and generate up to 600 W THz radiation power at room 

temperature. The carrier frequency is discretely tunable over a broadband from 1.14 THz to 

1.57 THz. The demonstrated coherent high-power Turing-THz system offers the potential to 

be the room temperature on-chip THz local oscillator for astrophysics, medical imaging, and 

wireless communication.   
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Type-1 and Type-2 Satellites in Kerr Frequency Combs  

This chapter discusses a new type of frequency comb by multiple phase matching, which 

is achieved in parametric oscillation process in the nonlinear Kerr medium through cavity 

dispersion control. Such concept can lead to spectrally-wide optical frequency combs with 

high conversion efficiency in silicon nitride microresonators driven with a continuous-wave 

pump. Particularly two satellite comb clusters at  1.3 m and 2.0 m regimes are generated 

simultaneously together with the central comb. The intensities of the satellite combs are 

comparable with the first generated parametric sideband near the pump, with a demonstrated 

record high conversion efficiency more than -30 dB. Under different pumping conditions we 

report the spectral positions, RF amplitude noise, and evolution dynamics of the satellite 

combs. The demonstrated satellite comb structures and their formation with multiple phase 

matching serve as a unique platform for carrier envelope phase stabilization as well as 

coherent light sources covering extended spectral regimes.  

8.1.  Introduction  

Parametric frequency conversion serves as the fundamental mechanism for a wide range 

of nonlinear optics phenomena and has triggered tremendous studies [166]. Of great 

importance among these studies, frequency comb generated in high quality factor (Q) optical 

microresonators have attracted increasing interests in the recent decade in both theories and 

experiments [16,120,139,141,167–169]. Microresonator-based frequency combs hold 

indispensable advantages over conventional mode-locked laser frequency combs in the 
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achievable high repetition rate, low power consumption, and compact platform with high 

repeatability and scalability. With these, the microresonator frequency combs are promising 

candidates for numerous applications including optical frequency synthesis, coherent 

spectroscopy, high-speed communication, high-power terahertz radiation, and multiphoton 

quantum communication and computation [33,89,141,170–175].  

In many of these aspects, achieving a broadband frequency comb is demanding as well 

as challenging. Of exceptional importance, realizing a self-referenced frequency comb, 

enabled by f-to-2f or 2f-to-3f carrier-envelop-offset (fCEO) detection and stabilization, can 

achieve precise measurement of the frequencies of each comb mode, offering the clockwork 

to count optical frequencies and the synthesis from RF frequencies to optical domain. 

Realizing a frequency comb with an octave of two-third of octave spanning is comparatively 

not easy in microresonator combs [71,176], due to the limited degrees of freedom to control 

the cavity parameters after the devices are patterned. Spectral broadening by nonlinear 

waveguides can overcome this issue [177]. Recently studied temporal dissipative Kerr 

solitons (DKSs) achieves a full octave assisted by Cherenkov radiation [167,178], which lead 

to the successful 2f-3f self-referencing [168]. these methods, however, suffer from low power 

conversion efficiency in at least at one spectral edge. Consequently, this often requires post-

amplification for sufficient nonlinear frequency conversion, introducing additional noise and 

power budget to the frequency metrology and referencing system.  Cherenkov radiations in 

both red and blue side of the pump can be generated with higher order dispersion engineered, 

while the spectral-shift are not necessarily the same depending on the achievable 

dispersion [179,180].  



 

 121 

In terms of comb evolution, conventional microresonator frequency combs usually start 

with the modulation instability (MI) and four-wave mixing (FWM) leading to phase-

correlated comb modes, then generate the sub-comb families [181,115,182,111,31]. The 

positions of these primarily phase-matched modes are determined by local anomalous 

dispersion, nonlinear frequency shift and pump-resonance detuning. The total bandwidth of 

primary modes and the overall comb spectrum are bounded by the second-order dispersion. 

Multispectral coherent synthesis provides a solution to overcome the bandwidth-power 

paradox [183,184], which will therefore require multiple stages of laser combs and synthesis 

effort.  

