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ABSTRACT OF THE DISSERTATION

Precise Estimation of the Geoposition and Orientation of

Ground-level Video Cameras from Multiple Sensors

by

Benjamin L. Ochoa

Doctor of Philosophy in Electrical Engineering (Intelligent Systems, Robotics, &

Control)

University of California San Diego, 2007

Professor Serge Belongie, Chair

Professor Nuno Vasconcelos, Co-Chair

This dissertation addresses the problem of precisely determining the geodetic position

(geoposition) and orientation of multiple ground-level video cameras. Each video cam-

era is calibrated and equipped with a Global Positioning System (GPS) receiver and

compass-magnetometer. The GPS receiver measures the latitude, longitude, and height

above mean sea level of the video camera and the orientation of the video camera is

derived from data acquired by a compass-magnetometer, which measures the pitch, roll,

and yaw of the camera. Additionally, features are tracked throughout the video acquired

by the calibrated camera in order to measure the relative camera motion between suc-

cessive video frames. Each of the measurements from this disparate set of sensors is

first mapped such that they are all relative to a common Earth-centered, Earth-fixed

Cartesian coordinate frame. The uncertainty of each measurement is also propagated

through this mapping. The geoposition and orientation of each camera is independently

estimated from all of its associated sensor measurements. The measurements and their

associated uncertainties are input at different frequencies and are sometimes incomplete

due to GPS dropouts, corrupt video frames, etc., yet the recursive estimation process

uses these multiple measurements to reliably calculate the most probable geoposition

and orientation with quantified uncertainty at each video frame.

Further, if multiple cameras are imaging the same region of a scene, cross-

xi



camera feature correspondences are established using a combination of guided matching

and robust feature comparison. The resulting independent observations of corresponding

features contained in the scene are used to jointly estimate the maximum likelihood of

the geoposition and orientation of all cameras imaging the same region of a scene for

which feature correspondences have been established. This yields decreased relative

errors between the cameras, resulting in more precise estimates of the geoposition and

orientation of the cameras. This approach scales well and allows the video cameras to

be located anywhere in the proximity of the Earth.
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Overview

1.1 Introduction

We live in an age where almost anywhere you look, a camera is looking back at

you. Whether it be in a convenience store, airport, or hotel lobby, while you are driving

through an intersection or standing at a bank automated teller machine, or even while

riding on a bus, surveillance cameras are there to capture and record the events as they

unfold. These types of video cameras are usually mounted in fixed locations and are

primarily used by government agencies and private security departments for continuous

monitoring by human operators. Recently, with the technological advances and lowered

costs of digital cameras, mobile cameras are pervasive as well. Especially with the success

of the camera phone, many of which can capture video, mobile cameras have become

ubiquitous [43]. Yes, mobile cameras are now everywhere, but where, precisely, are the

cameras?

For several years, software applications have been able to combine images and

video from cameras with Global Positioning System (GPS) receiver measurements syn-

chronized with the acquisition of the images and video frames (e.g., [29]). More recently,

camera phones have become GPS-enabled (e.g., [65]), providing an integrated, conve-

nient, and inexpensive means of acquiring images and video with associated geodetic

latitude and longitude. Such acquired data have been used in mapping applications

such as navigation using visual landmarks, allowing users to view ground-level images

of business storefronts up and down a street [1]. Although this data includes the geode-

tic position, or geoposition, of the camera at the time of acquisition, there is not an

1



2

associated measurement of the camera orientation. That is, the position of the camera

is known, but the direction that it is pointing is unknown. Knowledge of the camera

orientation expands the potential applications of this data from visual landmark-based

navigation to, for example, georegistered urban 3D scene reconstruction from video [77].

However, the geoposition and orientation of the resulting 3D scene model is only as

precise as the geoposition and orientation of the video camera.

Rather than develop a higher-level application, this dissertation addresses the

more fundamental problem of improving the precision of geoposition and orientation

estimates of one or more ground-level video cameras from measurements obtained from

a GPS receiver, 3-axis orientation sensor, and calibrated video camera. An additional

objective of this dissertation is to address this problem using consumer-grade sensors

that are inexpensive and produced in large volumes.

This results of this work can be applied to any scenario where the accurate

geoposition and orientation of multiple video cameras must be known in a timely manner.

One example of this is video cameras attached to or carried by members of an emergency

response team investigating the scene of an incident. Similar examples include soldiers

wearing helmet-mounted cameras during battle, or a swarm of robots navigating a scene,

perhaps autonomously. In either case, there is commonly an operations center that serves

both as the central location for fusing the data acquired by the sensors and as the location

where the controller of these assets resides. The controller may be a human, mentally

fusing the data and using this information to control the cameras. Alternatively, the

controller may be an autonomous system that moves the cameras based on a set of

predefined rules. For example, the autonomous system may be a dedicated computer or

the mother robot in a swarm. Alternatively, in systems based on a decentralized data

fusion framework [67], it can be multiple computers or robots. In either situation, it is

important that the geoposition and orientation are accurately known.

Previous work in the area is primarily focused on estimation of camera posi-

tion and orientation relative to some local coordinate frame. Using video acquired by a

calibrated camera, the translation and rotation of the camera can be reliably estimated

relative to the camera position and orientation at the acquisition of the first video frame

[90, 10, 53]. Alternative approaches to visual odometry have been successfully com-

bined with other measurements such as an inertial navigation system (INS), which uses

inertial detectors to determine the position, heading, and velocity of the system from
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measurements of the 3D accelerations and rotations being applied to its inertial reference

frame (e.g., [22]). Other approaches also include GPS measurements (e.g., [38, 68, 69]).

Additionally, the robotics community has developed several approaches to simultaneous

localization and mapping (SLAM) that include a video sensor (e.g., [16]).

For decades, the field of photogrammetry [59] has addressed the problem of

precisely determining the geoposition and orientation of airborne and spaceborne cam-

eras from acquired still images and initial position and orientation estimates. Recently,

several approaches have been developed to extend these techniques to aerial cameras

containing video imaging sensors; however, this community is still developing standards

that specifically address cameras containing video imaging sensors [21]. Most promising

is the application of photogrammetric techniques to the problem of video registration

[87]. Similar to photogrammetric methods for still image georegistration, airborne video

georegistration approaches utilize collateral data, including a 3D scene model (e.g., a dig-

ital elevation model (DEM)) and a high-resolution reference image acquired by a camera

with precisely known model parameters [44, 98].

This dissertation aims to bring the geopositioning rigor of photogrammetry to

multiple ground-level video cameras. Though the work presented in this dissertation does

not make use of collateral data, the approach does use the combined measurements from

a GPS receiver, relative orientation sensor, and calibrated video camera to sequentially

estimate the precise geoposition and orientation of the cameras. The measurements from

each of these sensors is mapped such that they are relative to an Earth-centered, Earth-

fixed Cartesian coordinate frame. For each camera, the geoposition and orientation is

sequentially estimated from all measurements. This estimation process incorporates the

uncertainties associated with each of these measurements to calculate the most probable

geoposition and orientation with quantified uncertainty. Further, if multiple cameras

are imaging the same region of a scene, these independent observations of the features

contained in the scene are used to further refine the geoposition and orientation of the

cameras, resulting in reduced uncertainty of the estimates. This work enables other

higher-level applications such as high-precision scene reconstruction from multi-camera

video data.

This dissertation is structured as follows. This chapter provides a summary of

the dissertation. Chapter 2 explains the sensor suite and details the mapping of sensor

measurements to a common coordinate frame, including covariance propagation, and
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is summarized in section 1.2. Chapter 3 discusses the approach used to sequentially

estimate the geoposition and orientation of a single camera over time from the set of

disparate sensor measurements and is summarized in section 1.3. Chapter 4 describes

the extension of this work to include cross-camera measurements, in the case of multiple

cameras imaging the same region of a scene, to further refine the geoposition and ori-

entation of the cameras, and is summarized in section 1.4. Finally, experimental results

and conclusions are given in section 1.5 and section 1.6.

Notation The following notation is used throughout this dissertation.

• Matrices are shown as uppercase letters in typewriter font, e.g., M.

• Column vectors are shown as bold letters in Roman font, e.g., v.

• Homogeneous coordinates in 2D are represented as 3-vectors and shown as lower-

case letters, e.g., x = (x, y, w)>. Additionally, normalized coordinates include a

hat, e.g., x̂ = (x̂, ŷ, ŵ)>.

• Inhomogeneous coordinates in 2D are represented as 2-vectors and shown as low-

ercase letters with a tilde, e.g., x̃ = (x̃, ỹ)> = (x/w, y/w)>, and may also include

normalized coordinates, e.g., ˆ̃x = (ˆ̃x, ˆ̃y)> = (x̂/ŵ, ŷ/ŵ)>.

• Homogeneous coordinates in 3D are represented as 4-vectors and shown as upper-

case letters, e.g., X = (X,Y, Z, T )>.

• Inhomogeneous coordinates in 3D are represented as 3-vectors and shown as up-

percase letters with a tilde, e.g., X̃ = (X̃, Ỹ , Z̃)> = (X/T, Y/T, Z/T )>.

• If a capital letter is used to denote a matrix, then the vector denoted by the

corresponding lower case letter is composed of the entries of the matrix by

A ∈ Rm×n ⇔ A =


a>1
a>2
...

a>m

 , a =


a1

a2

...

am

 ∈ Rmn

where a>i ∈ Rn is the ith row of A (i.e., a = vec(A>)).

Any exceptions to the above notation will indicated at the time of their use.
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Figure 1.1: Sensors in the data acquisition system. From left to right are the tilt com-
pensated compass-magnetometer, GPS receiver, and camera. The senors are rigidly
mounted to 25 cm× 9 cm sheet of 0.5 cm-thick aluminum.

1.2 Sensors

Multiple sensors are required to precisely determine the geoposition and orien-

tation of a video camera. In this work, the sensor system includes a video camera, GPS

receiver, and 3-axis orientation sensor. Figure 1.1 shows the configuration of these sen-

sors. The GPS receiver measures the latitude, longitude, and height above mean sea level

of the video camera. The orientation of the video camera is derived from data acquired

by a compass-magnetometer, which measures the pitch, roll, and yaw of the sensor plat-

form. Additionally, camera motion estimates are determined from the video data of the

calibrated camera. This section particularly details the mapping of the measurements

from this set of disparate sensors to a common coordinate frame and the propagation of

the uncertainty, in the form of covariance matrices, of the sensor measurements to this

coordinate frame.

First-order nonlinear propagation of covariance is used throughout this disser-

tation and is briefly described here. Let x ∈ Rn be a random vector with mean µx and

covariance matrix Σx, and let f : Rn → Rm be a nonlinear function. Up to first-order

approximation, y = f(x) ≈ f(µx) + J(x− µx), where J ∈ Rm×n is the Jacobian matrix

∂f/∂x evaluated at µx. If f is approximately affine in the region about the mean of the

distribution, then this approximation is reasonable and the random vector y ∈ Rm has

mean µy ≈ f(µx) and covariance Σy ≈ JΣxJ>.
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Figure 1.2: Relationship between coordinates in the camera coordinate frame, image
coordinates, and normalized coordinates. C is the camera center and p is the principal
point.

1.2.1 Video camera

The image formation process projects 3D world coordinates X to 2D image

coordinates x that have been corrected for any lens distortion. This mapping is given by

x = K[R | t]X

K−1x = [R | t]X

x̂ = P̂X

where R and t are the 3D rotation and translation, respectively, that transform coordi-

nates in the world coordinate frame to coordinates in the camera coordinate frame. The

upper triangular matrix K is called the camera calibration matrix and encompasses the

intrinsic parameters of the camera in terms of pixel dimensions. P̂ = [R | t] is called

the normalized camera projection matrix and represents a camera with an ideal lens

that maps 3D coordinates X in the world coordinate frame to normalized 2D coordi-

nates x̂ = K−1x in the image plane. The relationship between 3D coordinates in the

camera coordinate frame, image coordinates, and normalized coordinates is illustrated

in figure 1.2.

In order to estimate the camera motion from video acquired from a calibrated

camera, image coordinates must be mapped to normalized coordinates, x̃ 7→ ˆ̃x. The

covariance matrix Σˆ̃x associated with the normalized coordinates is calculated from the

covariances of K and x as they propagate through the equation x̂ = K−1x. For clarity,
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let A = K−1, so 
ˆ̃x
ˆ̃y

1

 =


a11 a12 a13

0 a22 a23

0 0 1



x̃

ỹ

1


ˆ̃x

1

 = A

x̃

1


Using this notation, Σˆ̃x ≈ JaΣaJ

>
a + Jx̃Σx̃J

>
x̃ , where Σa ≈ JkΣkJ

>
k , Ja = ∂ˆ̃x/∂a, Jx̃ =

∂ˆ̃x/∂x̃, and Jk = ∂a/∂k.

K and its associated covariance matrix Σk are usually determine during the

camera calibration process. The covariance matrix Σx̃ is a function of how the image

coordinates x̃ are measured, whether manually or automatically (e.g., by an autonomous

feature detector). If the covariance of the measured coordinates is unknown, it is assumed

that Σx̃ is the identity matrix.

1.2.2 GPS receiver

The data acquisition system measures the height above mean sea level and

geodetic latitude and longitude at a frequency of 1 Hz using a GPS receiver. For use in

subsequent computations, these quantities are transformed to an Earth-centered, Earth-

fixed Cartesian coordinate system as follows.

Geodetic coordinate transformation

Geodetic coordinates and their transformation have been extensively studied

in the field of geospatial science [78, 79, 97]. Over 225 datums, each associated with

one of 23 reference ellipsoids, are commonly used in mapping, charting, and geodesy

[19]. Unique among these is the World Geodetic System (WGS) [20] because it is both a

datum and a reference ellipsoid. As such, WGS provides the means for relating positions

on various datums to an Earth-centered, Earth-fixed coordinate system.

The Earth Gravity Model 1996 (EGM96) [45] is a geopotential model of the

Earth consisting of spherical harmonic coefficients complete to degree and order 360.

This geopotential model is used as a geodetic reference to convert between EGM96

geoid height (i.e., height above mean sea level) to height above World Geodetic System
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1984 (WGS84) ellipsoid, thereby correcting for any distance between the geoid and the

mathematical reference ellipsoid as measured along the ellipsoidal normal.

Independent of both datum and reference ellipsoid is the reference frame of the

coordinates. There are 33 common reference frames comprised of different coordinate

systems, map projections, grids, and grid reference systems [18, 17, 89]. The general

transformation of coordinates is performed using the approach described in [97], which

is summarized as:

1. Convert the input coordinates from the input reference frame to the geodetic ref-

erence frame.

2. Shift the intermediate geodetic coordinates from the input datum to WGS84.

3. Convert between EGM96 geoid height to WGS84 ellipsoid height, if needed.

4. Shift the shifted intermediate WGS84 geodetic coordinates to the output datum.

5. Convert the shifted intermediate geodetic coordinates to the output coordinate

reference frame.

For use in subsequent computations, the GPS receiver measurements of lati-

tude, longitude, and height are transformed to geocentric coordinates. The relationship

between the geodetic and geocentric coordinate systems is shown in figure 1.3. For GPS,

the current underlying coordinate systems is WGS84—GPS receiver measurements are

in WGS84 geodetic coordinates with EGM96 geoid height. WGS84 geocentric is also the

principal coordinate frame used in the work presented in this dissertation.

GPS positioning uncertainty

The Global Positioning System (GPS) [64, 75, 76] is the most accurate world-

wide navigation system developed to date. GPS was developed by the United States

Department of Defense and presently consists of more than two dozen satellites, each

with a highly accurate atomic clock, that orbit the Earth. Each satellite periodically

transmits signals that report the satellite position and the transmission time. GPS re-

ceivers use these satellite messages to calculate the range to three or more satellites and

then determine the position of the receiver using trilateration. However, GPS-derived

positioning is not without error [56, 13, 5, 57, 74].
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Figure 1.3: Relationship between geodetic and geocentric coordinates. The angle be-
tween the ellipsoidal normal SP and the equatorial (XY -) plane defines the geodetic
latitude φ of point P. The meridian containing P (in yellow) is defined as the half-plane
containing the Z-axis and P. The angle between the prime meridian (XZ-) plane and
the meridian containing P is the geodetic longitude λ of P. The distance from Q to P
is the ellipsoidal height h.
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GPS error is spread across the following classes: ephemeris (errors in the trans-

mitted satellite position), satellite clock (errors in the satellite transmit time), ionosphere

(errors due to ionospheric effects), troposphere (errors due to tropospheric effects), mul-

tipath (errors caused by multiple, reflected signals entering the receiver antenna), and

receiver (errors due to thermal noise, software accuracy, an interchannel biases inher-

ent in the receiver). The magnitude of each of these error sources is summarized in

the standard GPS error shown in table 1.1. The magnitude of the error of the position

along the ellipsoidal normal σvertical and in the plane orthogonal to the ellipsoidal normal

σhorizontal are derived from the standard deviations of the standard error sources. The

standard GPS errors assume the median geometric configuration of the satellites. The

work presented in this dissertation uses greater values than those in the standard error

table. Specifically, the covariance of the coordinates of the camera center in the WGS84

geocentric coordinate frame Σ
C̃

= diag (σ2
GPS, σ

2
GPS, σ

2
GPS) where σGPS = 33.3 meters.

This more accurately models satellite geometry that is less optimal than the median

satellite configuration.

1.2.3 3-axis orientation sensor

A tilt compensated compass-magnetometer is used to measure the rotation of

the camera about 3 axes. This sensor characterizes 3D orientation by Euler angles in

the so-called “XY Z” convention. In this convention, the rotation is given by pitch θ,

roll ψ, and yaw φ angles. The angles define a rotated coordinate frame relative to a local

(unrotated) coordinate frame with origin at the current position of the sensor, positive

X-axis pointing north, positive Y -axis pointing west, and positive Z-axis pointing up,

along the ellipsoidal normal. This is shown in figure 1.4.

The 3D orientation of the sensor is calculated as the composition of three rota-

tions, a first rotation by an angle φ about the Z-axis, a second by an angle θ about the

Y -axis, and a third by an angle ψ about the X-axis. The 3D rotation matrix R maps

coordinates in the rotated coordinate frame to coordinates in the unrotated coordinate
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Table 1.1: Standard GPS error model. This table lists the magnitude of several error
sources at the median satellite configuration. Each source of error in the standard
GPS error model is characterized by a bias (systematic) and random (white noise) error
component. For each error source, the total standard deviation is calculated as the square
root of the sum of the squared bias and squared random standard deviations. Similarly,
the total standard deviation for all error sources is the square root of the sum of each of
the squared error source standard deviations. Further, σvertical is the standard deviation
of the position along the ellipsoidal normal and σhorizontal is the standard deviation of
the position in the plane orthogonal to the ellipsoidal normal.

