
UC Irvine
ICS Technical Reports

Title
Automating technology adaptation in design synthesis

Permalink
https://escholarship.org/uc/item/1w81p3c8

Authors
Kipps, James R.
Gajski, Daniel D.

Publication Date
1989-12-05
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1w81p3c8
https://escholarship.org
http://www.cdlib.org/


J^UTOMATING TECHNOLOGY ADAPTATION
IN DESIGN SYNTHESIS

James R. Kipps^ Daniel D. Gajski

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92717

z

(o9f
(13

(i,Xi

Notice; This Material
may be protected
by Copyright Law
(Title 17 U.S.G.)

Technical Report 89-43

5 December 1989

Copyright © 1989 University of California, Irvine

This paper was prepared as a proposal to the Knowledge Models and Cognitive Systems
Program of the National Science Foundation's, Information, Robotics, and Intelligent
Systems Division.





AUTOMATING TECHNOLOGY ADAPTATION

IN DESIGN SYNTHESIS

James R. Kipps and Daniel D. Gajski

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92717

ABSTRACT

The goal of design synthesis is the generation of high-quality material designs from ab
stract specifications. Recent efforts in VLSI design synthesis (logic synthesis) have shown
how heuristic techniques can generate human-quality hardware designs in a fraction of man
ual design time. Despite successes, the state of the art in logic synthesis is limited in terms of
range and quality. Existing logic synthesis tools are largely restricted to designing combina
tional circuits described by Boolean equations. Such circuits compose only about 20 percent
of a high-level design; the other 80 percent consists of complex components described in
terms of their functionality, such as arithmetic and logic units, counters, and processors.
Existing tools are also restricted to implementing designs with a small set of widely available
physical cells, such as one- and two-level Boolean gates. While this restriction makes a syn
thesis tool independent of a particular component library, it also keeps the tool from using
complex but nonstandard library components that might otherwise improve design quality.

To increase the capabilities and quality of synthesis tools, we propose to develop a
new knowledge-intensive model of design synthesis that we call the derivational-process
model. This model uses knowledge of design styles to decompose component specifica
tions and generate designs that are appropriate to constraints. To keep this model robust to
technology changes, we further propose to develop an adjunct learning component called the
model of technology adaptation. This model uses knowledge of fundamental princi
ples of design to acquire design rules that take advantage of complex library components or
that reflect new design styles. The combination of these two models we refer to as adaptive
design synthesis. This work contributes to recent work in Logic Synthesis, Knowledge-
Based Design, and Machine Learning.



CONTENTS

1. Introduction 1

2. Logic Synthesis 2
2.1 Methodology 2
2.2 Approaches 3
2.3 Limitations 4

3. Derivational-Process Model 6

3.1 Designing by Function 6
3.2 Synthesis as Search 8
3.3 The Derivational-Process Model : 9

3.4 Derivation-Driven Search 11

3.5 Synthesis Example 12
3.6 Synthesis of Sequential Components 15
3.7 The Robustness Problem 16

4. Technology Adaptation 17
4.1 Knowledge Acquisition 17
4.2 Fundamental Principles of Design ' 18
4.3 Technology Fusing 19
4.4 Edit Analysis 21
4.5 Technology Adaptation as Learning 22

5. Conclusion 24

References 26

Vll



FIGURES

2.1 Arithmetic Component 5
3.1 Functional Design 7
3.2 Derivational-Process Model 10

3.3 ALU Decomposition Rule 13
3.4 Adder Decomposition Rule 14
3.5 Construction Rule for Adder w/Carry Enable 14
3.6 Construction Rules for Adder 15

3.7 Counter Decomposition Rule 16
3.8 Counter Construction Rule 16

4.1 Model of Technology Adaptation 18
4.2 Fundamental Principles of Design 20

IX





1. INTRODUCTION

Synthesis is the combining of parts to form a whole. Synthesis in the VLSI domain is
called logic synthesis. Parts are drawn from an ASIC (Application-Specific IC) vendor's li
brary and combined to implement the design of high-level hardware components. The input
to logic synthesis is a generic specification of the component to be designed, constraints on
the design in terms of area, speed, and power, and a target library of physical components.
The goal of logic synthesis is to output a high-quality physical design that implements the
specified component, using parts from the vendor's library, and satisfies the design con
straints. Recent efforts in logic synthesis have shown how heuristic techniques can generate
human-quality hardware designs in a fraction of manual design time. Despite successes,
current approaches to logic synthesis suffers from two major limitations: they are applicable
to only a small portion of the components in a high-level design; and they are capable of
considering only a subset of library components when implementing a design.

To improve the range and quality of logic synthesis tools beyond the state of the art, it is
necessary to restructure the traditional model of logic synthesis. If logic synthesis tools are
to cover all components in a high-level design, they should reflect design procedures used by
human designers. Experienced design engineers use top-down refinement to functionally
decompose regular-structured logic components into designs that can be implemented from
a given component library. They use knowledge of design styles to select a decomposition
that is appropriate to design constraints. Human designers are also robust to technology
changes. They adapt readily when presented with new library components, using knowledge
of fundamental principles of design to determine the best use of available components
to implement a design. We propose to develop a knowledge-intensive model of design, called
the derivational-process model, which accounts human proficiency and adaptability in
the IC design process. The derivational-process model addresses the limitations of current
approaches to logic synthesis through the use of functional decomposition, design styles,
and fundamental principles of design. To demonstrate the validity of this model, we will
develop a system, called DTAS (Design and Technology Adaptation System), that
can synthesize high-level combination and sequential logic components and still adjust to
changes in the library of physical components.

This research impacts three areas of computer science: Logic Synthesis, Knowledge-
Based Design, and Machine Learning. In regards to Logic Synthesis, we are taking an
evolutionary "next step" from the existing state of the art. By focusing on functional de
composition, we show how to synthesize all components in a microarchitecture design, not
just random logic and gate arrays; by focusing on design styles, we show how to improve de
sign quality with global optimizations; and, by focusing on fundamental principles of design,
we show how to take advantage of the target fabrication technology while retaining technol
ogy independence. In regards to Knowledge-Based Design, we are engineering- a system that
addresses domain-specific design issues, and, by doing so, we are providing a realistic exam
ple of the utility of knowledge-intensive systems that can be appreciated by IC designers.
Design issues such as implementing designs from a parts library and maintaining robustness
against library changes are of importance in domains other than VLSI, yet they have seldom



been examined in the Knowledge-Based Design literature. We are also formalizing a model
of hierarchical design and optimization that can potentially be generalized to other design
domains. In regards to Machine Learning, we are extrapolating analytic learning techniques
to show how fundamental principles of (logic) design can be used to maintain and upgrade a
knowledge base. These techniques rely on explanation-based learning (EBL) to extract new
design knowledge from an analysis of ASIC libraries and design edits. Unlike other EBL re
search applied to VLSI, our domain theory is not limited to Boolean logic; rather, it is based
on the fundamental principles of design surrounding the decomposition and implementation
of combinational and sequential logic. Such a domain theory provides substantial knowledge
about design semantics and allows us to address issues of granularity and generalization in
a nonsyntactic manner.

In the remainder of this report, we describe our approach to adaptable design synthe
sis, including technical arguments substantiating our claims. Throughout we ground our
discussion in terms of design synthesis in VLSI. In Section 2, we present background on
logic synthesis, highlighting current approaches and limitations. In Section 3, we describe
our derivational-process model of design synthesis for hardware components. In Section 4,
we describe our model of technology adaptation. In Section 5, we overview our proposed
research objectives. Finally, in Section 6, we outline our research schedule.