This work aims to circumvent this limitation. Here we report the observation and 

comprehensive analysis of multi-phase-matched parametric oscillation by cavity dispersion 

control, where two or more pairs of phase matching can be achieved simultaneously with 

spectral regimes exceeding MI gain bandwidth. The concept is realized in the spectrally 

broadened frequency comb generations in silicon nitride microrings spanning up to 100 THz 

with two types of satellite comb families at  1.3 µm (O-band) and  2 µm generated directly 

from pump with high conversion efficiencies up to -30 dB. The intensity of the satellite combs 

is comparable with that of strongest primary comb modes near the pump, and each comb 

family has a 15 THz bandwidth at the 30-dB falloff threshold. The evolution of the satellite 

combs is rigorously examined, showing rich dynamics. Particularly, type-1 satellite refers to 

the case where signal and idler lie in the same azimuthal cavity mode, whereas type-2 refers 

to the case where signal and idler lie in different mode numbers. These two are separated 

discussed in magnesium fluoride resonators [185] and dispersion-modulated silicon nitride 

rings [186]. Here we provide a comprehensive study for both the two cases.  
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Besides the affordable direct comb synthesis, these satellite combs provide rich 

nonlinear dynamics, for light sources with enlarged wavelength regimes with relaxed pumping 

conditions. The available spectrum covering from telecom bands (O, S, C and L bands) to 2 

µm may also provide demanding frequency channels for coherent communication purpose.  

8.2.  Satellite Comb Formation from Multiple Phase Matching  

Figure 8-1 show a series of measured combs under coupled pump powers of 30.5 dBm 

and 28.5 dBm with different pump laser-cavity detunings. On the blue- and red-sides of the 

central comb ( 1425 nm  to 1800 nm), strong intensity satellite clusters – highlighted in the 

dashed boxes – are simultaneously observed, even with intensities as high as the central comb. 

The inset of Figure 8-1a shows a scanning electron micrograph of the involved microring 

cavity, with measured loaded quality factor (Q) of  950,000. In this 400 µm diameter ring 

cavity, the waveguide-cavity coupling is tuned to near critical coupling, with nearly one 

single-mode transverse magnetic polarization (TM11) across pumping wavelength range with 

measured free spectral range (FSR) of   113.9 GHz. We denote the pump frequency as ω0, 

with the red- and blue-sideband satellites as ω-m and ωm respectively, where m is the azimuthal 

mode number of TM11 mode.  

We define the pump frequency and the center frequencies of the two satellite combs as 

ω0, ωm and ω-m, with corresponding small perturbation values as δω0, δωm and δω-m 

respectively. As shown in Figure 8-2b for pumping conditions in Figure 8-1a to c. The cavity 

phase mismatch between the pump and signal/idler as a function of azimuthal mode number 

m (Δ𝜔𝑚 = 𝜔𝑚 + 𝜔−𝑚 − 2𝜔0) is twice equal to zero (type-1) and twice equal to the cavity 

FSR (type-2).  Both lead to the cavity phase matching far exceeding modulation instability 
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(MI) gain bandwidth. In type-1 (orange box), the signal and idler are symmetric in mode 

number; while in type-2 (yellow box), mode numbers of signal and idler has a difference of 

one (M+1) or even two (M+2). As a comparison, conventionally phase matched modes are 

called type-0 (grey box) here. Figure 8-2(c) shows the zoom-in of the theoretically calculated 

phase matching curves for type-1 satellites, with experimentally measured phase matching 

positions labeled as stars with the same color, corresponding to pumping conditions in Fig. 

1(a) to (c). Figure 8-2(d) shows the zoom-in of the theoretically calculated phase matching 

curves for type-2 (M+1) satellites, together with the measured phase matching positions. The 

type-2 (M+2) satellite, while hard to observe due to the large separation with the pump, is 

predicted under the same theory as shown in Figure 8-2(e). 

Furthermore, we consider the energy conservation condition and momentum 

conservation condition respectively,  

𝛿𝜔𝑚 + 𝛿𝜔−𝑚 = 2𝛿𝜔0        (1) 

𝛿𝜔𝑚 ∙ 𝐺𝑉𝑚 + 𝛿𝜔−𝑚 ∙ 𝐺𝑉−𝑚 = 2𝛿𝜔0 ∙ 𝐺𝑉0     (2) 

where GV is the group velocity. The change of the center frequency of the comb cluster 

with respect to pump can therefore be expressed as: 

𝛿𝜔𝑚−𝛿𝜔0

𝛿𝜔0
=

2𝐺𝑉0−𝐺𝑉𝑚−𝐺𝑉−𝑚

𝐺𝑉𝑚−𝐺𝑉−𝑚
       (3) 

𝛿𝜔−𝑚−𝛿𝜔0

𝛿𝜔0
=

−2𝐺𝑉0+𝐺𝑉𝑚+𝐺𝑉−𝑚

𝐺𝑉𝑚−𝐺𝑉−𝑚
        (4) 

The left hand sides of equations (3) and (4) represent the tunability of the comb span 

through adjusting the pump mode. Given the dispersion profile in Figure 8-2a and the phase 
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matching calculation at different pump modes, the tunability is estimated to be 3~4 modes per 

pump mode at around 1580 nm. A dedicated satellite map is shown in later context.  

