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The clinical high-risk period before a first episode of psy-
chosis (CHR-P) has been widely studied with the goal of 
understanding the development of psychosis; however, less 
attention has been paid to the 75%–80% of CHR-P indi-
viduals who do not transition to psychosis. It is an open 
question whether multivariable models could be developed 
to predict remission outcomes at the same level of perfor-
mance and generalizability as those that predict conver-
sion to psychosis. Participants were drawn from the North 
American Prodrome Longitudinal Study (NAPLS3). An 
empirically derived set of clinical and demographic pre-
dictor variables were selected with elastic net regulari-
zation and were included in a gradient boosting machine 
algorithm to predict prodromal symptom remission. The 
predictive model was tested in a comparably sized inde-
pendent sample (NAPLS2). The classification algorithm 
developed in NAPLS3 achieved an area under the curve of 
0.66 (0.60–0.72) with a sensitivity of 0.68 and specificity 
of 0.53 when tested in an independent external sample 
(NAPLS2). Overall, future remitters had lower baseline 
prodromal symptoms than nonremitters. This study is the 
first to use a data-driven machine-learning approach to as-
sess clinical and demographic predictors of symptomatic 
remission in individuals who do not convert to psychosis. 
The predictive power of the models in this study suggest 
that remission represents a unique clinical phenomenon. 
Further study is warranted to best understand factors con-
tributing to resilience and recovery from the CHR-P state.

Key words:   remission/clinical high risk/schizophrenia/ps
ychosis/risk prediction/machine learning

Introduction

The clinical high risk for psychosis (CHR-P) paradigm 
is widely used to study predictors of psychosis. Most 
CHR-P individuals are ascertained due to a recent onset 
or worsening of attenuated psychotic symptoms; these 
individuals also show moderate to severe impairments in 
social and role functioning.1 Well performing and gener-
alizable multivariable “risk calculator” prediction models 
for outcomes of psychosis among CHR-P samples have 
been developed and validated.2–7 However, less attention 
has been paid to the approximately 75%–80% of CHR-P 
individuals who do not transition to psychosis.8,9 This 
group experiences heterogeneous outcomes, not simply 
representing the inverse of conversion.10–12 Specifically, 
while most nonconverting CHR-P individuals continue 
to experience some positive symptoms or remain socially, 
cognitively, or functionally impaired, some appear to 
show a remission in symptoms, wherein all positive symp-
toms are rated below the prodromal threshold.13 It is an 
open question whether multivariable models could be de-
veloped to predict remission outcomes as distinct from 
other outcomes in nonconverters14 at the same level of 
performance and generalizability as those for prediction 
of conversion to psychosis.

Only a handful of studies have examined the clin-
ical characteristics of CHR-P remitters. In the North 
American Prodrome Longitudinal Study (NAPLS2), 
group-based multitrajectory modeling identified a group 
that exhibited improvement in all symptom domains and 
functioning and a high likelihood of symptomatic and/or 
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functional remission and 2 other groups that exhibited ei-
ther moderate or no improvement in symptoms and func-
tioning and a lower likelihood of remission.15 In other 
studies, remitters had better neurocognitive functioning 
at baseline than nonremitters in domains of attention, 
verbal memory, verbal fluency, and immediate visual 
memory, and nonremitters may even show continued de-
terioration in domains of semantic fluency and speed of 
processing as compared to remitters.13,16,17 Overall, those 
who do not convert to psychosis still seem to be more 
impaired and symptomatic than healthy controls, though 
some do show a trajectory consistent with a reduction of 
symptom severity below the prodromal threshold.13,18

Ultimately, a better understanding of the character-
istics and outcomes of individuals who remit from the 
CHR-P syndrome could inform treatment programs, as 
remission would be a more proximal goal for interven-
tions administered during the CHR-P state than preven-
tion of conversion to psychosis.19 Further, the ability to 
predict whether an individual might remit spontaneously 
or with usual and customary treatment could be useful 
for randomization in clinical trials of stratified interven-
tions; such cases might be excluded or filtered into a dif-
ferent intervention group to improve sensitivity of the 
trial to differentiate effects of interventions.

