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Abstract

Objective—Non-invasive and accurate diagnostic tests for the screening of disease severity in 

non-alcoholic fatty liver disease (NAFLD) remain a major unmet need. Therefore, we aimed to 

examine if a combination of serum metabolites can accurately predict the presence of advanced 

fibrosis.
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Design—This is a cross-sectional analysis of a prospective derivation cohort including 156 well-

characterised patients with biopsy-proven NAFLD and two validation cohorts, including (1) 142 

patients assessed using MRI elastography (MRE) and(2) 59 patients with biopsy-proven NAFLD 

with untargeted serum metabolome profiling.

Results—In the derivation cohort, 23 participants (15%) had advanced fibrosis and 32 of 652 

analysed metabolites were significantly associated with advanced fibrosis after false-discovery rate 

adjustment. Among the top 10 metabolites, 8 lipids (5alpha-androstan-3beta monosulfate, 

pregnanediol-3-glucuronide, androsterone sulfate, epiandrosterone sulfate, palmitoleate, 

dehydroisoandrosterone sulfate, 5alpha-androstan-3beta disulfate, glycocholate), one amino acid 

(taurine) and one carbohydrate (fucose) were identified. The combined area under the receiver 

operating characteristic curve (AUROC) of the top 10 metabolite panel was higher than FIB−−4 

and NAFLD Fibrosis Score (NFS) for the detection of advanced fibrosis: 0.94 (95% CI 0.897 to 

0.982) versus 0.78 (95% CI0.674 to 0.891), p=0.002 and versus 0.84 (95% CI 0.724 to 0.929), 

p=0.017, respectively. The AUROC of the top 10 metabolite panel remained excellent in the 

independent validation cohorts assessed by MRE or liver biopsy: c-statistic of 0.94 and 0.84, 

respectively.

Conclusion—A combination of 10 serum metabolites demonstrated excellent discriminatory 

ability for the detection of advanced fibrosis in an derivation and two independent validation 
cohorts with greater diagnostic accuracy than the FIB-4-index and NFS. This proof-of-concept 

study demonstrates that a non-invasive blood-based diagnostic test can provide excellent 

performance characteristics for the detection of advanced fibrosis.

INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is currently recognised as one of the most 

prevalent aetiologies of chronic liver disease worldwide and an increasingly common cause 

of cirrhosis and hepatocellular carcinoma.12 NAFLD exists as a spectrum ranging from non-

alcoholic fatty liver (NAFL), which is generally considered to be at low risk of disease 

progression, to non-alcoholic steatohepatitis (NASH) with or without fibrosis.3 Multiple 

studies have demonstrated that fibrosis stage is the most important predictor of morbidity 

and mortality.3–5

Although liver biopsy is considered as the gold standard for the diagnosis of liver fibrosis 

and NASH, it is impractical to use for the estimated 80–100 million adults with NAFLD in 

the USA. Likewise, the most accurate biomarkers currently available are imaging-based 

modalities which are not available to many primary care providers and community 

gastroenterologists.6 Therefore, there is an urgent need for non-invasive, easy-to-perform 

and widely available diagnostic alternatives to assess the disease severity. Several non-

invasive tests have been developed for the detection of advanced fibrosis and NASH7 

including clinical predictive rules combining serum markers and clinical variables such as 

the commonly used FIB-4 index.8 However, none of the currently available biomarkers are 

able to differentiate NASH from simple steatosis or stage liver fibrosis with high sensitivity 

and specificity.9
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In recent years, metabolome profiling has provided new insights into the molecular signature 

of diseases including NAFLD. Several studies have identified specific metabolomic profiles 

associated with different stages of disease in NAFLD.10–17 Significant changes in key 

pathways including bile acids,18 amino acids,13–1517 steroids hormones161920 and fatty 

acids101421 have been reported in subjects with NAFLD, making this an appealing target for 

future diagnostics.11 Indeed, the changes in these metabolites are likely to reflect specific 

pathways of liver injury related to NASH or advanced fibrosis making them compelling 

biomarkers. Thus, we hypothesised that a combination of metabolites could be a more 

accurate diagnostic test than available clinical predictive rule such as FIB-4 index and 

NAFLD Fibrosis Score (NFS) for the detection of advanced fibrosis and could accurately 

diagnose the presence of NASH.