 
Figure 8-1. Observations of multi-phase-matched satellite frequency combs.  

Example spectra of multi-phase-matched frequency comb with two satellite comb families 

together with the central comb, pumped at (a) 1576.615 nm (b) 1581.881 nm, and (c) 1584.704 

nm under on-chip power of 30.5 dBm; (d) 1592.401nm and (e) 1595.133 nm under on-chip 

power of 28.5 dBm. Inset of (a): scanning electron micrograph of the microcavity frequency 

comb, with 400 µm silicon nitride ring diameter and 1600  800 nm2 cross-section. Scale bar: 

100 µm. 
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Figure 8-2. Type-1 and type-2 satellite comb cavity phase matching: comparison between 

modeling and measurements.  

a, Simulated GVD (green solid curve) and TOD (blue dashed curve); inset: measured GVD 

by swept wavelength interferometer method (red dot) compared with simulation (blue solid 

curve). b, Analytical cavity phase mismatch as a function of azimuthal mode number m, 

Δ𝜔𝑚 = 𝜔𝑚 +𝜔−𝑚 − 2𝜔0, under the different pumping conditions of Figure 8-1a (blue), b 

(magenta), and c (green). Due to the large TOD, phase matching occurs simultaneously at 

multiple spectral ranges, leading to the satellite comb families at O-band and  2 m as shown 

in Figure 8-1a to c. If the residual dispersion equals one cavity FSR, parametric oscillation 

generates the mth comb mode at (m+1) th or (m-1)th cavity mode, and even (m+2)th or (m-2)th 

cavity mode. We term the former as type-1 (black box) and the latter type-2 (brown boxes). c, 

Theoretically calculated phase matching curves for type-1 satellites: blue, magenta and green 

correspond to the satellites in Figure 1a to 1c, along with the experimental results (stars with 

the same colors). d, Theoretically calculated phase matching curves for type-2 (m+1) 
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satellites: red and orange correspond to the satellites in Figure 8-1d (red) and e (orange), along 

with the experimental results (stars with the same colors).   

8.3.  Satellites Tunability and Distribution Maps 

We next performed a series of measurements to understand the satellite comb formation. 

The high-Q microcavity is pumped by a continuous-wave tunable laser followed by an optical 

amplifier (BkTel THPOA-SL, L-band; IPG EAD-3K-C, C-band), and a polarizer is employed 

to guarantee the input beam is TM polarized. In our microcavities, the coupling gap is 

designed to have nearly critical coupling for fundamental TM mode (TM11) and weak 

coupling for the second order mode (TM21) across pump wavelength at 1550 nm to 1620 nm. 

This ensures the waveguide can be treated as single-mode operation for TM comb generation. 

The output comb spectrum is analyzed in both optical domain by optical spectrum analyzers 

(Yokogawa AQ6375) and RF domain by an electronic spectrum analyzer (Agilent E4402B). 

Free-spaced filters and WDM filters are used to filter out the focused O-band, C-band and 2-

m spectral ranges for analysis. An InGaAs photodetector (Thorlabs DET01CFC) is used to 

measure the amplitude noise of the comb satellites.  

Figure 8-3(a) and (b) show an example of satellite comb evolution, pumped at the same 

mode with slightly different detunings. Note that the satellites grow simultaneously with the 

primary lines of the central comb, and these primary modes in Figure 8-3(a) shape the basic 

structure of the fully evolved comb as in Figure 8-3(b). Another example set is shown in 

Figure 8-4(a) and (b). The satellite centers may shift within ±1 modes due to the changes of 

the intra-cavity power from detunings, in a similar manner with the primary modes of the 

central comb. In fact, we emphasize that the intensity of the two satellite combs are 
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comparable with that of the first primary sideband near the pump (with difference less than 2 

dB), illustrating as efficient satellite comb formation as the primary comb lines. The  10 dB 

power difference visually shown in Figure 8-3(a) is due to the dispersion of collection setup.  