Standard deviation σ (meters)

Error source Bias Random Total

Ephemeris 2.1 0.0 2.1

Satellite clock 2.0 0.7 2.1

Ionosphere 4.0 0.5 4.0

Troposphere 0.5 0.5 0.7

Multipath 1.0 1.0 1.4

Receiver 0.5 0.2 0.5

Total 5.1 1.4 5.3

σvertical 12.8

σhorizontal 10.2
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Figure 1.4: Pitch-roll-yaw unrotated local Cartesian coordinate frame. The local XY -
plane (in blue) is parallel to the plane tangent to the surface of the reference ellipsoid
at the geodetic latitude φ and longitude λ, and shifted along the ellipsoidal normal by
the ellipsoid height h such that the local XY -plane contains (φ, λ, h)>. The local X-axis
points north, Y -axis points west, and Z-axis points up, along the ellipsoidal normal.

frame and is formed from the pitch, roll, and yaw measurements by

R =


1 0 0

0 cosψ sinψ

0 − sinψ cosψ




cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ




cosφ sinφ 0

− sinφ cosφ 0

0 0 1



R =


cos θ cosφ cos θ sinφ − sin θ

sinψ sin θ cosφ− cosψ sin θ sinψ sin θ sinφ+ cosψ cos θ cos θ sinψ

cosψ sin θ cosφ+ sinψ sinφ cosψ sin θ sinφ− sinψ cos θ cos θ cosψ

 (1.1)

Using covariance propagation, the covariance matrix associated with the rotation matrix

R is given by Σr ≈ Jθ,ψ,φΣθ,ψ,φJ
>
θ,ψ,φ, where Jθ,ψ,φ = ∂r/∂(θ, ψ, φ). The pitch-roll-yaw

measurement uncertainty Σθ,ψ,φ is determined from specifications provided by the sensor

manufacturer.
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Rotation to camera coordinate frame and its uncertainty

As described above, the pitch, roll, and yaw measurements are relative to a local

unrotated coordinate frame. Subsequent processing requires knowledge of the rotation

that maps coordinates in the WGS84 geocentric coordinate frame to coordinates in

the camera coordinate frame. This section describes the calculation of this rotation

from GPS receiver measurements of the coordinates of the camera center in the WGS84

geocentric coordinate frame C̃ and its associated covariance Σ
C̃

, and 3-axis orientation

measurements of pitch θ, roll ψ, and yaw φ and the associated covariance Σθ,ψ,φ.

The rotation that maps coordinates in the WGS84 geocentric coordinate frame

to coordinates in the camera coordinate frame is a composition of four rotations that

transform coordinates through the following coordinate frames:

(a) WGS84 geocentric coordinate frame

(b) WGS84 local Cartesian coordinate frame

(c) Pitch-roll-yaw unrotated local Cartesian coordinate frame

(d) Pitch-roll-yaw rotated local Cartesian coordinate frame

(e) Camera coordinate frame

Of these, WGS84 local Cartesian has not yet been described. The WGS84 local Cartesian

coordinate frame is similar to the pitch-roll-yaw unrotated local Cartesian coordinate

frame shown in figure 1.4. The difference for WGS84 local Cartesian is that the positive

X-axis points east and positive Y -axis points north. As with the pitch-roll-yaw unrotated

local Cartesian coordinate frame, the Z-axis points up. Figure 1.5 shows the relationship

between the 5 coordinate frames.

Most of the rotation matrices that transform coordinates from a given coordi-

nate frame to the camera coordinate frame are straightforward to calculate. The rotation

Rd,e from the pitch-roll-yaw rotated local Cartesian coordinate frame to the camera co-

ordinate frame is given by

Rd,e =


0 −1 0

0 0 −1

1 0 0


The rotation Rc,d from the pitch-roll-yaw unrotated local Cartesian coordinate

frame to the pitch-roll-yaw rotated local Cartesian coordinate frame is calculated as
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Figure 1.5: Relationship between 3D coordinate frames. Rendered along the top of
the image are the coordinate frames relative to the image plane. From left to right
are the camera coordinate frame, the pitch-roll-yaw rotated local Cartesian coordinate
frame, pitch-roll-yaw unrotated local Cartesian coordinate frame, WGS84 local Cartesian
coordinate frame, and WGS84 geocentric coordinate frame. For each coordinate frame,
the X-axis is in red, Y -axis in green, and Z-axis in blue.

Rc,d = R>d,c, where Rd,c is given by (1.1). The rotation Rc,e from the pitch-roll-yaw unro-

tated local Cartesian coordinate frame to the camera coordinate frame is the composition

of the rotation Rc,d from the pitch-roll-yaw unrotated local Cartesian coordinate frame

to the pitch-roll-yaw rotated local Cartesian coordinate frame and the rotation Rd,e from

the pitch-roll-yaw rotated local Cartesian coordinate frame to the camera coordinate

frame, Rc,e = Rd,eRc,d.

The rotation Rb,c from the WGS84 local Cartesian coordinate frame to the
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pitch-roll-yaw unrotated local Cartesian coordinate frame is given by

Rb,c =


0 1 0

−1 0 0

0 0 1


Similar to the composition of rotations above, the rotation Rb,e from the WGS84 local

Cartesian coordinate frame to the camera coordinate frame is given by Rb,e = Rc,eRb,c.

The remaining rotation Ra,b from the WGS84 geocentric coordinate frame to

the WGS84 local Cartesian coordinate frame is more involved, as it first requires estab-

lishment of the WGS84 local Cartesian coordinate frame. The origin of the WGS84 local

Cartesian coordinate frame is at the camera center C̃, converted to WGS84 geodetic co-

ordinates (φ, λ, h)>. Next, the origin and each of the three standard basis vectors in the

WGS84 geocentric coordinate frame are converted to WGS84 local Cartesian coordinates

(0, 0, 0)> 7→ X>
0

(1, 0, 0)> 7→ X>
1

(0, 1, 0)> 7→ X>
2

(0, 0, 1)> 7→ X>
3

and Ra,b is given by Ra,b = [X1−X0 | X2−X0 | X3−X0]. Finally, the rotation Ra,e from

the WGS84 geocentric coordinate frame to the camera coordinate frame is calculated

by Ra,e = Rb,eRa,b. For a minimal parameterization of the final 3D rotation, the rotation

matrix Ra,e is mapped to exponential coordinates ω = log(Ra,e), where Ra,e = exp(ω) is

the inverse mapping. In exponential coordinates, a 3D rotation is parameterized by the

3-vector ω that represents a rotation by an angle ‖ω‖ about the axis ω [66, 32, 53].

As detailed in this section, the rotation ω that maps coordinates in the WGS84

geocentric coordinate frame to coordinates in the camera coordinate frame is dependent

on the GPS receiver measurements of the coordinates of the camera center C̃ in the

WGS84 geocentric coordinate frame and the 3-axis orientation measurements of pitch θ,

roll ψ, and yaw φ. As such, in order to correctly model the uncertainty of ω, its joint

covariance with C̃ must be calculated as follows.

Σ(ω>,C̃>) ≈ J(θ,ψ,φ,C̃>)

Σ(θ,ψ,φ) 0

0 Σ
C̃

 J>(θ,ψ,φ,C̃>) (1.2)
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where

J(θ,ψ,φ,C̃>) =
∂(ω>, C̃>)

∂(θ, ψ, φ, C̃>)
=

 ∂ω
∂(θ,ψ,φ)

∂ω

∂C̃

0 I


1.3 Single Camera Estimation

For each video camera, initial measurements from the GPS receiver and 3-axis

orientation sensor are used to derive measurements of the geoposition and orientation

of the camera. Additionally, the calibrated video camera is used to measure the relative

camera motion between successive frames. This section describes estimation of camera

motion from video and the process of combining all of the derived sensor measurements

such that the geoposition and orientation is precisely estimated at the time of each video

frame acquisition.

The implemented estimation process is a recursive one that uses all of the mea-

surements up to and including the current set of measurements to produce an estimate

of the position and rotation of the camera relative to the WGS84 coordinate frame.

Further, the sequential estimation process allows for both asynchronous measurements

and unavailability of measurements. These properties are especially important to this

application, as some measurements are not always available (e.g., GPS dropouts, cor-

rupt video frames, etc.) and when they are available, different measurements arrive at

different frequencies (e.g., the GPS receiver reports measurements at 1 Hz, while video

frames are typically acquired at 30 Hz). The joint, sequential estimation process incor-

porates the uncertainties associated with each of these measurements to calculate the

most probable geoposition and orientation with quantified uncertainty.

1.3.1 Sequential estimation of geoposition and orientation

Kalman filters are reliably used for estimating the motion of a calibrated camera

from video acquired by the camera [90, 10, 53]. It is usual that this type of filter is applied

to the problem of estimating the translation and rotation of the camera with respect to

a relative coordinate system that is typically set to the coordinate frame of the camera

at the time of the first video frame. This dissertation deals with the grander problem

of estimating the camera position and orientation relative to an Earth-centered, Earth-

fixed Cartesian coordinate system, namely the WGS84 geocentric coordinate frame. This

section describes the parameters of the Kalman filter used to sequentially estimate the
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camera geoposition and orientation from video-derived measurements as well as from

positional measurements derived from the GPS receiver and rotational measurements

from the 3-axis orientation sensor. Advantages of such a Kalman filter are that it incor-

porates multiple, independent measurements and that it explicitly estimates the camera

position and orientation in the WGS84 geocentric coordinate frame.

The mapping of measurements of camera position and rotation, and their un-

certainty, from a GPS receiver and 3-axis orientation sensor, respectively, is detailed in

section 1.2. Additionally, measurements of camera rotational velocity and direction of

translational velocity may be derived by estimating the rotation ω and translation t (to

scale) of the camera from the previous video frame to the current one. In this case,

the normalized cameras P̂ and P̂′ associated with the previous and current frames are

given by P̂ = [I | 0] and P̂′ = [exp(ω) | t], respectively. This is exactly the geometric

relationship that is embodied by the essential matrix [47]. As such, estimation of the

essential matrix between successive frames yields an estimate of the camera rotational

velocity and direction of translational velocity. We estimate the essential matrix from

a set of feature correspondences in normalized coordinates that have been tracked from

the previous frame to the current frame as follows.

Motion estimation from video

For each video frame, good features to track are detected in the previous frame

using the method described in [88]. A pyramidal implementation of the Lucas-Kanade

feature tracker [52] then determines, for each feature, the translation from the previous

frame to the current one. Multiresolution coarse-to-fine tracking allows for a larger

window displacement from image to image while maintaining a smaller sized window.

Figure 1.6 shows detected and tracked features between successive video frames.

Estimation of camera rotation and translation from images requires that image

coordinates x are mapped to normalized coordinates x̂ = K−1x. The resulting set of point

correspondences in normalized coordinates may contain incorrect correspondences [24] in

the sense that they are inconsistent with the epipolar constraint of the essential matrix.

This may be due, for example, to erroneous feature tracking or moving objects in the

scene. Prior to estimation of the frame-to-frame camera rotation and translation, these

incorrect correspondences are removed using the Random Sample Consensus (RANSAC)

algorithm [23, 3]. The essential matrix is then estimated from the resulting set of inlier
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a b

Figure 1.6: Feature detection and tracking. 446 features are detected in the previous
frame (a) and tracked to the current frame (b). The parameters of the feature detector
are a 5×5 window size and minor eigenvalue threshold of 10. Nonmaxima suppression is
then applied such that there are no overlapping windows. Of the set of tracked features,
380 are inliers (in red) and 66 are outliers (in yellow), as determined using RANSAC.

correspondences.

The essential matrix E embodies the camera translation t and rotation ω, which

have three degrees of freedom each. However, from a set of point correspondences, the

essential matrix can only be determined to scale, i.e., the estimated essential matrix is a

homogeneous entity. As such, it only has five degrees of freedom, which is insufficient to

completely characterize t and ω. This constraint imposes that t can only be determined

to scale, which indicates the direction of translation, but not its magnitude [32]. As with

other homogeneous representations, it is convenient to constrain t such that ‖t‖ = 1.

Given the set of inlier correspondences from RANSAC, the Direct Linear Transforma-

tion (DLT) algorithm is used to initially estimate the essential matrix E, which is then

decomposed into a rotation ω and translation t as described in [53].

Last, the maximum likelihood of the rotation ω and unit translation t of the

camera from the previous frame to the current one is estimated using bundle adjustment

[93]. Bundle adjustment is a batch process that simultaneously adjusts the parameters of

all of the cameras and the reconstructed 3D points X1, . . . ,Xn associated with the image

feature correspondences such that the reprojection error is minimized. Initial estimates

of the 3D points are determined in two steps. First, corrected correspondences that

minimize the geometric error subject to the epipolar constraint are calculated for all inlier
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feature correspondences. This is accomplished using the non-iterative, optimal method

of [35]. Given the set of corrected correspondences, initial estimates of X1, . . . ,Xn are

estimated by triangulation using the DLT algorithm as described in [32].

From the initial rotation ω, translation t, and 3D points X1, . . . ,Xn, a special-

ized two-view bundle adjustment process is carried out using a sparse implementation

of the Levenberg-Marquardt algorithm [46, 55, 34]. It is specialized in the sense that

the parameters of the normalized camera P̂(n−1) = [I | 0] associated with the previous

frame n − 1 are fixed to zero rotation and zero translation. Only the rotation ω and

translation t of the normalized camera P̂(n) = [exp(ω) | t] associated with the current

frame n are adjusted. Additionally, t is constrained such that ‖t‖ = 1 using the pa-

rameterization of the n-sphere [33, 71] throughout the bundle adjustment process. The

Levenberg-Marquardt algorithm returns maximum likelihood estimates of ω and t and

the associated covariance matrix Σ(ω>,t>).

Kalman filter

The extended Kalman filter (EKF) is an efficient recursive filter that estimates

the state x of a dynamic system from a series of incomplete and noisy measurements

[28]. At each time step n, the filter calculates the state estimate x̂ and its associated

covariance P in two distinct phases: predict and update. The predict phase uses a model

of the state transition from time step n − 1 to time step n to calculate the a priori

estimate of the state vector x̂−n and a priori state error covariance estimate P−n at time

step n. This is followed by the update phase, in which measurements and their associated

covariances at time step n correct this prediction, yielding the a posteriori state estimate

x̂n and a posteriori error covariance Pn.

We now describe application of the EKF to the estimation of the geoposition

and orientation of a camera at each video frame n. The filter estimates these parameters

from measurements derived from video, the GPS receiver, and the 3-axis orientation sen-

sor. It is assumed that the rotational velocity ω̇ and positional velocity Ċ of the camera

are constant between successive video frames, where each frame is a time step in the fil-

ter. Due to the high frame rate of typical video cameras, this is a reasonable assumption.

Under this model, the Kalman filter state vector x is given by x = (ω>, ω̇>,C>, Ċ>)>,

where C contains the coordinates of the camera center in the WGS84 geocentric coordi-

nate frame, and ω is the rotation from the WGS84 geocentric coordinate frame to the
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camera coordinate frame. For clarity the tilde has been removed from the camera center.

For the predict phase of the filter, under a constant velocity state transition

model, the entries in the a priori state estimate x̂−n are given by

ω̂−
n = log(exp( ̂̇ωn−1) exp(ω̂n−1))̂̇ω−
n = ̂̇ωn−1

Ĉ−
n = Ĉn−1 + ̂̇Cn−1̂̇C−
n = ̂̇Cn−1

and the Jacobian matrix ∂x̂−n /∂x̂n−1 is given by

∂x̂−n
∂x̂n−1

=



∂ω̂−
n

∂ω̂n−1

∂ω̂−
n

∂ ̂̇ωn−1
0 0

0 I 0 0

0 0 ∂Ĉ−
n

∂Ĉn−1

∂Ĉ−
n

∂ ̂̇Cn−1

0 0 0 I


where

∂ω̂−
n

∂ω̂n−1
=
∂ω̂−

n

∂r̂−n

∂r̂−n
∂r̂n−1

∂r̂n−1

∂ω̂n−1
and

∂ω̂−
n

∂ ̂̇ωn−1

=
∂ω̂−

n

∂r̂−n

∂r̂−n
∂ˆ̇rn−1

∂ˆ̇rn−1

∂ ̂̇ωn−1

In the update phase of the filter, the a priori state estimate x̂−n is corrected

by three potential measurements: the camera position derived from the GPS receiver

measurements, camera rotation derived from the 3-axis orientation measurements, or

camera rotational velocity derived from video. Note that camera positional velocity

measurements derived from video are not used. This is due to the fact that the camera

may not translate between successive frames or translate by such a small magnitude,

that the translation estimate is erroneous due to noise. However, it has been shown

through experimentation that camera rotation is correctly estimated, despite an incorrect

translation estimate [90, 53].

When the GPS receiver reports a new measurement, it is immediately converted

to WGS84 geocentric coordinates C with associated covariance matrix ΣC as detailed in

section 1.2.2. If the 3-axis orientation sensor also reports a measurement in the same

time step, then the origin of the camera coordinate frame is set to C. As such, the

calculated rotation ω that maps coordinates in the WGS84 geocentric coordinate frame

to coordinates in the camera coordinate frame is correlated to C and the covariances of

(θ, ψ, φ)> and C are jointly propagated to the covariance matrix Σ(ω>,C>) given by (1.2).
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In this case, the a priori state estimate is corrected by the measurement (ω>,C>)>

with associated covariance matrix Σ(ω>,C>). Otherwise, if a 3-axis orientation sensor

measurement is not reported, then only the GPS derived measurement of the camera

center is used to update the a priori state estimate using the measurement C with

covariance ΣC.

