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ABSTRACT OF THE DISSERTATION

Building Trustworthy Machine Learning Models

by

Xuanqing Liu

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2021

Professor Cho-Jui Hsieh, Chair

How and when can we depend on machine learning systems to make decisions for human-

being? This is probably the question everybody may (and should) ask before deploying

machine learning models in their own fields. Failure to do so can suffer from unexpected

consequences: the text recognition systems in the mail distribution center may send the

package to the wrong addresses; the self-driving cars may recognize a stop sign as a speed

sign; or even worse, the AI-based medical imaging system may mislead the doctors into

wrong diagnostics. We attribute a trustworthy machine learning model to three properties:

robustness, interpretation, and precise uncertainty estimation. Robustness concerns how the

model withstands unexpected inputs, also called out-of-distribution (OOD) data. Depending

on whether the data is maneuvered in purpose, the OOD data comprises adversarial examples

or unadversarial examples. Interpretation is a set of algorithms that uncover the black-box

model inference process, trying to help humans understand why or why not the model

generates the desired results. Finally, we seek the uncertainty estimation tools to locate

the ground-truth value relative to the estimated value. It also protects the model users by

holding the machine predictions for human inspections once the uncertainties rise above some
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threshold.

In this thesis, I will walk through robustness, interpretation, and uncertainty estimation

in three parts. In the first part, I will introduce the backgrounds of robust machine learning

models with an example in graph-based semi-supervised learning, followed by a series of

methods to train robust neural networks. In the next part, we will move to model interpretation

tools, and we relate this part to the last part by discussing our work called Greedy-AS. In the

final part, I will discuss my robust uncertainty estimation and confidence calibration. This

part contains the algorithms, software packages, and a demo on how uncertainty estimation

helps biological scientists to do quality control of stem cells more efficiently.
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Part I

Robustness of Deep Learning Models
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CHAPTER 1

Adversarial and Unadversarial Robustness

1.1 Introduction

Deep neural networks have been proven to be successful for making decisions out of complex,

multimodality data; such as image recognition [KSH12], semantic segmentation [LSD15],

instance segmentation [HGD17], object detection [LDG17], text understanding [WSM18],

etc. However, a series of researches have revealed that the good prediction abilities quickly

disappeared under evolving conditions. In literature, there are multiple lines of research to

study the robustness issue. Here we mainly focus on two cases: adversarial inputs and

out of distribution data, which are two of the most representative instances of adversarial

robustness and unadversarial robustness.

Adversarial input In this case, there is a malicious algorithm sitting between the input

data and the prediction models. The input data can be both training data and the test data

– if the training data is changed by the algorithm, it is often called data poisoning attack;

and if the test data is modified, it is called adversarial attack. Notice that depending on the

problem settings, the attacking algorithm can have a full spectrum of capabilities regarding

to the prediction models, which is not always achievable in practice.

Unadversarial robustness This scenario is more frequently encountered in practice,

because the data modification mechanism is not dedicatedly designed to ruin the models, but

some natural but unpredictable noises. Examples include foggy or raining days for self-driving

2



car systems, unexpectedly long sentences for language translators, or even spelling errors in

the user inputs.

In the remaining sections of this part, we will first study a concrete case of data poisoning

attack in graph based SSL. Then we will move to some techniques to promote the adversarial

robustness in deep neural networks.

1.2 Case study: Data Poisoning Attack in Graph-based SSL

1.2.1 Problem setting

We consider the graph-based semi-supervised learning (G-SSL) problem. The input include

labeled data Xl ∈ Rnl×d and unlabeled data Xu ∈ Rnu×d, we define the whole features

X = [Xl;Xu]. Denoting the labels of Xl as yl, our goal is to predict the labels of test

data yu. The learner applies algorithm A to predict yu from available data {Xl,yl,Xu}.
Here we restrict A to label propagation method, where we first generate a graph with

adjacency matrix S from Gaussian kernel: Sij = exp(−γ‖xi − xj‖2), where the subscripts

xi(j) represents the i(j)-th row of X. Then the graph Laplacian is calculated by L = D−S,
where D = diag{∑n

k=1 Sik} is the degree matrix. The unlabeled data is then predicted

through energy minimization principle [ZGL03]

min
ŷ

1

2

∑
i,j

Sij(ŷi − ŷj)2 = ŷᵀLŷ, s.t. ŷ:l = yl. (1.1)

The problem has a simple closed form solution ŷu = (Duu − Suu)−1Sulyl, where we define

Duu = D[0:u,0:u], Suu = S[0:u,0:u] and Sul = S[0:u,0:l]. Now we consider the attacker who wants

to greatly change the prediction result yu by perturbing the training data {Xl,yl} by small

amounts {∆x, δy} respectively, where ∆x ∈ Rnl×d is the perturbation matrix , and δy ∈ Rnl

is a vector. This seems to be a simple problem at the first glance, however, we will show that

the problem of finding optimal perturbation is often intractable, and therefore provable and

effective algorithms are needed. To sum up, the problem have several degrees of freedom:
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• Learning algorithm: Among all graph-based semi-supervised learning algorithms, we

primarily focus on the label propagation method; however, we also discuss manifold

regularization method in Appendix 4.2.

• Task: We should treat the regression task and classification task differently because

the former is inherently a continuous optimization problem while the latter can be

transformed into integer programming.

• Knowledge of attacker: Ideally, the attacker knows every aspect of the victim,

including training data, testing data, and training algorithms. However, we will also

discuss incomplete knowledge scenario; for example, the attacker may not know the

exact value of hyper-parameters.

• What to perturb: We assume the attacker can perturb the label or the feature, but

not both. We made this assumption to simplify our discussion and should not affect

our findings.

• Constraints: We also assume the attacker has limited capability, so that (s)he can

only make small perturbations. It could be measured `2-norm or sparsity.

1.2.2 Toy example

We show a toy example in Figure 1.1 to motivate the data poisoning attack to graph semi-

supervised learning (let us focus on label propagation in this toy example). In this example,

the shaded region is very close to node-i and yet quite far from other labeled nodes. After

running label propagation, all nodes inside the shaded area will be predicted to be the same

label as node-i. That gives the attacker a chance to manipulate the decision of all unlabeled

nodes in the shaded area at the cost of flipping just one node. For example, in Figure 1.1,

if we change node-i’s label from positive to negative, the predictions in the shaded area

containing three nodes will also change from positive to negative.
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Positive

Negative

Unlabel

Before Attack

After Attack

flip the label
of node i

node i

Figure 1.1: We show a toy example that illustrates the main idea of the poisoning attack

against SSL. By flipping just one training data from positive to negative, the prediction of

the whole shaded area will be changed.

Besides changing the labels, another way to attack is to perturb the features X so that

the graph structure S changes subtly (recall the graph structure is constructed based on

pair-wise distances). For instance, we can change the features so that node i is moved away

from the shaded region, while more negative label points are moved towards the shaded area.

Then with label propagation, the labels of the shaded region will be changed from positive to

negative as well. We will examine both cases in the following sections.

1.2.3 A unified framework

The goal of poisoning attack is to modify the data points to maximize the error rate (for

classification) or RMSE score (for regression); thus we write the objective as

min
δy∈R1

∆x∈R2

−1

2

∥∥∥g((D′uu−S′uu)−1S′ul(yl + δy)
)
−h(yu)

∥∥∥2

2
s.t. {D′,S′} = Kerγ(Xl + ∆x). (1.2)
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To see the flexibility of Eq. (1.2) in modeling different tasks, different knowledge levels of

attackers or different budgets, we decompose it into following parts that are changeable in

real applications:

• R1/R2 are the constraints on δy and ∆x. For example, R1 = {‖δy‖2 ≤ dmax} restricts
the perturbation δy to be no larger than dmax; while R1 = {‖δy‖0 ≤ cmax} makes

the solution to have at most cmax non-zeros. As to the choices of R2, besides `2

regularization, we can also enforce group sparsity structure, where each row of ∆x could

be all zeros.

• g(·) is the task dependent squeeze function, for classification task we set g(x) = sign(x)

since the labels are discrete and we evaluate the accuracy; for regression task it is

identity function g(x) = x, and `2-loss is used.

• h(·) controls the knowledge of unlabeled data. If the adversary knows the ground

truth very well, then we simply put h(yu) = yu; otherwise one has to estimate it from

Eq. (1.1), in other words, h(yu) = ŷu = g
Ä
(Duu − Suu)−1Sulyl

ä
.

• Kerγ is the kernel function parameterized by γ, we choose Gaussian kernel throughout.

• Similar to S, the new similarity matrix S′ is generated by Gaussian kernel with

parameter γ, except that it is now calculated upon poisoned data Xl + ∆x.

• Although not included here, we can also formulate targeted poisoning attack problem

by changing min to max and let h(yu) be the target.

There are two obstacles to solving Eq. 1.2, that make our algorithms non-trivial. First, the

problem is naturally non-convex, making it hard to determine whether a specific solution is

globally optimal; secondly, in classification tasks where our goal is to maximize the testing

time error rate, the objective is non-differentiable under discrete domain. Besides, even with

hundreds of labeled data, the domain space can be unbearably big for brute force search and

yet the greedy search is too myopic to find a good solution (as we will see in experiments).
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In the next parts, we show how to tackle these two problems separately. Specifically, in the

first part, we propose an efficient solver designed for data poisoning attack to the regression

problem under various constraints. Then we proceed to solve the discrete, non-differentiable

poisoning attack to the classification problem.

1.2.4 Regression task, (un)known label

Algorithm 1 Trust region problem solver

1: Input: Vector g, symmetric indefinite matrix H for problem min‖z‖≤1
1
2
zᵀHz + gᵀz.

2: Output: Approximate solution z∗

3: Initialize z0 = −0.5 g
‖g‖ and step size η

4: // Phase I: iterate inside sphere ‖zt‖ < 1

5: while ‖zt‖ < 1 do

6: zt+1 = zt − η(Hzt + g)

7: end while

8: // Phase II: iterate on the sphere ‖zt‖ = 1

9: zt′ = zt

10: while t < max_iter do

11: Choose αt′ by line search and do the following projected gradient descent on sphere

12: zt′+1 =
zt′−αt′ (Id−zt′z

ᵀ
t′ )(Hzt′+g)

‖zt′−αt′ (Id−zt′z
ᵀ
t′ )(Hzt′+g)‖

13: end while

14: Return zmax_iter

We first consider the regression task where only label poisoning is allowed. This simplifies

Eq. (1.2) as

min
‖δy‖2≤dmax


−1

2

∥∥∥(Duu − Suu)−1Sulδy

∥∥∥2

2
(estimated label) (1.3a)

−1

2

∥∥∥(Duu − Suu)−1Sul(yl + δy)− yu
∥∥∥2

2
(true label) (1.3b)

Here we used the fact that ŷu = Kyl, where we define K = (Duu−Suu)−1Sul. We can solve
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Eq. (1.3a) by SVD; it’s easy to see that the optimal solution should be δy = ±dmaxv1 and v1

is the top right sigular vector if we decompose (Duu − Suu)−1Sul = UΣV ᵀ. However, (1.3b)

is less straightforward, in fact it is a non-convex trust region problem, which can be generally

formulated as

min
‖z‖2≤dmax

f(z) =
1

2
zᵀHz + gᵀz, H is indefinite. (1.4)

Our case (1.3b) can thus be described as H = −KᵀK � 0 and g = Kᵀ(yu − ŷu). Recently
[HK16] proposed a sublinear time solver that is able to find a global minimum in O(M/

√
ε)

time. Here we propose an asymptotic linear algorithm based purely on gradient information,

which is stated in Algorithm 1 and Theorem 2. In Algorithm 1 there are two phases, in

the following theorems, we show that the phase I ends within finite iterations, and phase II

converges with an asymptotic linear rate. We postpone the proof to Appendix 1.

