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Abstract 
Learning constitutes an essential part of human experience 
over the life course. Independent of the domain, it is 
characterized by changes in performance. But what cognitive 
mechanisms are responsible for these changes and how do 
situational features affect the dynamics? To inspect that in 
more detail, this paper introduces a cognitive modeling 
approach that investigates performance-related changes in 
learning situations. It leverages the cognitive architecture 
ACT-R to model learner behavior in an interrupted learning 
task in two conditions of task complexity. Comparisons with 
the original human dataset indicate a good fit in terms of both 
accuracy and reaction times. Although interruption effects are 
more obvious in the human data, they are prevalent as well in 
the model. Furthermore, the model can map the learning 
effects, particularly in the easy task condition. Based on the 
existing mapping of ACT-R module activity with fMRI data, 
simulated neural activity is computed to investigate underlying 
cognitive mechanisms in more detail. The resulting evidence 
connects learning and interruption effects in both task 
conditions with activation-related patterns to explain changes 
in performance. 

Keywords: Learning; Interruption; Cognitive performance; 
ACT-R; Simulated neural activity 

Introduction 
As an omnipresent requirement, learning happens 

throughout the entire life. From speaking the first words as a 
child to operating new technical devices as an elderly, the 
establishment of knowledge structures constitutes a core 
outcome of learning processes of all kind. Previous research 
indicated benefits in terms of performance, once already 
existing knowledge structures can be applied automatically 
(e.g., Wirzberger, Herms, Esmaeili Bijarsari, Eibl, & Rey, 
2018). Besides these internally occurring process-related 
changes, externally induced situational characteristics such 
as interruptions also effect cognitive performance. 
Interruptions are highly prevalent across various contexts in 

daily life, including learning situations (e.g., Scheiter, 
Gerjets, & Heise, 2014). They can be described as usually 
neither planned nor expected cognitive breaks in the task 
performed up to that time (Brixey et al., 2007). To avoid or 
at least minimize resulting impairments, the interplay of 
interruptions and learning effects needs to be inspected in 
more detail on a cognitive level. On this account, 
computational cognitive modeling approaches offer a 
promising way to gain insights into underlying dynamics.  

Based on that, the current paper introduces an ACT-R 
model that performs an interrupted learning task and is 
inspected in terms of behavioral parameters and underlying 
neural processes. After briefly describing the modeled 
experimental task and core results from human data, the 
paper outlines characteristics of the cognitive architecture 
ACT-R (Anderson, 2007). Following an explanation of the 
underlying model concept, the behavioral results obtained 
from the model runs are presented and compared with the 
described human data. The subsequent chapter addresses 
model performance on a neural level by reporting results 
from simulated fMRI analyses.  

In summary, the obtained evidence highlights the 
connection of observable changes in cognitive performance 
due to learning and interruption effects with the mechanism 
of activation. 

Task outline 
The task setting underneath the cognitive model is 

reported in more detail in Wirzberger, Esmaeili Bijarsari, and 
Rey (2017). Participants in this study had to learn four 
abstract geometric symbol combinations via trial and error by 
verifying feedback (Shute, 2008) over a total of 64 trials. As 
outlined in Figure 1, they were shown the first part of the 
combination at the beginning of a trial and had to select the 
appropriate response by mouse click. Afterward, they were 
informed about the correctness of their response as well as 
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the correct response in terms of errors. Task complexity was 
represented by the number of symbols in a defined order that 
formed a combination. In the easy task condition, symbol 
combinations consisted of two symbols (input-response), 
whereas in the difficult task condition three symbols (input-
input-response) formed a combination. 

 
 

 
 

Figure 1: Sample learning trial in the easy task condition 
(adapted from Wirzberger et al., 2017). 