In the case of a reported 3-axis orientation sensor measurement and not a GPS

receiver measurement, the origin of the camera coordinate frame is set to the a priori

estimate of the camera center Ĉ−
n where the associated covariance ΣĈ−

n
is the 3 × 3

block on the diagonal of the a priori state error covariance estimate P−n corresponding to

Ĉ−
n . Similar to above, the rotation ω calculated from the pitch, roll, and yaw (θ, ψ, φ)>

measurements is correlated to Ĉ−
n , and the covariances of (θ, ψ, φ)> and Ĉ−

n are jointly

propagated to the covariance matrix Σ(ω>,Ĉ−
n
>). However, since Ĉ−

n is not a measure-

ment, it is not used to correct the a priori state estimate x̂−n (i.e., it is not used to

correct itself). Only the derived measurement of the rotation is used to update the a

priori state estimate. Specifically, the state estimate is updated by the measurement ω

with covariance Σω.

The last potential measurement is that of the camera rotational velocity ω̇. A

measure of the rotational velocity is the estimate of the rotation of the camera from the

previous frame n− 1 to the current one n as estimated by the previously described two-

view bundle adjustment process. The state estimate is updated by ω̇ and its associated

covariance Σω̇.

The filter uses the measurements provided by this combination of sensors to

sequentially estimate the geoposition and orientation of the camera relative the WGS84

geocentric coordinate frame. The measurements and their associated uncertainties are in-

put at different frequencies and are sometimes incomplete due to GPS dropouts, corrupt

video frames, etc., yet the EKF uses these multiple measurements to reliably estimate

the geoposition and orientation and their uncertainty at each video frame.

1.4 Multiple Camera Estimation

This section extends the work of the previous one from independent estimation

of the geoposition and orientation of each camera to that of jointly estimating the geopo-

sition and orientation of multiple cameras at instances when this is possible. Specifically,
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in the case of multiple cameras imaging the same region of a scene, these independent

observations of the features in the scene are used to further refine the geoposition and ori-

entation of the cameras, provided that feature correspondences are established between

the images acquired from different cameras. The approaches used for feature detection

and matching are described, as well as the process of jointly estimating the maximum

likelihood of the geoposition and orientation of all cameras imaging the same region of

a scene for which feature correspondences have been established.

1.4.1 Feature detection and matching

Recent work has shown that distinct image features that are invariant to view-

point and illumination changes can be reliably detected [51, 63]. These types of changes

are locally modeled as an affinity or similarity (translation, rotation, and scale). Ex-

amples of such feature detectors include ones based on affine normalization and Hessian

points [61, 82], the Maximally Stable Extremal Region (MSER) detector [58], detectors

based on edges and intensity extrema [96, 95], one that detects salient regions [40], and

the Scale Invariant Feature Transform (SIFT) detector [49, 50, 51]. An affinity is suf-

ficient to locally model geometric distortions arising from viewpoint changes provided

that the local neighborhood about the scene feature can be approximated by a plane.

Although a similarity does not model skew, it has been shown to perform well in similar

applications, such as robotics [83, 84]. It is also assumed that photometric deformations

can be modeled by a linear transformation of the local intensities. In this dissertation,

image features are detected using the SIFT detector. Examples of regions detected by

the SIFT detector are shown in figure 1.7.

For each detected region, a local description of the intensity pattern within

the region is calculated. The feature matching process, described later, uses these local

descriptors to determine the similarity between different features. A recent comparison

of local descriptors [62] indicates that SIFT descriptors, each typically a 128-dimensional

vector representing a local image region sampled relative to its scale-space coordinate

frame, are superior to other descriptors. Further, the vector is organized such that

the Euclidean distance between any two SIFT descriptor vectors is a measure of the

similarity between the SIFT features described by the vectors, i.e., smaller distances are

more similar. The work presented here uses the SIFT reference implementation [48] for

both feature detection and calculation of the local descriptor.
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Figure 1.7: Features for matching. SIFT features (in yellow and red) detected in images
acquired by two different cameras. 127 and 101 features were detected in the left and right
images, respectively. A combination of guided matching, SIFT descriptor comparison,
and robust modeling fitting is used to determine the set of feature correspondences
between the two images—29 of these feature points are inliers (in red) and the remaining
detected points are outliers (in yellow).

The remainder of this section addresses the problem of matching the detected

features across images acquired from different cameras that are imaging the same region

of a scene. Focus is given to determination of the region in an image to search for a cor-

responding feature—the guided matching problem. Other components of the matching

process are feature comparison to establish an initial set of correspondences followed by

robust outlier rejection.

Guided matching

When it has been determined that multiple cameras are imaging the same region

of a scene, the detected SIFT features in each of the images is robustly matched. The

feature matching process first establishes a set of putative correspondences between SIFT

features that have been detected in each of images acquired by the cameras. Putative

correspondences are computed using a combination of guided matching using covariance

propagation [72] and the comparison of SIFT descriptors. RANSAC is then applied to the

set of putative feature correspondences to determine the set of inlier correspondences.

Presently, the matching process is tailored to work on images acquired from pairs of

normalized cameras P̂ and P̂′. In the case of three or more cameras imaging the same

region of the scene, all possible image pairs are processed, and the results merged.
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Guided matching is performed in the space of normalized coordinates, so the

matching process first converts the detected SIFT features in the image acquired by the

first normalized camera P̂ from image coordinates to normalized coordinates x̂ = K−1x

with uncertainty propagation. Additionally, the current a posteriori estimate of the

Kalman filter state vector (ω̂>, ̂̇ω>, Ĉ>, ̂̇C>)> of the first camera is mapped to a vector

(ω>, t>)> containing the parameters of the normalized camera P̂ = [R | t] = [exp(ω) | t],
where R = exp(ω) and t = −RC̃. The covariance matrix Σ(ω>,t>) associated with the

vector (ω>, t>)> is calculated by

Σ
(ω>,t>)

≈ J(ω̂>, ̂̇ω>,Ĉ>, ̂̇C>)Σ(ω̂>, ̂̇ω>,Ĉ>, ̂̇C>)J
>
(ω̂>, ̂̇ω>,Ĉ>, ̂̇C>)

where Σ(ω̂>, ̂̇ω>,Ĉ>, ̂̇C>) is the a posteriori state error covariance estimate, and the Jacobian

matrix J(ω̂>, ̂̇ω>,Ĉ>, ̂̇C>) is given by

J(ω̂>, ̂̇ω>,Ĉ>, ̂̇C>) =
∂(ω>, t>)

∂(ω̂>, ̂̇ω>, Ĉ>, ̂̇C>)
=

 I 0 0 0

∂t
ω 0 ∂t

∂C̃
0


Similarly, the a posteriori state estimate (ω̂′>, ̂̇ω′>, Ĉ′>, ̂̇C′>)> of the second camera

is mapped to a vector (ω′>, t′>)> containing the parameters of the second normalized

camera P̂′ = [R′ | t′] = [exp(ω′) | t′],
For use in guided matching between images acquired by every combination of

camera pairs, the essential matrix E from a given pair of general normalized cameras

P̂ = [R | t] and P̂′ = [R′ | t′] is given by

E =
[t′ − R′R>t]×R′R>

‖t′ − R′R>t]×R′R>‖

where R = exp(ω) and R′ = exp(ω′). The covariance matrix Σe associated with E is

calculated as

Σe ≈ J(ω>,t>)Σ(ω>,t>)J
>
(ω>,t>) + J(ω′>,t′>)Σ(ω′>,t′>)J

>
(ω′>,t′>)

where J(ω>,t>) = ∂e/∂(ω>, t>) and J(ω′>,t′>) = ∂e/∂(ω′>, t′>).

The resulting essential matrix E and covariance Σe are used to calculate search

regions in image 2. A search region in image 2 corresponding to a detected SIFT feature

in image 1 is determined by the mapping

ˆ̀′ =
Ex̂
‖Ex̂‖
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where x̂ is the point in normalized coordinates in image 1 and ˆ̀′ is the line in normalized

coordinates in image 2 with covariance Σˆ̀′ ≈ JeΣeJ
>
e + Jx̂Σx̂J

>
x̂ , where Je = ∂ˆ̀

′
/∂e and

Jx̂ = ∂ˆ̀
′
/∂x̂.

As described in [72], the set of equal-likelihood lines in the distribution of a ran-

dom homogeneous line ` with mean µ` and covariance Σ` satisfies (`−µ`)>Σ+
` (`−µ`) =

k2, where k2 is the inverse of the chi-square cumulative distribution function with 2 de-

grees of freedom and probability α, and Σ+
` is the pseudo-inverse of the covariance matrix

Σ` with rank 2. The set of lines form the homogeneous dual conic C∗ =
[
µ`µ

>
` − k2Σ`

]−1,

which is the the adjoint of the matrix C. For a non-singular symmetric matrix C ∼ (C∗)−1,

therefore the conic that forms the envelope of lines is given by C = µ`µ
>
` − k2Σ`. This

conic is a hyperbola with branches symmetric about µ` as illustrated in figure 1.8.

In the present case of the line ˆ̀′ in normalized coordinates in image 2 and its

associated covariance Σˆ̀′ , the conic Ĉ′ in normalized coordinates in image 2 that defines

the search region is given by Ĉ′ = ˆ̀′ˆ̀′>−k2Σˆ̀′ . An arbitrary point x̂′ lies inside the search

region if x̂′>Ĉ′x̂′ has the same sign as x̂′>ˆ̀′ Ĉ
′x̂′ˆ̀′ , where x̂′ˆ̀′ is any point that lies on the

line ˆ̀′. Two points x̂′ˆ̀′
1

and x̂′ˆ̀′
2

on the line ˆ̀′ may be determined by ˆ̀′>[x̂′ˆ̀′
1

| x̂′ˆ̀′
2

] = 0,

where the matrix [x̂′ˆ̀′
1

| x̂′ˆ̀′
2

] is the null space of ˆ̀′>. One of these points can be used to

determine the sign of x̂′>ˆ̀′ Ĉ
′x̂′ˆ̀′ .

Detected SIFT features in image 2 located within the search region meet the

geometric criteria for potentially corresponding to x̂, regardless of how similar they are to

the feature in image 1. Comparison of the descriptors is used to determine which of these

features, if any, is similar to the feature in image 1. The matching process calculates

how similar the potential corresponding features are as well as how unique the potential

match is. For a detected SIFT feature in image 1, the matching process measures

the Euclidean distance between its associated SIFT descriptor vector and all descriptor

vectors contained in its corresponding search region in image 2, storing the distances to

its nearest and second nearest neighbors, i.e., the smallest and second smallest Euclidean

distances, respectively. The ratio of the smallest distance to the second smallest distance

is a measure of how ambiguous the match is [51]. The lower the ratio, the less ambiguous

the match. Thresholding on this ratio is an effective method for removing ambiguous

matches.

Last, RANSAC is applied to the resulting set of putative correspondences to

determine the subset of correspondences that are consistent with the essential matrix.
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a b

c d e f

Figure 1.8: Point-to-line mapping under a fundamental matrix. (a) (b) The left and
right images with corresponding points used in bundle adjustment (in black). There are
101 point correspondences. Two additional points have been selected in the left image
(in white) and mapped to lines in the right image (in dashed black). The uncertainty
hyperbolas associated with the mapped lines are contained in the right image (in black).
The hyperbolas correspond to a probability of 99%. (c) The left image zoomed in on the
first selected point. (d) The right image zoomed in on the corresponding first mapped
line. (e) The left image zoomed in on the second selected point. (f) The right image
zoomed in on the corresponding second mapped line. Note that the mapped lines miss
the corresponding points, but that the corresponding points are within the uncertainty
bounds.
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Figure 1.7 shows example results of matching features across images acquired from dif-

ferent cameras using the procedure described in this section.

1.4.2 Joint estimation of geoposition and orientation

In the absence of cross-camera information, the system is essentially a set of

independent Kalman filters, each estimating the geoposition and orientation of its respec-

tively camera from its own sensor measurements. However, when multiple cameras image

the same region of a scene, there is the potential to use cross-camera measurements to

further improve estimates of all cameras that observe the same scene features. Matching

features between images acquired by different cameras introduces the sharing of infor-

mation across the cameras. There are multiple techniques for combining this additional

information in order to improve the estimates of the geopositions and orientations of

the cameras. These approaches range from a single Kalman filter with a state vector

containing all of the parameters for all of the cameras to, for example, a decentralized

data fusion framework [67]. Most of these approaches have been developed to mitigate

issues that arise when the number of cameras significantly increases, for example, from

tens of cameras to tens of thousands. Those techniques that do scale to a large number

of cameras must often sacrifice some information for the ability to scale. The approached

developed in this work falls into this category.

The method used in this work is a hybrid one. Each camera continues to

independently estimate its geoposition and orientation as described in the section 1.3.

However, when two or more cameras image the same region of a scene and feature

correspondences are established, a separate, independent bundle adjustment process will

simultaneously estimate the geoposition and orientation of these cameras from the set

of feature correspondences between their images and current estimates of geoposition

and orientation of the cameras. The results of this separate bundle adjustment process

are then input to each of the Kalman filters as simply another correlated measurement

of position and orientation. After the measurement update, the Kalman filters return

to independent processing. The information that is lost by using this approach is the

cross-camera covariance information resulting from bundle adjustment.

Bundle adjustment can reliably estimate positions and orientations of hun-

dreds of cameras simultaneously [93]. Under typical operating conditions of this system,

multiple bundle adjustment processes will be executing, each adjusting perhaps tens of
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cameras, which is easily handled. With this in mind, the loss of cross-camera covariance

information is considered an acceptable loss. The advantage of bundle adjustment is,

through the use of cross-camera image feature correspondences, it allows the cameras to

transfer their accuracy to each other by jointly estimating the geoposition and orientation

of the cameras.

A sparse implementation of the Levenberg-Marquardt algorithm [34] is used to

perform bundle adjustment, allowing computationally efficient adjustment the geoposi-

tion and orientation of m cameras as follows. For clarity, the hat notation is removed

from the normalized image coordinates in the measurement vector X. The initial esti-

mate of the parameter vector is

P̂ = (ω(1)>, C̃(1)>, . . . ,ω(m)>, C̃(m)>, X̃
>
1 , . . . , X̃

>
n )>

where the jth camera rotation ω(j) and center C̃(j) are initialized to the values in the

current Kalman filter state estimate associated with the jth camera imaging the scene,

and the 3D points X̃1, . . . , X̃n are initialized by triangulation using the DLT algorithm.

The measurement vector X is given by

X = (ω(1)>, C̃(1)>, x̃(1)>
1 , . . . , x̃(1)>

n , . . . ,ω(m)>, C̃(m)>, x̃(m)>
1 , . . . , x̃(m)>

n )>

where x̃(j)
i is the ith corresponding point in normalized coordinates in the jth camera.

Notice that the above measurement vector also includes the current Kalman filter state

estimates of the rotations and translations of the cameras. Inclusion of the rotations

and translations in the measurement vector prevents their counterparts in the param-

eter vector from being adjusted outside of the uncertainty bounds of the current state

estimate.

After bundle adjustment, the resulting rotations and translations are extracted

from the final estimate of the parameter vector P̂ and their covariances retrieved. Mea-

surement updates of rotation and translation are issued to each Kalman filter associated

with an adjusted camera. The result is decreased relative error between the cameras,

resulting in more precise estimates of the geoposition and orientation of the cameras.

1.5 Experimental results

The approach developed in this dissertation has been experimentally validated

using the following method. Data was acquired using the system shown in figure 1.1.
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The data acquisition system consists of a collection of inexpensive, consumer-grade sen-

sors: a calibrated Microsoft LifeCam VX-6000 video camera [60], Holux GPSlim236

GPS receiver [37], and Advanced Orientation Systems EZ-COMPASS-3 tilt compen-

sated compass-magnetometer [2]. The imaging components of this camera are a 72 ◦

diagonal field of view lens and a 1280× 1024 pixel imaging sensor. Though the imaging

sensor is 1280× 1024, the video is acquired at the Common Intermediate Format (CIF)

standard [39] size of 352 × 288 pixels at a rate of approximately 14.34 frames per sec-

ond. The GPS receiver and compass-magnetometer measure the geoposition and relative

orientation of the camera at 1 Hz and 4Hz, respectively.

First, data was acquired for nearly 15 minutes while walking about a 40m ×
70 m building courtyard. The sensor platform was hand-held during the acquisition

process with no special attention towards dampening movement associated with walking.

Further, in order to emulate a helmet-mounted system, at times the sensor platform was

oriented such that it followed the head pose of the person carrying it. Other times, the

camera was generally pointed forward, in the direction of walking. In either case, the

geoposition and orientation of the camera was reliably estimated using the approach

described in section 1.3. Figure 1.9 illustrates the improved geopositioning precision of

this approach over GPS-derived measurements alone.

For a quantitative analysis of precision, the total standard deviations of the

GPS-derived geoposition measurements and Kalman filter a posteriori estimates are com-

pared. The total standard deviation σtotal is defined as σtotal =
√

trace(Σ), where Σ is

the covariance matrix of the measurement or estimate of interest. Over the 11483 video

frames acquired, the average total standard deviation of the GPS-derived measurements

of geoposition is 57.735m, while the average total standard deviation of the a posteriori

state estimates for the same 11483 video frames is 37.501m. For this data set, the ad-

dition of video and orientation sensors produced over a 35% increase in precision from

using GPS alone.

Figure 1.10 shows the distance between the geoposition measurements and es-

timates. At times, there is over a 30 m difference between the two. For high-precision

applications, such as georegistration of urban 3D scene reconstruction from ground-level

video, 30m may be critical.
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Figure 1.9: Geoposition estimates and their uncertainty. The estimated camera geoposi-
tion (in blue) at 1416 sequential time steps of a 11483 frame video. For comparison, the
uncertainty ellipses of every third GPS-derived geoposition measurement (in red) and
corresponding Kalman filter a posteriori estimates (in blue) are shown. The geoposi-
tions and their associated covariances are projected to the XZ-plane and 1% uncertainty
bounds indicated. The uncertainty of the estimated geopositions is substantially smaller
than the GPS-derived ones.