Using a well-characterised prospective cohort of patients with biopsy-proven NAFLD, we 

aimed to investigate whether a combination of serum metabolites associated with advanced 

fibrosis could accurately predict its presence with better diagnostic accuracy than widely 

used clinical prediction rules. We then validated the diagnostic performance of the 

combination of serum metabolites for the detection of advanced fibrosis in two independent 

validation cohorts of prospectively recruited individuals with advanced fibrosis assessed by 

MRI elastography (MRE) in one cohort and liver biopsy in the second validation cohort.

MATERIALS AND METHODS

Study participants and design of the biopsy-proven NAFLD derivation cohort

This was a cross-sectional analysis of a discovery cohort that included 156 participants 

prospectively recruited between October 2011 and May 2014 at the University of California 

at San Diego (UCSD) NAFLD Research Center.22–25 All patients with suspected NAFLD 

with a clinical indication for liver biopsy underwent a careful evaluation for other causes of 

hepatic steatosis and liver disease through a standardised research visit including detailed 

medical and alcohol use history as well as anthropometric and physical examination. The 

study was performed according to STARD criteria listed in online supplementary table 1.

Inclusion criteria and exclusion criteria of the NAFLD biopsy-proven derivation cohort

Participants were included in the study if they were 18 years or older with suspected 

NAFLD and were willing and able to provide informed consent.

Participants were excluded if they met any of the following criteria: history of regular and 

excessive alcohol consumption within 2 years of recruitment (≥14 drinks/week for men or 

≥7 drinks/week for women); use of hepatotoxic drugs or drugs known to cause hepatic 

steatosis; and any evidence of secondary causes of hepatic steatosis or concomitant liver 

disease. Please see online supplemental material for detailed inclusion and exclusion criteria.

Study participants and design of the validation Twin and Family Cohort

This was a cross-sectional analysis of a prospective cohort study of patients from the Twin 

and Family Study (ClinicalTrials.gov: NCT01643512) residing in Southern California. This 

study included a total of 142 participants. All participants underwent a standardised clinical 
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research visit including detailed medical history, alcohol quantification using Skinner and 

Audit questionnaire, anthropometric exam, physical exam and biochemical testing at the 

UCSD NAFLD Research Center2326–29 between December 2011 and January 2014. NAFLD 

was assessed clinically and quantified by MRI proton density fat fraction (MRI-PDFF) and 

liver fibrosis was assessed by MRE at the MR3T Research Laboratory. Research visits and 

imaging procedures were performed the same day for each pair of twins, parent-offspring or 

siblings.

Inclusion and exclusion criteria of the validation Twin and Family Cohort

Patients were included if they were twins, siblings or parent-offspring at least 18 years of 

age, willing and able to complete all research procedures and observations. Participants were 

excluded from the study if they met any of the following criteria: significant alcohol intake 

(>10 g/day in females or >20 g/day in males) for at least three consecutive months over the 

previous 12 months or if the quantity of alcohol consumed could not be reliably ascertained; 

clinical or biochemical evidence of liver diseases other than NAFLD. Please see online 

supplemental material for detailed inclusion and exclusion criteria.

Study participants and design of the validation biopsy-proven NAFLD cohort

Patients with suspected NAFLD were prospectively recruited from fatty liver disease and 

primary care clinics at Virginia Commonwealth University. Patients underwent detailed 

history and laboratory evaluation. Liver biopsy was performed on subjects with suspected 

NAFLD and a fasting serum sample was obtained within 90 days of the liver biopsy. Liver 

histology was assessed by two dedicated hepato-pathologists using the NASH CRN scoring 

system.

Inclusion and exclusion criteria of the validation biopsy proven NAFLD cohort

This study included consenting adults with biopsy-proven NAFLD and excluded patients 

with alcohol intake >20 g/day (women) and >30 g/day (men), medications known to cause 

steatosis or other causes of liver disease.