 
At five pre-defined stages over the task (i.e., after trials 8, 

24, 32, 40, and 56), an interrupting visual search task was 
induced. As displayed in Figure 2, it required participants to 
count the number of two out of four types of geometric 
symbols on a visual search screen and provide their responses 
afterward. The screens were accompanied by an instruction 
on the target symbols. A high similarity to the symbols used 
in the learning task (Gillie & Broadbent, 1989; Trick, 2008) 
and an appropriate task duration (Monk, Trafton, & Boehm-
Davis, 2008) should ensure its interrupting potential.  

 
 

 
 

Figure 2: Sample interruption trial (adapted from 
Wirzberger et al., 2017). 

Experimental results 
In terms of reaction times in correctly solved trials, Figure 

3 shows that participants speed up with increasing task 
progress in both conditions. Standard errors decrease over 
trials due to the increasing number of correct reactions. In 
addition, resumption effects are observable in both 
conditions, but are more distinctive in the easy task condition. 

Approaching accuracy, Figure 4 indicates that participants in 
the difficult task condition learn slower, but in the end both 
conditions reach a comparable level. Again, resumption 
effects are more prevalent in the easy task condition. These 
effects raise the question which cognitive mechanisms 
underlie the observed learning- and interruption-related 
patterns. 

Computational cognitive modeling 
Building on vested psychological evidence on human 

information processing, computational cognitive modeling 
approaches offer the opportunity to derive well-founded 
explanations of behavioral phenomena. The idea of building 
models to explain cognitive phenomena has already been 
discussed by Wegener (1967), who outlined the indicative 
value of an electronic simulation of mental processes for 
deriving and validating the related hypotheses.  

Constituting a prevalent and broadly used production-
based approach, ACT-R (Anderson, 2007) is particularly 
characterized by its modular brain-inspired structure. The 
included modules represent goal planning (goal module), 
declarative memory (declarative module), intermediate 
problem states (imaginal module), action coordination 
(procedural module), the handling of visual and auditory 
inputs (visual and aural module), and motor and vocal outputs 
(motor and vocal module). The mapping of these modules on 
corresponding regions-of-interest (ROIs) in the human brain 
has been validated with fMRI data by Borst, Nijboer, 
Taatgen, van Rijn, and Anderson (2015). For instance, when 
a model retrieves content from declarative memory, 
increased activity in the declarative module corresponds to 
activity in the prefrontal cortex, which has proven to be 
sensitive to both retrieval and storage operations. Activity in 
the goal module corresponds to activity in the anterior 
cingulate cortex, which is involved in higher-level control 
functions such as attentional allocation or performance 
monitoring.  Buffers with limited capacity serve as interface 
between modules and enable their communication. They can 
hold one information element at the same time, representing 
existing limitations in information processing resources.   

ACT-R uses a hybrid approach of both symbolic and 
subsymbolic mechanisms: chunks of information from 
declarative memory are retrieved not only on the match of 
content but also based on their level of activation. Activation 
is calculated from the history and context of use of a chunk 
and has to exceed a defined threshold to be eligible for 
selection. The full equation for each chunk i involves the 
components displayed in the subsequent equation: 
 
									𝐴# = 	𝐵# +	''𝑊)*𝑆*# +	'𝑃𝑀.# + 	𝜀.													(1)

.*)

 

 
The recency and frequency of use of the chunk i is reflected 

by the base-level activation Bi. Each time a chunk is 
presented, its base-level activation is increased, which decays 
as a power function of the time since that presentation. These 
decay effects are summed up and then transformed 
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logarithmically. With the spreading activation mechanism 
(Anderson, 2007), ACT-R accounts for the fact that 
activation is distributed across related chunks that share 
information elements. It is represented in the equation by Wkj, 
the amount of activation from source j in buffer k, and Sji, the 
strength of association from source j to chunk i. Wkj and Sji 
are summed over all buffers that provide spreading activation 
and all chunks in the slot of the chunks in buffer k. As humans 
sometimes retrieve related but ultimately wrong information 
from memory, ACT-R further includes a partial matching 
mechanism. Based on initially defined similarities between 
chunks, a mismatch between request and actual retrieval is 
calculated. The higher the mismatch, the more the activity of 
the chunk is penalized (Lebiere, 1999). In the equation, P 
reflects the amount of weighting given to the similarity in slot 
l and Mli represents the similarity between the value l in the 
retrieval specification and the value in the corresponding slot 
of chunk i. Mli is summed over the slot values of the retrieval 
specification. The value of ε represents noise, which is 
computed at the time of a retrieval request for each chunk.  