2. LOGIC SYNTHESIS

Design methods for integrated circuits have not kept pace with advances in IC fabrica
tion technology. Manufacturers are capable of integrating highly complex circuits, printing
100,000 to one million transistors on a single chip. This level of integration has created
a combinatorial explosion in the number of details required to realize low-volume, high-
performance, special-purpose VLSI systems and has introduced a bottleneck in the IC prod
uct development cycle. Silicon compilation is an emerging technology intended to resolve
this bottleneck. Advocates of silicon compilation take the view that expert design knowledge
can be captured, proceduralized, and utilized to automate the generation of IC designs.

Logic synthesis refers to the portion of the silicon compilation process that focuses on
the automatic translation of abstract hardware descriptions into physically-realizable logic
designs. The goal of logic synthesis is to achieve a quality of design that is comparable to
that which can be achieved by experienced design engineers. Recent efforts in logic synthesis
have shown how rule-based and graph-matching techniques can be used to generate engineer-
quality hardware designs at a fraction of the time required for designing manually.

2.1 Methodology

In a design methodology based on logic synthesis (de Cans, 1989), the design engineer
begins by describing the behavior of a system in some hardware description language, such as
VHDL. This level of description indicates the intended functionality of the system rather than
its implementation. Once the functionality has been verified, the designer reformulates the



design in terms of generic functional blocks at the microarchitecture level, such, as registers,
counters and control units, random cornbinational circuits described with Boolean equations,
regular-structured arithmetic and logic units, etc. (Automated design from a hardware
description language to the microarchitecture level is referred to as behavioral compilation or
structural synthesis (Smith, 1988) and is beingaddressed by systemssuch as DAA (Kowalski,
1985) and VSS (Lis and Gajski, 1988).) The resulting microarchitecture design is typically
represented as a register-transfer level (RTL) description that can be simulated and revised
to arrive at an acceptable high-level design.

Ideally, a logic synthesis tool should start with this high-level system design and map
it into an optimized configuration of physical components from an ASIC vendor's library.
Existing synthesis tools are capable of synthesizing only about 20 percent of the high-level
design, namely the combinational circuits described with Boolean equations. The other 80
precent of the components must be designed manually or with module generators.

The traditional model of logic synthesis consists of three phases: Boolean minimization,
technology mapping, and physical optimization. In Boolean minimization, the equations
describing the circuit are reduced to their smallest form, factoring common subterms. In
technology mapping, the minirnized Boolean equations are translated into a netlist of
functionally equivalent Boolean gates selected from the vendor's library. In physical opti
mization, equivalence preserving transformations are applied to portions of the netlist until
it conforms to design constraints.

2.2 Approaches

In the synthesis of combinational circuits described with Boolean equations, the pro
cess of physical optimization is crucial to achieving a high quality of design. There are
two fundamental approaches to optimization, focusing on graph-matching and rule-based
techniques. In the graph-matching approach, characterized by systems such as MIS
(Brayton et ah, 1986), DAGON (Keutzer, 1987), and SKOL (Berganiaschi, 1988), each logic
equation is transformed into a canonical form, such as network of two-input NAND/INV
(inverter) gates. The synthesis tool then exarriines every possible way to replace portions of
this graph with one-and two-level Booleangates from the ASIG library. The combination of
replacements having the lowest gate count is selected as optimal.

In the rule-based approach, characterized by systeiiis such as SOCRATES (de Gaus
and Gregory, 1986), LSS (Joyneret ah, 1986), and MILO (Vander Zanden and Gajski, 1988),
each rule consists of a target configuration of physical gates and an alternative configuration
that performs the same function more efiiciently. Unlike the graph-matching approach,
optimality is not judged by gate count but by how well the design meets constraints. This
evaluation of optimality accounts for conflicts between area and time, e.g., the design with
the smallest area is typically not the design with the shortest propagation delay. Unlike the
graph-matching approach, rule-based synthesis tools do not exhaustively explore the space
of physical design but use hueristic search techniques that restrict rule transformations to
constraint-violating critical paths through a design.



Both graph-matching and rule-based approaches, as well as approaches that combine
the two, work well for synthesizing random logic and gate arrays. They provide a high-
level of design quality and ensures rapid adaptation to technology changes. The physical
characteristics of Boolean gates, such as propagation delay, load factors, and cell area, can
be stored in a "technology" table, which reduces technology mapping to a simple table look
up function. By only considering one- and two-level Boolean gates as well as other small
components that are widely available in ASIC libraries, existing logic synthesis tools can be
ported to new libraries with little effort. Further, Boolean gates that are unavailable in one
library can be expressed in terms of supported gates, e.g., implementing an AND gate with a
NAND and an INV. In terms of design quality, the literature reports performance measures
equal to and sometimes better than those of human designers. Several logic synthesis tools
have been so successful that they are now commercial products.

2.3 Limitations

Current approaches to logic synthesis are limited in two ways: range and quality. In
regards to range, they are only applicable to combinational circuits that can be described
with Boolean equations, typically random logic and gate arrays, and do not scale up to
complex regular-structured components described functionally. In regards to quality, they
are restricted to implementing designs with only a subset of components in the ASIC library
and cannot take advantage of components that might provide higher-quality designs.

Range Limitations

Although all logic components can be described with Boolean equations that relate
inputs to outputs, it is not always desirable to do so and is seldom the best approach to
logic design. As the number of inputs and outputs increase. Boolean descriptions become
problematic to specify and manipulate. The upper bound on the number of minterms in
a Boolean equation grows exponentially with each new input, until minimization of the
equation becomes computationally intractable. While each output requires only one Boolean
equation, the complexity of factoring a set of equations is also bounded by the number of
minterms that must be considered.

To emphasize the problems this creates, consider synthesizing the arithmetic component
shown in Figure 2.1. This component can perform four arithmetic operations on two n-bit
inputs A and B: addition, subtraction, increment, and decrement. The n-bit output of the
operations is generated at F. S is a 2-bit function select line; C,„ is an input carry; and

Cout is an output carry.

In the case of n = 2, there are 7 inputs and 3 outputs, requiring three Boolean equations
with a possible 127 minterms each. When n = 4, there are 11 inputs and 5 outputs, requiring
five equations with a possible 2048 minterms each. It is not too unrealistic to assume that
existing logic synthesis tools can handle either of these cases. On the other hand, when
n = 16, there are 35 inputs and 17 outputs, requiring 17 equations with a possible 2^®



So 5i a„

i i L
Arithmetic

Component

. Cout

Fig. 2.1 — Arithmetic Component

minterms each. While a Boolean description of this size can be computed, it cannot be
minimized and factored by existing synthesis tools without the availability of considerable
computing resources and without incurring considerable delay.

Many of the components in a high-level design are special-purpose combinational and
sequential circuits such as the one shown above. In fact, 16 is a small value for n. Logic
synthesis tools based on Boolean minimization and "peep hole" optimizations do not scale up
to the complexity of these regular-structured components. Human designers can implement
components much larger than this with little difficulty. While existing synthesis tools can
be used for portions of the design, they require a wider range of design knowledge and
capabilities to synthesize the design in its entirety.

5o Si F

0 0 A ADD B

0 1 A SUB B

1 0 INCR A

1 1 DECK A

Quality Limitations

The components in ASIC library provide optimized layouts for commonly occurring logic
circuits. There are essentially two classes of library components, simple and complex. Simple
components are at the SSI level; they include one-and two-level Boolean gates, one- and
two-bit multiplexers and adders, etc. Complex components are at the MSI, LSI, and VLSI
level; they include components as small as 4-bit adders to ALUs, controllers, and memories,
upto entire processors. Typically, complex components provide better performance (e.g.,
smaller, faster, more powerful), than functionally equivalent configurations of simple cells.
The use of complex library components during synthesis can ultimately improve design
quality. Complex components are not used by existing logic synthesis tools because of their
size and nonuniform library support.