Untargeted metabolome profiling

Serum metabolite assessment was performed by Metabolon (Durham, North Carolina, 

USA). Samples were extracted and split into equal parts for analysis on the GC/MS and 

LC/MS/MS platforms.30 Software was used to match ions to an in-house library of standards 

for metabolite identification and for metabolite quantitation by peak area integration.31 A 

number of internal standards were added to each experimental and process standard sample 

just prior to injection into the mass spectrometers. A measure of the platform variability was 

determined by calculating the median relative SD for these internal standards. Profiling of 

samples on the lipidomics platform was also carried out and data were merged with results 

from the global profiling platform. Details regarding serum metabolite data acquisition have 

been described in previously23 and are available in online supplemental material
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MRI assessment

MRI was performed at the UCSD MR3T Research Laboratory using the 3T research scanner 

(GE Signa EXCITE HDxt; GE Healthcare, Waukesha, Wisconsin, USA) with all participants 

in the supine position. MRI-PDFF was used to measure hepatic steatosis, and MRE was used 

to measure hepatic fibrosis. The details of the MRI protocol have been previously described 

in references3233 and are detailed in online supplemental material

Histological evaluation in USCD NAFLD cohort and biopsy-proven NAFLD validation 
cohort

Histological assessment of liver biopsies was performed by an experienced liver pathologist 

who was blinded to the patient’s clinical and radiological data. Histological scoring was 

done using the Nonalcoholic Steatohepatitis Clinical Research Network Histologic Scoring 

System34 in which hepatic fibrosis was scored on a scale from 0 to 4 (0, 1, 2, 3, 4), with 

stage 3–4 signifying advanced fibrosis, hepatic steatosis and lobular inflammation were 

scored from 0 to 3 (0, 1, 2, 3), and hepatic ballooning was scored from 0 to 2 (0, 1, 2). 

Steatosis, lobular inflammation and hepatocyte ballooning scores were summed to obtain the 

NAFLD activity score, which ranged from 0 to 8. Diagnosis of NASH was classified as 

definite NASH, NAFLD not NASH or ‘borderline’ NASH. Definite and borderline NASH 

cases were combined and compared with NAFLD not NASH. These categories were 

assigned prior to conducting statistical analyses.

Clinical predictive rule

Age, aspartate aminotransferase (AST), alanine aminotransferase (ALT) and platelet count 

were used to calculate the FIB-4 index using the formula described previously.35 Age, body 

mass index (BMI), impaired fasting glucose or presence of diabetes mellitus AST, ALT, 

platelet count and albumin were used to calculate the NAFLD Fibrosis Score using the 

formula described previously.36

Primary and secondary outcomes

The primary outcome was the presence of advanced fibrosis as defined by histological stage 

of fibrosis 3–4 in the derivation cohort and biopsy-proven validation cohort and by MRE 

≥3.63 kPa in the validation cohort.

The secondary outcome was the presence of NASH (borderline and definite NASH) versus 

not NASH histology which could only be tested in the derivation and biopsy-proven NAFLD 

cohort.

Statistical analysis

Data preparation—Unnamed metabolites (325 out of 1046 in the derivation cohort and 

411 out of 1181 in the validation cohort) were excluded from the analysis. Metabolites for 

which there were >50% missing values, most likely due to levels below the limits of 

detection (69 out of 721 in the derivation cohort and 57 out of 770 in the validation cohort), 

were also excluded from the analysis. For the remaining serum metabolites with <50% 

missing values, values were imputed to half of the observed minimum value for each 
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metabolite assuming that the metabolite was under the limit of detection (online 

supplemental figure 1). All the data were log-transformed prior to statistical analysis.

Data analysis

Patients’ demographic, anthropometric, clinical and biochemical characteristics were 

summarised. Categorical variables were shown as counts and percentages, and associations 

were tested using a χ2 test or Fisher’s exact test. Normally distributed continuous variables 

were shown as mean (±SD), and differences between groups were analysed using a two-

independent-samples t-test or Wilcoxon-Mann-Whitney test.

Statistical comparison of serum metabolites between advanced fibrosis versus non-advanced 

fibrosis and NASH versus not NASH histology were assessed using Welch’s t-tests. To 

account for multiple comparisons, the Benjamini-Hochberg false discovery rate (FDR)-

adjusted threshold for statistical significance was calculated for the association between 

serum metabolites and specified outcomes. The 10 metabolites with the strongest association 

with the specified outcome were included in a logistic regression model, and model 

performance was evaluated by calculating the area under the receiver operating characteristic 

curve (AUROC). Ten metabolites were chosen to balance diagnostic accuracy with the 

number of events per predictor in the logistic regression models. Larger numbers of 

predictors either failed to improve the diagnostic accuracy or prevented model convergence. 