Figure 8-3(c) and (d) summarize a series of the satellite combs under different pump 

wavelength modes. At a constant on-chip pump power of 30 dBm, we tune the pump from 

1570 nm to 1590 nm (exciting different pump modes) with the satellite combs.  We observe 

a symmetric spectral-shift of the signal and idler satellite combs, with respect to different 

pump modes. This illustrates their co-dependence and verifies their physical basis from signal-

idler energy conservation instead of other nonlinear processes. As a side note, the spectral-

shift of the signal and idler satellite combs differ with respect to pump wavelength, different 

from Raman-induced comb or lasing observed in WGM resonators [187–189].  

The satellite comb span can be tuned from 57 THz to 80 THz. In Figure 8-3(c) and (d), 

spectra pumped below 1586 nm belong to type-1, the spectral-shift of the satellites is observed 

with a scaling of 3~5 satellite azimuthal modes per pump modes, agreeing with theoretical 

estimation. At pump wavelengths larger than 1587 nm, where the dispersion is even closer to 

zero, the type-1 and type-2 satellites compete more intensively or occur simultaneously (after 

1587 nm in Figure 8-3(c) and (d)), also shown in Figure 8-1(d) and (e). In general, given the 

dispersion of our resonator being examined, type-2 requires a larger phase matching 

bandwidth compared to type-2, and therefore the phase matching condition considering the 

sufficient detuning is comparatively harder to satisfy. We believe this effect is atttibuted to 

the different observation between pumping below 1586 nm and above 1587 nm.  

As shown in Figure 8-3b, we note that the asymmetric envelop of central comb is 

attributed to Cherenkov radiation due to the large third-order dispersion in our microcavities. 
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It has however limited effect on spectral broadening here. When the ratio of second- and third-

order dispersion is larger, a more prominent Cherenkov radiation peak and shift is observed 

in the main cluster (such as Figure 8-4(c) and (d)).   

 

Figure 8-3. Observed satellite comb spectra under different pumping conditions.  

a and b, Frequency comb spectra pumped at the same resonance mode with different detunings 

(1981.70 nm and 1981.88 nm, on-chip power of 30dBm). The primarily generated comb lines 

including the satellite centers hold during the comb growth, occasionally shifted within 3 

modes due to the changes of intra-cavity power from detunins. c and d, Satellite combs 

generated at different pump wavelength at L-band. The vertical axis is the pump wavelength 

and the horizontal axis is the comb spectra. The blue-side and red-side clusters show accurate 

energy conservation with respect to the pump after careful calculation on the frequencies. For 

each satellite, a clear relationship is observed between the pump wavelength and satellite 

comb peaks.   
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Figure 8-4. Examples of satellite combs pumped at different modes and detunings.  

a and b, the evolution of the comb pumped at the same mode (1577.78 nm and 1578.20 nm), 

where the satellite centers maintain with comb grows. c and d, Satellite combs pumped at 

1560.43 nm and 1561.40 nm respectively. 

 

We plot the observed azimuthal mode numbers of the satellite combs under different 

on-chip powers (squares), along with the theoretical analysis (lines), as shown in Figure 8-5. 

Satellite maps under different on-chip powers are plotted. Under different pump power and 

detunings, competition between type-1 and type-2 are observed. The theoretical analysis for 

type-1 satellites almost matches with experiments. For type-2 satellites, the dispersion and 

refractive index profile is too far from the pump and isn’t calibrated, which should lead to 

larger discrepancy in theory compared to experiments. 
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Figure 8-5. Summary of observed satellite map versus theoretical analysis.  

a, Satellite maps under different on-chip powers are plotted. Under different pump power and 

detunings, competition between type-1 and type-2 are observed. The theoretical analysis for 

type-1 satellites almost matches with experiments. For type-2 satellites, the dispersion and 

refractive index profile is too far from the pump and isn’t calibrated, which should lead to 

larger discrepancy in theory compared to experiments.  b and c, Example comb formations 

under the same pump resonance while with slightly different detunings, indicating competing 

effect between the type-1 and type-2 phase matching.  