Synthesis tools that take the graph-matching approach represent library components in
a canonical Boolean form that is matched against a directed-acyclic graph representing the
Boolean description of the component being synthesized. For simple library components, the
complexity of graph-matching is relatively low, so the technique works well. As the number
of inputs and outputs increases, the complexity grows by orders of magnitude, making the
task computationally intractable.

Synthesis tools that take the rule-based approach can avoid the complexity of graph
matching by specifyingthe component configuration being matched in terms ofother complex
component—^as opposed to a configuration of Boolean gates. For example, there might be
a rule for replacing a configuration of four 1-bit adders with a 4-bit adder from an ASIC



library. The problem with this approach is that complex components have more features
than simple components. More features means wide variations in library support, which
ultimately increases maintenance costs when the library a tool uses is upgraded or when the
tool is moved to a different library. By restricting synthesis tools to simple components that
are widely available in ASIC libraries, they become independent of any particular library.

As long as logic synthesis tools are applied to random combinational logic, the use of
simple components does not compromise the quality of design. However, when synthesis
tools are extended to regular-structured components, restricting designs to simple library
components will ultimately trade off design quality for technology independence.

3. THE DERIVATIONAL-PROCESS MODEL

The state of the art in logic synthesis indicates a need to move beyond techniques that
simply rely upon the manipulation of Boolean logic. In this section, we introduce the
derivational-process model of design synthesis and demonstrate how its use of top-down
design and knowledge of design styles allow it to synthesize a wider class of components and
improve design quality.

3.1 Designing by Function

Human designers overcome the problems that limit current approaches to logic synthesis
by viewing components as functions, rather than as sets of Boolean equations. By applying a
top-down design strategy, they use fundamental principles of design to iteratively decompose
high-level components into a hierarchy of increasingly smaller subcomponents. When there
are alternative ways to decompose a component, knowledge of design styles is used to select
the decomposition that best fits the design constraints. Decomposition stops when the
design reaches a level of granularity that can be implemented with components from the
ASIC library. When library components do not precisely fit, the same fundamental design
principles used in decomposing the design can be applied from the bottom-up to augment or
modify the library components until their physical characteristics match the requirements
for implementation of the generic design.

For example, consider the arithmetic component discussed in Section 2. When n = 16,
techniques based on Boolean minimization become overwhelmed by the size of the Boolean
description. Figure 3.1 illustrates a top-down design method that decomposes the component
based on its function. In Figure 3.1 (a), the arithmetic unit is decomposed into a 16-bit adder
(FA) with an external combinational circuit (CCl) on attached to its inputs. In Figure 3.1
(6), the combination circuit is further decomposed into 16 identical circuits (CC2), one for
each data input, and another combination circuit (CC3) controlling the carry input. CC2
and CC3 can be described by three simple Boolean equations and further synthesized from
these. In Figure 3.1 (c), the 16-bit adder is decomposed into four 4-bit adders. In this case,
a serial design style is selected to optimize for area, but, if time were the critical constraint.



(a)
So Si Cin

ill
A-•tr Arithmetic

B-•tr
Component

f
^out

16

So Si F

0 0 A ADD B

0 1 A SUB B

1 0 INCR A

1 1 DECR A

1
So Si Cir

CCl

(c) Cu

/

16-bit

Adder
16
/ 16

ue

C.out

16

A-hf
B-h'

B-h^

B -h?'

A-+^
B -h

Cin

16-bit

Adder
X

Y

~T"
Gout

Cin

_jL

-hf-F
16

4-bit

Adder
Fo-3

4-bit

Adder

4-bit

Adder

4-bit

Adder

Coui

T^F4-7

"/^•Fs-ii

~h^ -^12-15

So Si Ci„

¥ I i
A-F^

B-hf

—^ Cin

*16^ X

46^ Y^ So Si Cin
i

CC3:

Cin'—^in^^Q^Si

CC2;

Xi=Ai

Yi= Si(Bi®5o)+5o5i

Ais
Biz

Adder

M
Bo

Ai
Bi

¥ f

CC2

¥ f

CC2

CC2

B

A-f^
B

CC3 Ci'

Ci,

i
FA2

n:
FA2

T"
Cout

-^Xo
-^Yo

-^Xi
-*Yi

•^Xis
•^Xis

Fo-2

^3-4

Fig. 3.1 — Functional Design

a parallel design style could be used. The 4-bit adders can be further decomposed into four
Tbit adders, each of which can be implemented with a simple configuration of Boolean gates.

If the targist ASIC library contained adder components, then it is not necessary to
completely decompose the generic adders to Boolean logic. For instance, if the library
contained 4-bit adders, then decomposition could stop at this level, implementing the four
4-bit generic adders with four of the library adders. If, on the other hand, the library only



contains 2-bit adders (FA2), then the human designer can use fundamental principles of
logic design to infer that the generic 4-bit adder can be implemented with two 2-bit library
adders, as shown in Figure 3.1 (d).

We propose the derivational-process model of design as an approach to logic
synthesis that reflects the design processes of human designers. This model extends
the traditional view of logic synthesis in several unique ways, the four most significant of
which include: the addition of a top-down design phase, functional decomposition; the use
of design styles and derivation-driven search to generate a candidate set of designs that
closely satisfy design constraints; a model of technology adaptation to ensure robustness
to library changes; and the instantiation of fundamental principles of design to aid in
acquiring both design and mapping knowledge.

3.2 Synthesis as Search

In the derivational-process model, logic synthesis is viewed as search through a two-
dimensional space of designs (Kipps and Gajski, 1989). Along one dimension, designs vary
by their degree of functional abstraction. Search moves from the most abstract design (e.g.,
the initial specification of the hardware component) to the most specific design (e.g., a
physically realizable schematic). Along the other dimension, designs vary in their structural
configuration. Search moves between designs at corresponding levels of abstraction (e.g.,
the level of physical components) looking for designs that conform to design constraints. In
traversing this design space, Gajski and Brewer (1986) identify three issues that must be
addressed by a synthesis tool: style selection, technology mapping, and optimization. We
also add a fourth issue: minimization.

Style selection deals with the question of how to decompose generic components into
functionally-equivalent configurations of generic subcomponents, i.e., search along the di
mension of abstraction. There can be a variety of ways for decomposing a component,
generally distinguished by design style. For instance, decomposing a 4-bit adder into four
1-bit adders using ripple carry denotes a serial design style, while decomposing into four
1-bit adders using a carry look-ahead generator denotes a parallel style. Different design
styles can effect the eventual physical characteristics of a design in mutually exclusive ways.
Serial styles often reduce design area but increase propagation delay, while parallel styles
often reduce propagation delay but increase area.

Technology mapping deals with the related question of how to implement generic
components with physical components from an ASIC library. This also constitutes search
along the dimension of abstraction. Physical components can vary in their degree of fit to the
generic components being implemented. Simple library components, such as Boolean gates,
can have an almost one-to-one correspondence with simple generic components, possibly
limited by fan-in and load factor restrictions. By comparison, complex library components,
from adders to controllers to processors, can have wide degrees of variance in fit and require
substantial augmentation. For example, if a library supports a 4-bit adder but the generic
design requires a 5-bit adder, then the 4-bit physical adder will need to be augmented with



a 1-bit adder: A generic component can be implemented with the same library component
in multiple ways, differing in choice of design style, or it can be implemented the same way
with multiple library components, differing in their physical characteristics.

Optimization deals with the question of how to improve the physical characteristics of a
design when it does not conform to design constraints. Unlike style selection and technology
mapping, optimization performs search along the dimension of configuration. Search along
this dimension can be restricted to critical paths through the design that violate constraints
and by applicable optimization strategies that improve preformance. Common optimization
strategies include the elimination of redundant gates, such as double inverters, the conversion
of AND/OR implementations to NAND or NOR implementations, the replacement of one-
level Boolean gate configurations with two-level Boolean gates, and other more complex
strategies (Vander Zanden and Gajski, 1988). Strategies differ in regards to how they effect
the physical characteristics of a design, some reducing area while increasing delay and vice
versa. In addition, the effects of optimization strategies can be dependent on the order of
their application.