For the detection of advanced fibrosis, the top 10 serum metabolite panel was compared with 

the AUROC for the FIB-4 index and NFS in both the derivation and validation cohorts using 

the method proposed by DeLong.37 In addition, we explored a model of readily available 

clinical factors that were associated with advanced fibrosis in the derivation cohort derived 

by backward stepwise elimination with p<0.05 as the criterion for inclusion. We also 

performed exploratory analysis evaluating the impact of MRI proton density fat fraction 

(MRI-PDFF) measurement on diagnostic accuracy. All statistical analyses were performed 

using STATA (StataCorp) and SPSS (IBM).

Sample size estimation

This is a pilot proof-of-concept study including 156 participants with biopsy-proven NAFLD 

(133 individuals without advanced fibrosis (stage 0–2) and 23 with advanced fibrosis (stage 

3–4)) in the derivation cohort. We were able to detect clinically and significantly meaningful 

difference between the subpopulations.

RESULTS

Baseline characteristics of the derivation cohort

In total, 156 patients with biopsy-proven NAFLD were included in this analysis. Participants 

were a mean age of 49.8 years, 45.5% non-Hispanic white, predominantly female (58.3%) 

and obese (mean BMI=32.0 kg/m2). Detailed study cohort flow chart is provided in online 

supplemental figure 1. The majority of patients, 87%, had definite or borderline NASH and 

15% had advanced fibrosis. Patients with advanced fibrosis were more likely to be older, 

Hispanic, have higher BMI, AST, alkaline phosphatase, gamma-glutamyl transferase, 
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haemoglobin A1c and international normalised ratio. In addition, they had lower platelet 

count and more hepatocyte ballooning and definite NASH histology (table 1).

Serum metabolites associated with advanced fibrosis in the derivation cohort

Among the 652 serum metabolites analysed, 32 serum metabolites met the FDR-adjusted 

threshold for statistically significant association with the presence of advanced fibrosis. 

These serum metabolites belonged to six super pathways: amino acid, carbohydrate, 

cofactors and vitamins, lipid, nucleotide and peptide (online supplemental table 2). The fold 

change of the top 10 serum metabolites associated with the presence of advanced fibrosis is 

shown in figure 1.

Pathway analysis of the top 10 serum metabolites associated with advanced fibrosis

Among the top 10 metabolites associated with advanced fibrosis, 6 were cholesterol-derived 

steroid hormones (5alpha-androstan-3beta monosulfate, pregnanediol-3-glucuronide, 

androsterone sulfate, epiandrosterone sulfate, dehydroisoandrosterone sulfate (DHEA-S),and 

5alpha-androstan-3beta disulfate) and were significantly decreased in participants with 

advanced fibrosis compared with participants without advanced fibrosis. In addition, 

glycocholate, a primary conjugated bile acid, was significantly increased in participants with 

advanced fibrosis whereas taurine, an amino acid involved in the bile acid biosynthesis, was 

decreased. Finally, palmitoleate, a long-chain monounsaturated fatty acid, and the 

monosaccharide fucose were significantly increased in participants with advanced fibrosis 

compared with participants without advanced fibrosis (figure 1).

Prediction of advanced fibrosis with a serum metabolites panel compared with FIB-4 
index, NFS and clinical variables associated with advanced fibrosis

Inclusion of the top 10 metabolite panel based on FDR-adjusted p values yielded an AUROC 

c-statistic for advanced fibrosis of 0.94 (95% CI 0.897 to 0.982). The c-statistic for the 

FIB-4 Index was 0.78 (95% CI 0.674 to 0.891) (figure 2A). The discriminatory ability for 

the top 10 serum metabolite panel compared favourably to the FIB-4 index, p=0.002. At a 

cut-off derived to obtain 90% sensitivity, specificity remains 79% in the metabolite model 

compared with 39% specificity for FIB-4 index (table 2). Combining the top 10 metabolite 

panel with the FIB-4 index did not improve the c-statistic, 0.94 (95% CI 0.896 to 0.983), 

p=0.836. The NFS yielded a diagnostic accuracy of 0.84 (95% CI 0.75 to 0.93) for advanced 

fibrosis but was inferior to the top 10 metabolite panel, p=0.017 and at fixed sensitivity of 

90% only had 59% specificity. A model derived from factors significantly associated with 

advanced fibrosis after backward stepwise elimination included alkaline phosphatase, 

haemoglobin A1c, platelet count and INR and had a c-statistic of 0.84 that was borderline 

inferior, p=0.05, compared with the top 10 metabolite panel. MRI-PDFF was inversely 

associated with advanced fibrosis with an OR of 0.91 (95% CI 0.83 to 0.98) per 1% increase 

in PDFF with a p value of 0.015 in a subset of patients (n=117). However, it did not 

significantly improve the discriminatory ability of the top 10 metabolite model (c=0.96 vs 

c=0.94, p=0.54).
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Validation of the diagnostic performance of the combination of serum metabolites panel