 

8.4.  Evolution of Satellite Combs and Coherence States Examinations  

Figure 8-6 next shows the evolution of the signal satellite cluster and their 

corresponding RF amplitude noise. We examine the amplitude noise of a type-1 satellite, with 

laser-cavity detunings up to 103 pm and for the same pump mode. We find the signal satellite 

cluster has similar evolving dynamics with the central comb. With pump detuned into 

resonance, the signal satellite cluster starts with low-noise primary comb lines [from (i) to (ii)] 

when the central comb is also with low-noise as shown in inset of the right panel of Figure 
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8-6(i). When sub-comb lines begin to evolve [stage (iii)], a clean beat note of 45 MHz with 

its harmonic are observed; simultaneously the central comb also shows a beat note of 45 MHz. 

The underlying mechanism for this relationship needs to be investigated further. Note that in 

previous work [76], the beat notes between the sub-comb families come from the mismatch 

between the MI-induced phase matching and local cavity FSR. The coherence transition 

considering the satellite coombs may follow similar rules. By detuning the pump deeper into 

resonance, a self-injection locking state is observed, resulting a low-noise coherent state comb 

as shown in (iv). As the detuning is increased further, the comb becomes broader and transits 

to high noise states, as shown in (v).  
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Figure 8-6. Coherence evolution of the type-1 and type-2 satellite combs.   

Left column: series of satellite comb spectra on the blue side with step-wise detuning of the 

pump frequency from blue to red over 103 pm (legend label). Right column: corresponding 

RF amplitude noise measurement. a, to e, for type-1; f and g for (M+1) type-2. Inset of c 

shows the RF amplitude noise for the central comb, filtered with  50 nm bandwidth around 

1550 nm. Red curve in a right panel plots the detector background noise, indicating the low 

phase noise operation and coherent states of a, b and d. For these three states the central comb 

is also in a coherent state, as shown in the green line. As detuning increases, sub-comb mode 

starts to evolve [from c onwards]. A synchronized breathing oscillation can be found between 

the satellite and central combs: as shown in c right panel, the RF noise spectrum of the main 

comb and satellite comb shows the identical breathing frequency at  45. By further detuning 

the pump frequency, a self-injection locking state is achieved with again an overall low-noise 

comb as shown in d. With the comb spectra further broadened, the comb turns to a high noise 

state as shown in e. f and g, Example (m+1) type-2 satellites. Once generated, the type-2 

satellites evolve in a similar manner as the type-1 satellites.  

 

8.5.  Summary  

In conclusion, we apply multi-phase-matching concept in microresonator-based comb 

generations. The comb has two satellite families together with the central comb spanning up 

to two-thirds of an octave with high conversion efficiency from the pump. We experimentally 

study in detail its formation, mapping the spanning with respect to pump wavelength and 

pump power. At certain parameter setting, a global coherence can be achieved, while in other 

cases a breathing state is found. Theoretical analysis and prediction is detailed for type-1and 

type-2 satellite combs, both finding good agreement with experimental results. Multiple phase 

matching may encompass several applications, such as on-chip coherent light sources with 
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extended wavelength ranges, self-referencing frequency comb synthesis, efficient broad-band 

communication sources for multiple telecom bands mid-infrared soliton generation.   
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Conclusions and Prospects 

In the dissertation, various types of frequency sources focusing on the theme of precise 

optical frequency synthesis are examined. On the platform of silicon photonic crystal 

nanocavities, the self-pulsation is firstly observed due to competing effects of thermal and free 

carrier dispersions in an optical resonator, with RF tones controllable by laser input parameters. 

In the subjects of CMOS-compatible microresonator frequency combs, the fundamental 

mechanism of mode-locking in a high-quality factor microresonator is firstly examined, 

supported by ultrafast optical characterizations, analytical closed-form solutions and 

numerical modeling. In the evolution of these frequency microcombs, the key nonlinear 

dynamical effect governing the comb state coherence is rigorously analyzed. Secondly, a 

prototype of chip-scale optical frequency synthesizer is demonstrated, with the laser frequency 

comb stabilized down to instrument-limited 50-mHz RF frequency inaccuracies and 10-16 

fractional frequency inaccuracies, near the fundamental limits. Thirdly, a globally stable 

Turing pattern is achieved and characterized in these nonlinear resonators with high-efficiency 

conversion, subsequently generating coherent high-power terahertz radiation via plasmonic 

photomixers. Finally, a new universal modality of frequency combs is discussed, including 

satellite states, dynamical tunability, and high efficiency conversion towards direct chip-scale 

optical frequency synthesis at the precision metrology frontiers. 