The present study takes an empirical machine-learning 
approach to predicting symptom-defined remission as an 
outcome of the CHR-P syndrome. While this approach 
has had some success when applied to predicting con-
version to psychosis,4,5 negative symptoms,20 and psychi-
atric treatment response,21–23 it is novel in the context of 
predicting remission from the CHR-P state. We devel-
oped predictive models using a machine-learning classi-
fication algorithm and tested the validity/generalizability 
of models discovered in NAPLS3 in a comparably sized 
and fully independent sample (NAPLS2).

Methods

Participants

NAPLS3  The discovery sample included CHR-P parti-
cipants from a 9-site observational consortium study that 
aims to identify predictors and mechanisms related to 
conversion to psychosis.24 Participants were individuals 
aged 12–30 meeting criteria for a psychosis risk syndrome 
as determined by the Criteria of Prodromal States25 and 
as assessed by the Structured Interview for Psychosis-risk 
Syndromes (SIPS).26,27 Exclusion criteria included any 
current or lifetime DSM-IV28 diagnosis of a psychotic 
disorder, IQ <70, the presence of a neurological disorder, 
or psychosis-risk symptoms caused by another Axis I dis-
order. Study visits occurred every 2 months for the first 
8  months of the study, and at 12, 18, and 24  months. 
After 24  months, the longer-term follow-up period in-
cluded phone-based checkups at 6-month intervals up to 
48 months.

NAPLS2  As a test of replication, the models developed 
in the discovery sample (NAPLS3) were tested in a com-
pletely independent sample that had been gathered in the 
prior iteration of the NAPLS study (NAPLS2).29 This 
wave includes data collected at 8 study sites—all sites in 
NAPLS3 except UCSF—between 2008 and 2012, and 
the samples are independent and nonoverlapping with re-
spect to NAPLS3. NAPLS2 included participants aged 
12–35. All other inclusion and exclusion criteria were the 
same. Study visits in NAPLS2 occurred every 6 months 
for the duration of the 2-year follow-up period. We took 
a complete cases approach to the present analysis, as the 
methods used are not robust to missing data, and partici-
pants were excluded from either sample if  baseline meas-
ures were incomplete. Those excluded did not differ from 
those included in regards to total baseline positive symp-
toms and remission status (see eTable 8 for a full com-
parison of demographic variables between excluded and 
included participants). All participants in both NAPLS2 
and NAPLS3 provided written informed consent after re-
ceiving a complete description of the study.

Participants from both NAPLS2 and NAPLS3 pro-
vided written informed consent for the study. The pro-
tocol and consent forms for each study were approved by 
the institutional review boards at each site.

Clinical Assessments

Clinical assessments were administered every 6  months 
or at the time of conversion to psychosis. Measures in-
cluded the SIPS, the Scale of Psychosis-Risk Symptoms 
(SOPS),30 the Calgary Depression Scale for Schizophrenia 
(CDSS),31 the Brief  Assessment of Cognition in 
Schizophrenia (BACS) Symbol Coding (SC),32 the 
Hopkins Verbal Learning Test-Revised (HVLT-R),33 
the Global Assessment of Functioning scale (GAF),34  
the Global Functioning Social scale (GFS), and the 
Global Functioning Role scale (GFR).35 Demographic 
information including age, sex, race, ethnicity, years of 
education, and parental educational attainment were col-
lected at baseline.
Remission  Participants met criteria for remission if  
they scored below the “prodromal risk” threshold on 
each of the positive symptom subscale items on the 
SOPS.36 Participants achieving symptom ratings below 
this threshold may still experience mild forms of positive 
symptoms (eg, hypervigilance in the absence of danger, 
unusual superstitions) but do not experience significant 
distress or impairment due to these experiences.25 For 
the present study, we calculated “sustained remission” 
according to whether participants met criteria for remis-
sion at either 6, 12, or 18 months and continued to meet 
remission criteria at the next consecutive 6-month study 
visit. Nonremitters included those who never met criteria 
for sustained remission and those who transitioned to 
psychosis.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab115#supplementary-data
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Statistical Analysis