1.6 Conclusions

This dissertation has presented a new approach for precisely estimating the

geoposition and orientation of one or more ground-level video cameras, where each cali-

brated camera is equipped with a GPS receiver and compass-magnetometer. Moreover,

we address this problem using inexpensive consumer-grade sensors. The GPS receiver

measures the latitude, longitude, and height above mean sea level of the video camera

and the orientation of the video camera is derived from data acquired by a compass-

magnetometer, which measures the pitch, roll, and yaw of the camera. Additionally, the

camera motion between successive video frames is measured from features that have been
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Figure 1.10: Distance between geoposition measurement and estimate. The distance
between the GPS-derived geoposition measurement and the Kalman filter state estimate
of geoposition over 11483 video frames. A distance of zero indicates that the state
estimate of geoposition was reinitialized to the current measurement. Reinitialization is
performed when the measurement is not within the 99.73% uncertainty bounds of the
Kalman filter a priori estimate (prediction).

robustly tracked throughout the acquired video. We have described geospatial methods

commonly used in photogrammetry for mapping measurements from this disparate set

of sensors such that they are relative to the World Geodetic System 1984 geocentric co-

ordinate frame, a world-wide standard Earth-centered, Earth-fixed Cartesian coordinate

frame. The associated uncertainty of each measurement is mapped to this coordinate

frame using a first-order nonlinear propagation of covariance model.

The geoposition and orientation of each camera is independently estimated

from all of its associated sensor measurements using an extended Kalman filter. The

filter uses the measurements provided by this combination of sensors to sequentially

estimate the geoposition and orientation of the camera relative the WGS84 geocentric

coordinate frame. The measurements and their associated uncertainties are input at

different frequencies and are sometimes incomplete due to GPS dropouts, corrupt video

frames, etc., yet it has been shown that the filter reliably estimates the most probable

camera geoposition and orientation and their uncertainty at each video frame. Using

this approach for combining GPS, 3-axis orientation, and video-derived measurements,

experimental results indicate a 35% increase in the precision of the geoposition estimates

over solely using GPS.
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We have also described a method for further reducing the geoposition and ori-

entation uncertainties in the case of multiple cameras imaging the same region of a scene.

Our approach uses a combination of guided matching, feature descriptor comparison, and

robust modeling fitting to determine the set of cross-camera feature correspondences be-

tween the images associated with all cameras imaging the same region of the scene. The

resulting independent observations of corresponding features contained in the scene are

used to jointly estimate the maximum likelihood of the geoposition and orientation of

all cameras imaging the same region of a scene for which feature correspondences have

been established. This approach yields decreased relative errors between the cameras,

resulting in more precise estimates of the geoposition and orientation of the cameras.

This general approach allows the video cameras to be located anywhere in the

proximity of the Earth. Further, this approach scales to multiple cameras at the cost

of losing the cross covariance information between different cameras. It is expected

that this work will enable other higher-level applications such as high-precision urban

scene reconstruction from multi-camera video data. Although this work focuses on the

precise estimation of geoposition and orientation, future work will include an evaluation

of the accuracy of such estimates. Accuracy will be assessed by comparing the estimated

geoposition to that of ground control points whose coordinates are very accurately known.

Acknowledgement This chapter, in full, is being prepared for publication in collab-

oration with S. Belongie. I am the primary investigator and author of this paper.
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Sensors

Multiple sensors are required to precisely determine the geoposition and orien-

tation of a video camera. Further, one objective of this dissertation is to address this

problem using consumer-grade sensors that are inexpensive and produced in large vol-

umes. This chapter describes the suite of sensors used to acquire data for the experiments

contained in this dissertation and the preprocessing of the acquired data.

The sensor system includes a video camera, Global Positioning System (GPS)

receiver, and 3-axis orientation sensor. Figure 1.1 on page 5 shows the configuration

of these sensors. The GPS receiver measures the latitude, longitude, and height above

mean sea level of the video camera. The orientation of the video camera is derived from

data acquired by a compass-magnetometer, which measures the pitch, roll, and yaw of

the sensors. Additional camera motion estimates can be made from the video data, but

require that the camera that acquired the video is calibrated.

This chapter particularly details the mapping of the measurements from this

set of disparate sensors to a common coordinate frame and the propagation of the un-

certainty of the sensor measurements to this coordinate frame. In addition, camera

calibration is discussed, including the model used to characterize the camera and the

preprocessing calculations required for camera motion estimation from video.

2.1 Video camera

The data acquisition system contains a Microsoft LifeCam VX-6000 video cam-

era [60]. The imaging components of this camera are a 72 ◦ diagonal field of view lens

33
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and a 1280 × 1024 pixel imaging sensor. Though the imaging sensor is 1280 × 1024,

the video is acquired at the Common Intermediate Format (CIF) standard [39] size of

352× 288 pixels. The camera acquires video at a rate of approximately 14.34 frames per

second.

The camera must be calibrated in order to estimate camera motion from video

acquired by the camera. Camera calibration is the process of estimating the parameters

of a model that characterize the projection of 3D world points to 2D image points under

a given camera. The remainder of this section describes the camera model used and the

calibration procedure.

2.1.1 Camera model

The image formation process maps 3D world points to 2D image points. Real

camera lenses exhibit distortion that results in 2D image points that deviate from the

images of the same 3D world points imaged under an ideal lens. Many camera models

and calibration techniques have been developed to accurately reproduce this distortion

(e.g., [100, 36, 94, 91, 11, 7, 27, 6, 12]). The model used in the work presented here is

similar to [36]. In addition to modeling the set of internal camera parameters contained

in the camera calibration matrix, described below, it models radial and tangential lens

distortions. These types of distortions are generally the most significant and often cap-

ture other lens aberrations that are not explicitly modeled. Under this model, 3D world

points are mapped to 2D image points as follows.

First, 3D world points X̃ = (X̃, Ỹ , Z̃)> are transformed to the camera coordi-

nate frame and projected to 2D normalized (homogeneous) coordinates x̂ = (x̂, ŷ, ŵ)>.

This mapping is


x̂

ŷ

ŵ

 =


1 0 0 0

0 1 0 0

0 0 1 0



r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

0 0 0 1




X̃

Ỹ

Z̃

1


x̂ = [R | t]

X̃

1


x̂ = P̂X

where R and t are the 3D rotation and translation, respectively, that transform coor-
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dinates in the world coordinate frame to coordinates in the camera coordinate frame.

P̂ = [R | t] is called the normalized camera projection matrix and represents a camera

with an ideal lens that maps 3D coordinates in the world coordinate frame to non-

distorted normalized 2D coordinates. The relationship between 3D coordinates in the

camera coordinate frame, image coordinates, and normalized coordinates is illustrated

in figure 1.2 on page 6.

Short focal length or wide field of view lenses commonly exhibit distortions

along radial directions. Radial distortion appears as either pincushion or barrel distortion

of the image. Additionally, tangential distortion occurs when multiple or compound

lenses are not aligned along their optical centers, a configuration referred to as lens

decentering. In order to model the radial and tangential lens distortion present in a

non-ideal lens, non-distorted normalized 2D coordinates ˆ̃x = (ˆ̃x, ˆ̃y)> = (x̂/ŵ, ŷ/ŵ)> are

mapped to distorted normalized 2D coordinates ˆ̃xd = (ˆ̃xd, ˆ̃yd)> byˆ̃x
ˆ̃y

 7→

ˆ̃xd
ˆ̃yd

 = (1 + κ1r
2 + κ2r

4 + κ5r
6)

ˆ̃x
ˆ̃y

 +

2κ3
ˆ̃xˆ̃y + κ4(r2 + 2ˆ̃x2)

κ3(r2 + 2ˆ̃y2) + 2κ4
ˆ̃xˆ̃y

 (2.1)

where κ1, κ2, and κ5 are radial distortion parameters, κ3 and κ4 are tangential distortion

parameters, and r =
√

ˆ̃x2 + ˆ̃y2.

The final step of the imaging process is the mapping of distorted normalized

coordinates ˆ̃xd = (ˆ̃xd, ˆ̃yd)> to distorted image coordinates x̃d = (x̃d, ỹd)> by
x̃d

ỹd

1

 =


αx s x0

0 αy y0

0 0 1




ˆ̃xd
ˆ̃yd

1


x̃d

1

 = K

ˆ̃xd

1

 (2.2)

xd = Kx̂d

where (x0, y0)> is the principal point, s is the skew, and αx and αy are the focal lengths

of the camera in the x and y directions. Two parameters for focal length are necessary

to model imaging sensors with non-square pixels, which results in αx 6= αy. The matrix

K is called the camera calibration matrix and encompasses the intrinsic parameters of

the camera, less the distortion parameters. All of the parameters in K are in terms of

pixel dimensions.
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For conventional cameras, the above model adequately characterizes the image

formation process. It is important to note that images acquired under such a camera

model are in distorted image coordinates.

Inverse mapping

For applications needing to estimate camera rotation and translation (or po-

sition) from images, the distorted image coordinates must be mapped to non-distorted

normalized coordinates—the inverse mapping process, x̃d 7→ ˆ̃x, i.e., we must undistort

x̂d = K−1xd. Due to the high degree of (2.1), there is not a general algebraic expression

for mapping distorted normalized coordinates to undistorted normalized coordinates,

therefore the undistortion calculation must be performed numerically using one of many

optimization methods.

The Levenberg-Marquardt optimization method [46, 55] is widely used in mul-

tiple view geometry [32] and is used throughout this dissertation. It is best described as a

blend between the Gauss-Newton method and gradient descent [30, 70]. The Levenberg-

Marquardt algorithm requires a measurement vector X, its associated covariance matrix

ΣX, an initial estimate of the parameter vector P̂ being estimated, and the function that

maps the current estimate of the parameter vector P̂ to an estimate of the measurement

vector X̂. The algorithm iteratively finds the parameter vector P̂ that minimizes ε>Σ−1
X ε,

where ε = X − X̂ is the error between the measurement and the estimated measure-

ment. Central to Levenberg-Marquardt minimization is computation of the Jacobian

matrix J = ∂X̂/∂P̂, which can be computed either numerically or using an analytical

expression. For reasons of improved convergence and speed, an analytical expression

is preferred. The covariance of the final estimate of the parameter vector is given by

Σ
P̂

= (J>Σ−1
X J)+.

Applied to the undistortion of normalized coordinates, ˆ̃xd 7→ ˆ̃x, the measure-

ment vector is the distorted normalized coordinates ˆ̃xd, the parameter vector to be esti-

mated is the undistorted normalized coordinates ˆ̃x, the function that maps an estimate
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of ˆ̃x to ˆ̃xd is (2.1), and the analytical expression for the Jacobian is

∂ˆ̃xd
∂ˆ̃x

= 2(κ1 + 2κ2r
2 + 3κ5r

4)

 ˆ̃x2 ˆ̃xˆ̃y
ˆ̃xˆ̃y ˆ̃y2


+

γ + 2(κ3
ˆ̃y + 2κ4

ˆ̃x(ˆ̃x2 + r2)) 2ˆ̃x(κ3 + 2κ4
ˆ̃xˆ̃y

2ˆ̃y(κ4 + 2κ3
ˆ̃xˆ̃y γ + 2(κ4

ˆ̃x+ 2κ3
ˆ̃y(ˆ̃y2 + r2))


where γ = 1 + κ1r

2 + κ2r
4 + κ5r

6. The initial estimate of ˆ̃x is set to its distorted

coordinates ˆ̃xd.

The covariance matrix Σˆ̃xd
associated with the measurement vector ˆ̃xd is cal-

culated from the covariances of K and xd as they propagate through the equation x̂d =

K−1xd. For clarity, let A = K−1, soˆ̃xd

1

 = A

x̃d

1




ˆ̃xd
ˆ̃yd

1

 =


a11 a12 a13

0 a22 a23

0 0 1



x̃d

ỹd

1


Using this notation, Σˆ̃xd

≈ JaΣaJ
>
a + Jx̃d

Σx̃d
J>x̃d

, where

Ja =
∂ˆ̃xd
∂a

=

x̃d ỹd 1 0 0 0 0 0 0

0 0 0 x̃d ỹd 1 0 0 0

 , Jx̃d
=
∂ˆ̃xd
∂x̃d

=

a11 a12

0 a22


and Σa ≈ JkΣkJ

>
k , where

Jk =
∂a
∂k

=



− 1
α2

x
0 0 s

αyα2
x

0 0 −β
αyα2

x
0 0

s
αyα2

x
− 1
αxαy

0 − s2

α2
xα

2
y

s
αxα2
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y
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0 0 0 −β
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y0
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y
− 1
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y
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y

y0
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0 0 0 0 0 0 − 1
αx

0 0

0 0 0 0 0 0 s
αxαy

− 1
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
where β = sy0 − x0αy.
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The covariance matrix Σx̃d
is a function of how the distorted image coordinates

x̃d are measured, whether manually or automatically (e.g., by an autonomous feature

detector). If the covariance of the measured coordinates is unknown, it is assumed that

Σx̃d
is the identity matrix. The covariance matrix Σk is determined during the camera

calibration process that is described next.

2.1.2 Camera calibration

Camera calibration is the process of estimating the internal parameters of a

given camera model. In this work, the internal parameters of the camera model described

in the previous section are estimated using [4], which also calculates the uncertainty of the

estimated parameters contained in K (see (2.2)). Calibration is performed from multiple

images of a known calibration target, in this case a planar black and white checkerboard

pattern, 7 squares × 9 squares where each square is 30mm × 30 mm. 41 images of the

calibration target were acquired with the target at varying orientations and distances

from the camera. Sample images of the calibration target are shown in figure 2.1.

For each image of the calibration target, the image coordinates of each corner

of the squares must be determined. This is accomplished in an assisted manner. First,

a human manually selects the image of the four corners that are closest to the bounding

corners of the entire target. From this, the calibration application automatically predicts

the locations of the remaining image corners. If the predicted corners are acceptable

to the human, then the coordinates of the corners are determined to subpixel accuracy.

Otherwise, the human may either make an initial guess of the distortion values to improve

the prediction or manually guide the predictions, which are then determined to subpixel

accuracy. This same procedure is done for each image of the calibration target.

The parameters of the camera model are then estimated from the sets of image

corners and their corresponding coordinates on the planar calibration target. This is

completed by a parameter initialization phase, followed by a nonlinear optimization pro-

cedure that minimizes the error between the measured image coordinates and the projec-

tion of the target coordinates. The initialization process computes a closed-form solution

for all camera parameters except the distortion parameters. All of the camera parame-

ters, including those for distortion, are then estimated using the gradient descent opti-

mization method, where the Jacobian matrix is calculated from an analytical expression.

The calibration results are found in table 2.1. The covariance matrix Σk associated with
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Figure 2.1: Images of the camera calibration target. 4 of the 41 images of the calibration
target used to calibrate the camera.

the camera calibration matrix K is given by Σk = diag(σ2
αx
, σ2

s , σ
2
x0
, 0, σ2

αy
, σ2

y0 , 0, 0, 0).

2.2 GPS receiver

The data acquisition system measures the latitude, longitude, and height above

mean sea level of the camera using a Holux GPSlim236 GPS receiver [37]. The GPS

receiver measures the height above mean sea level and geodetic latitude and longitude

at a frequency of 1 Hz. For use in subsequent computations, these quantities are trans-

formed to an Earth-centered, Earth-fixed Cartesian coordinate system as described in

the following section.
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Table 2.1: Estimated internal camera parameters and their uncertainty

Estimate Standard Deviation σ

αx 354.263 0.382

s 0.000 0.000

x0 177.577 0.192

αy 354.354 0.367

y0 134.144 0.156

κ1 −0.075

κ2 0.000

κ3 0.000

κ4 −0.001

κ5 0.000

2.2.1 Geodetic coordinate transformation

Geodetic coordinates and their transformation have been extensively studied in

the field of geospatial science [78, 79, 97]. Definitions of the following mapping, charting,

and geodesy [19] terms will facilitate further discussion.

geoid The equipotential surface in the gravity field of the Earth which approximates

the undisturbed mean sea level extended continuously through the continents.

reference ellipsoid A theoretical figure whose dimensions closely approach the dimen-

sions of the geoid. The exact dimensions of the ellipsoid are determined by various

considerations of the section of the Earth’s surface concerned.

geoid-ellipsoid separation The distance between the geoid and the mathematical ref-

erence ellipsoid as measured along the ellipsoidal normal.

datum The reference frame that measurements are made relative to. The datum is

expressed as the parameters of the reference ellipsoid used by the reference frame,

and the origin and orientation of the coordinate system of the datum.

geodetic coordinates The quantities of latitude, longitude, and (ellipsoid) height,

which define the position of a point on the surface of the Earth with respect to the

reference ellipsoid.
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geocentric coordinates Coordinates that define the position of a point with respect

to the center of the Earth.

Over 225 datums are commonly used in mapping, charting, and geodesy. Each

of these datums is associated with one of the 23 reference ellipsoids shown in table 2.2.

Unique among these is the World Geodetic System (WGS) [20] because it is both a

datum and a reference ellipsoid. As such, WGS provides the means for relating positions

on various datums to an Earth-centered, Earth-fixed coordinate system.

The Earth Gravity Model 1996 (EGM96) [45] is a geopotential model of the

Earth consisting of spherical harmonic coefficients complete to degree and order 360.

This geopotential model is used as a geodetic reference to convert between EGM96 geoid

height (i.e., height above mean sea level) to height above WGS84 ellipsoid, thereby

correcting for any geoid-ellipsoid separation.

Independent of both datum and reference ellipsoid is the reference frame of the

coordinates. There are 33 common reference frames comprised of different coordinate

systems, map projections, grids, and grid reference systems [18, 17, 89]. The general

transformation of coordinates is performed using the approach described in [97], which

is summarized as:

1. Convert the input coordinates from the input reference frame to the geodetic ref-

erence frame.

2. Shift the intermediate geodetic coordinates from the input datum to WGS84.

3. Convert from EGM96 geoid height to WGS84 ellipsoid height, if needed.

4. Shift the shifted intermediate WGS84 geodetic coordinates to the output datum.

5. Convert the shifted intermediate geodetic coordinates to the output coordinate

reference frame.

For use in subsequent computations, the GPS receiver measurements of lati-

tude, longitude, and height are transformed to geocentric coordinates. The relationship

between the geodetic and geocentric coordinate systems is shown in figure 1.3 on page 9.