Minimization deals with the question of how to reduce graphs defining abstract char
acteristics of component behavior. These include Boolean equations used to describe com
binational circuits such as those handled by existing logic synthesis tools, state tables used
to describe sequential circuits such as counters and multipliers, and protocol tables used to
describe communication protocols such as those between processors and memories. Min
imization is another example of search along the dimension of configuration. Although
superficially similar to optimization, the states in the, minimization search space are ab
stract descriptions of component behavior, not physical designs. Minimization provides a
first step approximation to improved physical design characteristics. For instance, weak di
vision (Brayton and McMullen, 1982) is factoring technique that can be used to minimize
the number of terms in a Boolean equation (if area is a critical design constraint) or the
number of levels (if delay is critical).

Existing logic synthesis tools typically focus on the issues of minimization and optimiza
tion, restricting search to the dimension of configuration. In the derivational-process model,
we focus on all four issues. Search is conducted along the dimensions of both abstraction
and configuration in order to support synthesis of beyond the level of simple combinational
circuits.

3.3 The Derivational-Process Model

As depicted in Figure 3.2, synthesis in the derivational-process model is factored into a
design phase and an optimization phase. The design phase is further factored into interacting
processes of functional decomposition, design minimization, and technology mapping. Input
to the model is a set of functional specifications for generic hardware components. Additional
inputs include constraints on the physical characteristics of the design and an ASIC library
of physical components.



Functional decomposition is a process of top-down hierarchical design. Selecting
a design style appropriate to constraints, the functional decomposition process outputs a
netlist of connected subcomponents. Although smaller, these subcomponents can likewise
be specified at a high level and require additional decomposition. Subcomponents can also
be combinational circuits with Boolean equations, in which case they are passed to the design
minimization process. They can also be "closely" supported by complex components in the
ASIC library, in which case they are treated as "leaf" nodes in the generic design and passed
to the technology mapping process.

Technology mapping is a process that instantiates the leaf nodes of the generic design
with configurations of physical components from the ASIC library. In simple cases, such
as one- and two-level Boolean gates, the technology mapping process can draw components
directly from the ASIC library. In cases where components are "close" in functionality to
physical components in the library, the technology mapping process implements the leaf node
with library components augmented by generic subcomponents. The generic subcomponents
can be passed to the functional decomposition process for further refinement and design.

Component
Specification

Constraints

Functional

Decomposition

Physical
Design

Design
Minimization

Technology
Mapping

Physical
Optimization

Quality

Fig. 3.2 — Derivational-Process Model of Synthesis

10

Technology
Library



Design minimization is a process that subsumes a variety of graph reduction pro
cesses, such Boolean minimization, state reduction, and protocol analysis. As we are ini
tially only synthesizing combinational microarchitecture components (components without
feedback loops), design minimization can be equated to Boolean minimization, adequate
techniques for which can be found in existing logic synthesis tools. When we begin synthesis
of sequential microarchitecture components, we will incorporate state reduction techniques.
As we scale up to processors and memories, we will also incorporate techniques for protocol
minimization.

Eventually the design phase outputs a physical design, implemented with ASIC library
components, which is then passed to the physical optimization phase for fine-tuning. Phys
ical optimization is a process of refining the physical design along critical paths in order
to meet design constraints. Initially we are not planning to expend effort in improving
optimization techniques beyond the current state of the art.

Our primary focus in the development of the derivational-process model of design syn
thesis is on functional decomposition and technology mapping. The extended capabilities
resulting from these processes is one of the aspects of this research that sets it apaxt from
other efforts in Logic Synthesis. While we believe that design minimization and physical op
timization are of equal importance to synthesis, these processes have been study extensively
by the Logic Synthesis community. We recognize that scaling up to components at the mi
croarchitecture level introduces new issues in techniques for minimization and optimization;
these issues will be addressed at a later time.

3.4 Derivation-Driven Search

The processes of functional decomposition and technology mapping are controlled by
derivation-driven search, the goal of which is to generate a set of candidate library-
specific designs whose physical characteristics either meet or approximate the given design
constraints. Derivation-driven search uses design rules to explore the space of generic and
physical designs along the dimension of abstraction. Each design rule has a head that matches
generic component specifications, a set of constraining conditions that must by satisfied by
a specification for the rule to be applicable, and a body of actions that implements the
specified component by generating a netlist of connected subcomponents.

There are two types of design rules, distinguished by their role in the design process, i.e.,
whether they are used during functional decomposition or technology mapping. Design rules
for functional decomposition are called decomposition rules. Decomposition rules define
how to achieve the functionality of a generic component in terms of connected subcompo
nents. Several decomposition rules that are applicable to the same generic component re
flect alternative design styles. Design rules for technology mapping are called construction
rules. Construction rules define how to implement a generic component by augmenting the
functionality of a physical library component. Decomposition rules can be viewed as operat
ing from the top-down, designing increasingly specific components, while construction rules
can be viewed as operating from the bottom-up, designing increasingly abstract components.

11



Eventually, the most specific decomposition rules merge with the most abstract construction
rules, denoting the transition from functional decomposition to technology mapping.

To illustrate the use of decomposition and construction rules in derivation-driven search,
consider the example below in which we synthesize the design of an arithmetic logic unit
(ALU). In this example, the library of components comes from-LSI Logic, Inc. (LSI, 1987).
To keep the explanation simple, the rules shown are generalized composites of the rules that
would actually be necessary. Likewise, details of the cost function controlling search are
ignored. The purpose of this example is merely to demonstrate how the use of derivation-
directed search, functional decomposition, and technology mapping can extend synthesis to
regular-structured components and improve design quality.

3.5 Synthesis Example

Assume our generic ALU can perform a set of basic arithmetic, comparison, and logic
operations. A and B are n-bit data inputs, combined to generate an operation at output
F. The function-select lines S distinguish the operation. Carry input Cin and carry output

Cout are only useful during arithmetic operations. Output R carries the results of comparison
operations.

The rules in Figure 3.3 represent two alternative design styles: a parallel design style
is depicted in Figure 3.3 (a), and a serial style is depicted in Figure 3.3 (6). The central
component in the parallel style is an adder (FA) with carry enable Ce- By controlling the
inputs and outputs of the adder with various external combinational logic units (CC), it
can be made to perform most arithmetic and comparison operations; by disabling the carry,
it can be made to perform all sixteen logic operations on two variables. The serial style
separates the arithmetic and comparison operations, which require an adder, from the logic
operations, which only require a function generator (FG). The appropriate operations are
selected by passing the outputs of these two components through a multiplexer (MUX).

There are also two styles for designing an adder, again along the lines of a parallel and
serial. These are represented by the two decomposition rules shown in Figure 3.4. The first
rule. Figure 3.4 (a), depicts the serial style (ripple carry) in which the carry output of each
component adder is attached to the carry input of the next. The second rule. Figure 3.4 (6),
depicts the parallel style (carry look-ahead) in which a carry look-ahead generator is used to
compute the carry inputs to coiriponent adders. (The details of generating the combinational
logic needed for the CC's as well as the logic used for the function generator FG, multiplexer
MUX, and carry look-ahead generator CLA are not important to this example.)