All statistical analyses were performed in R version 
4.4.0.37 Packages used in this analysis include glmnet,38 
smotefamily,39 and caret.40

Feature Selection  Although a large number of clinical 
and demographic variables were available to include in the 
predictive model, it was unlikely that all of these variables 
would contribute significantly in the final model. Thus, 
as a first step, we performed a feature selection method 
to identify a smaller set of predictor variables that may 
be important in predicting remission. An elastic net reg-
ularization method was used to select no more than 10 
variables from a set of 40 available baseline clinical and 
demographic variables representing the primary clinical 
dimensions of interest (eg, attenuated psychotic symp-
toms, affective symptoms, neurocognitive functioning, 
global/social/role functioning, and demographics). These 
included the individual items from all 4 subscales on the 
SOPS, change in GAF, GFR, and GFS over the past 
year, BACS-SC score, HVLT-R score, all individual items 
from the CDSS, age, sex, race, ethnicity, educational at-
tainment, and parental educational attainment. This set 
of variables comprises a large portion of the clinical bat-
tery administered in the NAPLS studies and measures 
were included if  they were administered in both studies 
and if  most of the participants completed them in both 
studies. The final feature set size was limited to a max-
imum of 10 variables to maintain degrees of freedom in 
the final model given the relatively small number of re-
mitters in the NAPLS3 discovery sample (N = 75/568). 
The elastic net method iteratively fits logistic regression 
models predicting remission status while applying a 
shrinkage penalty to the coefficients of highly correlated 
or unimportant predictor variables. During this process, 
the elastic net tests values ranging from 0.0001 to 0.1 for 
the penalization parameter lambda to identify the optimal 
coefficient shrinkage penalty for the final set of predictor 
variables. The elastic net also tests values ranging from 0 
to 1 for the parameter alpha which selects the contributing 
weight of both the ridge (alpha = 0) and lasso (alpha = 1) 
penalties and ultimately helps to determine the number 
of predictor variables to include through the coefficient 
shrinkage process.41 To limit the final feature set size, we 
specified in the parameters that the resulting feature set 
should consist of no more than 10 variables with nonzero 
coefficients, which we then used as the final feature set. 
The final parameter values included were alpha = 0.5 and 
lambda = 0.03. Prediction models were then built with the 
final set of selected predictor variables. For all predictor 
variables selected during the feature selection process, t 
tests comparing mean differences between remitters and 
nonremitters were performed for descriptive purposes 
and to aid in interpretation (table 2).
Classification  The predictive classification model was 
built using a gradient boosting machine (GBM) algo-
rithm using the caret40 package in R. GBM is a powerful 