For GPS, the current underlying coordinate system is WGS84—GPS receiver measure-

ments are in WGS84 geodetic coordinates with EGM96 geoid height. For the work

presented in this dissertation, WGS84 geocentric is used as the principal coordinate
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Table 2.2: Common reference ellipsoids and their parameters

Semi-major Semi-minor
Reference Ellipsoid

Axis (m) Axis (m)

Airy 1830 6377563.396 6356256.9090

Modified Airy 6377340.189 6356034.4480

Australian National 6378160.000 6356774.7190

Namibia 6377483.865 6356165.3830
Bessel 1841

Ethiopia, Indonesia, Japan, Korea 6377397.155 6356078.9630

Clarke 1866 6378206.400 6356583.8000

Clarke 1880 6378249.145 6356514.8700

India 1830 6377276.345 6356075.4130

E. Malaysia & Brunei 6377298.556 6356097.5500

India 1956 6377301.243 6356100.2280
Everest

W. Malaysia 1969 6377295.664 6356094.6680

W. Malaysia & Singapore 1948 6377304.063 6356103.0390

Pakistan 6377309.613 6356109.5710

Modified Fischer 1960 (South Asia) 6378155.000 6356773.3200

Helmert 1906 6378200.000 6356818.1700

Hough 1960 6378270.000 6356794.3430

Indonesian 1974 6378160.000 6356774.5040

International 1924 6378388.000 6356911.9460

Krassovsky 1940 6378245.000 6356863.0190

Geodetic Reference System 1980 (GRS80) 6378137.000 6356752.3141

South American 1969 6378160.000 6356774.7190

World Geodetic System 1972 (WGS72) 6378135.000 6356750.5200

World Geodetic System 1984 (WGS84) 6378137.000 6356752.3142
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frame, as doing so minimizes geodetic coordinate transformations. To transform GPS

receiver measurements to WGS84 geocentric coordinates, the above procedure simplifies

to:

1. Convert from EGM96 geoid height to WGS84 ellipsoid height.

2. Convert the height-corrected geodetic coordinates to geocentric coordinates.

After coordinate conversion, the resulting coordinates reside in an Earth-centered, Earth-

fixed Cartesian coordinate system, as desired.

2.2.2 GPS positioning uncertainty

The Global Positioning System (GPS) [64, 75, 76] is the most accurate world-

wide navigation system developed to date. GPS was developed by the United States

Department of Defense and presently consists of more than two dozen satellites, each

with a highly accurate atomic clock, that orbit the Earth. Each satellite periodically

transmits signals that report the satellite position and the transmission time. GPS re-

ceivers use these satellite messages to calculate the range to three or more satellites and

then determine the position of the receiver using trilateration. However, GPS-derived

positioning is not without error [56, 13, 5, 57, 74]. This section gives a brief description

of the several sources of error that contribute to its positioning error.

A GPS receiver fundamentally estimates the range to a given satellite, corrupted

by a user clock bias. This quantity is called the pseudorange ρ and is calculated as

ρ = c(tau − tts) (2.3)

where c is the speed of light in a vacuum, tau is the arrival time measured by the user,

and tts is the value of the transmission time in the current satellite message. The true

range

D = ‖Ps −Pu‖ (2.4)

is the distance between the true satellite position Ps and the true user position Pu.

Any error between the pseudorange and true range or between the transmitted satellite

position and the true satellite position results in receiver positioning error.

The first potential source of error is the satellite clock. If such error exists, the

satellite transmit time tts will be in error. This error is modeled as

tts = tt + bs (2.5)
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where tt is the true transmit time and bs is the true error in the transmission time of the

satellite. The arrival time measured by the user tau characterizes all remaining errors,

including clock bias of the user and other measurement errors, and is given by

tau = tt + ‖Ps −Pu‖/c+ T + I + bu + v (2.6)

tau = ta + bu + v

where T is the true tropospheric delay, I is the true ionospheric delay, bu is the user clock

bias estimate common to a set of simultaneous measurements, and v is the receiver noise,

multipath error, and interchannel error. The true signal arrival time ta = tt+D/c+T+I

is modeled as the true signal transmission time delayed by the vacuum transit time and

additional true delays caused by the ionosphere and troposphere.

Substituting (2.4), (2.5), and (2.6) into (2.3) yields

ρ = ‖Ps −Pu‖+ c(bu − bs + T + I + v)

Errors in the variables of this equation fall into one of the following standard classes

of GPS errors: ephemeris (errors in the transmitted satellite position), satellite clock

(errors in the satellite transmit time), ionosphere (errors due to ionospheric effects),

troposphere (errors due to tropospheric effects), multipath (errors caused by multiple,

reflected signals entering the receiver antenna), and receiver (errors due to thermal noise,

software accuracy, and interchannel biases inherent in the receiver). The magnitude of

each of these error sources is summarized in the standard GPS error shown in table 1.1

on page 11. The magnitude of the error of the position along the ellipsoidal normal

σvertical and in the plane orthogonal to the ellipsoidal normal σhorizontal are derived from

the standard deviations of the standard error sources. The standard GPS errors assume

the median geometric configuration of the satellites. To account for differing satellite

geometry, the work presented in this dissertation uses greater values than those in the

standard error table. Specifically, the covariance of the coordinates of the camera center

in the WGS84 geocentric coordinate frame Σ
C̃

= ΣPu = diag (σ2
GPS, σ

2
GPS, σ

2
GPS) where

σGPS = 33.3 meters.

2.3 3-axis orientation sensor

The Advanced Orientation Systems EZ-COMPASS-3 [2], a tilt compensated

compass-magnetometer, is used to measure 3-axis orientation. This sensor characterizes
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3D orientation by Euler angles in the so-called “XY Z” convention. In this convention,

the rotation is given by pitch θ, roll ψ, and yaw φ angles. The angles define a rotated

coordinate frame relative to a local (unrotated) coordinate frame with origin at the

current position of the sensor, positive X-axis pointing north, positive Y -axis pointing

west, and positive Z-axis pointing up, along the ellipsoidal normal. This is shown in

figure 1.4 on page 12.

The 3D orientation of the sensor is calculated as the composition of three ro-

tations, a first rotation by an angle φ about the Z-axis, a second by an angle θ about

the Y -axis, and a third by an angle ψ about the X-axis. The 3D rotation matrix R

that maps coordinates in the rotated coordinate frame to coordinates in the unrotated

coordinate frame is formed from the pitch, roll, and yaw measurements by

R =


1 0 0

0 cosψ sinψ

0 − sinψ cosψ




cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ




cosφ sinφ 0

− sinφ cosφ 0

0 0 1



R =


cos θ cosφ cos θ sinφ − sin θ

sinψ sin θ cosφ− cosψ sin θ sinψ sin θ sinφ+ cosψ cos θ cos θ sinψ

cosψ sin θ cosφ+ sinψ sinφ cosψ sin θ sinφ− sinψ cos θ cos θ cosψ

 (2.7)

Using covariance propagation, the covariance matrix associated with the rotation matrix

is given by Σr ≈ Jθ,ψ,φΣθ,ψ,φJ
>
θ,ψ,φ, where Σθ,ψ,φ = diag(σ2

θ , σ
2
ψ, σ

2
φ) and

Jθ,ψ,φ =
∂r

∂(θ, ψ, φ)
=



−ab 0 −cd
−ad 0 cb

−c 0 0

ecb fab+ ed −ead− fb

ecd fad− eb eab− fd

−ea fc 0

fcb −eab+ fd −fad+ eb

fcd −ead− fb fab+ ed

−fa −ec 0



(2.8)

where a = sin θ, c = cos θ, e = sinψ, f = cosψ, d = sinφ, and b = cosφ. Table 2.3

shows the standard deviation of the pitch, roll, and yaw sensor measurements [54].
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Table 2.3: Tilt compensated compass-magnetometer sensor error

Quantity Standard Deviation σ (degrees)

Pitch θ 0.089

Roll ψ 0.089

Yaw φ 0.178

2.3.1 Rotation to camera coordinate frame and its uncertainty

As described above, the pitch, roll, and yaw measurements are relative to a local

unrotated coordinate frame. Subsequent processing requires knowledge of the rotation

that maps coordinates in the WGS84 geocentric coordinate frame to coordinates in

the camera coordinate frame. This section describes the calculation of this rotation

from GPS receiver measurements of the coordinates of the camera center in the WGS84

geocentric coordinate frame C̃ and its associated covariance Σ
C̃

, and 3-axis orientation

measurements of pitch θ, roll ψ, and yaw φ and the associated covariance Σθ,ψ,φ.

The rotation that maps coordinates in the WGS84 geocentric coordinate frame

to coordinates in the camera coordinate frame is a composition of four rotations that

transform coordinates through the following coordinate frames:

(a) WGS84 geocentric coordinate frame

(b) WGS84 local Cartesian coordinate frame

(c) Pitch-roll-yaw unrotated local Cartesian coordinate frame

(d) Pitch-roll-yaw rotated local Cartesian coordinate frame

(e) Camera coordinate frame

Of these, WGS84 local Cartesian has not yet been described. The WGS84 local Cartesian

coordinate frame is similar to the pitch-roll-yaw unrotated local Cartesian coordinate

frame shown in figure 1.4 on page 12. The difference for WGS84 local Cartesian is that

the positive X-axis points east and positive Y -axis points north. As with the pitch-roll-

yaw unrotated local Cartesian coordinate frame, the Z-axis points up. The relationship

between these 5 coordinate frames is show in figure 1.5 on page 14.

Most of the rotation matrices that transform coordinates from a given coordi-

nate frame to the camera coordinate frame are straightforward to calculate. The rotation
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Rd,e from the pitch-roll-yaw rotated local Cartesian coordinate frame to the camera co-

ordinate frame is given by

Rd,e =


0 −1 0

0 0 −1

1 0 0


The rotation Rc,d from the pitch-roll-yaw unrotated local Cartesian coordinate

frame to the pitch-roll-yaw rotated local Cartesian coordinate frame is calculated as

Rc,d = R>d,c, where Rd,c is given by (2.7) with Jacobian matrices ∂rd,c/∂(θ, ψ, φ) and

∂rc,d/∂rd,c given by (2.8) and (A.3), respectively.

The rotation Rc,e from the pitch-roll-yaw unrotated local Cartesian coordinate

frame to the camera coordinate frame is the composition of the rotation Rc,d from the

pitch-roll-yaw unrotated local Cartesian coordinate frame to the pitch-roll-yaw rotated

local Cartesian coordinate frame and the rotation Rd,e from the pitch-roll-yaw rotated

local Cartesian coordinate frame to the camera coordinate frame. This is calculated as

Rc,e = Rd,eRc,d with Jacobian matrices ∂rc,e/∂rd,e and ∂rc,e/∂rc,d given by (A.12) and

(A.13), respectively.

The rotation Rb,c from the WGS84 local Cartesian coordinate frame to the

pitch-roll-yaw unrotated local Cartesian coordinate frame is given by

Rb,c =


0 1 0

−1 0 0

0 0 1


Similar to the composition of rotations above, the rotation Rb,e from the WGS84 local

Cartesian coordinate frame to the camera coordinate frame is given by Rb,e = Rc,eRb,c with

Jacobian matrices ∂rb,e/∂rc,e and ∂rb,e/∂rb,c given by (A.12) and (A.13), respectively.

The remaining rotation Ra,b from the WGS84 geocentric coordinate frame to

the WGS84 local Cartesian coordinate frame is more involved, as it first requires estab-

lishment of the WGS84 local Cartesian coordinate frame. The origin of the WGS84 local

Cartesian coordinate frame is at the camera center C̃, converted to WGS84 geodetic co-

ordinates (φ, λ, h)>. Next, the origin and each of the three standard basis vectors in the
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WGS84 geocentric coordinate frame are converted to WGS84 local Cartesian coordinates

(0, 0, 0)> 7→ X>
0

(1, 0, 0)> 7→ X>
1

(0, 1, 0)> 7→ X>
2

(0, 0, 1)> 7→ X>
3

The rotation Ra,b from the WGS84 geocentric coordinate frame to the WGS84 local

Cartesian coordinate frame is then calculated as Ra,b = [X1 −X0 | X2 −X0 | X3 −X0].

For the coordinate transformations described in this paragraph, the 5-step procedure

described on page 41 is used. The Jacobian matrices ∂(φ, λ, h)/∂C̃ and ∂ra,b/∂(φ, λ, h)

are computed by numerical differentiation. Finally, the rotation Ra,e from the WGS84

geocentric coordinate frame to the camera coordinate frame is given by Ra,e = Rb,eRa,b,

again with Jacobian matrices ∂ra,e/∂rb,e and ∂ra,e/∂ra,b analytically calculated using

(A.12) and (A.13), respectively. For a minimal parameterization of a 3D rotation, Ra,e

is mapped to exponential coordinates ω with Jacobian ∂ω/∂ra,e as described in the

following section.

Exponential coordinates for rotations

Euler’s rotation theorem states that an arbitrary rotation in three dimensions

may be described by only three parameters (e.g., Euler angles, see page 44). A rotation

matrix R ∈ SO(3) uses the nine entries of R to characterize a 3D rotation and is therefore

an overparameterization of the rotation. An alternative minimal parameterization that is

commonly used in robotics and computer vision is exponential coordinates [66, 32, 53].

In [32], exponential coordinates are called the angle-axis representation of a rotation,

which better describes this minimal parameterization of a rotation. Using exponential

coordinates, a 3D rotation is parameterized by the 3-vector ω that represents a rotation

by an angle θ = ‖ω‖ about the axis ω. Note that a given rotation is not uniquely

described by exponential coordinates since 2πnω is the same rotation for all values of

n in the set of positive integers Z+. To avoid the singularity at ‖ω‖ = 2π, it is good

practice to ensure that ‖ω‖ ≤ π. The check is simple; if ‖ω‖ > π, then replace ω with

ω(1− 2π/‖ω‖), which is the equivalent rotation.

Of specific interest is the mapping from exponential coordinates ω to a rotation

matrix R that represents the same rotation. This mapping is the so-called exponential
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map R = exp(ω) and its inverse is simply called the inverse exponential map ω = log(R).

The mathematics of these mappings is described as follows.

The exponential map is calculated by

R = exp(ω) = cos‖ω‖I +
sin‖ω‖
‖ω‖

[ω]× +
1− cos‖ω‖
‖ω‖2

ωω>

where [ω]× is the skew-symmetric matrix corresponding to ω (see (A.14)). The Jacobian

matrix ∂r/∂ω is given by

∂r
∂ω

= − vec(I) sin‖ω‖d‖ω‖
∂ω

+
sin‖ω‖
‖ω‖

∂ vec(([ω]×)>)
∂ω

+ vec(([ω]×)>)
‖ω‖ cos‖ω‖ − sin‖ω‖

‖ω‖2

d‖ω‖
∂ω

+ s
∂m
∂ω

+ m
ds
∂ω

(2.9)

where d‖ω‖/∂ω and ∂ vec(([ω]×)>)/∂ω are given by (A.1) and (A.14), respectively, and

s = (1− cos‖ω‖)/‖ω‖2 and M = ωω> with Jacobian matrices ∂m/∂ω = ω ⊗ I + I⊗ ω

and
ds
∂ω

=
‖ω‖ sin‖ω‖ − 2(1− cos‖ω‖)

‖ω‖3

d‖ω‖
∂ω

The inverse exponential map is not as straightforward. First the rotation axis

v is calculated by solving (R− I)v = Av = 0, i.e., v is the null space of A = R− I. The

Jacobian ∂a/∂r is given by (A.10) and ∂v/∂a is calculated using the analytical method

of [73]. The rotation angle θ is calculated by

θ = tan−1

(
sin θ
cos θ

)
where cos θ = (trace(R)− 1)/2 and sin θ = (v>v̂)/2, where v̂ = (r32− r23, r13− r31, r21−
r12)>. And finally

ω = θv̄

where v̄ = v/‖v‖ and the Jacobian ∂ω/∂r is given by

∂ω

∂r
=
∂ω

∂v̄
∂v̄
∂r

+
∂ω

dθ
dθ
∂r

(2.10)
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where

∂v̂
∂r

=


0 0 0 0 0 −1 0 1 0

0 0 1 0 0 0 −1 0 0

0 −1 0 1 0 0 0 0 0


d sin θ
∂v

=
1
2
v̂>

d sin θ
∂v̂

=
1
2
v>

d sin θ
∂r

=
d sin θ

v
∂v
∂r

+
d sin θ
∂v̂

∂v̂
∂r

d cos θ
d trace(R)

=
1
2

dθ
d sin θ

=
cos θ

sin2 θ + cos2 θ
dθ

d cos θ
=

− sin θ
sin2 θ + cos2 θ

dθ
∂r

=
dθ

d sin θ
d sin θ
∂r

+
dθ

d cos θ
d cos θ

d trace(R)
d trace (R)

∂r
∂v̄
∂v

=
∂v̄
∂v

+
∂v̄

d‖v‖
d‖v‖
∂v

∂v̄
∂r

=
∂v̄
∂v

∂v
∂r

and d trace(R)/∂r, d‖v‖/∂v, ∂v̄/∂v, ∂v̄/d‖v‖, ∂ω/dθ, and ∂ω/∂v̄ are given by equa-

tions found in section A.1 on page 78.

Uncertainty of rotation to camera coordinate frame

As detailed in this section, the rotation that maps coordinates in the WGS84

geocentric coordinate frame to coordinates in the camera coordinate frame ω is depen-

dent on the GPS receiver measurements of the coordinates of the camera center in the

WGS84 geocentric coordinate frame C̃ and the 3-axis orientation measurements of pitch

θ, roll ψ, and yaw φ. As such, in order to correctly model the uncertainty of ω, its joint

covariance with C̃ must be calculated as follows.

Σ(ω>,C̃>) ≈ J(θ,ψ,φ,C̃>)

Σ(θ,ψ,φ) 0

0 Σ
C̃

 J>(θ,ψ,φ,C̃>)

where

J(θ,ψ,φ,C̃>) =
∂(ω>, C̃>)

∂(θ, ψ, φ, C̃>)
=

 ∂ω
∂(θ,ψ,φ)

∂ω

∂C̃

0 I


∂ω

∂(θ, ψ, φ)
=

∂ω

∂ra,e

∂ra,e
∂rb,e

∂rb,e
∂rc,e

∂rc,e
∂rc,d

∂rc,d
∂rd,c

∂rd,c
∂(θ, ψ, φ)

and
∂ω

∂C̃
=

∂ω

∂ra,e

∂ra,e
∂ra,b

∂ra,b
∂(φ, λ, h)

∂(φ, λ, h)

∂C̃
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Single Camera Estimation

For each video camera, initial measurements from the GPS receiver and 3-axis

sensor are used to derive measurements of the geoposition and orientation of the camera.

Additionally, the calibrated video camera can be used to measure the relative camera

motion between successive frames. This chapter describes estimation of camera motion

from video and the process of combining all of the derived sensor measurements such

that the geoposition and orientation is precisely estimated at the time of each video

frame acquisition.