Theorem 1 (Convergent). Suppose the operator norm ‖H‖op = β, by choosing a step size

η < 1/β with initialization z0 = −α g
‖g‖ , 0 < α < min(1, ‖g‖

3

|gᵀHg|). Then iterates {zt} generated
from Algorithm 1 converge to the global minimum.

Lemma 1 (Finite phase I). Since H is indefinite, λ1 = λmin(H) < 0, and v1 is the

corresponding eigenvector. Denote a(1) = aᵀv1 is the projection of any a onto v1, let T1 be

number of iterations in phase I of Algorithm 1, then:

T1 ≤ log(1− ηλ1)−1
[

log
Ä 1

η|g(1)| −
1

ηλ1

ä
− log

Ä−z(1)
0

ηg(1)
− 1

ηλ1

ä]
. (1.5)

Theorem 2 (Asymptotic linear rate). Let {zt} be an infinite sequence of iterates generated by

Algorithm 1, suppose it converges to z∗ (guaranteed by Theorem 1), let λH,min and λH,max be

the smallest and largest eigenvalues ofH. Assume that z∗ is a local minimizer then λH,min > 0

and given r in the interval (r∗, 1) with r∗ = 1−min
Ä
2σᾱλH,min, 4σ(1− σ)β

λH,min

λH,max

ä
, ᾱ, σ are

line search parameters. There exists an integer K such that:

f(zt+1)− f(z∗) ≤ r
Ä
f(zt)− f(z∗)

ä
for all t ≥ K.
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1.2.5 Classification task

As we have mentioned, data poisoning attack to classification problem is more challenging, as

we can only flip an unnoticeable fraction of training labels. This is inherently a combinatorial

optimization problem. For simplicity, we restrict the scope to binary classification so that

yl ∈ {−1,+1}nl , and the labels are perturbed as ỹl = yl � δy, where � denotes Hadamard

product and δy = [±1,±1, . . . ,±1]. For restricting the amount of perturbation, we replace

the norm constraint in Eq. (1.3a) with integer constraint
∑nl

i=1 I{δy [i]=−1} ≤ cmax, where cmax

is a user pre-defined constant. In summary, the final objective function has the following

form

min
δy∈{+1,−1}nl

−1

2

∥∥∥gÄK(yl � δy)
ä
− (yu or ŷu)

∥∥∥2

, s.t.
∑nl

i=1
I{δy [i]=−1} ≤ cmax, (1.6)

where we defineK = (Duu−Suu)−1Sul and g(x) = sign(x), so the objective function directly

relates to error rate. Notice that the feasible set contains around
∑cmax

k=0

(
nl
k

)
solutions, making

it almost impossible to do an exhaustive search. A simple alternative is greedy search:

first initialize δy = [+1,+1, . . . ,+1], then at each time we select index i ∈ [nl] and try flip

δy[i] = +1 → −1, such that the objective function (1.6) decreases the most. Next, we set

δy[i] = −1. We repeat this process multiple times until the constraint in (1.6) is met.

Doubtlessly, the greedy solver is myopic. The main reason is that the greedy method

cannot explore other flipping actions that appear to be sub-optimal within the current context,

despite that some sub-optimal actions might be better in the long run. Inspired by the bandit

model, we can imagine this problem as a multi-arm bandit, with nl arms in total. And we

apply a strategy similar to ε-greedy: each time we assign a high probability to the best

action but still leave non-zero probabilities to other “actions”. The new strategy can be called

probabilistic method, specifically, we model each action δy = ±1 as a Bernoulli distribution,

the probability of “flipping” is P [δy = −1] = α. The new loss function is just an expectation

over Bernoulli variables

min
α

®
L(α) := −1

2
E

z∼B(1,α)

[∥∥gÄK(yl � z)
ä
− (yu or ŷu)

∥∥2
]

+
λ

2
· ‖α‖2

2

´
. (1.7)
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Here we replace the integer constraint in Eq. 1.6 with a regularizer λ
2
‖α‖2

2, the original

constraint is reached by selecting a proper λ. Once problem (1.7) is solved, we craft the

actual perturbation δy by setting δy[i] = −1 if α[i] is among the top-cmax largest elements.

To solve Eq. (1.7), we need to find a good gradient estimator. Before that, we replace

g(x) = sign(x) with tanh(x) to get a continuously differentiable objective. We borrow the

idea of “reparameterization trick” [FMM18, TMM17] to approximate B(1,α) by a continuous

random vector

z , z(α,∆G) =
2

1 + exp
(

1
τ

Ä
log α

1−α + ∆G

ä) − 1 ∈ (−1, 1), (1.8)

where ∆G ∼ g1 − g2 and g1,2
iid∼ Gumbel(0, 1) are two Gumbel distributions. τ is the

temperature controlling the steepness of sigmoid function: as τ → 0, the sigmoid function

point-wise converges to a stair function. Plugging (1.8) into (1.7), the new loss function

becomes

L(α) := −1

2
E

∆G

[∥∥gÄK(yl � z(α,∆G))
ä
− (yu or ŷu)

∥∥2
]

+
λ

2
· ‖α‖2

2. (1.9)

Therefore, we can easily obtain an unbiased, low variance gradient estimator via Monte Carlo

sampling from ∆G = g1 − g2, specifically

∂L(α)

∂α
≈ −1

2

∂

∂α

∥∥gÄK(yl � z(α,∆G))
ä
− (yu or ŷu)

∥∥2
+ λα. (1.10)

Based on that, we can apply many stochastic optimization methods, including SGD and

Adam [KB14], to finalize the process. In the experimental section, we will compare the greedy

search with our probabilistic approach on real data.

1.2.6 Experiments

In this section, we will show the effectiveness of our proposed data poisoning attack algorithms

for regression and classification tasks on graph-based SSL.
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Table 1.1: Dataset statistics. Here n is the total number of samples, d is the dimension of

feature vector and γ∗ is the optimal γ in validation. mnist17 is created by extracting images

for digits ‘1’ and ‘7’ from standard mnist dataset.

Name Task n d γ∗

cadata Regression 8,000 8 1.0

E2006 Regression 19,227 150,360 1.0

mnist17 Classification 26,014 780 0.6

rcv1 Classification 20,242 47,236 0.1

Experimental settings and baselines

We conduct experiments on two regression and two binary classification datasets1. The

meta-information can be found in Table 1.1. We use a Gaussian kernel with width γ

to construct the graph. For each data, we randomly choose nl samples as the labeled

set, and the rest are unlabeled. We normalize the feature vectors by x′ ← (x − µ)/σ,

where µ is the sample mean, and σ is the sample variance. For regression data, we also

scale the output by y′ ← (y − ymin)/(ymax − ymin) so that y′ ∈ [0, 1]. To evaluate the

performance of label propagation models, for regression task we use RMSE metric defined

as RMSE =
»

1
nu

∑nu
i=1(yi − ŷi)2, while for classification tasks we use error rate metric. For

comparison with other methods, since this is the first work on data poisoning attack

to G-SSL, we proposed several baselines according to graph centrality measures. The first

baseline is random perturbation, where we randomly add Gaussian noise (for regression) or

Bernoulli noise (for regression) to labels. The other two baselines based on graph centrality

scores are more challenging, they are widely used to find the “important” nodes in the graph.

Intuitively, we need to perturb “important” nodes to attack the model, and we decide the

1Publicly available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

11

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/


importance by node degree or PageRank. We explain the baselines with more details in the

appendix.

Effectiveness of data poisoning to G-SSL

In this experiment, we consider the white-box setting where the attacker knows not only

the ground truth labels yu but also the correct hyper-parameter γ∗. We thus apply our

proposed label poisoning algorithms in Section 1.2.4 and 1.2.5 to attack regression and

classification tasks, respectively. In particular, we apply `2 constraint for perturbation δy in

the regression task and use the greedy method in the classification task. The results are shown

in Figure 1.2, as we can see in this figure, for both regression and classification problems,

small perturbations can lead to vast differences: for instance, on cadata, the RMSE increases

from 0.2 to 0.3 when applied a carefully designed perturbation ‖δy‖ = 3 (this is very small

compared with the norm of label ‖yl‖ ≈ 37.36); More surprisingly, on mnist17, the accuracy

can drop from 98.46% to 50% by flipping just 3 nodes. This phenomenon indicates that

current graph-based SSL, especially the label propagation method, can be very

fragile to data poisoning attacks. On the other hand, using different baselines (shown in

Figure 1.2, bottom row), the accuracy does not decline much, this indicates that our proposed

attack algorithms are more effective than centrality based algorithms.

Moreover, the robustness of label propagation is strongly related to the number of labeled

data nl: for all datasets shown in Figure 1.2, we notice that the models with larger nl tend to

be more resistant to poisoning attacks. This phenomenon arises because, during the learning

process, the label information propagates from labeled nodes to unlabeled ones. Therefore

even if a few nodes are “contaminated” during poisoning attacks, it is still possible to recover

the label information from other labeled nodes. Hence this experiment can be regarded as

another instance of “no free lunch” theory in adversarial learning [TSE18].

12



0.0 2.5 5.0 7.5

dmax

0.175

0.200

0.225

0.250

0.275

0.300

R
M

SE

cadata
nl = 500
nl = 1000
nl = 2000

0 2 4

dmax

0.10

0.15

0.20

0.25

R
M

SE

E2006
nl = 100
nl = 300
nl = 700

0.0 2.5 5.0 7.5
cmax

0

10

20

30

40

50

Er
ro

r
ra

te
(%

)

mnist17
nl = 50
nl = 100
nl = 200

0.0 2.5 5.0 7.5
cmax

10

20

30

40

Er
ro

r
ra

te
(%

)

rcv1
nl = 500
nl = 1000
nl = 3000

0 2 4

dmax

0.20

0.22

0.24

0.26

0.28

R
M

SE

cadata
Poisoning
Noise
Degree
PageRank

0 1 2 3

dmax

0.100

0.125

0.150

0.175

0.200

0.225

R
M

SE

E2006
Poisoning
Noise
Degree
PageRank

0.0 2.5 5.0 7.5
cmax

0

10

20

30

40

50

Er
ro

r
ra

te
(%

)

mnist17
Poisoning
Noise
Degree
PageRank

0.0 2.5 5.0 7.5
cmax

10

15

20

25

30

Er
ro

r
ra

te
(%

)

rcv1
Poisoning
Noise
Degree
PageRank

Figure 1.2: Top row: testing the effectiveness of poisoning algorithms on four datasets shown

in Table (1.1). The left two datasets are regression tasks, and we report the RMSE measure.

The right two datasets are classification tasks in which we report the error rate. For each

dataset, we repeat the same attacking algorithm w.r.t. different nl’s. Bottom row: compare

our poisoning algorithm with three baselines (random noise, degree-based attack, PageRank

based attack). We follow our convention that dmax is the maximal `2-norm distortion, and

cmax is the maximal `0-norm perturbation.

Comparing poisoning with and without truth labels

We compare the effectiveness of poisoning attacks with and without ground truth labels

yu. Recall that if an attacker does not hold yu, (s)he will need to replace it with the

estimated values ŷu. Thus we expect a degradation of effectiveness due to the replacement

of yu, especially when ŷu is not a good estimation of yu. The result is shown in Figure 1.3.