and commonly used machine-learning algorithm which 
performs classification through an ensemble of trees ap-
proach. Through this approach, the algorithm builds 
shallow decision tree models wherein each successive 
tree built learns from the error of the previous tree.42 
During the training phase, the GBM model was tuned 
across 2 main parameters using default values included 
in the caret package: number of trees built (between 50 
and 150) and the number of splits performed within each 
tree (between 1 and 3). The final parameter values used 
were number of trees  =  50 and number of splits per-
formed  =  2. In addition, 10-fold cross-validation was 
used in the training process wherein the NAPLS3 data 
were randomly split into 10 subsets, then the model was 
iteratively trained on 9/10 of the folds together and tested 
on each left-out fold exactly once. Through this process, 
the model hyperparameters were tuned within each fold 
using a grid search technique which was optimized for 
classification performance as evaluated by the area under 
the receiver operating characteristic curve (ROC) metric 
of discriminability between remitters and nonremitters. 
Additional classification algorithms were tested for com-
parison in performance to GBM, the results of which are 
presented in eTable 7.
Balanced Sampling  Due to the class imbalance in re-
mission outcomes, we employed a synthetic minority 
oversampling technique (SMOTE) in the training phase. 
This method creates a new dataset in which the minority 
class in the outcome variable is oversampled based on in-
formation from neighboring data points, thus reducing 
bias induced by class imbalance during model learning.43 
The SMOTE method was applied within each of the 10 
training folds so as to avoid information leakage across 
folds in the training set.
Training and Testing Samples  GBM classification models 
were developed in the NAPLS3 dataset using SMOTE bal-
anced sampling within a 10-fold cross-validation frame-
work. These models were then tested in the NAPLS2 
dataset to assess the model’s generalizability to a com-
pletely independent sample which contains imbalanced 
outcome classes. For comparison, we also tested the 
model in a version of the NAPLS2 dataset which under-
went the SMOTE balanced sampling technique on the 
remission outcome variable. This comparison provides 
information on the model performance where the out-
come classes are balanced and are more similar to the 
outcome classes within the discovery sample and served 
to ensure replicability. Model performance was evaluated 
using area under the curve (AUC), sensitivity, specificity, 
and balanced accuracy (BAC). Beyond the AUC metric 
of discriminability, sensitivity assesses the proportion of 
actual remitters in the NAPLS2 sample who were cor-
rectly classified and specificity assesses the proportion of 
actual nonremitters in the NAPLS2 sample who were cor-
rectly classified. Sensitivity, specificity, and BAC were as-
sessed using the median predicted likelihood of remitting 

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab115#supplementary-data
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as the threshold for distinguishing between predicted 
remission or nonremission. As a secondary analysis, all 
models were retrained in the NAPLS2 dataset using the 
same training methods described above and tested in the 
original NAPLS3 dataset. Figure 1 provides an illustra-
tion of the entire analysis pipeline. Finally, to account for 
potential site differences, a leave-site-out cross-validation 
procedure was performed to ensure stability across re-
cruitment sites (see eAppendix 1 in Supplement for re-
sults). All R-code developed for analysis is available upon 
request.

Results

A total of 568 participants from the NAPLS3 sample 
who had complete baseline data and who completed any 
follow-up assessments were included in the analysis. Of 
these, 75 participants (13.2%) achieved remission. From 
NAPLS2, 553 participants had complete baseline data 
and completed any follow-up assessments and were in-
cluded in the replication sample. Of these, 94 participants 
(17%) achieved remission. There were no differences be-
tween remitters and nonremitters in either the NAPLS3 or 
NAPLS2 samples in terms of age, sex, race, ethnicity, years 
of education, or baseline GAF score (table 1). Remitters 
in both samples had lower levels of positive symptoms 
at baseline as compared to nonremitters (NAPLS3: re-
mitters mean (SD)  =  11.7 (3.63), nonremitters mean 
(SD) = 13.0 (3.23), P value =  .003; NAPLS2: remitters 
mean (SD) = 9.6 (4.28), nonremitters mean (SD) = 12.3 
(3.63), P value < .001). This pattern was similar even 

when converters were excluded from the nonremitter 
group (eTable 2).

The final variables selected based on the elastic net fea-
ture selection process described above were suspicious-
ness/persecutory ideas, trouble with focus and attention, 
unusual thought content/delusional ideas, impaired tol-
erance to normal distress, guilty ideas of reference, de-
creased ideational richness, motor disturbances, early 
wakening, and impairment in personal hygiene. The 
coefficients of these variables derived during elastic net 
regularization can be found in eTable 3 and the relative 
importance of these predictor variables in the final clas-
sification model predicting remission are presented in 
eFigure 1. This figure gives an indication of the relative 
decrease in accuracy of the model that would occur if  
the variable were removed from the model. When com-
pared between remitters and nonremitters, all predictor 
variables were found to be lower in remitters as com-
pared to nonremitters in the NAPLS3 sample, and signif-
icantly so except for unusual thought content/delusional 
ideas (table 2). When converters were removed from the 
nonremitter group, decreased ideational richness was 
also no longer significantly different (eTable 4).