Model concept 
Each model run starts with an initial set of the task goal 

to the symbol learning task, which is assumed to result from 
the previously read instruction. In the following, each 
learning trial builds upon three task-related steps: at first, the 
presented symbol is encoded, which is repeated for the 
second symbol in the case of the difficult condition. This 
procedure stores an intermediate representation of all 
encoded visual content in the problem state (Borst, Taatgen, 
& van Rijn, 2010, 2015; Nijboer, Borst, van Rijn, & Taatgen, 
2016), for instance, the input symbols ‘square – circle’ in the 
difficult condition. Next, the model attempts to retrieve the 
associated response symbol from declarative memory. In the 
second step, a response is selected from the provided 
opportunities on the screen, either according to the retrieved 
chunk or by random choice in case of no successful retrieval. 
In the final step, the model searches for visual feedback on 
the given response and, in the case of a false response, an 
update of the existing intermediate representation. The final 
information contains both the input and the correct response 
parts of the symbol combinations, such as ‘square – circle – 
square’ in case of the previous example.  

In the first trials, there is no sufficiently matching content 
or no content at all to retrieve, resulting in slower and less 
accurate responses. After being presented the input symbols 
several times and retrieving related content from declarative 
memory, the model performance gets increasingly faster and 
more accurate due to increasing chunk activation. In the 
current task, the above outlined spreading activiation 
mechanism particularly effects the difficult task condition. In 
more detail, symbol combinations including the same input 
symbols, such as ‘square – circle’ and ‘circle – square’, 
obtain equal activation, independent of the correct symbol 

                                                        
1 In addition to the base model and the reported model, models 

including either only spreading activation or partial matching were 

order. Following the concept of element interactivity in 
instructional research (Sweller, 2010), task demands increase 
with more logically interrelated information elements that 
have to be processed simultaneously. In the current task, the 
symbols that form a combination can be regarded as 
information elements that are related to each other by order. 
Without considering the order information, a wrong input-
response association is more likely to be retrieved, which is 
then penalized by the partial matching mechanism. In 
consequence, due to more potentially mismatching 
information, the chunks in the difficult condition receive less 
activation and are harder to retrieve.  

Following a goal change due to the bottom-up triggered 
saliency of the interrupting task, the task procedure involves 
the steps of searching, counting, and responding to the 
indicated target symbols. Using a color to indicate the task 
switch followed the model implemented by Wirzberger and 
Russwinkel (2015) and represents the immediate attention to 
the related screen change. Tying in with evidence on pre-
attentive and attentive processes in the visual module of 
ACT-R (Nyamsuren & Taatgen, 2013), the second visual-
location request in the visual search is enhanced by additional 
information on stimulus color that relates to distinct 
characteristics of the presented symbols. After finishing the 
counting part that also employs the problem state (Borst et 
al., 2010, 2015; Nijboer et al., 2016), on each of the two 
response screens the model encodes the requested symbol 
and attempts to retrieves the potential answer. Again, the 
possibility to retrieve a wrong answer persists due to the 
partial matching mechanism. When resuming the learning 
task, in line with Altmann and Trafton (2002) the model 
attempts to retrieve the previous task goal and thus restores 
its representation. Emerging interruption effects can be 
attributed to a decay in the activation of chunks related to the 
learning task that slows down subsequent retrieval requests 
(Borst et al., 2010, 2015; Trafton, Altmann, Brock, & Minz, 
2003).  