12



5 C,„

1 1
A

ALU
B —>

Cout R

(a)

(b)

A

B

A

B

SCi;

cc

SCi,

cc

FA F

cc

F^out R

FG

MUX F

FA

cc

Co R

Fig. 3.3 — ALU Decomposition Rules

The advantage of using a parallel style in designing an ALU is that it integrates the
combinational logic needed for the arithmetic and logical operations, eliminating redundant
logic as well as a level of delay required for multiplexing. The advantage of a parallel style in .
designing an adder is that it reduces propagation delay, although it increases the size of the
circuit. An adder can be decomposed into several levels of adders, so its design can actually
use a combined parallel/serial style.

13



X —

Y—H

Ci„

_L

FA

T
Gout

(a)

•^S

Ci,

(b)

^2 72

FA FA •Ca

Si

XiYi

U

FA

52

^2^2

U

FA

C„

XnYn

u

FA

T"
5„

A„y„

Li

FA

\l If ff If 'f 'f

Pi Gi C2 P2 G2 Gn PuGn

CLA

i
5i

I
52

-^Co

•^Cc.

5„

Fig. 3.4 — Adder Decomposition Rules

Construction rules come into play by providing the synthesis tool with knowledge of
available library components and methods for their use. Among the components in the LSI
Logic library are four different adders: FA16 (16-bit parallel adder), FA4 (4-bit adder), FA2
(2-bit adder), and FAl (1-bit adder). Given the earlier decomposition rules, there are two
types of generic n-bit adders needed in designing an ALU: one with a carry enable, and one
without. The former, because none of the library adders come with a carry enable, can only
be implemented from n FAls augmented by an AND gate on its carry input, as shown in
Figure 3.5. The latter can be constructed from any of the existing adders, depending on the
size of ra, as shown by the rules in Figure 3.6.

X

Y

Ce Cir

LA

FA

T
Gout

Ge

•^S
Gi,

FAl

T
a

Fig. 3.5 — Construction Rule for Adder w/Carry Enable

14

FAl

f
Sn



X

y

Ci,

FA

"T
Gout

> 16

n > 4

-^S

n > 2

n = 1

Ci,

Ci,

Ci,

Ci,

Xi u X2 y2

i i
XnYn

FAie ^ FA16 - ... ^ Rest ^ Cout

5i 52
1

s„

Xi u X2y2

1 i 1 1
FA4 > FA4 - ... ^ Rest ^ Cout

52
1

s„

Xi U ^2 72
1 \

FA2 ^ Rest ^ Cout

T
a

X Y

11

T
Si

FAX

T
S

•Co.

Fig. 3.6 — Construction Rules for Adders

Now assume that we wish to synthesize a 32-bit ALU. Having no knowledge of the
complex library components, a design synthesis tool would probably use a parallel style
to design the ALU, decomposing the design to the level of Boolean gates; unless time or
area were extremely critical, a mixed parallel/serial style would be selected in designing
the adder. With the construction rules, however, it is possible to accurately measure the
trade off between the parallel and serial design styles in regards to the complex components
available in the ASIC library. With the parallel style, the most complex library component
that can be used is the FAl, while with the serial style it is possible to use any of the stock
adders. Given that two FAlG's sufficiently outperform 32 FAl's, then the design synthesis
tool would prefer the serial design style for ALUs to the parallel and output a higher quality
design than otherwise possible.

3.6 Synthesis of Sequential Components

Traditional approaches to logic synthesis are unable to synthesize sequential components,
i.e., components that contain memory and a feedback loop, such as flip-flops and registers,
counters, and accumulators. Although we have thus far stressed combinational logic in

15



our discussion and examples, the derivational-process model is also capable of synthesizing
sequential logic.

Consider a rough example of how a counter can be synthesized. Figure 3.7 illustrates
a design rule for an n-bit synchronous binary counter with three functions: load, count up,
and count down. This rule decomposes the counter into n JK flip-flops with J and K inputs
controlled by a combinational circuit (CC). The CC takes as inputs the current state of the
flip-flops, the function-select line S, and an n-bit value to be loaded. The design of the CC
can be generated from a set of state equations extracted from the state table for the counter
and the excitation tables for the JK flip-flops.

S

CC

Counter

JK JK JK

CP

^2

Fig. 3.7 — Counter Decomposition Rule

Figure 3.8 depicts a construction rule for implementing a decimal counter (BDC) from
a stock 4-bit binary ripple counter, such as the CM16BR counter supported by LSI Logic,
Inc. This construction rule places an external combinational circuit (CC) on the outputs
of the library counter. The single output of CC is connected to the clear direct line CD of
the counter and is enabled only when the output of the counter is binary ten, resetting the
counter to zero.

CP—
BDC

Counter

CP

CD
CM16BR

CC

Fig. 3.8 — Counter Construction Rule

3.7 The Robustness Problem

The effectiveness of the derivational-process model of design synthesis can be measured
against existing logic synthesis tools in terms of competence, quality, and robustness. Be
cause our model scales up to regular-structured microarchitecture components, we will have
improved competence. Because our model considers alternative design styles and complex
library components, we will have improved design quality. However, because our model is

16



knowledge-intensive, utilizing library-specific components, we fall short in regards to robust
ness to library changes or to changes in the fabrication technology.

Construction rules that operate on complex library components (from adders and de
coders up to entire processors) will have little or no transfer between fabrication technologies
or even between libraries in the same technology. Decomposition rules, which work on generic
components, are likely to have better transfer, but they may still embody design styles that
are only appropriate for one technology or application area and ignore alternative styles
that are appropriate for others. Generating new design rules, either when moving to a new
technology or simply adapting a rule base to advances in the same technology, can be time
consuming and error prone. It can also require a certain amount of expertise with the rule
language and rule interactions. The level of effort required to maintain and upgrade a syn
thesis tool based on this technology-specific approach could be prohibitively expensive. We
are attempting to overcoming this problem by automating technology adaptation.

4. TECHNOLOGY ADAPTATION

We propose to overcome the robustness problem with a model of technology
adaptation. This model is intended to aid in the generation of design rules given a set of
fundamental principles of design, knowledge of the ASIC vendor's library, and samples of
user edits to synthesized designs.

4.1 Knowledge Acquisition

Addressing the robustness problem in design synthesis tools, i.e., the problem of encod
ing design rules to meet library and technology changes, is one of primary objectives of our
proposed research. The robustness problem is essentially an instance of the knowledge ac
quisition bottleneck encountered in developing expert systems. The Machine Learning and
Artificial Intelligence literature report many efforts to reduce cost and increase preformance
of knowledge-based systems with semi-automated tools for aiding in the knowledge acquisi
tion process. Examples include STRIPS (Fikes et ah, 1972), which learned macro-operators
for planning the blocks world domain, TEIRESIAS (Davis, 1982), which interactively re
paired and extended the knowledge base of the MYCIN (Shortliffe, 1976) medical diagnostic
system, LEX (Mitchell et ah, 1983), which learned search control heuristics for problem solv
ing in integral calculus, and LEAP (Mitchell et ah, 1985), which learned new design rules
for the VEXED (Mitchell et al., 1984) IC design system. -

Researchers have addressed the knowledge acquisition bottleneck in other design systems
with techniques for automating the acquisition of problem-solving knowledge. A similar
approach can be used for achieving technology independence in design synthesis. Robustness
can be restored by automating the process of technology adaptation with the application of
techniques similar to those found in the Machine Learning literature. In this way, the role
of learning in design synthesis can be viewed as one of knowledge maintenance (Kipps and
Gajski, 1989).

17



Our model of technology adaptation and its relationship to design synthesis is illustrated
in Figure 4.1. This model consists of two learning components: technology fusing and edit
analysis.