We further assessed the diagnostic performance of the combination of the 10 serum 

metabolites identified in the derivation cohort in an independent validation cohort including 

142 participants with MRE assessment for advanced fibrosis. They were a mean age of 44.9 

years, 73% non-Hispanic white, predominantly female (71.9%) and overweight (mean 

BMI=26.6 kg/m2). Detailed study cohort flow chart is provided in online supplemental 

figure 1. The prevalence of advanced fibrosis defined as MRE ≥3.63 kPa was 8% (11 out of 

142) in the validation cohort. Detailed baseline characteristics of the participants with and 

without advanced fibrosis compared with participants without advanced fibrosis are 

presented in table 3.

The application of the 10 serum metabolites identified in the derivation cohort yielded an 

AUROC c-statistic of 0.94 (0.873–1.000) for the detection of advanced fibrosis. The c-

statistic for the FIB-4 Index was significantly lower, 0.81 (95% CI 0.712 to 0.914) (p=0.011) 

(figure 2B) and the c-statistic for NFS was lower but the difference did not reach statistical 

significance 0.89 (95% CI 0.786 to 0.987) (p=0.32). We performed sensitivity analysis in the 

cohort including only subjects who were not relatives and the diagnostic accuracy of the 10 

metabolite panel remained excellent c-statistic 0.96 (n=74).

We further assessed the diagnostic performance of the combination of the 10 serum 

metabolites identified in the derivation cohort in an independent validation cohort of 59 

patients with biopsy-proven NAFLD (supplemental table 4). The prevalence of advanced 

fibrosis (stage 3–4) was 31% (15 out of 59). Two metabolites, 5alpha-androstan-3beta, 

17beta-diol monosulfate and taurine, were either unmeasured or available for less than half 

of the patients and were excluded. The remaining eight metabolites had good diagnostic 

accuracy c-statistic 0.84 and compared favourably to FIB-4 index (c-statistic 0.80) and NFS 

(c-statistic 0.72); however, the differences were not statistically significant (figure 2C).

Serum metabolites associated with NASH histology in the derivation cohort

Among the 652 serum metabolites analysed, 31 serum metabolites met the FDR adjusted 

threshold for statistical significant association with presence of NASH. These serum 

metabolites belonged to four super pathways: amino acid, lipid, nucleotide and peptide 

(online supplemental table 2). The fold change of the top 10 serum metabolites associated 

with the presence of NASH is shown in online supplemental figure 2.

Prediction of NASH with serum metabolites panel

Inclusion of the top 10 metabolite panel based on FDR adjusted p values yielded an AUROC 

c-statistic for NASH compared with not NASH histology of 0.79 (95% CI 0.702 to 0.869). 

Inclusion of all 31 significant FDR adjusted metabolites improved the AUROC c-statistic to 

0.89 (95% CI 0.842 to 0.945) (online supplemental figure 3). Of the 31 metabolites 

associated with NASH in the derivation cohort, only 10 were available and measured in 

>50% of patients in the biopsy-proven NAFLD validation cohort and the c-statistic for the 

diagnosis of NASH was c=0.82.
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Sensitivity analyses

We have further assessed the association between the level of the serum metabolites included 

in diagnostic panels and PNPLA3 genotype available in a subgroup of participants from the 

Twin and Family Cohort (n=101) and did not observed significant association (online 

supplemental table 5).

DISCUSSION

Main findings

Using a well-characterised derivation cohort of patients with biopsy-proven NAFLD and two 

validation cohorts of individuals assessed with advanced MRE and liver biopsy, we report 

that the combination of 10-serum metabolites can diagnose the presence of advanced fibrosis 

with greater diagnostic accuracy than the FIB-4 index. This proof-of-concept study 

demonstrates that a non-invasive blood-based diagnostic test can provide excellent 

performance characteristics for the detection of advanced fibrosis, which is the strongest 

predictor of liver-related mortality.3–5 In addition, we also report an excellent diagnostic 

accuracy of a combination of 31-serum metabolites panel for the detection of NASH in the 

patients with biopsy-proven NAFLD. However, further studies are needed to confirm the 

diagnostic performance of this novel combination of metabolites for the detection of NASH 

in independent cohorts. These novel data have potential important implication for the non-

invasive screening of advanced fibrosis and NASH in patients with NAFLD which remains a 

major unmet need in the field.