Surprisingly, we did not observe such phenomenon: for regression tasks on cadata and E2006,

two curves are closely aligned despite that attacks without ground truth labels yu are only

slightly worse. For classification tasks on mnist17 and rcv1, we cannot observe any difference,
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Figure 1.3: Comparing the effectiveness of label poisoning attack with and without knowing

the ground truth labels of unlabeled nodes yu. Interestingly, even if the attacker is using the

estimated labels ŷu, the effectiveness of the poisoning attack does not degrade significantly.

the choices of which nodes to flip are exactly the same (except the cmax = 1 case in rcv1).

This experiment provides a valuable implication that hiding the ground truth labels cannot

protect the SSL models, because the attackers can alternatively use the estimated ground

truth ŷu.

Comparing greedy and probabilistic method
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Figure 1.4: Comparing the relative performance of three approximate solvers to discrete

optimization problem (1.6). For clarity, we also show the relative performance on the right

(probabilistic − greedy).

In this experiment, we compare the performance of three approximate solvers for prob-
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lem (1.6) in Section 1.2.5, namely greedy and probabilistic methods. We choose rcv1 data

as oppose to mnist17 data, because rcv1 is much harder for poisoning algorithm: when

nl = 1000, we need cmax ≈ 30 to make error rate ≈ 50%, whilst mnist17 only takes cmax = 5.

For hyperparameters, we set cmax = {0, 1, . . . , 29}, nl = 1000, γ∗ = 0.1. The results are

shown in Figure 1.4, we can see that for larger cmax, greedy method can easily stuck into

local optima and inferior than our probabilistic based algorithms.

Sensitivity analysis of hyper-parameter
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0.218

0.220

0.222

R
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Figure 1.5: Experiment result on imperfect estimations of γ∗.

Since we use the Gaussian kernel to construct the graph, there is an important hyper-

parameter γ (kernel width) that controls the structure of the graph defined in (1.1), which

is often chosen empirically by the victim through validation. Given the flexibility of γ, it

is thus interesting to see how the effectiveness of the poisoning attack degrades with the

attacker’s imperfect estimation of γ. To this end, we suppose the victim runs the model

at the optimal hyperparameter γ = γ∗, determined by validation, while the attacker has a

15



very rough estimation γadv ≈ γ∗. We conduct this experiment on cadata when the attacker

knows or does not know the ground truth labels yu, the result is exhibited in Figure 1.5. It

shows that when the adversary does not have exact information of γ, it will receive some

penalties on the performance (in RMSE or error rate). However, it is entirely safe to choose

a smaller γadv < γtruth because the performance decaying rate is pretty low. Take Figure 1.5

for example, even though γadv = 1
8
γtruth, the RMSE only drops from 0.223 to 0.218. On the

other hand, if γadv is over large, the nodes become more isolated, and thus the perturbations

are harder to propagate to neighbors.
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CHAPTER 2

Randomization-based Adversarial Defense

2.1 Random Self-Ensemble (RSE)

Recent studies have revealed the vulnerability of deep neural networks: A small adversarial

perturbation that is imperceptible to human can easily make a well-trained deep neural network

misclassify. This makes it unsafe to apply neural networks in security-critical applications.

We propose a new defense algorithm called Random Self-Ensemble (RSE) by combining two

important concepts: randomness and ensemble. To protect a targeted model, RSE adds

random noise layers to the neural network to prevent the strong gradient-based attacks, and

ensembles the prediction over random noises to stabilize the performance.

2.1.1 Overview of (white-box) adversarial attack algorithms

In the white-box adversarial attack setting, attackers have all information about the targeted

neural network, including network structure and network weights (denoted by w). Using

this information, attackers can compute gradient with respect to input data ∇xf(w, x) by

back-propagation. Note that gradient is very informative for attackers since it characterizes

the sensitivity of the prediction with respect to the input image.

To craft an adversarial example, [GSS15a] proposed a fast gradient sign method (FGSM),

where the adversarial example is constructed by

x′ = x0 − ε · sign(∇xf(w, x0)) (2.1)
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with a small ε > 0. Based on that, several followup works were made to improve the efficiency

and availability, such as Rand-FGSM [TKP17] and I-FGSM [KGB17a]. Recently, Carlini

& Wagner [CW17] showed that constructing an adversarial example can be formulated as

solving the following optimization problem:

x′ = min
x∈[0,1]d

c · g(x) + ‖x− x0‖2
2, (2.2)

where the first term is the loss function that characterizes the success of the attack and the

second term is to enforce a small distortion. The parameter c > 0 is used to balance these

two requirements. Several variants were proposed recently [CSZ18, MMS18a], but most of

them can be categorized in the similar framework. The C&W attack has been recognized as

a strong attacking algorithm to test defense methods.

For untargeted attack, where the goal is to find an adversarial example that is close to

the original example but yields different class prediction, the loss function in (2.2) can be

defined as

g(x) = max{max
i 6=t

(Z(x′)i)− Z(x′)t,−κ}, (2.3)

where t is the correct label, Z(x) is the network’s output before softmax layer (logits).

For targeted attack, the loss function can be designed to force the classifier to return

the target label. For attackers, targeted attack is strictly harder than untargeted attack

(since once the targeted attack succeeds, the same adversarial image can be used to perform

untargeted attack without any modification). On the contrary, for defenders, untargeted

attacks are strictly harder to defense than targeted attack. Therefore, we focus on defending

the untargeted attacks in our experiments.

Another commonly used adversarial attack algorithm is called PGD attack. The goal of

PGD attack is to find adversarial examples in a γ-ball, which can be naturally formulated as

the following objective function:

max
‖ξ‖∞≤γ

`(f(xo + ξ;w), yo). (2.4)
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Starting from x0 = xo, PGD attack conducts projected gradient descent iteratively to update

the adversarial example:

xt+1 = Πγ

ß
xt + α · sign

(
∇x`
Ä
f(xt;w), yo

ä)™
, (2.5)

where Πγ is the projection to the set {x| ‖x − xo‖∞ ≤ γ}. Although multi-step PGD

iterations may not necessarily return the optimal adversarial examples, we decided to apply it

in our experiments, following the previous work of [MMS18a]. An advantage of PGD attack

over C&W attack is that it gives us a direct control of distortion by changing γ, while in

C&W attack we can only do this indirectly via tuning the regularizer.

2.1.2 Overview of adversarial defense algorithms

Because of the vulnerability of adversarial examples [SZS13], several methods have been

proposed to improve the network’s robustness against adversarial examples. [PMW16]

proposed defensive distillation, which uses a modified softmax layer controlled by temperature

to train the “teacher” network, and then use the prediction probability (soft-labels) of teacher

network to train the student network (it has the same structure as the teacher network).

However, as stated in [CW17], this method does not work properly when dealing with

the C&W attack. Moreover, [ZNR17] showed that by using a modified ReLU activation

layer (called BReLU) and adding noise into origin images to augment the training dataset,

the learned model will gain some stability to adversarial images. Another popular defense

approach is adversarial training [KGB17a, HXS15]. It generates and appends adversarial

examples found by an attack algorithm to the training set, which helps the network to

learn how to distinguish adversarial examples. Through combining adversarial training with

enlarged model capacity, [MMS18a] is able to create an MNIST model that is robust to the

first order attacks, but this approach does not work very well on more difficult datasets such

as CIFAR-10.

It is worth mentioning that there are many defense algorithms (r.f. [BRR18, MLW18,
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GRC18, DAB18, XWZ18, SKN18, SKC18]) against white box attacks in literature. Unfortu-

nately, as [ACW18, AC18] pointed out, these algorithms are not truly effective to white box

attacks. Recall the “white box” means that the attackers know everything concerning how

models make decisions, these include the potential defense mechanisms. In this condition,

the white box attacks can walk around all defense algorithms listed above and the accuracy

under attack can still be nearly zero. In addition to changing the network structure, there

are other methods [XEQ18, MC17, FCS17, GMP17] “detecting” the adversarial examples,

which are beyond the scope of our discussion.

There is another highly correlated work (r.f. [LAG18a]) which also adopts very similar

idea, except that they view this problem from the angle of differential privacy, while we

believe that the adversarial robustness is more correlated with regularization and ensemble

learning. Furthermore, our work is public available earlier than this similar work on Arxiv.

2.1.3 Proposed algorithm: random self-ensemble

In this section, we propose our self-ensemble algorithm to improve the robustness of neural

networks. We will first motivate and introduce our algorithm and then discuss several

theoretical reasons behind it.

It is known that ensemble of several different models can improve the robustness. However,

an ensemble of finite k models is not very practical because it will increase the model size

by k folds. For example, AlexNet model on ImageNet requires 240MB storage, and storing

100 of them will require 24GB memory. Moreover, it is hard to find many heterogeneous

models with similar accuracy. To improve the robustness of practical systems, we propose the

following self-ensemble algorithm that can generate an infinite number of models on-the-fly

without any additional memory cost.

Our main idea is to add randomness into the network structure. More specifically, we

introduce a new “noise layer” that fuses input vector with a randomly generated noise,
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Figure 2.1: Our proposed noisy VGG style network, we add a noise layer before each

convolution layer. For simplicity, we call the noise layer before the first convolution layer the

“init-noise”, and all other noise layer “inner-noise”. For these two kinds of layers we adopt

different variances of Gaussian noise. Note that similar design can be transplanted to other

architectures such as ResNet.

i.e. x → x + ε when passing through the noise layer. Then we add this layer before each

convolution layer as shown in Fig. 2.1. Since most attacks require computing or estimating

gradient, the noise level in our model will control the success rate of those attacking algorithms.

In fact, we can integrate this layer into any other neural network.

If we denote the original neural network as f(w, x) where w ∈ Rdw is the weights and

x ∈ Rdx is the input image, then considering the random noise layer, the network can be

denoted as fε(w, x) with random ε ∈ Rde . Therefore we have an infinite number of models

in the pocket (with different ε) without having any memory overhead. However, adding

randomness will also affect the prediction accuracy of the model. How can we make sure that

the ensemble of these random models have enough accuracy?
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Algorithm 2 Training and Testing of Random Self-Ensemble (RSE)
Training phase:

for iter = 1, 2, . . . do

Randomly sample (xi, yi) in dataset

Randomly generate ε∼N (0, σ2) for each noise layer.

Compute ∆w = ∇w`(fε(w, xi), yi) (Noisy gradient)

Update weights: w ← w −∆w.

end for

Testing phase:

Given testing image x, initialize p = (0, 0, . . . , 0)

for j = 1, 2, . . . ,#Ensemble do

Randomly generate ε∼N (0, σ2) for each noise layer.

Forward propagation to calculate probability output

pj = fε(w, x)

Update p: p← p+ pj.

end for

Predict the class with maximum score ŷ = arg maxk pk

A critical observation is that we need to add this random layer in both training and

testing phases. The training and testing algorithms are listed in Algorithm 3. In the training

phase, gradient is computed as ∇wfε(w, xi) which includes the noise layer, and the noise is

generated randomly for each stochastic gradient descent update. In the testing phase, we

construct n random noises and ensemble their probability outputs by

p =
n∑
j=1

fεj(w, x), and predict ŷ = arg max
k
pk. (2.6)

If we do not care about the prediction time, n can be very large, but in practice we found it

saturates at n ≈ 10 (see Fig. 2.4).
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This approach is different from Gaussian data augmentation in [ZNR17]: they only add

Gaussian noise to images during the training time, while we add noise before each convolution

layer at both training and inference time. When training, the noise helps optimization

algorithm to find a stable convolution filter that is robust to perturbed input, while when

testing, the roles of noise are two-folded: one is to perturb the gradient to fool gradient-based

attacks.The other is it gives different outputs by doing multiple forward operations and a

simple ensemble method can improve the testing accuracy.