Model comparison 
The inspected model data based on n = 100 model runs in 

each condition to obtain robust conclusions from the average 
model performance. A further goal was to achieve a balanced 
fit pattern across both accuracy and reaction time in either 
condition. Compared to a base model1 that includes neither 
spreading activation nor partial matching, the overall root 
mean squared scaled deviation (RMSSD) decreased by 
almost one standard error and fit indices were quite aligned.  

Besides the shared prevalence of interruption effects, in 
both conditions the model speeds up in reaction time over 
trials. The visual inspection in Figure 3 indicates that it can 
map the decreasing progression particularly in the difficult 
task condition. However, the model performs slightly slower 
than human participants during most of the trials. On the level 
of numerical goodness-of-fit indices, the model achieved 

inspected. Due to the superior fit, only the final model that applies 
both mechanisms is reported. 
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RMSSD = 2.16 and R² = 0.58 in the difficult task condition. 
Apart from a subtler decrease in the beginning, the mapping 
also fits quite well for later trials in the easy task condition. 
On a numerical level, RMSSD = 1.67 and R² = 0.52 resulted 
in this condition. 

 

 

 
 

Figure 3: Comparison of human and model behavior in 
terms of reaction time. Red dashed lines indicate the first 

trial that immediately follows an interruption. 
 
 

 

 
 

Figure 4: Comparison of human and model behavior in 
terms of accuracy. Red dashed lines indicate the first trial 

that immediately follows an interruption. 

For accuracy, Figure 4 indicates that the model can map the 
progression in human behavior quite well in the easy task 
condition, although it achieves a higher performance in the 
end and shows a subtler reflection of interruption effects. On 
a numerical level, RMSSD = 1.51 and R² = 0.69 were 
achieved in this condition. The model in the difficult task 
condition learns slower compared to the easy task condition, 
but still faster than the human participants. However, apart 
from the nearly perfect location match in the last data points, 
it cannot fully map the final increase in the human data. The 
goodness-of-fit indices for the difficult task condition 
resulted in RMSSD = 2.07 and R² = 0.57. 

Simulated fMRI data 
Based upon the already mentioned mapping of activity in 

ACT-R modules on defined brain regions, simulated neural 
activity in predefined ROIs is computed to investigate 
underlying cognitive mechanisms in more detail (Borst & 
Anderson, 2017). This approach uses the recorded start and 
end times of module activity to simulate a signal comparable 
to the blood oxygenation level obtainable via fMRI, which 
shows peaks about 4-6 s after the occurrence of neural 
activity. In the first step, the activity of each inspected 
module is represented as 0-1 demand function and convolved 
afterward with the hemodynamic response function displayed 
in Figure 5. As an example, related to the task of the current 
model, longer retrieval times due to lower levels of chunk 
activation would result in increased activity in the declarative 
module. Such patterns are expectable in early stages of the 
task, with increased task difficulty, or caused by decay during 
an interruption, and would be observable by higher peaks in 
the resulting simulated signal.  

 

 
 

Figure 5: Hemodynamic response function (adapted from 
Borst & Anderson, 2017). 

 
Prevalent changes in the declarative module activity across 

the learning task, which simulates activity in the prefrontal 
cortex, are displayed in Figure 6. Whereas blue lines 
represent the first third of the trials in the task, the red lines 
indicate the middle third of the trials, and the black lines refer 
to the last third of the trials. The curves predict a decrease in 
cognitive activity in later task stages in both conditions in the 
prefrontal cortex due to task-inherent learning processes. In 
the difficult task condition, represented by the dashed lines, a 
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higher level of activity is prevalent across all stages, with a 
particularly distinctive peak across early task stages. As 
already outlined, this relates to increased retrieval demands 
from lower levels of chunk activation. 
 