Specmcation

Design
Synthesis

Decomposition
Rules

Construction

Rules

Optimization
Rules

User

Edit

Technology
Fusing

Edit

Analysis

Modmed

Design

Technology
Library

Design
Principles

Fig. 4.1 — Model of Technology Adaptation

The purpose of technology fusing is to generate construction rules given knowledge of
fundamental principles of design, a set of target generic components, and a library of physical
components. This component operates as a preprocess to synthesis, generating design rules
without having to run the synthesis tool. The purpose of edit analysis is to acquire new
decomposition rules reflecting design styles appropriate to a library or application area.
Edit analysis acquires new decomposition rules by examining changes made to synthesized
designs by the user and explaining those changes in terms of fundamental principles of design.

4.2 Fundamental Principles of Design

As outlined above, both technology fusing and edit analysis depend upon knowledge of
fundamental principles of design. When presented with new library components or a new
application area, human designers adapt quickly. They do so by bringing to bear bits of
knowledge and techniques for logic design that are essentially technology and application
independent. This knowledge is what we refer to as the fundamental principles of de-

18



sign. The fundamental principles of design govern how generic designs can be organized,
decomposed, implemented.

One aspect of our proposed research is to identify these fundamental principles of design
and demonstrate their use. Those that we have identified so far include:

(1) exclusion, ignoring inputs and outputs;

(2) externalization, augmenting inputs and outputs with combinational circuits;

(3) cascading, combining (or splicing) components of the same type in sequence;

(4) factoring, combining like components in a tree or graph arrangement;

(5) multiplexing, combining components of different type through a multiplexer or bus.

Use of these principles is demonstrated by example in Figure 4.2. For this example,
assume that the physical component is a simple 4-bit ALU (ALU4) with four operations:
addition, subtraction, nand, and nor.

To generalize the data width of the ALU4 so as to implement a generic n-bit ALU
with the same four operations, we can apply the first and third principles. When n < 4,
as in Figure 4.2 (a), the ALU4 can be used to implement the n-bit ALU by setting the
4 —n least significant input pins to low and grounding the 4 —n least significant output
pins. When n > 4, as in Figure 4.2 (6), the ALU4 can be used to implement the n-bit
ALU by cascading [|-J ALU4's, rippling carries and attaching a generic mod(n, 4)-bit ALU
at the tail. To generalize the functionality of the ALU4, we can apply the second and
fifth principles, augmenting I/O when the change in functionality is slight and multiplexing
when a more complicated change is required. In Figure 4.2 (c), the ALU4 is generalized
to implement an ALU with relational operators (R) by augmenting the select line, data
output, and carry output with an external combinational circuit (CC). In Figure 4.2 (d), the
ALU4 is generalized to implement an ALU with all 16 logic operations. Since this marks
a substantial change from the functionality of the ALU4 it is not done by augmentation
but by coupling the ALU4 to a function generator (FG) and passing the outputs through a
multiplexer (MUX). Although not shown here, examples of the fourth principle, factoring,
can be seen in variablizing the data width of components such as decoders and multipliers.

4.3 Technology Fusing

The objective of technology fusing is the generation of technology mapping knowledge,
in the form of construction rules, subject to a set of decomposition rules and ASIC library
components. Inputs to the technology fusing process include:

• a set of target generic components;

• a library of physical components;

• knowledge of fundamental principles of design.

Output are construction rules for implementing generic components with library components.
This process is performed in advance of synthesis to allow immediate use the library.

19



(a) Exclusion

5 Ci„

Jl_L
ALU

"T
Cout

(6) Cascading

5 Ci,

i_
^ ALU

I
Cout

(c) Externalization

ALU

TT
Cout R

(c?) Multiplexing

5 Cin

J_Jl

J ALU
T"
Cout

n < A

n > 4

(comparison operations)

(16 logic operations)

L_L
ALU4

-

I Ignore

5

1 1
X

Y
ALU4 -^F

1
Cout

(ADD, SUB, NAND, NOR)

1 1 1 .1

ALU4
-

ALU4

1

ALU4
If 7

CO

If 1

ALU4
' 1

1—>
MUX

EG

1 >t

—s» od{n, 4)-b
ALU

Fig. 4.2 — Fundamental Principles of Design

Technology fusing operates by generating rules that generalize the absolute characteris
tics of physical components. Characteristics of a component correspond to such things as
the type and width of its inputs and outputs, and the functions the component performs.
For physical components, characteristics are said to be absolute because their values are
fixed and unchangeable. For generic components, characteristics can be absolute or variable.
Variable characteristics are specified at design time. For instance, a decomposition rule may
mention a generic n-bit adder, where n is set to 16 during functional decomposition. Physical
components are drawn from a given ASIC library, while generic components are drawn from
decomposition rules.

20



From derivations of the fundamental principles of design outlined above, technology
fusing can generate construction rules using a form of means-ends analysis. As defined by
Newell and Simon (1963), means-ends analysis is a problem-solving algorithm that finds
solutions by reducing differences between an initial state and a goal state, using a set of
operators for reducing individual differences.

For our purpose, the absolute characteristics of a physical component correspond to the
initial state while the variable characteristics of a generic component correspond to the goal.
Absolute characteristics that have not been generalized correspjond to differences, and the
fundamental principles of design correspond to operators for reducing those differences. For
each physical component in the target technology library, technology fusing selects a generic
component (extracted from the decomposition rules) that is "close" in functionality to the
physical component. Technology fusing then iteratively generates a sequence of construc
tion rules that implements the generic component using the physical component. On each
iteration, technology fusing selects a difference between the two components and a design
principle that could reduce that difference and generates a construction rule based on that
principle.

Each generated construction rule implements a component that is a little closer in func
tionality to the generic component. Eventually, a construction rule is generated that exactly
implements the generic component and iteration stops. The technology fusing process then
continues to the next physical component.

4.4 Edit Analysis

The objective of edit analysis is the acquisition of design knowledge, in the form of
decomposition rules, subject to user modifications to synthesized designs. Input to the edit
analysis process includes:

• the top-level component specification;

• a list of changes made to the synthesized design;

• a library of physical components;

• knowledge of fundamental principles of design.

The output of the process is a set of decomposition rules that generalize an explanation of
how the modified design implements the original component specification. Edit analysis is
intended to be preformed as a postprocess to synthesis to allow users to fill in gaps in the
knowledge base as they become apparent.

Edit analysis operates by capturing new design knowledge when deficiencies are dis
covered in the knowledge base of the synthesis tool. There are various reasons for these
appearing in the knowledge base at all. The knowledge base of the synthesis tool may have
been tailored for one application area and inappropriate for others. Another possibility is
the need for new design styles after the encoding of the knowledge base. Likewise, the syn
thesis tool could be introduced to a ASIC library containing physical components for which

21



no generic component is a "close" fit, i.e., a situation requiring new decomposition rules for
technology fusing to have been useful.

Deficiencies are said to be "detected" when the user finds it necessary to modify syn
thesized designs. Such modifications would trigger edit analysis in the hopes of filling in the
missing design knowledge. Working interactively with the user, edit analysis would attempt
to reconstruct the steps taken in formulating the modified design as instantiations of the
fundamental principles of design described earlier. These steps would then be generalized
and added to the design knowledge of the synthesis tool.

Working interactively with the user, edit analysis would reconstruct the steps in the
decomposition of the design that explains how the user reached the new design in terms of
the fundamental principles of design. The decomposition would form a proof that can be
generalized to provide new decomposition rules. These new decomposition rules would be
able to reproduce the steps taken by the user when designing similar components. As an
example, consider the two decomposition rules for an ALU from Figure 3.2. Assume that our
logic synthesis tool only has a design rule that uses a parallel style, as shown in Figure 3.2
(a). If a user modified the synthesizeddesign of an ALU to reflect the serial design style, edit
analysis could reconstruct the decomposition of the modified ALU design using principles
such as cascading and multiplexing, and then generalize this decomposition to generate the
rule in Figure 3.2 (6).