2.1.4 Mathematical explanations

Training and testing of RSE. Here we explain our training and testing procedure. In

the training phase, our algorithm is solving the following optimization problem:

w∗ = arg min
w

1

|Dtrain|
∑

(xi,yi)∈Dtrain

E
ε∼N (0,σ2)

`
Ä
fε(w, xi), yi

ä
, (2.7)

where `(·, ·) is the loss function and Dtrain is the training dataset. Note that for simplicity we

assume ε follows a zero-mean Gaussian, but in general our algorithm can work for a large

variety of noise distribution such as Bernoulli-Gaussian: εi = biei, where ei
iid∼ N (0, σ2) and

bi
iid∼ B(1, p).

At testing time, we ensemble the outputs through several forward propagation, specifically:

ŷi = arg maxEε∼N (0,σ2)fε(w, xi). (2.8)

Here arg max means the index of maximum element in a vector. The reason that our RSE

algorithm achieves the similar prediction accuracy with original network is because (2.7) is

minimizing an upper bound of the loss of (2.8) – Similar to the idea of [NYM17], if we choose
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negative log-likelihood loss, then ∀w ∈ Rdw :

1

|Dtrain|
∑

(xi,yi)∈Dtrain

Eε∼N (0,σ2)`
Ä
fε(w, xi), yi

ä
(a)≈ E(xi,yi)∼Pdata

{
− Eε∼N (0,σ2) log fε(w, xi)[yi]

}
(b)

≥ E(xi,yi)∼Pdata

{
− logEε∼N (0,σ2)fε(w, xi)[yi]

}
(c)

≥ E(xi,yi)∼Pdata

{
− logEε∼N (0,σ2)fε(w, xi)[ŷi]

}
(a)≈ 1

|Dtest|
∑

xi∈Dtest

− logEε∼N (0,σ2)fε(w, xi)[ŷi].

(2.9)

Where Pdata is the data distribution, Dtrain/test is the training set and test set, respectively.

And (a) follows from generalization bound (see [SKL17] or appendix for details), (b) comes

from Jensen’s inequality and (c) is by the inference rule (2.8). So by minimizing (2.7) we are

actually minimizing the upper bound of inference confidence − log fε(w, xi)[ŷi], this validates

our ensemble inference procedure.

RSE is equivalent to Lipschitz regularization. Another point of view is that per-

turbed training is equivalent to Lipschitz regularization, which further helps defensing gradient

based attack. If we fix the output label y then the loss function `(fε(w, x), y) can be simply

denoted as ` ◦ fε. Lipchitz of the function ` ◦ fε is a constant L`◦fε such that

|`(fε(w, x), y)− `(fε(w, x̃), y)| ≤ L`◦fε‖x− x̃‖ (2.10)

for all x, x̃. In fact, it has been proved recently that Lipschitz constant can be used to measure

the robustness of machine learning model [HA17, WZC18b]. If L`◦fε is large enough, even a

tiny change of input x− x̃ can significantly change the loss and eventually get an incorrect

prediction. On the contrary, by controlling L`◦f to be small, we will have a more robust

network.

Next we show that our noisy network indeed controls the Lipschitz constant. Following
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the notation of (2.7), we can see that

Eε∼N (0,σ2)`
Ä
fε(w, xi), yi

ä (a)≈ Eε∼N (0,σ2)

[
`
Ä
f0(w, xi), yi

ä
+ εᵀ∇ε`

Ä
f0(w, xi), yi

ä
+

1

2
εᵀ∇2

ε`
Ä
f0(w, xi), yi

ä
ε
]

(b)
= `
Ä
f0(w, xi), yi

ä
+
σ2

2
Tr
{
∇2
ε`
Ä
f0(w, xi), yi

ä}
.

(2.11)

For (a), we do Taylor expansion at ε = 0. Since we set the variance of noise σ2 very small,

we only keep the second order term. For (b), we notice that the Gaussian vector ε is i.i.d.

with zero mean. So the linear term of ε has zero expectation, and the quadratic term is

directly dependent on variance of noise and the trace of Hessian. As a convex relaxation, if

we assume ` ◦ f0 is convex, then we have that d · ‖A‖max ≥ Tr(A) ≥ ‖A‖max for A ∈ Sd×d+ , we

can rewrite (2.11) as

Loss(fε, {xi}, {yi}) ' Loss(f0, {xi}, {yi}) +
σ2

2
L`◦f0 , (2.12)

which means the training of noisy networks is equivalent to training the original model with

an extra regularization of Lipschitz constant, and by controlling the variance of noise we can

balance the robustness of network with training loss.

2.1.5 Discussions

Here we show both randomness and ensemble are important in our algorithm. Indeed, if we

remove any component, the performance will significantly drop.

First, as mentioned before, the main idea of our model is to have infinite number of

models fε, each with a different ε value, and then ensemble the result. A naive way to achieve

this goal is to fix a pre-trained model f0 and then generate many fε in the testing phase by

adding different small noise to f0. However, Fig. 2.2 shows this approach (denoted as Test

noise only) will result in much worse performance (20% without any attack). Therefore it

is non-trivial to guarantee the model to be good after adding small random noise. In our

random self-ensemble algorithm, in addition to adding noise in the testing phase, we also add
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noise layer in the training phase, and this is important for getting good performance.

Second, we found adding noise in the testing phase and then ensemble the predictions

is important. In Fig. 2.2, we compare the performance of RSE with the version that only

adds the noise layer in the training phase but not in the testing phase (so the prediction is

fε(w, x) instead of Eεfε(w, x)). The results clearly show that the performance drop under

smaller attacks. This proves ensemble in the testing phase is crucial.
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Figure 2.2: We test three models on CIFAR10 and VGG16 network: In the first model noise

is added both at training and testing time, in the second model noise is added only at training

time, in the last model we only add noise at testing time. As a comparison we also plot

baseline model which is trained conventionally. For all models that are noisy at testing time,

we automatically enable self-ensemble.

2.1.6 Experiments

Datasets and network structure We test our method on two datasets—CIFAR10 and

STL10. We do not compare the results on MNIST since it is a much easier dataset and existing

defense methods such as [PMG16b, ZNR17, KGB17a, HXS15] can effectively increase image

distortion under adversarial attacks. On CIFAR10 data, we evaluate the performance on
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both VGG-16 [SZ15] and ResNeXt [XGD17]; on STL10 data we copy and slightly modify a

simple model1 which we name it as “Model A”.

Defense algorithms. We include the following defense algorithms into comparison (their

parameter settings can be found in Tab. 2.1):

• Random Self-Ensemble (RSE): our proposed method.

• Defensive distillation [PMW16]: first train a teacher network at temperature T , then

use the teacher network to train a student network of the same architecture and same

temperature. The student network is called the distilled network.

• Robust optimization combined with BReLU activation [ZNR17]: first we replace all

ReLU activation with BReLU activation. And then at the training phase, we randomly

perturb training data by Gaussian noise with σ = 0.05 as suggested.

• Adversarial retraining by FGSM attacks [KGB17a, HXS15]: we first pre-train a neural

network without adversarial retraining. After that, we either select an original data

batch or an adversarial data batch with probability 1/2. We continue training it until

convergence.

Attack models. We consider the white-box setting and choose the state-of-the-art C&W

attack [CW17] to evaluate the above-mentioned defense methods. Moreover, we test our

algorithm under untargeted attack, since untargeted attack is strictly harder to defense than

targeted attack. In fact, C&W untargeted attack is the most challenging attack for a defense

algorithm.

Moreover, we assume C&W attack knows the randomization procedure of RSE, so the

C&W objective function will change accordingly (as proposed in [AC18] for attacking an

ensemble model). The details can be found in the appendix.

1Publicly available at https://github.com/aaron-xichen/pytorch-playground
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Measure. Unlike attacking models that only need to operate on correctly classified images,

a competitive defense model not only protects the model when attackers exist, but also keeps

a good performance on clean datasets. Based on this thought, we compare the accuracy of

guarded models under different strengths of C&W attack, the strength can be measured by

L2-norm of image distortion and further controlled by parameter c in (2.2). Note that an

adversarial image is correctly predicted under C&W attack if and only if the original image

is correctly classified and C&W attack cannot find an adversarial example within a certain

distortion level.
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Figure 2.3: Left : the effect of noise level on robustness and generalization ability. Clearly

random noise can improve the robustness of the model. Right : comparing RSE with adversarial

defense method [MMS18a].

The effect of noise level

We first test the performance of RSE under different noise levels. We use Gaussian noise for

all the noise layers in our network and the standard deviation σ of Gaussian controls the

noise level. Note that we call the noise layer before the first convolution layer the “init-noise”,

and all other noise layers the “inner-noise”.

In this experiment, we apply different noise levels in both training and testing phases to
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Figure 2.4: Left : Comparing the accuracy under different levels of attack, here we choose

VGG16+CIFAR10 combination. We can see that the ensemble model achieves better accuracy

under weak attacks. Right : Testing accuracy (without attack) of different n (number of

random models used for ensemble).

see how different variances change the robustness as well as generalization ability of networks.

As an example, we choose

(σinit, σinner) = {(0, 0), (0.05, 0.02), (0.1, 0.05), (0.2, 0.1)} (2.13)

on VGG16+CIFAR10. The result is shown in Fig. 2.3 (left).

As we can see, both “init-noise” and “inner-noise” are beneficial to the robustness of

neural network, but at the same time, one can see higher noise reduces the accuracy for weak

attacks (c . 0.01). From Fig. 2.3, we observe that if the input image is normalized to [0, 1],

then choosing σinit = 0.2 and σinner = 0.1 is good. Thus we fix this parameter for all the

experiments.

Self-ensemble

Next we show self-ensemble helps to improve the test accuracy of our noisy mode. As an

example, we choose VGG16+CIFAR10 combination and the standard deviation of initial
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Table 2.1: Experiment setting for defense methods

Methods Settings

No defense Baseline model

RSE(for CIFAR10 + VGG16) Initial noise: 0.2, inner noise: 0.1, 50-ensemble

RSE(for CIFAR10 + ResNeXt) Initial noise: 0.1, inner noise 0.1, 50-ensemble

RSE(for STL10 + Model A) Initial noise: 0.2, inner noise: 0.1, 50-ensemble

Defensive distill Temperature = 40

Adversarial training (I) FGSM adversarial examples, ε ∼ U(0.1, 0.3)

Adversarial training (II) Following [MMS18a], PGD adversary with ε∞ = 8.0
256

Robust Opt. + BReLU Following [ZNR17]

noise layer is σ = 0.2, other noise layers is σ = 0.1. We compare 50-ensemble with 1-ensemble

(i.e. single model), and the result can be found in Fig. 2.4.

We find the 50-ensemble method outperform the 1-ensemble method by ∼8% accuracy

when c < 0.4. This is because when the attack is weak enough, the majority choice of

networks has lower variance and higher accuracy. On the other hand, we can see if c > 1.0

or equivalently the average distortion greater than 0.93, the ensemble model is worse. We

conjecture that this is because when the attack is strong enough then the majority of random

sub-models make wrong prediction, but when looking at any individual model, the random

effect might be superior than group decision. In this situation, self-ensemble may have a

negative effect on accuracy.