 

 

Figure 6: Simulated neural activity in the declarative 
module (corresponding to activity in the prefrontal cortex) 

across stages of the learning task. 
 
Comparisons between the interrupting task and the 

learning task are depicted in Figure 7 and Figure 8. These 
include a separate visualization of the resumption phase (red 
lines), defined as the first trial that immediately follows the 
interrupting task. Across all inspected modules, activity 
levels in the interrupting task do not differ between both task 
conditions, since the solid and dashed blue lines overlap 
almost all the time. For both the declarative module, relating 
to the prefrontal cortex, and  the goal module, relating to the 
anterior cingulate cortex, a higher activity across resumption 
trials compared to the remainder of trials in the learning task 
(black lines) is predicted for both conditions. In addition, 
differences between task conditions during the resumption 
phase are predicted for the anterior cingulate cortex and 
indicate higher levels of activity in the easy task condition. 
Even if these effects are less obvious in the behavioral model 
data, this also corresponds to the higher prevalence of 
resumption effects in the easy condition in the human data. 

 

 
 

 
 

Figure 7: Simulated neural activity in the declarative 
module (corresponding to the prefrontal cortex) across 

interruption, resumption, and learning stages. 

 
 

 
 

Figure 8: Simulated neural activity in the goal module 
(corresponding to the anterior cingulate cortex) across 

interruption, resumption, and learning stages. 

Discussion 
The current model explores cognitive mechanisms that 

underlie changes in performance due to the inserted 
interruptions and task-related learning processes. Comparing 
model performance across both conditions on a behavioral 
level, the obtained results indicate a good fit in terms of 
reaction times and accuracy. The model can map both the 
learning-related increase in performance and the decrease in 
performance due to experiencing an interruption. A potential 
improvement to increase the visibility of interruption effects 
in the model might involve adjusting when the model starts 
to retrieve information related to the correct response symbol. 
For the difficult task condition, the accuracy result pattern 
hints on a shift in task-related strategies. Due to the small 
number of learned symbol combinations, over time people in 
the difficult condition might have applied a more heuristic 
encoding strategy with focus on the first symbol, directly 
mapping task execution in the easy task condition. Taking 
this into account, the current modeling approach offers 
potential for future work by explaining such strategy shift 
with a more complex model on both the level of production 
rules and corresponding selection mechanisms.  

The pattern observed in the simulated neural activity 
relates to the fact that the model needs to invest a higher 
amount of declarative memory resources upon each retrieval 
request in the early task stage due to the lack of suitable 
chunks and lower levels of chunk activation. The smaller 
level of cognitive activity with increasing task progress 
emphasizes the prevalence of learning effects in both 
conditions, as existing content in the declarative memory 
receives increasingly higher activation and thus can be 
retrieved faster and more accurately. In the difficult task 
condition, invested declarative resources are constantly 
higher across all stages, which by closer inspection relates to 
effects of spreading activation and the increased influence of 
partial matching that penalizes chunk activation and extends 
retrieval times. Increased levels of resumption-related 
activity in the declarative module arise from the activation 
decay in chunks related to the acquired symbol combinations. 
Observable differences in goal activity during the resumption 
stage align well with predictions stated by the memory-for-
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goals model (Altmann & Trafton, 2002). They relate to the 
demand to rebuild the goal-representation of the learning task 
after each interruption. The obtained fMRI  predictions will 
be compared with human data sets in the next step. 

Conclusion 
Taken together, the obtained results emphasize the 

importance of considering activation-related dynamics when 
approaching changes in performance in learning situations. 
The outlined cognitive modeling approach inspects the 
influence of both internal and external factors in these 
contexts and can be taken as promising step to investigating 
related patterns of cognitive resource investment. Since it 
extends beyond human experiments and model-based 
behavior on a neural level, it provides a more detailed 
understanding, which is crucial for developing adequate 
support and minimizing harmful effects.  
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