In the original (eg, non-SMOTE-sampled) NAPLS3 
discovery sample, the final GBM model achieved 
an AUC of 0.69 (95% DeLong44 confidence interval 
[CI] = 0.63–0.75) and using the median remission likeli-
hood of 0.4 achieved a sensitivity of 0.65 and specificity 
of 0.68, indicating good performance within the training 
data. The primary validation test of interest, however, 
was the model’s performance in the external validation 

Fig. 1.  Analysis pipeline for the development and validation of prediction models with remission as the outcome.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab115#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab115#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab115#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab115#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab115#supplementary-data
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when converters were excluded from the nonremitter 
group (eTable 2).

The final variables selected based on the elastic net fea-
ture selection process described above were suspicious-
ness/persecutory ideas, trouble with focus and attention, 
unusual thought content/delusional ideas, impaired tol-
erance to normal distress, guilty ideas of reference, de-
creased ideational richness, motor disturbances, early 
wakening, and impairment in personal hygiene. The 
coefficients of these variables derived during elastic net 
regularization can be found in eTable 3 and the relative 
importance of these predictor variables in the final clas-
sification model predicting remission are presented in 
eFigure 1. This figure gives an indication of the relative 
decrease in accuracy of the model that would occur if  
the variable were removed from the model. When com-
pared between remitters and nonremitters, all predictor 
variables were found to be lower in remitters as com-
pared to nonremitters in the NAPLS3 sample, and signif-
icantly so except for unusual thought content/delusional 
ideas (table 2). When converters were removed from the 
nonremitter group, decreased ideational richness was 
also no longer significantly different (eTable 4).

In the original (eg, non-SMOTE-sampled) NAPLS3 
discovery sample, the final GBM model achieved 
an AUC of 0.69 (95% DeLong44 confidence interval 
[CI] = 0.63–0.75) and using the median remission likeli-
hood of 0.4 achieved a sensitivity of 0.65 and specificity 
of 0.68, indicating good performance within the training 
data. The primary validation test of interest, however, 
was the model’s performance in the external validation 
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sample (NAPSL2) which provides a more robust and 
“real-world” estimate of the generalizability and utility 
of the prediction model. When tested in the original 
NAPLS2 sample, the model achieved an AUC of 0.66 
(95% CI = 0.60–0.72) and with a median remission like-
lihood cutoff  of 0.4, achieved a sensitivity of 0.64 and 
specificity of 0.59. When tested in the SMOTE-sampled 
NAPLS2 dataset, the model achieved an AUC of 0.86 
(95% CI = 0.84–0.89) and with the same remission likeli-
hood cutoff  of 0.4 achieved a sensitivity of 0.84 and spec-
ificity of 0.59 (table 3). The ROC curves of the models 
predicting remission can be found in figure 2. As a final 
test of robustness, when derived in the NAPLS2 training 
sample and tested in the original NAPLS3 sample and a 
SMOTE-sampled NAPLS3 sample (ie, reversing the roles 
of the discovery and validation datasets), the models 
achieved similar performances to the models trained in 
the NAPLS3 sample.

Discussion

This study is the first of its kind to use a discovery-based, 
data-driven approach to develop generalizable models 

predicting remission as a distinct clinical outcome among 
CHR-P individuals. The performance of the multivariable 
models was generally comparable to the performance of 
existing models predicting conversion to psychosis.2–4 
A major strength of this study is the inclusion of a com-
pletely independent validation sample with which to test 
the generalizability of the models. The model performed 
well when internally tested on the NAPLS3 discovery 
sample, and also performed adequately well in the val-
idation sample when accounting for expected statistical 
shrinkage across samples and the potential for overfitting 
in the discovery sample by excluding the elastic net fea-
ture selection from the cross-validation. The importance 
of accounting for the class imbalance during the classi-
fication model development stage is evident in the fact 
that when not doing so, the NAPLS3-derived model is 
only able to predict nonremission status and does not 
correctly detect any remitters in the NAPLS2 sample 
(AUC [95% CI]  =  0.66 (0.60–0.72); sensitivity  =  0.01, 
specificity = 1.0).