Practically, if running time is the primary concern, it is not necessary to calculate many

ensemble models. In fact, we find the accuracy saturates rapidly with respect to number of

models, moreover, if we inject smaller noise then ensemble benefit would be weaker and the

accuracy gets saturated earlier. Therefore, we find 10-ensemble is good enough for testing

accuracy, see Fig. 2.4.
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Table 2.2: Prediction accuracy of defense methods under C&W attack with different c. We

can clearly observe that RSE is the most robust model. Our accuracy level remains at above

75% when other methods are below 30%.

c = 0.01 c = 0.03 c = 0.06 c = 0.1 c = 0.2

RSE(ours) 90.00% 86.06% 79.44% 67.19% 34.75%

Adv retraining 27.00% 9.81% 4.13% 3.69% 1.44%

Robust Opt+BReLU 75.06% 47.93% 30.94% 20.69% 13.50%

Distill 49.88% 17.69% 4.56% 3.13% 1.44%

No defense 30.38% 8.93% 5.06% 3.56% 2.19%

Comparing defense methods

Finally, we compare our RSE method with other existing defense algorithms. Note that

we test all of them using C&W untargeted attack, which is the most difficult setting for

defenders.

The comparison across different datasets and networks can be found in Tab. 2.2 and

Fig. 2.5. As we can see, previous defense methods have little effect on C&W attacks. For

bird car cat deer dog frog horse plane truck

No defense 1.94 0.31 0.74 4.72 7.99 3.66 9.22 0.75 1.32

Defensive distill 6.55 0.70 13.78 2.54 13.90 2.56 11.36 0.66 3.54

Adv. retraining 2.58 0.31 0.75 6.08 0.75 9.01 6.06 0.31 4.08

Robust Opt. + BReLU 17.11 1.02 4.07 13.50 7.09 15.34 7.15 2.08 17.57

RSE(ours) 12.87 2.61 12.47 21.47 31.90 19.09 9.45 10.21 22.15

Table 2.3: Image distortion required for targeted attacks.
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Figure 2.5: Comparing the accuracy of CIFAR10+{VGG16, ResNeXt} and STL10+Model

A. We show both the change of accuracy and average distortion w.r.t. attacking strength

parameter c (the parameter in the C&W attack). Our model (RSE) clearly outperforms all

the existing methods under strong attacks in both accuracy and average distortion.

example, Robust Opt+BReLU [ZNR17] is useful for CIFAR10+ResNeXt, but the accuracy

is even worse than no defense model for STL10+Model A. In contrast, our RSE method acts

as a good defence across all cases. Specifically, RSE method enforces the attacker to find

much more distorted adversarial images in order to start a successful attack. As showed in

Fig. 2.5, when we allow an average distortion of 0.21 on CIFAR10+VGG16, C&W attack is

able to conduct untargeted attacks with success rate > 99%. On the contrary, by defending

the networks via RSE, C&W attack only yields a success rate of ∼20%. Recently, another

version of adversarial training is proposed [MMS18a]. Different from “Adversarial training

(I)” shown in Tab. 2.1, it trains the network with adversaries generated by multiple steps of

gradient descent (therefore we call it “Adversarial training (II)” in Tab. 2.1). Compared with

our method, the major weakness is that it takes ∼10 times longer to train a robust network

despite that the result is only slightly better than our RSE, see Fig. 2.3 (right).
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Figure 2.6: Targeted adversarial image distortion, each column indicates a defense algorithm

and each row is the adversarial target (the original image is in “ship” class, shown in the

right side). Here we choose c = 1 for targetd C&W attack. Visually, color spot means the

distortion of images, thus a successful defending method should lead to more spots.

Apart from the accuracy under C&W attack, we find the distortion of adversarial images

also increases significantly, this can be seen in Fig. 2.2(2nd row), as c is large enough (so that

all defense algorithms no longer works) our RSE method achieves the largest distortion.

Although all above experiments are concerning untargeted attack, it does not mean

targeted attack is not covered, as we said, targeted attack is harder for attacking methods

and easier to defense. As an example, we test all the defense algorithms on CIFAR-10 dataset

under targeted attacks. We randomly pick an image from CIFAR10 and plot the perturbation

xadv − x in Fig. 2.6 (the exact number is in Tab. 2.3), to make it easier to print out, we

subtract RGB channels from 255 (so the majority of pixels are white and distortions can be
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noticed). One can easily find RSE method makes the adversarial images more distorted.

Lastly, apart from CIFAR-10, we also design an experiment on a much larger data to

support the effectiveness of our method even on large data. Due to space limit, the result is

postponed to appendix.

2.2 Adv-BNN: Adversarial Robustness with Bayesian Neural Net-

work

This method can regarded as an extension of RSE method discussed in the previous section.

This algorithm is motivated by the following two ideas. First, although recent work has

demonstrated that fusing randomness can improve the robustness of neural networks [LCZ17],

we noticed that adding noise blindly to all the layers is not the optimal way to incorporate

randomness. Instead, we model randomness under the framework of Bayesian Neural Network

(BNN) to formally learn the posterior distribution of models in a scalable way. Second, we

formulate the mini-max problem in BNN to learn the best model distribution under adversarial

attacks, leading to an adversarial-trained Bayesian neural network. Experiment results

demonstrate that the proposed algorithm achieves state-of-the-art performance under strong

attacks. On CIFAR-10 with VGG network, our model leads to 14% accuracy improvement

compared with adversarial training [MMS18a] and random self-ensemble [LCZ17] under PGD

attack with 0.035 distortion, and the gap becomes even larger on a subset of ImageNet2.

2.2.1 Bayesian neural networks (BNN)

The idea of BNN is illustrated in Fig. 2.7. Given the observable random variables (x, y), we

aim to estimate the distributions of hidden variables w. In our case, the observable random

variables correspond to the features x and labels y, and we are interested in the posterior

2Code for reproduction has been made available online at https://github.com/xuanqing94/
BayesianDefense
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over the weights p(w|x, y) given the prior p(w). However, the exact solution of posterior is

often intractable: notice that p(w|x, y) = p(x,y|w)p(w)
p(x,y)

but the denominator involves a high

dimensional integral [BKM17], hence the conditional probabilities are hard to compute. To

speedup inference, we generally have two approaches—we can either sample w ∼ p(w|x, y)

efficiently without knowing the closed-form formula through, for example, Stochastic Gradient

Langevin Dynamics (SGLD) [WT11], or we can approximate the true posterior p(w|x, y) by

a parametric distribution qθ(w), where the unknown parameter θ is estimated by minimizing

KL
Ä
qθ(w) ‖ p(w|x, y)

ä
over θ. For neural network, the exact form of KL-divergence can be

unobtainable, but we can easily find an unbiased gradient estimator of it using backward

propagation, namely Bayes by Backprop [BCK15].
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Figure 2.7: Illustration of

Bayesian neural networks.

Despite that both methods are widely used and analyzed

in-depth, they have some obvious shortcomings, making high

dimensional Bayesian inference remain to be an open prob-

lem. For SGLD and its extension (e.g. [LCC16]), since the

algorithms are essentially SGD updates with extra Gaussian

noise, they are very easy to implement. However, they can

only get one sample w ∼ p(w|x, y) in each minibatch iter-

ation at the cost of one forward-backward propagation, thus

not efficient enough for fast inference. In addition, as the

step size ηt in SGLD decreases, the samples become more and

more correlated so that one needs to generate many samples

in order to control the variance. Conversely, the variational

inference method i s efficient to generate samples since we

know the approximated posterior qθ(w) once we minimized

the KL-divergence. The problem is that for simplicity we often assume the approximation qθ
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to be a fully factorized Gaussian distribution:

qθ(w) =
d∏
i=1

qθi(wi), and qθi(wi) = N (wi;µi,σ
2
i ). (2.14)

Although our assumption (2.14) has a simple form, it inherits the main drawback from

mean-field approximation. When the ground truth posterior has significant correlation

between variables, the approximation in (2.14) will have a large deviation from true posterior

p(w|x, y). This is especially true for convolutional neural networks, where the values in the

same convolutional kernel seem to be highly correlated. However, we still choose this family

of distribution in our design as the simplicity and efficiency are mostly concerned.

In fact, there are many techniques in deep learning area borrowing the idea of Bayesian

inference without mentioning explicitly. For example, Dropout [SHK14] is regarded as a

powerful regularization tool for deep neural networks, which applies an element-wise product

of the feature maps and i.i.d. Bernoulli or Gaussian r.v. B(1, α) (or N (1, α)). If we allow

each dimension to have an independent dropout rate and take them as model parameters

to be learned, then we can extend it to the variational dropout method [KSW15]. Notably,

learning the optimal dropout rates for data relieves us from manually tuning hyper-parameter

on hold-out data. Similar idea is also used in RSE [LCZ17], except that it was used to

improve the robustness under adversarial attacks. As we discussed in the previous section,

RSE incorporates Gaussian noise ε ∼ N (0, σ2) in an additive manner, where the variance σ2

is user predefined in order to maximize the performance. Different from RSE, our Adv-BNN

has two degrees of freedom (mean and variance) and the network is trained on adversarial

examples.

2.2.2 Method

In our method, we combine the idea of adversarial training [MMS18a] with Bayesian neural

network, hoping that the randomness in the weights w provides stronger protection for our

model.
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To build our Bayesian neural network, we assume the joint distribution qµ,s(w) is fully

factorizable (see (2.14)), and each posterior qµi,si(wi) follows normal distribution with mean

µi and standard deviation exp(si) > 0. The prior distribution is simply isometric Gaussian

N (0d, s
2
0Id×d). We choose the Gaussian prior and posterior for its simplicity and closed-form

KL-divergence, that is, for any two Gaussian distributions s and t,

KL(s ‖ t) = log
σt
σs

+
σ2
s + (µs − µt)2

2σ2
t

− 0.5, s or t ∼ N (µs or t, σ
2
s or t). (2.15)

Note that it is also possible to choose more complex priors such as “spike-and-slab” [IR05] or

Gaussian mixture, although in these cases the KL-divergence of prior and posterior is hard

to compute and practically we replace it with the Monte-Carlo estimator, which has higher

variance, resulting in slower convergence rate [Kin17].

Following the recipe of variational inference, we adapt the robust optimization to the

evidence lower bound (ELBO) w.r.t. the variational parameters during training. First of all,

recall the ELBO on the original dataset (the unperturbed data) can be written as

−KL
Ä
qµ,s(w) ‖ p(w)

ä
+

∑
(xi,yi)∈Dtr

Ew∼qµ,s log p(yi|xi,w), (2.16)

rather than directly maximizing the ELBO in (2.16), we consider the following alternative

objective,

L(µ, s) , −KL
Ä
qµ,s(w) ‖ p(w)

ä
+

∑
(xi,yi)∈Dtr

min
‖xadv

i −xi‖≤γ
Ew∼qµ,s log p(yi|xadv

i ,w). (2.17)

This is essentially finding the minima for each data point (xi, yi) ∈ Dtr inside the γ-norm

ball, we can also interpret (2.17) as an even looser lower bound of evidence. So the robust

optimization procedure is to maximize (2.17), i.e.

µ∗, s∗ = arg max
µ,s

L(µ, s). (2.18)

To make the objective more specific, we combine (2.17) with (2.18) and get

arg max
µ,s

{î ∑
(xi,yi)∈Dtr

min
‖xadv

i −xi‖≤γ
Ew∼qµ,s log p(yi|xadv

i ,w)
ó
− KL

Ä
qµ,s(w) ‖ p(w)

ä}
(2.19)
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In our case, p(y|xadv,w) = Softmax
Ä
f(xadv

i ;w)
ä
[yi] is the network output on the adver-

sarial sample (xadv
i , yi). More generally, we can reformulate our model as y = f(x;w) + ζ

and assume the residual ζ follows either Logistic(0, 1) or Gaussian distribution depending

on the specific problem, so that our framework includes both classification and regression

tasks. We can see that the only difference between our Adv-BNN and the standard BNN

training is that the expectation is now taken over the adversarial examples (xadv, y), rather

than natural examples (x, y). Therefore, at each iteration we first apply a randomized PGD

attack for T iterations to find xadv, and then fix the xadv to update µ, s.