In context of published literature

Several studies have evaluated combinations of clinical and laboratory variables for the 

detection of advanced fibrosis in NAFLD and were recently reviewed by Younossi et al and 

Vilar-Gomez et al.79 Currently, the most commonly used non-invasive tests to diagnose 

advanced fibrosis in NAFLD classify approximately 30% of patients as indeterminate, 

leaving the need for a diagnostic test to better characterise disease severity unmet.89 While a 

recent meta-analysis demonstrated that the FIB-4 index has superior performance compared 

with the NAFLD Fibrosis Score and BARD score,38 these clinical prediction rules lack the 

specificity to accurately diagnose patients with advanced fibrosis. By increasing the 

specificity, as seen with the proposed metabolomics-based approach, the number of false-

positive patients that would likely proceed to liver biopsy can be dramatically reduced. 

Application of the top 10 metabolite panel yielded only 28 false positives compared with 54 

with NFS and 81 with FIB-4 in the derivation cohort of 156 patients. Combinations of serum 

markers and clinical variables are prone to overestimate disease severity in the elderly.39 A 

metabolomics-based approach does not rely on clinical factors but rather on biological 

mechanisms, which prevents it from having poor performance in subpopulations including 

the elderly and patients with type 2 diabetes. Multiple groups have recently reported that a 

combination of serum metabolites could be a useful biomarker to differentiate steatosis from 

NASH1140; however, the diagnostic performance of a combination of serum metabolites for 

the detection of advanced fibrosis has not been reported yet.
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The top 10 serum metabolites significantly associated with the presence of advanced fibrosis 

in the derivation cohort belong to pathways and subpathways with known associations with 

the severity of NAFLD. Interestingly, 6 of these 10 metabolites are cholesterol-derived 

precursors of steroid hormones and were significantly lower in participants with advanced 

fibrosis compared with participants without advanced fibrosis. The reduction in these 

cholesterol-derived steroid hormones may result from decreased synthesis and suggests a 

strong association between regulation of this pathway and the presence of advanced fibrosis 

in NAFLD. Indeed, reductions in DHEA-S have been previously associated with 

histologically advanced NAFLD and alterations in these pathways may mediate NAFLD 

pathogenesis through changes in insulin sensitivity, susceptibility to oxidative stress and/or 

stimulation of fibrosis.16

Furthermore, impaired bile acid metabolism has been reported to potentially contribute to 

the pathophysiology of NAFLD.41 In line with these findings, the primary conjugated bile 

acid, glycocholate, was one of the top 10 metabolites identified and was significantly 

increased in presence of advanced fibrosis. Previous studies have reported a higher level of 

glycocholate in patients with NAFLD including patients with significant fibrosis (stage ≥2).
1842 In addition, a significant decrease in the level of taurine was associated with advanced 

fibrosis. Taurine is an amino acid associated with bile acid conjugation in the hepatocyte. In 

mice, taurine deficiency induces the development of liver fibrosis,43 and studies suggest that 

its antioxidant properties could have a protective effect on experimental models of fibrosis in 

rodents.44–46

Higher serum palmitoleate was associated with advanced fibrosis and has previously been 

reported to be increased in patients with NAFLD.10 This long-chain monounsaturated fatty 

acid is produced during de novo lipogenesis. Finally, increase in the serum level of the 

monosaccharide fucose has not been previously reported in patients with advanced fibrosis. 

However, emerging data suggest that fucosylated glycan could be potential biomarker of 

advanced NAFLD.47

Even though the causal role of the metabolites identified could not be determined in this 

cross-sectional study design, the levels of these metabolites were associated with the 

presence of advanced fibrosis and likely reflect alterations in key pathways associated with 

the progression of the disease. Hence, a combination of these metabolites is expected to be a 

more direct measure of disease activity than previous classic indirect markers such as ALT, 

AST and platelet count. In addition, the combination of several metabolites related to 

different pathways decreases the likelihood of potential cofounding related to gender, age or 

metabolic conditions including obesity and type 2 diabetes.