Within the predictor variables used in the final model, 
unusual thought content/delusional ideas was the only item 
that was not significantly different between remitters and 
nonremitters at baseline, though remitters scored lower than 
nonremitters on this item as well. Further, this item was one 
of the top 3 variables according to the variable importance 
plot output from the GBM model (eFigure 1), indicating a 
greater reduction in accuracy when this variable is removed 
from the final model. This suggests that the change in this 
particular symptom may be an important feature of remit-
ters. Greater severity of unusual thought content and sus-
piciousness have been shown to be strongly associated with 
conversion to psychosis1,2,45 and may represent the primary 
positive symptoms driving individuals to seek specialized 
clinical services. Thus, it would be expected that 1 or both 
of these items would be elevated across CHR-P individuals 
at baseline despite future remission status. Nevertheless, 
this item seems to play an important role in predicting re-
mission as well. In fact, while there is a significant change 
in positive symptoms between baseline and the time of re-
mission for remitters, unusual thought content shows the 
greatest decline in severity as compared to the other posi-
tive symptoms (eTable 5 and eFigure 2).

Fig. 2.  Receiver operating characteristic (ROC) curves for 
performance classification models predicting remission in the 
NAPLS2 testing samples.

Table 3.  Performance Metrics of Predictive Classification Models During Testing

Model AUCa (95% CI) Sensitivity Specificity BAC

Discovery stage
  N3SMOTE → N3ORIGINAL 0.69 (0.63–0.75) 0.65 0.68 0.66
  N3SMOTE → N3SMOTE 0.85 (0.82–0.87) 0.76 0.80 0.78
Validation stage
  N3SMOTE → N2ORIGINAL 0.66 (0.60–0.72) 0.64 0.59 0.62
  N3SMOTE → N2SMOTE 0.86 (0.84–0.89) 0.84 0.59 0.72

Primary validation step of interest is bolded.
aAUC = area under the curve; BAC = balanced accuracy; CI = confidence interval; N2 = NAPLS2/North American Prodrome Longitu-
dinal Study-2; N3 = NAPLS3/North American Prodrome Longitudinal Study-3; SMOTE = synthetic minority oversampling technique.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab115#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab115#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab115#supplementary-data
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The clinical applications of a model predicting an 
individual’s likelihood for remission could include 
informing treatment decisions based on an in-person 
clinical assessment. Understanding the likelihood of an 
individual’s outcome (eg, conversion to psychosis, remis-
sion, or neither) could help clinicians decide how to as-
sign interventions such that those at highest risk receive 
the most intensive interventions while those at lowest risk 
or who are more likely to remit with usual and customary 
treatment receive less intensive interventions. Further, 
understanding protective factors characterizing remitters 
could inform how to tailor components of existing and 
novel psychosocial treatments.

Limitations and Future Directions

A limitation of the models used in the present study is the 
ability to draw descriptive conclusions about remitters. 
We included mean comparisons between remitters and 
nonremitters, and between remitters and nonremitters 
with converters excluded (see Supplement), for all pre-
dictor variables. These patterns are consistent with the 
interpretation that future remitters are less symptomatic 
at baseline than nonremitters. Future work to validate the 
construct of remission should include the longitudinal 
analysis of symptom clusters in addition to the evalua-
tion of functional and structural neuroimaging patterns. 
Whereas converters tend to show deterioration over time 
in measures of brain structure and functional analysis,46,47 
it is yet to be determined what type of pattern might be 
present in remitters, eg, whether there is an improvement 
in functional connectivity or lack of structural deteriora-
tion, and whether these patterns are distinct or look sim-
ilar to health controls.