When updating µ and s, the KL term in (2.17) can be calculated exactly by (2.15),

whereas the second term is very complex (for neural networks) and can only be approximated

by sampling. Besides, in order to fit into the back-propagation framework, we adopt the Bayes

by Backprop algorithm [BCK15]. Notice that we can reparameterize w = µ + exp(s) � ε,
where ε ∼ N (0d, Id×d) is a parameter free random vector, then for any differentiable function

h(w,µ, s), we can show that

∂

∂µ
E
w

[h(w,µ, s)] = E
ε

[ ∂

∂w
h(w,µ, s) +

∂

∂µ
h(w,µ, s)

]
∂

∂s
E
w

[h(w,µ, s)] = E
ε

[
exp(s)� ε� ∂

∂w
h(w,µ, s) +

∂

∂s
h(w,µ, s)

]
.

(2.20)

Now the randomness is decoupled from model parameters, and thus we can generate multiple

ε to form a unbiased gradient estimator. To integrate into deep learning framework more

easily, we also designed a new layer called RandLayer, which is summarized in appendix.

It is worth noting that once we assume the simple form of variational distribution (2.14),

we can also adopt the local reparameterization trick [KSW15]. That is, rather than sampling

the weights w, we directly sample the activations and enjoy the lower variance during the

sampling process. Although in our experiments we find the simple Bayes by Backprop method

efficient enough.

For ease of doing SGD iterations, we rewrite (2.18) into a finite sum problem by dividing
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both sides by the number of training samples Ntr

µ∗, s∗ = arg min
µ,s

− 1

Ntr

Ntr∑
i=1

log p(yi|xadv
i ,w)︸ ︷︷ ︸

classification loss

+
1

Ntr

g(µ, s)︸ ︷︷ ︸
regularization

, (2.21)

here we define g(µ, s) , KL(qµ,s(w) ‖ p(w)) by the closed form solution (2.15), so there

is no randomness in it. We sample new weights by w = µ + exp(s) � ε in each forward

propagation, so that the stochastic gradient is unbiased. In practice, however, we need

a weaker regularization for small dataset or large model, since the original regularization

in (2.21) can be too large. We fix this problem by adding a factor 0 < α ≤ 1 to the

regularization term, so the new loss becomes

− 1

Ntr

Ntr∑
i=1

log p(yi|xadv
i ,w) +

α

Ntr

g(µ, s), 0 < α ≤ 1. (2.22)

In our experiments, we found little to no performance degradation compared with the same

network without randomness, if we choose a suitable hyper-parameter α, as well as the prior

distribution N (0, s2
0I).

The overall training algorithm is shown in Alg. 3. To sum up, our Adv-BNN method

trains an arbitrary Bayesian neural network with the min-max robust optimization, which

is similar to [MMS18a]. As we mentioned earlier, even though our model contains noise

and eventually the gradient information is also noisy, by doing multiple forward-backward

iterations, the noise will be cancelled out due to the law of large numbers. This is also the

suggested way to bypass some stochastic defenses in [ACW18].

Will it be beneficial to have randomness in adversarial training? After all, both randomized

network and adversarial training can be viewed as different ways for controlling local Lipschitz

constants of the loss surface around the image manifold, and thus it is non-trivial to see

whether combining those two techniques can lead to better robustness. The connection

between randomized network (in particular, RSE) and local Lipschitz regularization has been

derived in [LCZ17]. Adversarial training can also be connected to local Lipschitz regularization
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Algorithm 3 Code snippet for training Adv-BNN
1: procedure pgd_attack(x, y, w)

2: // Perform the PGD-attack (2.5), omitted for brevity

3: end procedure

4: procedure train(data, w)

5: // Input: dataset and network weights w

6: for (x, y) in data do

7: xadv ← pgd_attack(x, y,w) . Generate adversarial images

8: w ← µ+ exp(s)� ε, ε ∼ N (0d, Id×d) . Sample new model parameters

9: ŷ ← forward(w,xadv) . Forward propagation

10: loss_ce← cross_entropy(ŷ, y) . Cross-entropy loss

11: loss_kl← kl_divergence(w) . KL-divergence following (2.15)

12: L(µ, s)← loss_ce + α
Ntr
· loss_kl . Total loss following (2.22)

13: ∂L
∂µ
, ∂L
∂s
← backward

Ä
L(µ, s)

ä
. Backward propagation to get gradients

14: µ, s← µ− ηt ∂L∂µ , s− ηt ∂L∂s . SGD update, omitting momentum and weight decay

15: end for

16: return net

17: end procedure

with the following arguments. Recall that the loss function given data (xi, yi) is denoted as

`
Ä
f(xi;w), yi

ä
, and similarly the loss on perturbed data (xi + ξ, yi) is `

Ä
f(xi + ξ;w), yi).

Then if we expand the loss to the first order

∆` , `
Ä
f(xi + ξ;w), yi

ä
− `
Ä
f(xi;w), yi

ä
= ξᵀ∇xi`

Ä
f(xi;w), yi

ä
+O(‖ξ‖2), (2.23)

we can see that the robustness of a deep model is closely related to the gradient of the loss

over the input, i.e. ∇xi`
Ä
f(xi), yi

ä
. If ‖∇xi`

Ä
f(xi), yi

ä
‖ is large, then we can find a suitable

ξ such that ∆` is large. Under such condition, the perturbed image xi + ξ is very likely to
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be an adversarial example. It turns out that adversarial training directly controls the local

Lipschitz value on the training set,

min
w

`(f(xadv
i ;w), yi) = min

w
max
‖ξ‖≤γ

`(f(xi + ξ;w)

= min
w

max
‖ξ‖≤γ

`(f(xi;w), yi) + ξᵀ∇xi`(f(xi;w), yi) +O(‖ξ‖2).
(2.24)

Moreover, if we ignore the higher order term O(‖ξ‖2) then (2.24) becomes

min
w

`(f(xi;w), yi) + γ · ‖∇xi`(f(xi;w), yi)‖. (2.25)

In other words, the adversarial training can be simplified to Lipschitz regularization, and if

the model generalizes, the local Lipschitz value will also be small on the test set. Yet, as

[LH18] indicates, for complex dataset like CIFAR-10, the local Lipschitz is still very large on

test set, even though it is controlled on training set. The drawback of adversarial training

motivates us to combine the randomness model with adversarial training, and we observe a

significant improvement over adversarial training or RSE alone (see the experiment section

below).

2.2.3 Experimental results

In this section, we test the performance of our robust Bayesian neural networks (Adv-BNN)

with strong baselines on a wide variety of datasets. In essence, our method is inspired by

adversarial training [MMS18a] and BNN [BCK15], so these two methods are natural baselines.

If we see a significant improvement in adversarial robustness, then it means that randomness

and robust optimization have independent contributions to defense. Additionally, we would

like to compare our method with RSE [LCZ17], another strong defense algorithm relying on

randomization. Lastly, we include the models without any defense as references. For ease of

reproduction, we list the hyper-parameters in the appendix. Readers can also refer to the

source code on github.

It is known that adversarial training becomes increasingly hard for high dimensional

data [SST18]. In addition to standard low dimensional dataset such as CIFAR-10, we also did
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experiments on two more challenging datasets: 1) STL-10 [CNL11], which has 5,000 training

images and 8,000 testing images. Both of them are 96× 96 pixels; 2) ImageNet-143, which is

a subset of ImageNet [DDS09b], and widely used in conditional GAN training [MK18]. The

dataset has 18,073 training and 7,105 testing images, and all images are 64×64 pixels. It is a

good benchmark because it has much more classes than CIFAR-10, but is still manageable

for adversarial training.

Evaluating models under white box `∞-PGD attack

In the first experiment, we compare the accuracy under the white box `∞-PGD attack. We

set the maximum `∞ distortion to γ ∈ [0:0.07:0.005] and report the accuracy on test

set. The results are shown in Fig. 2.8. Note that when attacking models with stochastic

components, we adjust PGD accordingly. To demonstrate the relative performance more

clearly, we show some numerical results in Tab. 2.4.
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Figure 2.8: Accuracy under `∞-PGD attack on three different datasets: CIFAR-10, STL-10

and ImageNet-143. In particular, we adopt a smaller network for STL-10 namely “Model A”1,

while the other two datasets are trained on VGG.

From Fig. 2.8 and Tab. 2.4 we can observe that although BNN itself does not increase the

robustness of the model, when combined with the adversarial training method, it dramatically
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Data Defense 0 0.015 0.035 0.055 0.07

CIFAR10
Adv. Training 80.3 58.3 31.1 15.5 10.3

Adv-BNN 79.7 68.7 45.4 26.9 18.6

STL10
Adv. Training 63.2 46.7 27.4 12.8 7.0

Adv-BNN 59.9 51.8 37.6 27.2 21.1

Data Defense 0 0.004 0.01 0.016 0.02

ImageNet-143
Adv. Training 48.7 37.6 23.0 12.4 7.5

Adv-BNN 47.3 43.8 39.3 30.2 24.6

Table 2.4: Comparing the testing accuracy under different levels of PGD attacks. We include

our method, Adv-BNN, and the state of the art defense method, the multi-step adversarial

training proposed in [MMS18a]. The better accuracy is marked in bold. Notice that although

our Adv-BNN incurs larger accuracy drop in the original test set (where ‖ξ‖∞ = 0), we can

choose a smaller α in (2.22) so that the regularization effect is weakened, in order to match

the accuracy.

increase the testing accuracy for ∼10% on a variety of datasets. Moreover, the overhead of

Adv-BNN over adversarial training is small: it will only double the parameter space (for

storing mean and variance), and the total training time does not increase much. Finally,

similar to RSE, modifying existing network architectures into BNN is fairly simple, we only

need to replace Conv/BatchNorm/Linear layers by their variational version. Hence we can

easily build robust models based on existing ones.

2Publicly available at https://github.com/aaron-xichen/pytorch-playground/tree/master/stl10,
repository has no affiliation with us.
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Black-box transfer attack

Is our Adv-BNN model susceptible to transfer attack? we answer this question by studying

the affinity between models, because if two models are similar (e.g. in loss landscape) then

we can easily attack one model using the adversarial examples crafted through the other.

In this section, we measure the adversarial sample transferability between different models

namely None (no defense), BNN, Adv.Train, RSE and Adv-BNN. This is done by the method

called “transfer attack” [LCL17]. Initially it was proposed as a black box attack algorithm:

when the attacker has no access to the target model, one can instead train a similar model

from scratch (called source model), and then generate adversarial samples with source model.

As we can imagine, the success rate of transfer attack is directly linked with how similar the

source/target models are. In this experiment, we are interested in the following question:

how easily can we transfer the adversarial examples between these five models? We study

the affinity between those models, where the affinity is defined by

ρA 7→B =
Acc[B]− Acc[B|A]

Acc[B]− Acc[B|B]
, (2.26)

where ρA 7→B measures the success rate using source model A and target model B, Acc[B]

denotes the accuracy of model B without attack, Acc[B|A(or B)] means the accuracy under

adversarial samples generated by model A(or B). Most of the time, it is easier to find

adversarial examples through the target model itself, so we have Acc[B|A] ≥ Acc[B|B] and

thus 0 ≤ ρA 7→B ≤ 1. However, ρA 7→B = ρB 7→A is not necessarily true, so the affinity matrix is

not likely to be symmetric. We illustrate the result in Fig. 2.9.