4.5 Technology Adaptation as Learning

Recent efforts in Knowledge-Based Design have been investigating the role learning plays
in the human design process (Mostow, 1985). CGEN (Birmingham and Siewiorek, 1988) is
the learning component of a knowledge-based design tool that queries the user for missing
design steps. CGEN fills in the gaps in the knowledge base with rules that generalize the
user's response. Another approach uses analytic learning techniques, such as explanation-
based generalization (EBG) (Mitchell et al., 1986). In the LEAP system, Mitchel et al.
(1985) proposed a "learning apprentice" system for acquiring design rules by observing the
actions of an expert designer. LEAP records the actions of the designer, generates proofs
(or explanations) that those actions satisfy the design constraints, and then generalizes the
proofs to create the conditions for new design rules. This idea has been further extended
to acquiring generalized design plans as macro-operators in the ARGO system (Huhns and
Acosta, 1988).

When viewed from a Machine Learning perspective, the processes of technology fusing
and edit analysis can be related to analytic learning techniques. The process of technology
fusing is similar to that of learning macro-operators, while the process of edit analysis is
similar to the learning apprentice approach taken in LEAP. Our work differs from other
efforts in logic design in that we do not limit our "domain theory" to Boolean logic; rather,
our domain theory incorporates the fundamental principles of (logic) design.

22



Technology Fusing as Learning Macro-Operators

A macro-operator is a sequence of primitive operators from a problem domain that solve a
goal. Compiling primitive operators into macro-operators is a method for avoiding otherwise
intractable search problems, such as nonserializable subgoals (Korf, 1985), or simply for
reducing search. Macro-operators have been applied to domains such as robot planning
(Fikes et ah, 1972), puzzle solving with weak methods (Korf, 1985), and natural language
text understanding (Mooney and DeJong, 1985).

In our models of synthesis, design rules can be viewed as macro-operators that combine
a sequence of three design operations to synthesize one level of component decomposition.
The first operation computes a distinct set of specifications for the subcomponents required
by the synthesized design. The second operation generates (possibly replicating) component
instances from the specifications. The third operation connects component instances into a
netlist design. After a design rule is executed, the generated subcomponent specifications are
added to a queue, and their designs are synthesized at a later iteration through the design
process.

Given a generic and library component for which there is a "close" fit, the task of
technology fusing is to generate a sequence of construction rules that implements the generic
component with the library component. This process is similar to learning a sequence of
macro-operators, where each construction rule is a macro-operator whose goal is to reduce
one more difference between the generic component and the library component. Within this
framework, the fundamental principles of design act as a theory of the domain that guides
learning.

Edit Analysis as EBG

In recent years, explanation-based generalization (EBG) has been exploredextensivelyas
an alternative to data-intensive empirical learning methods (DeJong, 1983) (Kedar-Cabelli,
1985) (Mahadevan, 1985) (Mitchell et ah, 1986) (DeJong and Mooney, 1986) (Pazzani, 1987)
(Minton, 1988). For tasks in concept formation, EBG methods generalize concept descrip
tions from a single training instance by first constructing an explanation of how the training
instance satisfies the definition of the concept under study. The features of the training
instance required by the explanation are then used as the basis for formulating a general
concept description. The justification for this description follows from the explanation con
structed for the training instance. EBG is used in LEAP (Mitchell et ah, 1985) as part of a
learning apprentice system for acquiring design rules by observing the actions of an expert
designer. LEAP records the actions of the designer, generates proofs that those actions sat
isfy the design constraints, and then generalizes the proofs to create the conditions for new
design rules.

In our model of synthesis, the user is decoupled from the design process and, therefore,
cannot lead the synthesis tool through the correct sequence of steps in decomposing the
design. EBG techniques can still be applied during edit analysis to acquire new decomposi
tion rules. By treating the fundamental principles of design as a theory of the domain, edit

23



analysis has a set of guide lines for reconstructing the steps taken by the user in developing
the modified design. This reconstruction also acts as a proof of the new design's soundness.
Each step in the reconstruction of the design can be related to a decomposition rule. If a rule
for the step is not already present in the knowledge base, then the step can be generalized
to give a new decomposition rule that can be used for similar situations occurring in the
future.

A significant difference between our work and LEAP comes from the choice of domain
theories. In LEAP, the domain theory for VLSI design consisted of postulates in Boolean
logic, such as De Morgan's Law. Such a domain theory is adequate for explaining the
structure of random logic. However, as with approaches to logic synthesis based on Boolean
minimization, this domain theory does not scale up. Boolean logic does not explain the
design of regular-structured logic components. On the other hand, our domain theory is
based on fundamental principles of logic design, which do explain functional decomposition.

The fundamental principles of design also eliminate two problems sited by Mitchell:
determining the grain size of the acquired rules, and selecting the portions of the proof to
generalize. Eirst, the proper grain size is exactly that portion of the proof explained by the
design principle. This is simply an artifact of the design principles; they were develop to
instruct designers on how to take the next step in the design process. Second, as we discussed
with technology fusing, each design principles can be used to generalize some aspect of a
physical component. This property can also be used to select the appropriate portions of
the proof step to generalize.

5. CONCLUSION

The research proposed here improves the state of the art in design synthesis. It extends
the focus of logic synthesis from combinational circuits described with Boolean equations
to regular-structured components that are beyond the capabilities of existing logic synthesis
tools. In particular, we propose the following efforts:

• We propose to define techniques for synthesizing complex hardware com
ponents from their functional description using the derivational-process
of design synthesis.

• We propose to define techniques for automating technology adaptation
in design synthesis through the processes of technology fusing and edit
analysis and the use of fundamental principles of design.

• We propose to exploit the processes of technology fusing and edit analysis
for the acquisition of mapping and design knowledge.

• We propose to validate our model of adaptive design synthesis with a
prototype tool for designing LSI-level components and measuring the level
of effort required to maintain this tool given technology changes.

While our current focus is on adaptive design synthesis in the VLSI domain, we hope to
eventually generalize this model and apply it to other domains of design.

24



Our proposed research can be viewed as integrating current research in Artificial Intel
ligence and Computer-Aided Design. In AI, several research efforts are examining the role
of learning in design. While examples are often drawn from VLSI, research objectives are
on identifying general learning techniques, not solving problems in the design domain. Our
research concentrates on solving specific problems in IC design, such as learning how to use
a vendor's parts library. In CAD, researchers focus on automating aspects of the design pro
cess. While the CAD community recognizes the potential of techniques from AI, the transfer
of technology has largely been from the area of Expert Systems and not Machine Learning.
In our research, we are advancing a comprehensive model of synthesis that improves design
quality and builds on techniques from Machine Learning to counter technology dependency.

By coupling our model of design synthesis with a technology adaptation component as
outlined in this report, we will show how to produce a synthesis tool that can take advantage
to technology-specific knowledge and still adapt readily to technology changes. The resulting
tool will be capable of generating designs of comparable quality to those generated by human
designers and designs of superior quality to those generated by existing synthesis tools.
The technology adaptation component will automate the processes of tool maintenance and
upgrade.

To validate our approach, we are developing an adaptable design synthesis tool. This
tool is built around two separate inference engines. One is defined as a backward-chaining
rule interpreter and is used for derivation-driven search during functional decomposition and
technology mapping. The other is defined as a forward-chaining interpreter that performs
state-driven search during optimization. The technology adaptation components center on
the use of functional derivations of the fundamental principles of design discussed earlier.
These derivations describe how design principles can be used for particular classes of compo
nents, such as decoders, encoders, shifters, counters, adders, etc. For instance, the cascade
principle has a different derivation for logic units, which can be cascaded independently, than
it has for arithmetic and comparison units, which must be connected by carries.