The definition of remission used in this study may not 
adequately capture the long-term trajectory of CHR-P 
individuals whose symptoms substantially improve (eg, 
cognition may remain impaired relative to healthy con-
trols while prodromal symptoms or functioning remit13,16). 
“Remission” has not yet been clearly defined or consist-
ently used in the CHR-P field. While criteria have been 
set based on the clinical measures, it is still unknown 
what remission looks like in practice. Our ability to detect 
whether individuals stay remitted for longer than 1 year 
is not possible in the present study. Observational studies 
with longer follow-up periods would be required to ad-
dress this. The fact that a specific subset of prodromal 
symptoms is predictive of remission indicates that there 
may be a more precise clinical picture associated with 
remission, ie, detectable at a baseline visit that warrants 
further study.

Another limitation of this analysis is that the feature 
selection process was performed outside of the cross-
validation procedure, which may potentially result in 
overfitting our model in the discovery sample. Given that 
the model was tested in a completely independent test 

sample (NAPLS2) and still performed well, the poten-
tial for a biased model is lower. However, future studies 
should be sure to implement all model training proced-
ures within the cross-validation to prevent data leakage, 
especially when a robust external validation dataset is not 
available.

In addition, it is unknown how effective current inter-
ventions may be in ameliorating attenuated psychotic 
symptoms. In the NAPLS3 sample, approximately half  
of the full sample received psychosocial interventions 
(eg, cognitive-behavioral therapy, supportive therapy, 
case management, etc.) from a community provider ei-
ther prior to, or during, the course of the study and a 
small proportion received antipsychotics. Baseline anti-
psychotic use, the types of psychosocial interventions, 
and average number of sessions received did not differ 
between remitters and nonremitters (eTable 6). Due to 
the naturalistic/observational nature of the NAPLS3 
study and absence of randomized clinical trial structure, 
it is not possible to draw inferences regarding the poten-
tial effects of psychosocial or pharmacological treatment 
on remission outcomes. Randomized control trials with 
remission as the primary outcome would be needed to 
better understand which interventions are most associ-
ated with sustained symptomatic remission.

Future analyses may also incorporate biological data 
such as neuroimaging data, EEG data, and cortisol. In 
the present study, we chose not to include biomarkers, 
as the subset of participants who completed these as-
sessments is substantially smaller, and variance in bio-
marker collection methods between samples limits model 
generalizability during external validation. Further, the 
focus of the present study was to determine whether it 
was possible to build individualized models that accu-
rately and reliably predict sustained remission; future 
studies focusing more specifically on the subsamples of 
participants who completed biomarker assessments will 
seek to determine whether models involving these bio-
markers outperform clinical models. Clinical measures 
may be preferred as the sampling of biomarkers is often 
more time-consuming, costly, and sometimes invasive. 
Nevertheless, such measures may improve prediction of 
remission outcomes and shed light on mechanisms as-
sociated with remission. Many studies have shown neu-
roanatomical structural differences between converters 
and nonconverters48; however, to date, no studies have 
examined potential structural differences between remit-
ters and nonremitters. Functional differences have been 
shown in the NAPLS2 data for the Target P300 event-
related potential component elicited during an auditory 
oddball task wherein remitters had P300 amplitudes sim-
ilar to healthy controls at baseline, in addition to signif-
icantly higher P300 amplitudes than both nonremitting 
CHR-P nonconverters and CHR-P converters when con-
sidered separately.49 In addition, baseline cortisol levels 
for remitters may resemble the levels of healthy controls 

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab115#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab115#supplementary-data
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more than any other diagnostic outcome from the CHR-P 
state.50 Other studies have implicated intact auditory nov-
elty P30051 and mismatch negativity52 as characteristic of 
CHR cases who later remit.53

The present study is a starting point in a nascent area of 
research within the CHR-P framework. Using remission 
as an outcome of interest will hopefully shift the field’s 
focus toward recovery-oriented outcomes, which could 
inform more effective interventions through a better un-
derstanding of protective factors and mechanisms.

Supplementary Material

Supplementary material is available at Schizophrenia 
Bulletin online.
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