In the widely investigated yet continuously intriguing field of microresonator frequency 

combs, there are still rich physics to uncover and practical challenges to address. One of the 

topics following the dissertation, is the direct measurement and control of carrier-envelop-
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phase (CEP) and timing jitter. These observations in the different evolved stages of the 

microresonator combs allows deeper examination of the rich physics to the fundamental limits. 

The configuration out of this will lead to a modular metrological tool for various applications 

in the future. Secondly, delivering a self-referenced frequency comb synthesizer without 

external optical reference based on nonlinear interferometry has been challenging while 

witnessed promising progress in terms of the comb platform itself as discussed in former 

chapter. Further implementation of the scheme is realistic. Thirdly, frequency comb sources 

in other spectral regimes are under examined by pioneers yet need more investigation, 

especially those covering molecular fingerprint region and atmospheric transmission window 

and those interesting for bio-medical imaging and astronomical calibration. Their applications 

such as coherent spectroscopy, precision timing, high-efficiency communications and 

navigation are promising to create mass markets and trigger new findings.  
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Appendices  

A. I. Microresonator dispersion measurement setup and scheme   

Figure A1 shows the schematic diagram of the dispersion measurement setup [20]. The 

microresonator transmission was recorded when the laser was swept from 1550 nm to 1630 

nm at a tuning speed of 40 nm/s. The sampling clock of the data acquisition is derived from 

the photodetector monitoring the laser transmission through a fiber Mach-Zehnder 

interferometer with 40 m unbalanced path lengths, which translates to a 5 MHz optical 

frequency sampling resolution. Transmission of the hydrogen cyanide gas cell was 

simultaneously measured and the absorption features were used for absolute wavelength 

calibrations. Each resonance was fitted with a Lorentzian lineshape to determine the resonance 

frequency and the quality factor. The microresonator dispersion was then calculated by 

analyzing the wavelength dependence of the free spectral range. Example measurements and 

their comparisons with simulations are discussed in 3.1.2. 

 

Figure A1. Microresonator dispersion measurement setup. 
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A. II. Microresonator frequency comb frequency stability and equidistance 

measurement setup  

To probe the equidistance of the frequency combs, a uniformity measurement setup is 

employed as shown in Figure A2. The generated comb spectrum was split and sent to 3 beat 

detection units (BDUs) individually optimized for the wavelength of the pump, along with the 

two comb modes. Heterodyne beat notes were generated between the Turing roll (green 

arrows) and a reference fiber laser frequency comb (red arrows). The gratings in the BDUs 

critically suppress the unwanted reference fiber laser frequency comb teeth such that clean 

heterodyne beat notes with more than 40 dB signal to noise ratio (measured with a 100 kHz 

resolution bandwidth), sufficient for reliable measurements, can be routinely obtained. The 

beat notes from the sidebands (δ1 and δ2) were mixed with the beat note from the pump (δ0) 

to cancel the residual pump wavelength instability before being measured by a high-resolution 

frequency counter (10 mHz frequency error at 1 second). The frequency counter was operated 

in the ratio counting mode, to circumvent the synchronization challenge of simultaneous beat 

note measurements and achieve a more accurate measurement. 
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Figure A2. Microresonator frequency comb uniformity measurement setup. 

 

A. III. Microresonator frequency comb uniformity measurement setup   

Figure A3 shows the schematic diagram of the self-heterodyne linewidth measurement 

setup [190]. The input was split into two parts with 70% of it being sent through an acousto-

optic modulator which shifts the optical frequencies by 200 MHz. The other portion was sent 

through a 5 km single mode optical fiber, providing a time delay of 24.5 μs. Both lights were 

then recombined, and the resulting beat note was recorded and analyzed with a high-speed 

photodetector and an electrical spectrum analyzer. The RF spectrum becomes a self-

convolution of the laser spectrum, from which the linewidth can be retrieved, as long as the 

coherence length is shorter than the introduced delay. Thus our self-heterodyne measurement 

setup can measure a minimum linewidth at 13 kHz, about 40 times smaller than the measured 

laser linewidth. 

 

Figure A3. Self-heterodyne measurement setup. 
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