The research and development effort we propose can be broken down into the three
phases listed below. In phase I, the synthesis tool will be oriented towards synthesizing
combinational data path logic using MSI-level components from the LSI Logic Database
and then transferring to LSI-level components from the Texas Instruments Database. For
example, synthesizing a 32-bit ALU with FA16 fast adders from LSI Logic or with SN74181 4-
bit ALUs from Texas Instruments. In phase II, we will introduce sequential-storage circuits,
while in phase III, we will extend our work to the synthesis of microcomputers.

Validation will be done by comparison with other synthesis tools, as well as human
designers. We will measure the effectiveness of our system in terms of design quality and
robustness to technology changes: both changes to a known technology, and transfer to a
new technology.

25



REFERENCES

Birmingham, W.P., D.P. Siewiorek, Automated Knowledge Acquisition for a Computer
Hardware Synthesis System, EDRC 18-06-88, Dept. of Electrical and Computer Engi
neering, Carnegie Mellon University, Pittsburgh, PA, 1988.

Bergamaschi, R.A., "Automatic Synthesis and Technology Mapping of Combinational
Logic," Proceedings of the IEEE International Conference on Computer-Aided Design
(ICCAD-88), pp. 466-469, Nov. 1988.

Brayton, R.K., C.T. McMullen, "The Decomposition and Factorization of Boolean Expres
sions," Proceedings of the International Symposium on Circuits and Systems, pp. 49-54,
1982.

Brayton, R.K., E. Detjens, S. Krishna, T. Ma, et ah, "Multiple-Level Logic Optimiza
tion System," Proceedings of the International Conference on Computer-Aided Design
(ICCAD-86), pp. 356-359, Nov. 1986.

Darringer, J.A., W.H. Joyner, "A New Look at Logic Synthesis," Proceedings of the 17th
Design Automation Conference, pp. 543-549, June 1980.

Davis, R., "Applications of Meta LevelKnowledge to the Construction, Maintenance and Use
of Large Knowledge Bases," Knowledge-Based Systems in Artificial Intelligence, R. Davis
and D.B. Lenat (eds.), McGraw-Hill, New York, 1982.

de Gens, A.J., D.J. Gregory, "The Socrates Logic Synthesis and Optimization System," De
sign Systems for VLSI Circuits: Logic Synthesis and Silicon Compilation, G. De Micheli,
A. Sangiovanni-Vincentelli, P. Antognetti (eds.), Martinus Nijhoff Publishers, Boston,
MA, 1986.

de Gens, A.J., "Logic Synthesis Speeds ASIG Design," IEEE Spectrum, vol. 26, no. 8,
pp. 27-31, Aug. 1989.

DeJong, G., "Acquiring Schemata through Understanding and Generalizing Plans," Proceed
ings of the Eighth International Joint Conference on Artificial Intelligence (IJCAI-83),
pp. 462-464, Aug. 1983.

DeJong, G., R. Mooney, "Explanation-Based Learning: An Alternative View," Machine
Learning, vol. 1, no. 2, pp. 145-176, 1986.

Detjens, E., G. Gannot, R. Rudell, A. Sangiovanni-Vincentelli, A. Wang, "Technology Map
ping in MIS," Proceedings of the International Conference on Computer-Aided Design
(ICCAD-87), pp. 116-119, Nov. 1987.

Fikes, R.E., P.E. Hart, N.J. Nilsson, "Learning and Executing Generalized Robot Plans,"
Artificial Intelligence, vol. 3, no. 4, pp. 251-288, 1972.

Gajski, D.D., F.D. Brewer, "Towards Intelligent Silicon Compilation," Design Systems for
VLSI Circuits: Logic Synthesis and Silicon Compilation, G. De Micheli, A. Sangiovanni-
Vincentelli, P. Antognetti (eds.), Martinus Nijhoff Publishers, Boston, MA, 1986.

26



Huhns, M.N., R.D. Acosta, "Argo: A System for Design by Analogy," IEEE Expert, pp. 53-
68, Fall 1988.

Joyner, W.H., Jr., L.H. Trevillyan, D. Brand, T.A. Nix, B.C. Gundersen, "Technology Adap
tation in Logic Synthesis," Proceedings of the 23rd Design Automation Conference, pp. 94-
100, June 1986.

Kedar-Cabelli, S.T., "Purpose-Directed Analogy," Proceedings of the Cognitive Science So
ciety Conference, 1985.

Keutzer, K., "DAGON; Technology Binding and Local Optimization by DAG Matching,"
Proceedings of the 24th Design Automation Conference, pp. 341-347, 1987.

Kipps, J.R., D.D. Gajski, "The Role of Learning in Logic Synthesis," Proceedings of the
IEEE Workshop on Tools for AI, Oct. 1989.

Korf, R.E., Learning to Solve Problems by Searching for Macro-Operators, Pitman Advanced
Publishing Program, Boston, MA, 1985.

Kowalski, T.J., An Artificial Intelligence Approach to VLSI Design, Kluwer Academic Pub
lishers, Boston, MA, 1985.

Lis, J.S., D. Gajski, "Synthesis from VHDL," Proceedings of the International Conference
on Computer Design (ICCD-88), Nov. 1988.

LSI Logic, Inc., CMOS Macrocell Manual, Milipitas, CA, 1987.

Mahadevan, S., "Verification-Based Learning: A Generalization Strategy for Inferring
Problem-Decomposition Methods," Proceedings of the Ninth International Joint Con
ference on Artificial Intelligence (IJCAI-85), Aug. 1985.

Mitchell, T.M., P.E. Utgoff, R.B. Banerji, "Learning by Experimentation: Acquiring and
Refining Problem-Solving Hueristics," Machine Learning, R.S. Michalski, J.G. Carb.onell,
T.M. Mitchell (eds.), Tioga Publishing Company, Palo Alto, CA, 1983.

Mitchell, T.M., L.I. Steinberg, J.S. Shulman, "A Knowledge-Based Approach to Design,"
Proceedings of the IEEE Workshop on Principles of Knowledge-Based Systems, pp. 27-
34, Dec. 1984.

Mitchell, T.M., S. Mahadevan, L.I. Steinberg, LEAP: A Learning Apprentice for VLSI De
sign, Proceedings of the Ningh International Joint Conference on Artificial Intelligence
(IJCAI-85), pp. 573-580, Aug. 1985.

Mitchell, T.M., R.M. Keller, S.T. Kedar-Cabelli, "Explanation-Based Generalization: A
Unifying View," Machine Learning, vol. 1, no. 1, pp. 47-80, 1986.

Minton, S., Learning Effective Search Control Knowledge: An Explanation-Based Approach,
Ph.D. Thesis, Carnegie Mellon University, Pittsburg, PA, 1988.

27



Mooney, R.J., G.F. DeJong, "Learning Scheniata for Natural Language Processing," Pro
ceedings of the Ninth International Joint Conference on Artificial Intelligence (IJCAI-85),
pp. 573-580, Aug. 1985.

Mostow, J., "Toward Better Models of the Design Process," The AI Magazine, vol. 6, no. 1,
pp. 44-57, Spring 1985.

Newell, A., H.A. Simon, "GPS: A Program that Simulates Human Thought," Computers
and Thought, E.A. Feigenbaum and J. Feldman (eds.), McGraw-Hill, New York, NY,
1963.

Pazzani, M.J., "Failure-Driven Learning of Fault Diagnosis Heuristics," IEEE Transactions
on Systems, Man, and Cybernetics, vol. 17, no. 3, June 1987.

Shortlilfe, E.H., Computer-Based Medical Consultations: MYCIN, Elsevier, New York, 1976.

Smith, D., "What is Logic Synthesis?," VLSI Design, pp. 18-26, Oct. 1988.

Vander Zanden, N., D. Gajski, "MILO: Microarchitecture and Logic Optimizer," Proceedings
of the 25th Design Automation Conference, pp. 403-408, 1988.

28