Strengths and limitations

There are several notable strengths in this study including the use of a derivation and two 

independent validation cohorts that were prospectively recruited and well-characterised 

using liver biopsy or advanced MRI of the liver. In addition, conditions such as excessive 

alcohol use, steatogenic medications, viral hepatitis and secondary causes of steatosis were 

systematically excluded. We validated our findings in two cohorts, one of which used the 

most accurate non-invasive modality for the assessment of hepatic fibrosis48 and the other 
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had biopsy-proven NAFLD. However, we acknowledge the following limitations of the 

study. Potential confounding factor such as diet were not captured in the study and therefore 

could not be excluded. We were limited in our validation of the diagnostic performance of 

the combination of 31 metabolites for the diagnosis of NASH. In addition, the cross-

sectional study design only allowed for metabolomic profiling associated with the presence 

of advanced fibrosis or NASH at one time point. Further longitudinal studies are needed to 

determine if this new biomarker can longitudinally detect changes in liver fibrosis and 

NASH. Furthermore, PNPLA3 genotype, which has been shown to be an independent 

predictor of NASH49 and strongly influences the liver lipidome,50 was only available in a 

subset of the study population limiting our ability to explore its effect on the predictive value 

of the metabolite panel. Finally, the baseline characteristics of the validation cohorts were 

different from the derivation cohort. In addition, the MRE validation cohort included 

participants with and without NAFLD and therefore the pre-test probability of advanced 

fibrosis was lower compared with the derivation cohort, which included only NAFLD 

participants. Although these differences typically decrease the diagnostic performance of the 

test on the validation cohort, the findings remained robust and the diagnostic accuracy was 

confirmed.

Implications for future study

In this proof-of-concept study using three independent and well-characterised cohorts, we 

demonstrate that a serum metabolite panel can accurately predict the presence of advanced 

fibrosis and outperforms the most frequently used clinical prediction rules. Further 

validation of these findings in separate cohorts and evaluation of longitudinal changes in 

serum metabolites to assess disease progression or treatment response are warranted.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance of this study

What is already known on this subject?

• FIB-4 and NAFLD Fibrosis Score (NFS) are clinical prediction rules that 

provide high accuracy for prediction of the presence of advanced fibrosis in 

NAFLD.

• FIB-4 and NFS lack specificity and leave many patients with indeterminate 

results; therefore, more accurate blood tests are needed.

What are the new findings?

• In patients with biopsy-proven NAFLD, a serum metabolomics panel was 

able to predict the presence of advanced fibrosis with high diagnostic 

accuracy and outperformed FIB-4 and NFS.

• The serum metabolomics panel maintained excellent diagnostic accuracy and 

superiority over FIB-4 in two validation cohort of patients with and without 

NAFLD.

How might it impact on clinical practice in the foreseeable future?

• A blood-based serum metabolite panel can accurately diagnose advanced 

fibrosis with greater diagnostic accuracy than FIB-4 and NFS and may be a 

useful tool to screen at-risk patients for advanced disease.
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Figure 1. 
Fold change of the top 10 serum metabolite panel associated with advanced fibrosis The 

variation of the top 10 serum metabolites including 5alpha-androstan-3beta monosulfate, 

pregnanediol-3-glucuronide, androsterone sulfate, epiandrosterone sulfate, palmitoleate, 

dehydroisoandrosterone sulfate, 5alpha-androstan-3beta disulfate, glycocholate, taurine and 

fucose, coloured based on five subpathways is depicted as log fold change in participants 

with advanced fibrosis (AF) versus no advanced fibrosis.
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Figure 2. 
Top 10 metabolite panel has higher area under the receiver operating characteristic curve 

(AUROC) than NAFLD Fibrosis Score (NFS) and FIB-4 index in derivation and validation 

cohorts The AUROC of the 10 serum metabolites panel including 5alpha-androstan-3beta 

monosulfate, pregnanediol-3-glucuronide, androsterone sulfate, epiandrosterone sulfate, 

palmitoleate, dehydroisoandrosterone sulfate, 5alpha-androstan-3beta disulfate, 

glycocholate, taurine and fucose, NFS and FIB-4 index for the detection of advanced fibrosis 

is shown in (A) the derivation biopsy-proven cohort, (B) the validation Twin and Family 

Cohort and (C) the independent biopsy-proven NAFLD validation cohort. *The AUROC of 

the 10 serum metabolites was higher than NFS and FIB-4 in the derivation cohort and 

validation cohorts.
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