We can observe that {None, BNN} are similar models, their affinity is strong (ρ ≈ 0.85) for

both direction: ρBNN 7→None and ρNone 7→BNN. Likewise, {RSE, Adv-BNN, Adv.Train} constitute the

other group, yet the affinity is not very strong (ρ ≈ 0.5∼0.6), meaning these three methods

are all robust to the black box attack to some extent.
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Figure 2.9: Black box, transfer attack experiment results. We select all combinations of

source and target models trained from 5 defense methods and calculate the affinity according

to (2.26).

Miscellaneous experiments

Following experiments are not crucial in showing the success of our method, however, we still

include them to help clarifying some doubts of careful readers.

The first question is about sample efficiency, recall in prediction stage we sample weights

from the approximated posterior and generate the label by

ŷ = arg max
y

1

m

m∑
k=1

p(y|x,wk), wk ∼ qµ,s. (2.27)

In practice, we do not want to average over lots of forward propagation to control the

variance, which will be much slower than other models during the prediction stage. Here we

take ImageNet-143 data + VGG network as an example, to show that only 10∼20 forward

operations are sufficient for robust and accurate prediction. Furthermore, the number seems

to be independent on the adversarial distortion, as we can see in Fig. 2.10(left). So our

algorithm is especially suitable to large scale scenario.
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One might also be concerned about whether 20 steps of PGD iterations are sufficient to

find adversarial examples. It has been known that for certain adversarial defense method, the

effectiveness appears to be worse than claimed [EIA18], if we increase the PGD-steps from

20 to 100. In Fig. 2.10(right), we show that even if we increase the number of iteration to

1000, the accuracy does not change very much. This means that even the adversary invests

more resources to attack our model, its marginal benefit is negligible.
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Figure 2.10: Left : we tried different number of forward propagation and averaged the results

to make prediction (2.27). We see that for different scales of perturbation γ ∈ {0, 0.01, 0.02},
choosing number of ensemble n = 10∼20 is good enough. Right : testing accuracy stabilizes

quickly as #PGD-steps goes greater than 20, so there is no necessity to further increase the

number of PGD steps.

2.3 Neural SDE: Explanation and Exploration of Noise-induced Ro-

bustness

Previous methods are all based on noise injection scheme in between convolutional blocks.

In this section, we take this idea one step further to the continuous limit, based on the

seminal work of Neural-ODE [CRB18]. Neural Ordinary Differential Equation (Neural
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ODE) has been proposed as a continuous approximation to the ResNet architecture. Some

commonly used regularization mechanisms in discrete neural networks (e.g., dropout, Gaussian

noise) are missing in current Neural ODE networks. We introduce a new continuous neural

network framework called Neural Stochastic Differential Equation (Neural SDE), which

naturally incorporates various commonly used regularization mechanisms based on random

noise injection. For regularization purposes, our framework includes multiple types of noise

patterns, such as dropout, additive, and multiplicative noise, which are common in plain

neural networks. We provide some theoretical analyses explaining the improved robustness

of our models against input perturbations. Furthermore, we demonstrate that the Neural

SDE network can achieve better generalization than the Neural ODE and is more resistant

to adversarial and non-adversarial input perturbations.

Traditional neural networks are usually stacked with multiple layers; recent work [CRB18]

shows that we can model it in the continuous limit. This means that there is no notion

of discrete layers, and hidden features are changed smoothly. Mathematically it has the

following form

ht = hs +

∫ t

s

f(hτ , τ ;w) dτ, (2.28)

where t > s are two different “depths”; ht is the hidden features at depth t; f is the residual

block parameterized by w. This formula is exactly the continuous limit of the original

ResNet [HZR16] structure

hn+1 = hn + f(hn;wn), (2.29)

here the layer index n = 1, 2, . . . , N is discrete. Notice that the original Neural ODE model

does not contain any randomness in hidden features ht. Thus it is not ready to model a

variety of random neural networks (such as dropout). To address this limitation, we augment

the original Neural ODE model (2.28) with two kinds of stochastic terms: one is the diffusion

term (to model Gaussian noise), and the other is jump term (to model Bernoulli noise),
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formally

ht = hs +

∫ t

s

f(hτ , τ ;w) dτ︸ ︷︷ ︸
drift term

+

∫ t

s

G(hτ , τ) dBτ︸ ︷︷ ︸
diffusion term

+

∫ t

s

J(hτ , τ)� ZNτ dNτ︸ ︷︷ ︸
jump term

.

(2.30)

Compared with Neural ODE model in (2.28) that only contains deterministic component (drift

term), we add two extra terms in (2.30) to model different nature of randomness: diffusion

term and jump term. The diffusion term consists of Brownian motion Bt and its coefficient

G (optionally) parameterized by unknown variables v. Inside the jump term, deterministic

function J(hτ , τ) controls the jump size; Random variables ZNτ ∼ Bernoulli(±1, p) controls

the direction; and Nτ ∼ Poisson(λτ) is a Poisson counting process controlling the “frequency”

of jumps. For completeness, we include some key properties of Brownian motion to appendix,

and for more systematic discussion we refer readers to related sections in [Oks03, KS98],

informally we can regard the random variable dBt as i.i.d. Gaussian random variables with

distribution N (0, dt). Next we will explain these two terms in details.

Diffusion term. This part is an Itô integral and we know it follows Gaussian distribution.

To see it more clearly, we can simply set G(hτ , τ) = σ and so the result of integration will be

Bt −Bs ∼ N (0, (t− s)σ2), which is consistent with adding Gaussian noise to each residual

block. For general G, it does allow closed-form solution but the result is still Gaussian, only

the variance is now dependent on hidden features hτ .

Jump term. The key feature of jump term is that the integral is calculated over Poisson

process Nt, that is, the total number of jumps in interval [s, t] follows Poisson distribution

P (Ns→t = n) =
[λ(t− s)]n

n!
e−λ(t−s), n ∈ Z+.

We can imagine that by inserting the jump term to our hidden state transition formula

(2.30), we are effectively adding n dropout layers to the network, where n is drawn from
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some Poisson distribution; and for each dropout layer, it is randomly placed to any network

depth (see Fig. 2.11 to get a better picture). Additionally, for each dropout layer, the drop
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5

6

Network Depth

Nt

dNt T1 T2 T3T0

1st
dropout

2nd
dropout

3rd
dropout

4th
dropout

Figure 2.11: Illustrateion of dropout layers under (2.30).

probability is determined by Bernoulli random variables Z.

Rationale of (2.30). It might not be straightforward to see why our model (2.30) is a

proper replacement for the discrete version of a residual neural network equipped with

Gaussian smoothing and Dropout layers. Here we make more justifications about it. We

first notice that the noise pattern coming from dropout layers is very different from the noise

generated by Gaussian smoothing. By definition, Dropout randomly sets some features to
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zero, so the noise here is inherently Bernoulli distributed. On the other hand, the diffusion

term is a Gaussian process (Itô integral). Therefore, it is not reasonable to model a dropout

layer with diffusion term, nor is it suitable to model Gaussian noise with jump term. That is

why we use two separate terms in our continuous framework.

2.3.1 Some concrete examples

We proposed a new framework in (2.30) for encoding the randomness into Neural ODE using

diffusion and jump terms. Next we will give some concrete examples for these two terms.

Dropout. Dropout layer randomly disables some connections in neural network, here we

consider a common situation where dropout layer is placed after convolutional block and before

residual connection (Fig. 2.12). Mathematically we can formulate it as ht+1 = ht+f(ht;w)�γ,

Conv block

f(ht;w)
Dropout

ht

f(ht;w)� γ

ht + f(ht;w)� γ

Figure 2.12: Our dropout layer configuration.

where ht is input features at depth τ , and P (γi = 0) = pdrop determines the drop rate. To be

compatible with (2.30), we rewrite it as

ht+1 = ht + f(ht;w)� γ

= ht +
1

2
f(ht;w) + 2f(ht;w)� γ − 0.5

2

= ht +
1

2
f(ht;w) + 2f(ht;w)� Z

, (2.31)
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where we are essentially shifting Bernoulli random variables from γ (with values {0, 1}) to Z

(with values {−1,+1}). Comparing (2.31) with (2.30), we arrive at the following continuous

version of (2.31)

ht = hs +

∫ t

s

1

2
f(hτ ;w) dτ +

∫ t

s

2f(hτ ;w)� ZNτ dNτ .

Stochastic depth network. This is very similar to the previous dropout setting, the only

difference is that for stochastic depth network, random vector γ is no longer i.i.d. Bernoulli

distributed but “bonded” together. More formally, γ = γ · J where Ji,j = 1 is an all-ones

matrix and γ is a (scalar) Bernoulli random variable (of values {0, 1}). Beyond that, there is

no difference with previous dropout layer, and the continuous form of it is

ht = hs +

∫ t

s

1

2
f(hτ ;w) dτ +

∫ t

s

2f(hτ ;w)ZNτ dNτ , (2.32)

here ZNτ is just a scalar random variable.

Gaussian-dropout. We can create another kind of dropout noise that does not involve

Bernoulli random variables. We first scale the original dropout (2.31) by 1 − pdrop, which
becomes

ht+1 = ht + f(ht;w)� γ

1− pdrop
. (2.33)

The reason we add an 1− pdrop scaling factor is that now the output expectation E[ht+1] =

ht+f(ht;w) looks as if no dropout is used, due to the fact that E[γ] = 1−pdrop. Disentangling

the mean from variance, we have

ht+1 = ht + f(ht;w) + f(ht;w)� (
γ

1− pdrop
− I)

= ht + f(ht;w) +

…
pdrop

1− pdrop
f(ht;w)� zt,

(2.34)

where I is the identity matrix, and zt ,
√

1−pdrop
pdrop

(
γ

1−pdrop
− I

)
. We can verify that zt as a

two-point distribution, has the same mean and variance as standard Gaussian distribution.
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So as an approximation, we directly replace zt with N (0, 1). After that, the continuous

version becomes

ht = hs +

∫ t

s

f(hτ ;w) dτ +

∫ t

s

…
pdrop

1− pdrop
f(ht;w)� dBτ .

Gaussian smoothing. As we have mentioned before, Gaussian noise is better modeled

by diffusion term. The traditional way of applying Gaussian smoothing is adding small,

uncorrelated noise to each hidden layer [LCZ18] (or just the input layer [LAG18b, CRK19]),

mathematically

ht+1 = ht + f(ht;w) + Wt, Wt ∼ N (0, σ2I). (2.35)

But through experiments we found that multiplicative noise of following form also works

ht+1 = ht + f(ht;w) + f(ht;w)Wt, Wt ∼ N (0, σ2I). (2.36)

Unlike (2.35), the noise scale in (2.36) grows with the scale of output from convolution block

f(ht;w), thus the noise variance is self-adjustable and sometimes it can be advantageous.

For both additive and multiplicative Gaussian noise, the integral form is as straightforward

as follows

ht = hs +

∫ t

s

f(hτ ;w) dτ +


∫ t
s
G(τ) dBτ ,∫ t

s
G(ht, τ) dBτ .

(2.37)

As we can see, for additive noise, diffusion coefficient G is independent on ht; while for

multiplicative noise, G can change along with hidden features ht.