The implemented estimation process is a recursive one that uses all of the mea-

surements up to and including the current set of measurements to produce an estimate

of the position and rotation of the camera relative to the WGS84 coordinate frame. Fur-

ther, the sequential estimation process allows for both asynchronous measurements and

unavailability of measurement. These properties are especially important to this applica-

tion, as some measurements are not always available (e.g., GPS dropouts, corrupt video

frames, etc.) and when measurements are available, they arrive at different frequen-

cies. For example, the GPS receiver reports measurements at 1 Hz, while video frames

are acquired at 14.34 Hz. The joint, sequential estimation process incorporates the un-

certainties associated with each of these measurements to calculate the most probable

geoposition and orientation with quantified uncertainty.
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3.1 Sequential estimation of geoposition and orientation

Kalman filters are reliably used for estimating the translation and rotation of

a calibrated camera from video acquired by the camera [90, 10, 53]. It is usual that

this type of filter is applied to the problem of estimating the translation and rotation

of the camera with respect to a relative coordinate system that is typically set to the

coordinate frame of the camera at the time of the first video frame. This dissertation

deals with the grander problem of estimating the camera position and orientation rela-

tive to an Earth-centered, Earth-fixed Cartesian coordinate system, namely the WGS84

geocentric coordinate frame. This section describes the Kalman filter used to sequen-

tially estimate the camera geoposition and orientation from video-derived measurements

as well as from positional measurements derived from the GPS receiver and rotational

measurements from the 3-axis orientation sensor. Advantages of such a Kalman filter are

that it incorporates multiple, independent measurements and that it explicitly estimates

the camera position and orientation in the WGS84 geocentric coordinate frame.

The mapping of measurements of camera position and rotation, and their un-

certainty, from a GPS receiver and 3-axis orientation sensor, respectively, is detailed in

the previous chapter. Additional measurements of camera rotational and translational

velocities may be derived by estimating the rotation and translation of the camera from

the previous video frame to the current one. This is exactly the geometric relationship

that is embodied by the essential matrix [47]. Estimation of the essential matrix be-

tween successive frames is described in section 3.1.1. Details of the Kalman filter follow

in section 3.1.2.

3.1.1 Motion estimation from video

For each video frame, features are detected using the method described in

[88]. This approach computes a 2 × 2 spatial gradient matrix for a specified window

size about each pixel. The two eigenvalues of a spatial gradient matrix indicate the

texturedness of the window: two small eigenvalues indicate a window of little textured-

ness (i.e., nearly constant intensity); one large eigenvalue, unidirectional texturedness;

and two large eigenvalues, bidirectional texturedness (e.g., a corner). To mitigate the

well-known aperture problem, only windows of bidirectional texturedness are selected

for tracking. Windows containing this type of texturedness are determined by calcu-
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lating the minor eigenvalue of each spatial gradient matrix and comparing the result

to a predefined threshold. The feature detector selects windows with associated minor

eigenvalues greater than the threshold value. Nonmaxima suppression is then applied to

the remaining minor eigenvalues to limit the number of detected features.

A pyramidal implementation of the Lucas-Kanade feature tracker [52] then

determines, for each feature, the translation from the previous frame to the current one.

Central to this technique is a Newton-Raphson method of minimizing the differences

between the window about the feature in the previous frame and the translated window

in the current frame. The translation is iteratively estimated from the intensity difference

between the two windows and the spatial gradients of the window in the current image.

Further, multiresolution coarse-to-fine tracking allows for a larger window displacement

from image to image while maintaining a smaller sized window, which is more reliably

tracked. Figure 1.6 on page 18 shows detected and tracked features between successive

video frames.

As described in the previous chapter, estimation of camera rotation and trans-

lation from images requires that image coordinates are mapped to non-distorted normal-

ized coordinates using the inverse mapping procedure detailed on page 36. The resulting

set of point correspondences in normalized coordinates may contain incorrect correspon-

dences (e.g., due to erroneous feature tracking) that are inconsistent with the epipolar

constraint of the essential matrix. Prior to estimation of the frame-to-frame camera

rotation and translation, these incorrect correspondences are removed using a robust

estimation method [80].

The Random Sample Consensus (RANSAC) algorithm [23] is a widely used

robust estimator. RANSAC determines the largest consensus set within a set of corre-

spondences that are consistent with the essential matrix using the following procedure.

1. Select a random sample of 7 correspondences and calculate the essential matrix.

This will result in 1 or 3 solutions [53].

2. For each of the 1 or 3 solutions, determine the consensus set of correspondences

that are within some tolerance of the so-called Sampson error of the points.

3. For each of the 1 or 3 consensus sets, if the size of the consensus set is greater than

the stored largest consensus set (if any) then replace the stored largest consensus

set with this consensus set.
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4. If the number of trials to find the largest consensus set is reached, then terminate.

5. If the size of the largest consensus set is less than some threshold, then repeat;

otherwise, terminate.

The resulting largest consensus set is the set of inliers that are consistent with the

essential matrix. The remaining correspondences comprise the set of outliers. The

Sampson error [81] is the distance between a measured point and its corresponding

corrected point, where the corrected point is the first-order approximation of the closest

point on the variety VE to the measured point (see [32] for details). In the case of the

essential matrix E, the squared Sampson error ‖δ(ˆ̃x>,ˆ̃x′>)‖
2 of the corresponding points

ˆ̃x ↔ ˆ̃x′ is given by

‖δ(ˆ̃x>,ˆ̃x′>)‖
2 =

(x̂′>Ex̂)2

(x̂′>e1)2 + (x̂′>e2)2 + (e1>x̂)2 + (e2>x̂)2

where ej is the jth column of E, ei> is the ith row of E, x̂ = (ˆ̃x>, 1)>, and x̂′ = (ˆ̃x′>, 1)>.

Finally, the essential matrix is estimated. The essential matrix E = [t]× exp(ω)

embodies the camera translation t and rotation ω, which have three degrees of freedom

each. However, from a set of point correspondences, the essential matrix can only be

determined to scale, i.e., the estimated essential matrix is a homogeneous entity. As

such, it only has five degrees of freedom, which is insufficient to completely characterize

t and ω. This constraint imposes that t can only be determined to scale, which indicates

the direction of translation, but not the magnitude of the translation [32]. As with other

homogeneous representations, it is convenient to constrain t such that ‖t‖ = 1.

A specialized two-view bundle adjustment [93] process estimates the maximum

likelihood estimate of the rotation and translation of the camera from the previous

frame to the current one. It is specialized in the sense that the parameters of the camera

associated with the previous frame are fixed to zero rotation and zero translation. The

rotation ω and translation t of the camera from the previous frame to the current

one is computed using the Levenberg-Marquardt algorithm (see page 36). Throughout

adjustment, t is constrained such that ‖t‖ = 1 using the parameterization of the n-sphere

[33, 71].

Applying Levenberg-Marquardt to this estimation problem, the measurement

vector X is the set of n inlier point correspondences in normalized coordinates ˆ̃xi ↔
ˆ̃x′i ∀ i,

X = (x̃>1 , . . . , x̃
>
n , x̃

′>
1 , . . . , x̃

′>
n )>
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with associated covariance matrix ΣX = diag(Σx̃1
, . . . , Σx̃n

, Σx̃′1
, . . . , Σx̃′n

). For clarity, the

hat notation is removed from the points in normalized coordinates in the measurement

vector X so that they are not confused with the estimate of the measurement vector X̂.

The parameter vector P̂ is given by

P̂ = (ω̂>, t̂>, ̂̃X>
1 , . . . ,

̂̃X>
n )>

where ̂̃Xi ∀ i is the set of pre-image 3D scene points. The algorithm iteratively finds the

parameter vector P̂ that minimizes the reprojection error ε>Σ−1
X ε, where ε = X− X̂.

An estimate of the parameter vector P̂ is mapped to an estimate of the mea-

surement vector X̂ using the equations

x̂i = P̂X̂i x̂′i = P̂′X̂i
x̂i

ŷi

ŵi

 = [I | 0]

̂̃Xi

1



x̂′i

ŷ′i

ŵ′i

 = [exp(ω̂) | t̂]

̂̃Xi

1


Conversion to inhomogeneous points ˆ̃xi = (x̂i/ŵi, ŷi/ŵi)> and ˆ̃x′i = (x̂′i/ŵ

′
i, ŷ

′
i/ŵ

′
i)
> com-

pletes the mapping. As the Jacobian matrix J = ∂X̂/∂P̂ and subsequent matrices that

operate on J contain a large number of zero elements, a more efficient sparse implemen-

tation of the Levenberg-Marquardt algorithm [34] is used.

Initial estimates of the rotation ω̂, translation t̂, and set of 3D points ̂̃Xi ∀ i
contained in the parameter vector P̂ are calculate as follows. From the set of inlier feature

point correspondences, the Direct Linear Transformation (DLT) algorithm estimates the

essential matrix E, which is then decomposed to a rotation ω̂ and unit translation vector

t̂ as described in [53]. Next, initial estimates of the 3D points are determined in two

steps. First, corrected correspondences that minimize the geometric error subject to

the epipolar constraint are calculated for all inlier feature correspondences. This is

accomplished using the non-iterative, optimal method of [35]. Given the set of corrected

correspondences, initial estimates of ̂̃Xi ∀ i are estimated by triangulation using the DLT

algorithm as described in [32].

3.1.2 Kalman filter

The system uses an extended Kalman filter (EKF; an extension of the Kalman-

Bucy filter [41, 8] to nonlinear systems) to estimate the geoposition and orientation of
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the camera at each video frame n. In Kalman filter terminology, an EKF estimates the

state x of a process that is governed by the nonlinear stochastic difference equation

xn = f(xn−1,un−1,wn−1)

where f is the nonlinear function that maps x from time step n − 1 to time step n,

un−1 is the control input, and wn−1 is the process noise, which is unknown. The filter

calculates state estimates x̂ from measurements. A measurement zn at time step n is

given by

zn = h(xn,vn)

where h is the nonlinear function that maps xn to zn, and vn is the measurement noise,

which is also unknown.

Although the noises w and v are unknown at time step n, the state and mea-

surement vectors at time step n can be approximated as

x̂−n = f(x̂n−1,un−1, 0) (3.1)

ẑ−n = h(x̂−n , 0)

These approximations, or predictions, x̂−n and ẑ−n are called the a priori estimates of the

state and measurement vectors, respectively.

The a priori estimate of the state vector x̂−n at time step n is given by (3.1).

The covariance associated with the a priori state estimate, called the a priori state error

covariance estimate P−n , is given by

P−n = AnPn−1A
>
n + WnQn−1W

>
n (3.2)

where the Jacobian matrices An and Wn are given by

An =
∂x̂−n
∂x̂n−1

and Wn =
∂x̂−n
∂wn−1

and Qn−1 is the process error covariance.

The filter then corrects the a priori estimates x̂−n and P−n from a measurement

ẑn at time step n. The corrected estimate and its associated covariance matrix are called

the a posteriori state estimate x̂n and a posteriori error covariance Pn. They are given

by

x̂n = x̂−n + Kn(zn − h(x̂−n , 0))

Pn = (I− KnHn)P−n
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where K is the Kalman gain given by

Kn = P−n H
>
n (HnP−n H

>
n + VnRnV

>
n )−1

where R is measurement error covariance and the Jacobian matrices Hn and Vn are given

by

Hn =
∂ẑn
∂x̂−n

and Vn =
∂ẑn
∂vn

The Kalman filter is a recursive means of estimating the state of a process where the

mean of the squared error is minimized.

We now describe application of an EKF to the estimation of the geoposition

and orientation of a camera in WGS84 geocentric coordinates from video, GPS receiver

measurements, and 3-axis orientation measurements. It is assumed that the rotational

velocity ω̇ and positional velocity Ċ of the camera are constant between successive video

frames, where each frame is a time step in the filter. Due to the high frame rate of typical

video cameras, this is a reasonable assumption. Under the constant velocity model, the

state vector x = (ω>, ω̇>,C>, Ċ>)>, where C is the coordinates of the camera center in

the WGS84 geocentric coordinate frame and ω is the rotation from the WGS84 geocentric

coordinate frame to the camera coordinate frame. For clarity the tilde has been removed

from the camera center.

The initial state estimate x̂0 is established from GPS receiver and 3-axis orien-

tation sensor derived measurements such that Ĉ is set to the coordinates of the camera

center in the WGS84 geocentric coordinates and ω̂ is set to the rotation that maps

coordinates in the WGS84 geocentric coordinate frame to coordinates in the camera co-

ordinate frame. Additionally, ̂̇ω is set to 0 and ̂̇C is set to a random vector with mean 0

and covariance Σ = diag(σ2, σ2, σ2), where σ is a conservative estimate of the standard

deviation of the positional velocity of the camera.

For the time update component of the filter, the entries in the a priori state

estimate x̂−n are given by

ω̂−
n = log(exp( ̂̇ωn−1) exp(ω̂n−1))̂̇ω−
n = ̂̇ωn−1

Ĉ−
n = Ĉn−1 + ̂̇Cn−1̂̇C−
n = ̂̇Cn−1
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and the Jacobian matrix An is given by

An =
∂x̂−n
∂x̂n−1

=



∂ω̂−
n

∂ω̂n−1

∂ω̂−
n

∂ ̂̇ωn−1
0 0

0 I 0 0

0 0 ∂Ĉ
−
n

∂Ĉn−1

∂Ĉ
−
n

∂ ̂̇Cn−1

0 0 0 I


where

∂ω̂−
n

∂ω̂n−1
=
∂ω̂−

n

∂r̂−n

∂r̂−n
∂r̂n−1

∂r̂n−1

∂ω̂n−1
and

∂ω̂−
n

∂ ̂̇ωn−1

=
∂ω̂−

n

∂r̂−n

∂r̂−n
∂ˆ̇rn−1

∂ˆ̇rn−1

∂ ̂̇ωn−1

where ∂ˆ̇rn−1/∂ ̂̇ωn−1, ∂r̂n−1/∂ω̂n−1, and ∂ω̂−
n /∂r̂

−
n are given by (2.9) and (2.10), and

∂r̂−n /∂r̂n−1, ∂r̂−n /∂ˆ̇rn−1, ∂Ĉ
−
n /∂Ĉn−1, and ∂Ĉ

−
n /∂

̂̇Cn−1 are given by equations found in

section A.1 on page 78.

Measurement updates

The a priori state estimate x̂−n is corrected by three potential measurements:

the camera position derived from the GPS receiver measurements, camera rotation de-

rived from the 3-axis orientation measurements, or camera rotational velocity derived

from video. Additionally, if a GPS receiver and 3-axis orientation measurement is re-

ceived at the same time step, this will result in correlated camera position and rotation

measurements, which has a separate set of update equations. Note that camera posi-

tional velocity measurements are not derived from video. This is due to the fact that the

camera either may not translate between successive frames or translate by such a small

magnitude, that the translation estimate is erroneous due to noise. However, it has been

shown through experimentation that camera rotation is correctly estimated, despite an

incorrect translation estimate [90, 53].

If multiple uncorrelated measurements (e.g., camera position via the GPS re-

ceiver and camera rotational velocity from video) are received at the same time step n,

each measurement z(j)
n for j = 1, . . . ,m is used to estimate the state as follows. At the

beginning of time step n, the filter performs a time update to calculate the intermediate

a priori state estimate x̂(1)−
n . Next, the first measurement z(1)

n is used to correct the

intermediate a priori estimate x̂(1)−
n , yielding the intermediate a posteriori estimate x̂(1)

n .

This is followed by a second time update, but with a time step size of zero, producing

the second intermediate a priori state estimate x̂(2)−
n . However, a step size of zero is
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equivalent to not performing a time update, so x̂(2)−
n = x̂(1)

n . The second intermediate

a priori estimate x̂(2)−
n = x̂(1)

n is corrected by the second measurement z(2)
n , yielding

the second intermediate a posteriori estimate and third intermediate a priori estimate

x̂(2)
n = x̂(3)−

n . This is continued for all m uncorrelated measurements at time step n. The

intermediate a priori estimate x̂(m)
n due to the last measurement z(m)

n is the final a priori

estimate x̂n = z(m)
n at time step n.

When the GPS receiver reports a new measurement, it is immediately converted

to WGS84 geocentric coordinates C with associated covariance matrix ΣC as detailed in

section 2.2 on page 39. If the 3-axis orientation sensor also reports a measurement in the

same time step, then the origin of the camera coordinate frame is set to C. As such, the

calculated rotation ω that maps coordinates in the WGS84 geocentric coordinate frame

to coordinates in the camera coordinate frame is correlated to C and the covariances of

(θ, ψ, φ)> and C are jointly propagated to the covariance matrix Σ(ω>,C>) (see section 2.3

on page 44). In this case, the a priori state estimate is corrected by the measurement

zn = (ω>,C>)> with associated covariance matrix Rn = Σ(ω>,C>) and the Jacobian

matrix Hn is given by

Hn =
∂ẑn
∂x̂−n

=
∂(ω̂>

n , Ĉ
>
n )

∂x̂−n
=

I 0 0 0

0 0 I 0


Otherwise, if a 3-axis orientation sensor measurement is not reported, then only the GPS

derived measurement of the camera center is used to update the a priori state estimate

using the measurement zn = C with covariance Rn = ΣC and the Jacobian matrix Hn is

given by

Hn =
∂ẑn
∂x̂−n

=
∂Ĉn

∂x̂−n
=

[
0 0 I 0

]
In the case of a reported 3-axis orientation sensor measurement, but not a GPS

receiver measurement, the origin of the camera coordinate frame is set to the a priori

estimate of the camera center Ĉ
−
n where the associated covariance Σ

Ĉ
−
n

is the 3 × 3

block on the diagonal of the a priori state error covariance estimate P−n corresponding to

Ĉ
−
n . Similar to above, the rotation ω calculated from the pitch, roll, and yaw (θ, ψ, φ)>

measurements is correlated to Ĉ
−
n , and the covariances of (θ, ψ, φ)> and Ĉ

−
n are jointly

propagated to the covariance matrix Σ(ω>,Ĉ
−
n
>). However, Ĉ

−
n is not a measurement

and, as such, is not used to correct the a priori state estimate x̂−n (i.e., it is not used

to correct itself). Only the derived measurement of the rotation is used to update the
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a priori state estimate. Specifically, the measurement zn = ω with covariance Rn = Σω

and the Jacobian matrix Hn is given by

Hn =
∂ẑn
∂x̂−n

=
∂ω̂n

∂x̂−n
=

[
I 0 0 0

]
The last potential measurement is that of the camera rotational velocity ω̇. A

measure of the rotational velocity is the estimate of the rotation of the camera from the

previous frame n− 1 to the current one n as described in section 3.1.1. For the Kalman

filter update equations, zn = ω̇, Rn = Σω̇, and the Jacobian matrix Hn is given by

Hn =
∂ẑn
∂x̂−n

=
∂ ̂̇ωn

∂x̂−n
=

[
0 I 0 0

]
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Multiple Camera Estimation

This chapter extends the work of the previous chapter from estimation of the

geoposition and orientation of a single camera to that of multiple cameras. Specifically,

in the case of multiple cameras imaging the same region of a scene, these independent

observations of the features in the scene are used to further refine the geoposition and ori-

entation of the cameras, provided that feature correspondences are established between

the images acquired from different cameras.

Central to this chapter is determination of the search region in one image that,

at some specified probability, contains an image feature that corresponds to a feature

in another image. A general approach and analytical method for determining a search

region for use in guided matching under projective mappings is developed [72]. This

method is used to guide a feature in one image to its corresponding feature in another

image, dictated by the relative imaging geometry of the cameras that acquired the im-

ages.

The remainder of this chapter includes feature detection and comparison for

matching, as well as the process of jointly estimating the maximum likelihood of the

geoposition and orientation of all cameras imaging the same region of a scene for which

feature correspondences have been established.

4.1 Feature detection and matching

Recent work has shown that distinct image features that are invariant to view-

point and illumination changes can be reliably detected [51, 63]. These types of changes

61
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are locally modeled as an affinity or similarity (affinity minus skew). Examples of such

feature detectors include ones based on affine normalization and Hessian points [61, 82],

the Maximally Stable Extremal Region (MSER) detector [58], detectors based on edges

and intensity extrema [96, 95], one that detects salient regions [40], and the Scale Invari-

ant Feature Transform (SIFT) detector [49, 50, 51]. An affinity is sufficient to locally

model geometric distortions arising from viewpoint changes provided that the local neigh-

borhood about the scene feature can be approximated by a plane. Although a similarity

does not model skew, it has been shown to perform well in similar applications, such as

robotics [83, 84]. It is also assumed that photometric deformations can be modeled by

a linear transformation of the local intensities. In this dissertation, image features are

detected using the SIFT detector. Examples of regions detected by the SIFT detector

are shown in figure 1.7 on page 23.

For each detected region, a local description of the intensity pattern within the

region is calculated. The feature matching process, described in section 4.1.2 on page 71,

uses these local descriptors to determine the similarity between different features. A

recent comparison of local descriptors [62] indicates that SIFT descriptors, each typically

a 128-dimensional vector representing a local image region sampled relative to its scale-

space coordinate frame, are superior to other descriptors. Further, the vector is organized

such that the Euclidean distance between any two SIFT descriptor vectors is a measure of

the similarity between the SIFT features described by the vectors, i.e., smaller distances

are more similar. The work presented here uses the SIFT reference implementation [48]

for both feature detection and calculation of the local descriptor.

The remainder of this section addresses the problem of matching the detected

features across images acquired from different cameras that are imaging the same region

of a scene. Focus is given to determination of the region in an image to search for a cor-

responding feature—the guided matching problem. Other components of the matching

process are feature comparison to establish an initial set of correspondences followed by

robust outlier rejection.

4.1.1 Covariance propagation for guided matching

In this work we address the problem of determining a search region used for

establishing feature correspondences over multiple views given an estimate of the pro-

jective mapping that relates these views. Corresponding features are defined as the set
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of features that are the images of the same pre-image feature. Consider two different

cameras imaging a scene. A 3D point in the scene is imaged as a 2D point in the image

plane of each of the cameras. The image point in one of the cameras corresponds to

the image point in the other camera and both image points correspond to the pre-image

3D scene point. Several projective models (e.g., the fundamental matrix) have been

developed in computer vision that allow features to be mapped between views without

explicit knowledge of the 3D scene structure. However, in the presence of noise or uncer-

tainty, the mapped feature may not be coincident with the true corresponding feature

and a search must be performed to locate the true correspondence. In the absence of

uncertainty information, the true correspondence may be located anywhere in the image,

assuming the pre-image feature was imaged by the camera.

Guided matching methods are often used to reduce the size of the search region

from the entire image to a region expected to contain the corresponding feature. One

simple guided matching method is to specify a search region bounded at a fixed distance

from the mapped feature. Although easy to implement, this simple method generally

yields either an undersized region, which may not include the true correspondence, or an

oversized region, which may include features that are similar to the true correspondence,

increasing the potential of a false match. Our approach uses covariance propagation

to define the search region for projective mappings. The search region is bounded by a

specified probability that the region contains the feature. This approach can be used, for

example, to propagate the spatial covariance of a homogeneous point through a planar

projective (homography) or epipolar (fundamental matrix) transformation, where the

transformation may additionally have an associated covariance. We present an expression

that allows for the determination of the covariance of the mapping of the point as a

function of the above covariances.

Several approaches to propagating uncertainty in structure from motion have

been proposed appealing to different statistical techniques. One approach is to use Monte

Carlo methods, which are highly general but computationally expensive. Alternatively,

analytical frameworks have been developed by Kanatani [42], Förstner [25], and others

(e.g., [85], [92]). However, when these mappings are well approximated locally by an

affine transform, a first-order model has proved to be sufficient [32]. This linearized

approximation of the error model is commonly used in computer vision and is the ap-

proach adopted in this paper. Central to this approach to uncertainty propagation is
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the Jacobian matrix of the mapping. One method for estimating the Jacobian is to per-

form numerical differentiation using forward differencing, which in practice may yield a

Jacobian matrix of incorrect rank due to numerical inaccuracies. Alternatively, one can

derive specialized analytical expressions on a per-mapping basis, e.g., planar homogra-

phy [14] and fundamental matrix [15], [99]. We derive a novel analytical expression for

the Jacobian applicable to all projective mappings, obviating the need for specialized

expressions. The resulting closed-form expression is general and easy to implement. The

same expression can be generalized to n dimensions and can also be applied to other

projective mappings such as composition of homographies.

Nonlinear propagation of covariance

Let x ∈ Rn be a random vector with mean µx and covariance matrix Σx, and

let f : Rn → Rm be a nonlinear function. Up to first-order approximation, y = f(x) ≈
f(µx) + J(x − µx), where J ∈ Rm×n is the Jacobian matrix ∂f/∂x evaluated at µx.

If f is approximately affine in the region about the mean of the distribution, then this

approximation is reasonable and the random vector y ∈ Rm has mean µy ≈ f(µx) and

covariance Σy ≈ JΣxJ>.

If x is composed of two random vectors a and b such that x = (a>,b>)>, then

Σy ≈
[
Ja Jb

]  Σa Σab

Σba Σb

J>a
J>b

 (4.1)

where Ja = ∂y/∂a and Jb = ∂y/∂b.

Projective mappings Consider a homogeneous 2D point x represented by the vector

(x, y, w)> ∈ R3. The vector s(x, y, w)>, where s is any nonzero scalar, represents the

same 2D point as (x, y, w)>. It follows that (x, y, w)> ∼ s(x, y, w)>, where ∼ denotes

equality up to a nonzero scale factor.

Due to the use of homogeneous representations, several projective mappings

are only determined up to scale [86]. Examples include point imaging x ∼ PX, where

P ∈ R3×4 is the projective camera that maps the homogeneous 3D point X to a ho-

mogeneous 2D point x; projective transformation accumulation Ha,c ∼ Hb,cHa,b, where

Ha,c, Hb,c, Ha,b ∈ R(n+1)×(n+1) are n-dimensional projective transformations and Ha,c repre-

sents the transformation from a to c; and point-to-line mapping `′ ∼ Fx, where F ∈ R3×3
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is the fundamental matrix, which maps a homogeneous 2D point x in one image to a

homogeneous 2D line `′ in another image. All of these mappings can be generalized

as C ∼ AB, where C ∈ Rm×n, A ∈ Rm×p, and B ∈ Rp×n. However, because C is only

determined up to scale, the entries of C may vary without bound. This poses an issue

for covariance propagation and uncertainty analysis. It is usual to impose the constraint

that ‖C‖ = 1, where ‖·‖ denotes the Frobenius norm. Under this constraint, the gen-

eralized mapping is C = (AB)/‖AB‖ and the variance of the entries of C are constrained

accordingly.

Jacobian matrices For the expression

C =
AB

‖AB‖

analytical derivations of the Jacobian matrices ∂c/∂a and ∂c/∂b are as follows.

Assume A ∈ Rm×p, B ∈ Rp×n, and C ∈ Rm×n. For the equation

C =
AB

‖AB‖
=

M

‖M‖

where ‖·‖ denotes the Frobenius norm, we seek the partial derivatives of the entries of

C with respect to the entries of both A and B [31]. For clarity, the matrix product AB is

denoted by M, which allows for vec((AB)>) to be represented by m. The partial derivative

of c with respect to a is computed as

∂c
∂a

=
1

‖m‖2

[
‖m‖∂m

∂a
−m

∂‖m‖
∂a

]
or equivalently

∂c
∂a

=
1

‖m‖

[
∂m
∂a

− c
∂‖m‖
∂a

]
(4.2)

Similarly,

∂c
∂b

=
1

‖m‖

[
∂m
∂b

− c
∂‖m‖
∂b

]
(4.3)

The partial derivative of m with respect to both a and b is given by

∂m
∂a

= Im×m ⊗ B>and
∂m
∂b

= A⊗ In×n

where ⊗ denotes the Kronecker product. The partial derivative of ‖M‖ with respect to

both A and B is
∂‖M‖
∂A

= CB>and
∂‖M‖
∂B

= A>C
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It follows that
∂‖m‖
∂a

= vec(BC>)>and
∂‖m‖
∂b

= vec(C>A)>

Substituting into (4.2) and (4.3) yields

Ja =
∂c
∂a

=
1

‖AB‖

[(
Im×m ⊗ B>

)
− c vec(BC>)>

]
(4.4)

Jb =
∂c
∂b

=
1

‖AB‖

[
(A⊗ In×n)− c vec(C>A)>

]
(4.5)

Applying (4.1), these are the Jacobian matrices used to approximate the covariance Σc.

Guided matching

Search region If a Gaussian random vector x has mean µx and covariance Σx, then

the squared Mahalanobis distance between x and µx satisfies a χ2
r distribution where r

is the degrees of freedom of x. It follows that a percentage α of all instances of x will

satisfy the condition

(x− µx)>Σ+
x (x− µx) ≤ k2 (4.6)

where k2 is the inverse of the chi-square cumulative distribution function with r degrees

of freedom and probability α, and Σ+
x is the pseudo-inverse of the covariance matrix Σx

with rank r.

2D points and lines A derivation of the uncertainty bounds for homogeneous 2D

lines may be found in [15], [99], and [32]. In this section we derive uncertainty bounds

for 2D points and state the bounds for 2D lines using the duality principle.

Let µx and Σx be the mean and covariance, respectively, of a homogeneous 2D

point x. The covariance matrix has rank 2, thereby constraining the 3-vector to 2 degrees

of freedom. For a given k, we can determine if an instance of x is within the uncertainty

bounds directly from (4.6). However, it is often the case that we want to determine if an

arbitrary homogeneous point, not necessarily drawn from the distribution of x, is within

these bounds. This cannot be accomplished using (4.6) directly and instead must be

determined geometrically as follows.

For a given k, the set of points with equal likelihood in the distribution of x is

given by

(x− µx)>Σ+
x (x− µx) = k2 (4.7)
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For further analysis, we apply a change of coordinates such that

Σ′x = UΣxU
> =

 Σ̃′x 0

0> 0


where Σ̃′x ∈ R2×2 is a nonsingular diagonal matrix, and µ′x = Uµx = (µ̃′>x , 1)> and

x′ = Ux = (x̃′>, 1)>. The similarity U = sV>, where the orthogonal matrix V> is

obtained from the eigen decomposition Σx = VDV> and s is chosen such that the last

entry in the 3-vector sV>µx is equal to 1. The matrix D = diag(λ1, λ2, 0) contains the

eigenvalues of Σx. Using this, we can show

(x− µx)>Σ+
x (x− µx) = k2

(x′ − µ′x)>Σ′+x (x′ − µ′x) = k2 (4.8)

(x̃′ − µ̃′x)>Σ̃′−1
x (x̃′ − µ̃′x) = k2

which can be written more fully as

x̃′>Σ̃′−1
x x̃′ − µ̃′>x Σ̃′−1

x x̃′ − x̃′>Σ̃′−1
x µ̃′x + µ̃′>x Σ̃′−1

x µ̃′x − k2 = 0

or in matrix form

(
x̃′> 1

)  Σ̃′−1
x −Σ̃′−1

x µ̃′x

−µ̃′>x Σ̃′−1
x µ̃′>x Σ̃′−1

x µ̃′x − k2

x̃′

1

 = 0

This is equivalent to

(
x̃′> 1

) µ̃′xµ̃′>x − k2Σ̃′x µ̃′x

µ̃′>x 1

−1 x̃′

1

 = 0

x′>
[
µ′xµ′>x − k2Σ′x

]−1
x′ = 0

which is the equation of a conic. The conic C′ = [µ′xµ′>x −k2Σ′x]−1 is formed by the points

that satisfy (4.8). Transforming back to the original coordinate system, C = U>C′U, the

set of equal-likelihood points that satisfy (4.7) form the homogeneous conic

C =
[
µxµ>x − k2Σx

]−1
(4.9)

representing an ellipse containing µx. An arbitrary point x0 is on the interior of the

ellipse if x>0 Cx0 has the same sign as µ>x Cµx.
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Using the duality between points and lines, and conics and dual conics, the

same approach is employed for homogeneous 2D lines. The set of equal-likelihood lines

in the distribution of a random homogeneous line ` with mean µ` and covariance Σ`

satisfies

(`− µ`)>Σ+
` (`− µ`) = k2

for a given k. The set of lines form the homogeneous dual conic C∗ =
[
µ`µ

>
` − k2Σ`

]−1,

which is the adjoint of the matrix C. Therefore, for a non-singular symmetric matrix

C ∼ (C∗)−1, the conic that forms the envelope of lines is given by

C = µ`µ
>
` − k2Σ` (4.10)

This conic is a hyperbola with branches symmetric about µ`. An arbitrary point x0 lies

inside the region between the two branches of the hyperbola if x>0 Cx0 has the same sign

as x>` Cx`, where x` is any point that lies on the line µ`. Two points x1 and x2 on the

line µ` may be determined by µ>` [x1 | x2] = 0, where the matrix [x1 | x2] is the null

space of µ>` . One of these points can be used to determine the sign of x>` Cx`.

Points and hyperplanes in n dimensions Generalizing the above results from 2 to

n dimensions is straightforward. A homogeneous n-dimensional point X ∈ R(n+1) with

mean µX and covariance ΣX of rank n is bounded by the homogeneous n-dimensional

quadric

Q =
[
µXµ>X − k2ΣX

]−1

representing an ellipsoid in n dimensions containing µX. By duality, a homogeneous

hyperplane π is bounded by the dual quadric Q∗ =
[
µπµ>π − k2Σπ

]−1 of the same di-

mension as the hyperplane, where µπ and Σπ are the mean and covariance, respectively,

of the hyperplane. The hyperboloid bounding the uncertainty of the hyperplane is given

by the quadric

Q = µπµ>π − k2Σπ

which is symmetric about the hyperplane.

Two-view geometry

In this section we apply our method to point-to-point mapping under a planar

homography and point-to-line mapping under a fundamental matrix. The maximum
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likelihood estimate and its covariance are determined from image point correspondences

by 2D block adjustment [9] and two-view bundle adjustment [93] for the planar homog-

raphy and fundamental matrix, respectively. First, points are detected in each of the

images using the Förstner operator [26]. For each point in image 1, its initial correspond-

ing point is established by searching for the point in image 2 that has the highest local

normalized cross-correlation value. The resulting set of initial point correspondences are

used as input to RANSAC [23], which provides both a linear estimate of the model and

its set of inlier point correspondences. Lastly, the reprojection error is minimized using

a sparse implementation of the Levenberg-Marquardt algorithm [34]. We retrieve the

covariance matrix of the parameters after minimization.

For analysis, we select a point x in image 1 that did not participate in block

adjustment. The point x = (x̃>, 1)> has covariance

Σx =

 Σ̃x 0

0> 0


where the inhomogeneous coordinate x̃ = (x̃, ỹ)> has assumed covariance Σ̃x = I2×2.

Figure 4.1 shows the results of point-to-point mapping under the estimated

planar homography. The mapped point is computed by

x′ =
Hx
‖Hx‖

From (4.1), the covariance of x′ is Σx′ ≈ JhΣhJ
>
h +JxΣxJ

>
x , where Jh and Jx are computed

from (4.4) and (4.5), respectively, and the associated uncertainty ellipse is computed from

(4.9). Points that did participate in block adjustment are correlated to the estimated

homography. If one of these points were selected, then the cross-covariance Σhx would

be nonzero and the covariance of x′ calculated as

Σx′ ≈
[
Jh Jx

]  Σh Σhx

Σxh Σx

J>h
J>x


Similarly, results for point-to-line mapping under a fundamental matrix are

shown in figure 1.8 on page 26. The line `′ corresponding to the point x is computed by

`′ =
Fx
‖Fx‖

The covariance of `′ is Σ`′ ≈ JfΣfJ
>
f + JxΣxJ

>
x with associated uncertainty hyperbola

given by (4.10).
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a b

c d e f

Figure 4.1: Point-to-point mapping under a planar homography. (a) (b) The left and
right images acquired from a camera undergoing pure rotation about its center with
corresponding points used in 2D block adjustment (in black). There are 97 point cor-
respondences. Two additional points have been selected in the left image (in white)
and mapped to the right image (in white). The uncertainty ellipses associated with the
mapped points are contained in the right image (in black). The ellipses correspond to a
probability of 99%. (c) The left image zoomed in on the first selected point. (d) The right
image zoomed in on the corresponding first mapped point. (e) The left image zoomed
in on the second selected point. (f) The right image zoomed in on the corresponding
second mapped point. Note that the eccentricity of the ellipse associated with the first
point is slightly greater than that of the ellipse associated with the second point. This
is because the second point is surrounded by points used in block adjustment, while the
first point is not.
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Mosaic construction from video

This section describes use of our approach in the application of video mosaicing.

More specifically, we apply our approach to the special case of the video looping back on

itself, i.e., the sensor returns to image a region of the scene that it imaged at a previous

time. We seek to determine the search region in the previously acquired frames that

spatially overlap with the looped back frames but are not temporal neighbors with these

frames. Mosaic construction from video is performed in a sequential manner as follows.

For each video frame, features are detected using the method described in [88].

This method detects windows of bidirectional texturedness, which are good features to

track in video. Nonmaxima suppression is applied to detected features to limit their

number. A pyramidal implementation of Lucas-Kanade [52] determines the translation

of each feature from the current frame to the previous one. Just as with two-view

estimation, RANSAC is applied to the inter-frame correspondences, and the reprojection

error is minimized using a sparse implementation of the Levenberg-Marquardt algorithm

and the covariance matrix is retrieved. The homographies are accumulated such that

the current frame n is mapped back to frame 1 of the video by

Hn,1 =
Hn−1,1Hn,n−1

‖Hn−1,1Hn,n−1‖
=

AB

‖AB‖

and the covariance of Hn,1 is approximately JaΣaJ
>
a + JbΣbJ

>
b .

As the homographies between successive frames Hn,n−1 are accumulated, so are

their uncertainties. It is expected that the uncertainty of Hn,1 will increase with n, i.e.,

looped back frames will not align with previous frames containing images of the same

region of the scene and this misalignment will increase as the time between these frames

increases. Figure 4.2 illustrates the results of this approach.

4.1.2 Feature matching

When it is determined that multiple cameras are imaging the same region of

a scene, the SIFT features detected in each of the images are robustly matched using

the approach described in this section. The feature matching process first establishes

a set of putative correspondences between SIFT features that have been detected in

each of the images acquired by the cameras. Putative correspondences are computed

using a combination of guided matching (described above) and the comparison of SIFT

descriptors. RANSAC is then applied to the set of putative feature correspondences to
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a

b c

Figure 4.2: Mosaic construction from video. (a) A planar mosaic sequentially constructed
from a video containing 706 frames acquired from a camera undergoing pure rotation
about its center. The video begins at the upper left corner of the face of the building and
moves clockwise around the border of the face returning to the upper left corner. Note
that the last frame is not aligned with the first frame due to uncertainty accumulation.
(b) (c) The last and first frames (images) of the video. Three points (in red, yellow,
and green) have been selected in the last image and mapped to the first image. The
uncertainty ellipses associated with the mapped points are contained in the first image
(also in red, yellow, and green). The ellipses correspond to probabilities of 50% and
99% for each mapped point. In this case, the corresponding points in the first image are
contained in the ellipses corresponding to a probability of 50%.
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determine the set of inlier correspondences. Presently, the matching process is tailored

to work on pairs on images. In the case of three or more cameras imaging the same

region of the scene, all possible image pairs are processed and the results merged.

Putative correspondences

To determine the search region for putative feature correspondences between

pairs of images acquired from two different cameras, covariance propagation through

the essential matrix is used. The essential matrix is a specialization of the fundamen-

tal matrix. Both the essential matrix E and the fundamental matrix F are epipolar

transformations that map points in an image acquired by one camera to lines contain-

ing the corresponding point in an image acquired by a second camera, where there is a

nonzero distance between the centers of the two cameras. However, unlike the funda-

mental matrix, which maps points (in pixel coordinates) in the first image to lines (in

pixel coordinates) in the second image, the essential matrix maps points in normalized

coordinates from the first image to lines in normalized coordinates in the second image.

In order to work in the space of normalized coordinates, the matching process

converts the detected SIFT features from image coordinates to normalized coordinates

with uncertainty propagation as described in the section on inverse mapping (page 36).

Additionally, the current estimate of the Kalman filter state vector of each camera x =

(ω>, ω̇>, C̃>,
˙̃C>)> is mapped to a vector (ω>, t>)> containing the parameters of the

normalized camera P̂ = [R | t] = [exp(ω) | t]. The covariance matrix Σ(ω>,t>) associated

with the vector (ω>, t>)> is calculated by Σ(ω>,t>) ≈ JxΣxJ
>
x , where t = − exp(ω)C̃

and the Jacobian matrix Jx is given by

Jx =
∂(ω>, t>)

∂x
=

 I 0 0 0

∂t
ω 0 ∂t

∂C̃
0


where ∂t/ω and ∂t/∂C̃ are derived as follows. Let

t = − exp(ω)C̃

t = −RC̃

t = AC̃

where R = exp(ω) and A = −R with ∂r/∂ω given by (2.9), ∂a/∂r = −I, ∂t/∂a given by
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(A.12), ∂t/∂C̃ given by (A.13), and

∂t
∂ω

=
∂t
∂a

∂a
∂r

∂r
∂ω

For use in guided matching between images acquired by every combination of

camera pairs, the essential matrix E from a given pair of general normalized cameras

P̂ = [R | t] and P̂′ = [R′ | t′] is given by

E =
[t′ − R′R>t]×R′R>

‖t′ − R′R>t]×R′R>‖

where R = exp(ω) and R′ = exp(ω′). The covariance matrix Σe associated with E is

calculated as Σe ≈ JΣ(ω>,t>)J
> + J′Σ(ω′>,t′>)J

′>, where

J =
[
∂e
∂ω

∂e
∂t

]
and J′ =

[
∂e
∂ω′

∂e
∂t′

]
where ∂e/∂ω, ∂e/∂t, ∂e/∂ω′, and ∂e/∂t′ are derived as follows. For clarity let, A = R>,

N = R′A, b = Nt, c = t′ − b, D = [c]×, M = N, G = DM, and E = G/‖G‖.

∂e
∂ω

=
∂e
∂n

∂n
∂a

∂a
∂r

∂r
∂ω

and
∂e
∂t

=
∂e
∂g

∂g
∂d

∂d
∂c

∂c
∂b

∂b
∂t

∂e
∂ω′ =

∂e
∂n

∂n
∂r′

∂r′

∂ω′ and
∂e
∂t′

=
∂e
∂g

∂g
∂d

∂d
∂c

∂c
∂t′

where ∂m/∂n = I; ∂r/∂ω and ∂r′/∂ω′ are given by (2.9); ∂a/∂r, ∂n/∂r′, ∂n/∂a,

∂b/∂n, ∂b/∂t, ∂c/∂t′, ∂c/∂b, ∂d/∂c, ∂g/∂d, ∂g/∂m, and ∂e/∂g are given by equa-

tions found in section A.1 on page 78; and

∂e
∂n

=
∂e
∂g

(
∂g
∂d

∂d
∂c

∂c
∂b

∂b
∂n

+
∂g
∂m

∂m
∂n

)
The resulting essential matrix E and covariance Σe are used to calculate search

regions in image 2. A search region in image 2 corresponding to a detected SIFT feature

in image 1 is determined by the mapping

ˆ̀′ =
Ex̂
‖Ex̂‖

where x̂ is the point in normalized coordinates in image 1 and ˆ̀′ is the line in normalized

coordinates in image 2 with covariance Σˆ̀′ ≈ JeΣeJ
>
e + Jx̂Σx̂J

>
x̂ with associated uncer-

tainty hyperbola given by (4.10). As described in section 4.1.1, the hyperbola in image

2 bounds the region (at the specified probability) that contains the SIFT feature corre-

sponding to x̂ in image 1. SIFT features detected in image 2 that are contained within
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the branches of the hyperbola meet the geometric criteria for potentially corresponding

to x̂.

Next, the feature descriptors are compared to determine the similarity between

features within the search region of image 2 and the feature in image 1 at x̂. The matching

process calculates how similar the potential corresponding features are as well as how

unique the potential match is. For a detected SIFT feature in image 1, the matching

process measures the Euclidean distance between its associated SIFT descriptor vector

and all descriptor vectors contained in its corresponding search region in image 2, storing

the distances to its nearest and second nearest neighbors, i.e., the smallest and second

smallest Euclidean distances. The ratio of the smallest distance to the second smallest

distance is a measure of how ambiguous the match is [51]. The lower the ratio, the less

ambiguous the match. Thresholding on this ratio is an effective method for removing

ambiguous matches. In this work, a threshold of 0.8 consistently resulted in sets of

reliable matches.

Last, as described in section 3.1.1 on page 52, RANSAC is applied to the

resulting set of putative correspondences to determine the subset of correspondences

that are consistent with the essential matrix. Figure 1.7 on page 23 shows example

results of matching features across images acquired from different cameras using the

procedure described in this section.

4.2 Joint estimation of geoposition and orientation

Prior to two or more cameras imaging the same region of the scene and estab-

lishing feature correspondences between their images, independent processes have been

estimating the position and orientation of each camera over time using methods de-

scribed in the previous chapter. Matching features between images acquired by different

cameras introduces the sharing of information across the cameras. There are multiple

techniques for combining this additional information in order to improve the estimates

of the positions and orientations of the cameras. These approaches range from a single

Kalman filter with a state vector containing all of the parameters for all of the cameras to,

for example, a decentralized data fusion framework [67]. Most of these approaches have

been developed to mitigate issues that arise when the number of cameras significantly

increases, for example, from tens of cameras to tens of thousands. Those techniques
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that do scale to a large number of cameras must often sacrifice some information for the

ability to scale. The approach developed in this work falls into this category.

The method used in this work is a hybrid one. Each camera continues to

independently estimate its position and orientation as described in the previous chapter.

However, when two or more cameras image the same region of a scene and feature

correspondences are established, a separate, independent process will simultaneously

estimate the position and orientation of these cameras given their current position and

orientation estimates, and the set of feature correspondences between their images—a

process called bundle adjustment [93]. The results of the bundle adjustment process are

then input to each of the Kalman filters as simply another measurement and position and

orientation. After the measurement update, the Kalman filters return to independent

processing. The information that is lost by using this approach is the cross-camera

covariance information resulting from bundle adjustment.

Bundle adjustment [93] can reliably estimate positions and orientations of hun-

dreds of cameras simultaneously. In the framework described above, the position and

orientation of each camera is estimated independently, enabling it to be performed on

the camera, if desired. Bundle adjustment need only be performed for subsets of cameras

that are imaging the same region of a scene at the same time. Under typical conditions,

multiple bundle adjustment processes will be executing, each adjusting perhaps tens of

cameras, which is easily handled. With this in mind, the loss of cross-camera covariance

information is considered an acceptable loss. The advantage of bundle adjustment is,

through the use of cross-camera image feature correspondences, it allows the cameras to

transfer their accuracy to each other by jointly estimating the position and orientation

of the cameras.

A sparse implementation of the Levenberg-Marquardt algorithm [34] is used to

perform bundle adjustment, allowing computationally efficient adjustment the geoposi-

tion and orientation of m cameras as follows. For clarity, the hat notation is removed

from the normalized image coordinates in the measurement vector X so that they are

not confused with the estimate of the measurement vector X̂. The initial estimate of the

parameter vector is

P̂ = (ω(1)>, C̃(1)>, . . . ,ω(m)>, C̃(m)>, X̃
>
1 , . . . , X̃

>
n )>

where the jth camera rotation ω(j) and center C̃(j) are initialized to the values in the jth

Kalman filter state vector for all m cameras imaging the scene, and the 3D points X̃i ∀ i
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are initialized by triangulation using the DLT algorithm. The measurement vector X is

given by

X = (ω(1)>, C̃(1)>, x̃(1)>
1 , . . . , x̃(1)>

n , . . . ,ω(m)>, C̃(m)>, x̃(m)>
1 , . . . , x̃(m)>

n )>

where x̃(j)
i is the ith RANSAC inlier point in normalized coordinates in the jth camera.

Notice that the above measurement vector also includes the current Kalman filter state

estimates of the rotations and translations of the cameras. Inclusion of the rotations

and translations in the measurement vector prevents their counterparts in the param-

eter vector from being adjusted outside of the uncertainty bounds of the current state

estimate.

After bundle adjustment, the resulting rotations and translations are extracted

from the final estimate of the parameter vector and their covariances retrieved. Mea-

surement updates of rotation and translation are issued to each Kalman filter associated

with an adjusted camera. The result is decreased relative error between the cameras,

resulting in more precise estimates of the geoposition and orientation of the cameras.
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Appendix

A.1 Partial derivatives of matrix operations

Propagation of covariance is extensively performed throughout the dissertation.

Covariance propagation through matrix operations requires calculation of the Jacobian

matrices associated with the operations. This appendix list analytical expressions of

Jacobian matrices for several common matrix operations.

Notation

The following notation is used in this appendix:

• If a capital letter is used to denote a matrix, then the vector denoted by the

corresponding lower case letter is composed of the entries of the matrix by

A ∈ Rm×n ⇔ A =


a>1
a>2
...

a>m

 , a =


a1

a2

...

am

 ∈ Rmn

where a>i ∈ Rn is the ith row of A (i.e., a = vec(A>)).

• ⊗ denotes the Kronecker product

• The set of vectors {e1, e2, . . . , en} is the standard basis in the vector space Rn (e.g.,

e2 = (0, 1, 0, . . . , 0)>).
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Matrix operations and their associated Jacobian matrices

matrix norm Let A ∈ Rm×n. For the equation s = ‖A‖ ∈ R,

ds
∂a

=
1
s
a> (A.1)

matrix trace Let A ∈ Rn×n. For the equation s = trace(A) ∈ R,

ds
∂a

= (e>1 | e>2 | . . . | e>n ) (A.2)

matrix transpose Let A ∈ Rm×n. For the equation B = A> ∈ Rn×m,

∂b
∂a

=


Im×m ⊗ e>1
Im×m ⊗ e>2

...

Im×m ⊗ e>n

 (A.3)

scalar-matrix multiplication Assume s ∈ R, A ∈ Rm×n, and B ∈ Rm×n. For the

equation B = sA,

∂b
ds

= a (A.4)

∂b
∂a

= sI (A.5)

matrix-scalar division Assume s ∈ R, A ∈ Rm×n, and B ∈ Rm×n. For the equation

B = A/s,

∂b
∂a

= I/s (A.6)

∂b
ds

= −a/s2 (A.7)

matrix-matrix addition Assume A ∈ Rm×n, B ∈ Rm×n, and C ∈ Rm×n. For the

equation C = A + B,

∂c
∂a

= I (A.8)

∂c
∂b

= I (A.9)
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matrix-matrix subtraction Assume A ∈ Rm×n, B ∈ Rm×n, and C ∈ Rm×n. For the

equation C = A− B,

∂c
∂a

= I (A.10)

∂c
∂b

= −I (A.11)

matrix-matrix multiplication Assume A ∈ Rm×p, B ∈ Rp×n, and C ∈ Rm×n. For the

equation C = AB,

∂c
∂a

= Im×m ⊗ B> (A.12)

∂c
∂b

= A⊗ In×n (A.13)

3 × 3 skew-symmetric matrix corresponding to 3-vector Let v = (v1, v2, v3)>.

For the equation

[v]× =


0 −v3 v2

v3 0 −v1
−v2 v1 0

 (A.14)

the Jacobian matrix

∂ vec(([v]×)>)
∂v

=



0 0 0

0 0 −1

0 1 0

0 0 1

0 0 0

−1 0 0

0 −1 0

1 0 0

0 0 0



(A.15)

matrix unitization Let A ∈ Rm×n. For clarity, let B = A. For the equation

C =
A

‖A‖
∈ Rm×n (A.16)

C =
B

‖A‖

(A.17)
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the Jacobian matrix
∂c
∂a

=
∂c
∂‖A‖

∂‖A‖
∂a

+
∂c
∂b

∂b
∂a

(A.18)

where ∂c/∂‖A‖ is given by (A.7), ∂‖A‖/∂a is given by (A.1), ∂c/∂b is given by

(A.6), and ∂b/∂a = I.
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[36] J. Heikkilä and O. Silvén. A four-step camera calibration procedure with implicit
image correction. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1106–1112, 1997.

[37] Holux. Holux GPSlim236 Wireless Bluetooth GPS Receiver Specification, 2005.

[38] S. Hsu. Geocoded terrestrial mosaics using pose sensors and video registration. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 834–841, 2001.

[39] ITU Telecommunication Standardization Sector. Video Codec for Autiovisual Ser-
vices at p× 64 kbit/s, 1993. ITU-T Recommendation H.261.

[40] T. Kadir, A. Zisserman, and M. Brady. An affine invariant salient region detector.
In Proceedings of the European Conference on Computer Vision, pages 288–241,
2004.

[41] R. E. Kalman. A new approach to linear filtering and prediction problems. Trans-
actions of the ASME—Journal of Basic Engineering, pages 35–45, 1960.

[42] K. Kanatani. Statistical Optimization for Geometric Computation: Theory and
Practice. Elsevier Science, 1996.

[43] T. Kindberg, M. Spasojevic, R. Fleck, and A. Sellen. The ubiquitous camera: An
in-depth study of camera phone use. IEEE Pervasive Computing, 4(2):42–50, 2005.

[44] R. Kumar, S. Samarasekera, S. Hsu, and K. Hanna. Registration of highly-oblique
and zoomed in aerial video to reference imagery. In Proceedings of the International
Conference on Pattern Recognition, pages 303–307, 2000.



85

[45] F. G. Lemoine et al. The development of the joint NASA GSFC and NIMA
geopotential model EGM96. Technical report, National Aeronautics and Space
Administration, 1998. NASA/TP-1998-206861.

[46] K. Levenberg. A method for the solution of certain problems in least squares. The
Quarterly of Applied Mathematics, 2:164–168, 1944.

[47] H. C. Longuet-Higgins. A computer algorithm for reconstructing a scene from two
projections. Nature, 293:133–135, September 1981.

[48] D. Lowe. Demo software: SIFT keypoint detector. http://www.cs.ubc.ca/

~lowe/keypoints/.

[49] D. G. Lowe. Object recognition from local scale-invariant features. In Proceedings
of the International Conference on Computer Vision, pages 1150–1157, 1999.

[50] D. G. Lowe. Local feature view clustering for 3D object recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 682–
688, 2001.

[51] D. G. Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision, 60(2):91–110, 2004.

[52] B. D. Lucas and T. Kanade. An iterative image registration technique with an
application to stereo vision. In Proceedings of the International Joint Conference
on Artificial Intelligence, pages 674–679, 1981.
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