2.3.2 Training algorithm and complexity

The implementation of the stochastic, continuous neural network training algorithm is similar

to Neural ODE [CRB18] and it is stated in Algorithm 4. In fact, we can view (2.30) as

a SDE problem, and standard SDE solvers can be applied here for training. We can see

from the algorithm that for forward propagation we pick a standard SDE solvers such as
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Euler-Maruyama [KP13], Milstein [Mil75] or higher order Runge-Kutta method, but for

backward propagation we simply rely on the automatic gradient provided by major deep

learning frameworks. Although it is possible to derive an adjoint algorithm as in [CRB18]

Algorithm 4 Forward and backward propagation
1: procedure Training-process . Do forward & backward propagation

2: Given initial state h0, integral range [0, T ].

3: hT = SDE_Solve
(
f(ht, t;w),G(ht, t;v), [0, T ]

)
. . Call a black-box SDE solver

4: Calculate loss L = `(hT ).

5: Calculate gradient ∂L
∂w

and ∂L
∂v

with autograd.

6: Update network parameters w and v.

7: end procedure

to save memory consumption, in practice, we find that the most straightforward autograd

method works efficiently in all our experiments, see Fig. 2.13(left). Furthermore, we observe

the error caused by discretization is small enough for end tasks even when using a large grid

size in SDE solver (Line 3 in Algorithm 4) as shown in Fig 2.13(right). More details are in

the appendix.

2.3.3 Connection between jump-diffusion and robustness

In this section, we build a new explanation to shed some light on answering how noise (inside

jump-diffusion term (2.30)) helps training the robust neural network. It is worth noting that

our analysis is very different from the traditional belief that noise acts as a regularizer during

training. We focus on the role of randomness in testing time, and in this sense, our idea

is complementary to the former. In the following parts, we first deliver a toy example to

have a closer view of this phenomenon, and then we present some theories to understand the

principles in behind.
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Figure 2.13: Left : we compare the propagation time between Neural ODE, ODE with adjoint,

and SDE. We can see that the running time increases proportionally with network depth

and there is no significant overhead in our model. Right : We compute the error of SDE

solver caused by discretization in Euler schemes, measured by the relative error in ht, i.e.

ε = ‖hT−ĥT ‖
‖hT ‖

and hT is the ground-truth (computed with a very fine grid), ĥT is computed

with coarse grid ∆t ∈ [1.0× 10−4, 1.0× 10−1] (note that network depth t = T/∆T ).

A toy example

Let’s look at a 1-dimensional toy example where randomness stabilizes the system. Suppose

we have a simple SDE

dxt = xt dt+ σxt dBt, (2.38)

with Bt being the standard Brownian motion. When we remove the diffusion term by

setting σ = 0, (2.38) becomes an ODE: dxt = xt dt with solution xt = x0e
t, where x0 is the

initialization of xt. If x0 6= 0, we can see that xt → ±∞ as t→∞. In other words, any small

perturbation at initialization x0 = ε will be amplified through the ODE-system at future

time t. In contrast, if we add the diffusion back σ 6= 0, we then have the classic geometric

Brownian motion with solution xt = x0 exp
Ä
(1− σ2/2)t+ σBt

ä
. Once the variance of noise

is large enough (e.g. σ >
√

2), then we know that xt
a.s.→ 0.

To visualize the difference, we run several numerical simulations in Fig. 2.14 for xt with
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different variances σ. The experiments in Fig. 2.14 clearly show that the behavior of solution
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Figure 2.14: Toy example. By comparing the simulations under σ = 0 and σ = 2.8, we see

adding noise to the system can be an effective way to control xt. Average over multiple runs

is used to cancel out the volatility during the early stage. It is noteworthy that here we

employ the multiplicative noise, where the deviation term scales proportionally to xt.

paths can change significantly after adding a diffusion term. This example is inspiring because

we can control the impact of perturbations on the output by adding a stochastic term to our

networks.

Theoretical explanation

Inspired by the toy example above, we theoretically analyze the stability of Neural jump-

diffusion equation (2.30). Our analytical results show that the jump-diffusion terms can

indeed improve the robustness of the model against small, arbitrary input perturbations. This

finding also explains why noise injection can improve both generalizability and robustness

in discrete networks, which has been observed in current literature [LCZ18, LAG18b]. To
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simplify our symbols, we ignore the jump term temporarily and focus on the diffusion term.

The following assumptions on drift f and diffusion G guarantee the existence and uniqueness

of solution.

Assumption 1. f and G are at most linear, i.e. ‖f(x, t)‖+ ‖G(x, t)‖ ≤ c1(1 + ‖x‖) for

c1 > 0, ∀x ∈ Rn and t ∈ R+.

Assumption 2. f and G are c2-Lipschitz: ‖f(x, t) − f(y, t)‖ + ‖G(x, t) − G(y, t)‖ ≤
c2‖x− y‖ for c2 > 0, ∀x,y ∈ Rn and t ∈ R+.

Based on the above assumptions, we can show that the SDE (2.30) has a unique solu-

tion [Oks03]. We remark that these assumptions on f are quite natural and are also enforced

on the original Neural ODE model (see Sec. 6 of [CRB18]). As to the diffusion matrix

G, we have seen that at least for additive Gaussian noise (where G is a constant matrix)

and multiplicative Gaussian noise (where G is proportional to f), both assumptions are

automatically satisfied as long as f possesses the same regularities.

We analyze the dynamics of perturbation. Our analysis applies not only to the Neural

SDE model but also to the Neural ODE model, by setting the diffusion term G and jump

term J to zero. Our idea is illustrated in Fig. 2.15. First of all, we consider initializing

our differential equation (2.30) at two slightly different values h0 and he0 = h0 + ε0, where

h0 is the original (clean) input, ε0 is the perturbation (also called “error”) on h0. In many

real problems, the perturbation at input is bounded, i.e. ‖ε0‖ ≤ δ. Therefore, under the

perturbed initialization he0, the hidden states at time t follow the same rule in (2.30), recalling

the jump term is ignored for simplicity,

dhet = f(het , t;w) dt+G(het , t) dB′t,with h
e
0 = h0 + ε0, (2.39)

where B′t is Brownian motions for the SDE associated with initialization he0. Then it is

natural to analyze how the perturbation εt = het − ht evolves in the long run. Subtracting
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Figure 2.15: Illustration of our analysis. Given a smaller perturbation ε at the input, how

does the error propagation through a deep neural network? If the error is controllable, then

we can make sure that the final prediction result is also controllable. In our analysis, we do

not need to care about how ht or het evolves, only the difference εt = het − ht matters; and

this is depicted in (2.40).

(2.30) from (2.39), we have

dεt =
î
f(het , t;w)− f(ht, t;w)

ó
dt

+
î
G(het , t)−G(ht, t)

ó
dBt

= f∆(εt, t;w) dt+G∆(εt, t) dBt.

(2.40)

Here we made an implicit assumption that the Brownian motions Bt and B′t have the same

sample path for both initialization h0 and he0, i.e. Bt = B′t w.p.1. In other words, we focus

on the difference of two random processes ht and het driven by the same underlying Brownian

motion. So it is valid to subtract the diffusion terms.

An important property of (2.40) is that it admits a trivial solution εt ≡ 0, ∀t ∈ R+ and

w ∈ Rd. To verify that, we only need to show that both the drift (f) and diffusion (G) are

57



Table 2.5: Evaluating the model generalization under different choices of diffusion matrix

G(ht, t;v) introduced above. For the three noise types, we search a suitable parameter σt for

each of them so that the diffusion matrix G properly regularizes the model. TTN means

testing time noise. We observe adding noises can improve the test accuracy over Neural ODE,

and furthermore, noise at testing time is beneficial.

Data
Accuracy@1 — w/o TTN Accuracy@1 — w/ TTN

ODE Additive Multiplicative Dropout ODE Additive Multiplicative Dropout

CIFAR-10 87.95 88.69 89.06 88.23 – 88.73 89.77 88.44

CIFAR-10.1 70.00 70.80 71.50 71.85 – 71.70 72.05 73.60

STL-10 58.03 61.23 60.54 61.26 – 62.11 62.58 62.13

Tiny-ImageNet 45.19 45.25 46.94 47.04 – 45.39 46.65 47.81

zero under εt = 0:

f∆(0, t;w) = f(ht + 0, t;w)− f(ht, t;w) = 0,

G∆(0, t) = G(ht + 0, t)−G(ht, t) = 0.
(2.41)

The implication of zero solution is clear: for a neural network, if we do not perturb the

input data, then the output will never change. However, the solution εt = 0 can be highly

unstable , in the sense that for an arbitrarily small perturbation ε0 6= 0 at initialization, the

change of output εT can be arbitrarily large. Luckily, as we will show below, by choosing the

diffusion term G properly, we can always control εt within a small range.

In general, we cannot get the closed-form solution to a multidimensional SDE, but we can

still analyze the asymptotic stability through the dynamics f and G. This is an extension of

the Lyapunov stability theory to a stochastic system. First, we define the notion of stability

in the stochastic case. Let (Ω,F , P ) be a complete probability space with filtration {Ft}t≥0

and Bt be an m-dimensional Brownian motion defined in the probability space, we consider
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the SDE in (2.40) with initial value ε0

dεt = f∆(εt, t) dt+G∆(εt, t) dBt, (2.42)

where for simplicity we dropped the dependency on parameters w and v. We further assume

f∆ : Rn × R+ 7→ Rn and G∆ : Rn × R+ 7→ Rn×m are both Borel measurable. We can show

that if assumptions (1) and (2) hold for f and G, then they hold for f∆ and G∆ as well (see

appendix), and we know the SDE (2.42) allows a unique solution εt. We have the following

Lynapunov stability results from [Mao07].

Definition 2.3.1 (Lyapunov stability of SDE). The solution εt = 0 of (2.42):

A. is stochastically stable if for any α ∈ (0, 1) and r > 0, there exists a δ = δ(α, r) > 0

such that Pr{‖εt‖ < r for all t ≥ 0} ≥ 1− α whenever ‖ε0‖ ≤ δ. Moreover, if for any

α ∈ (0, 1), there exists a δ = δ(α) > 0 such that Pr{limt→∞ ‖εt‖ = 0} ≥ 1−α whenever

‖ε0‖ ≤ δ, it is said to be stochastically asymptotically stable;

B. is almost surely exponentially stable if for all ε0 ∈ Rn, lim sup
t→∞

1
t

log ‖εt‖ < 0 a.s.3

Note that for part A in Definition 2.3.1, it is hard to quantify how well the stability is

and how fast the solution reaches equilibrium. In addition, under assumptions (1, 2), we have

a straightforward result Pr{εt 6= 0 for all t ≥ 0} = 1 whenever ε0 6= 0 as shown in appendix.

That is, almost all the sample paths starting from a non-zero initialization can never reach

zero due to Brownian motion. On the contrary, the almost sure exponentially stability result

implies that almost all the sample paths of the solution will be close to zero exponentially fast.

One important result regarding to stability of this system is [Mao07], deferred to appendix.

We now consider a special case, when the noise is multiplicative G(ht, t) = σ · ht and m = 1.

The corresponding SDE of perturbation εt = het − ht becomes

dεt = f∆(εt, t;w) dt+ σ · εt dBt. (2.43)

3“a.s.” is the abbreviation for “almost surely”.
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Table 2.6: Testing accuracy results under different levels of non-adversarial perturbations.

Data Noise type
mild corrupt ← Accuracy → severe corrupt

Level 1 Level 2 Level 3 Level 4 Level 5

CIFAR10-C†

ODE 75.89 70.59 66.52 60.91 53.02

Dropout 77.02 71.58 67.21 61.61 53.81

Dropout+TTN 79.07 73.98 69.74 64.19 55.99

TinyImageNet-C†

ODE 23.01 19.18 15.20 12.20 9.88

Dropout 22.85 18.94 14.64 11.54 9.09

Dropout+TTN 23.84 19.89 15.28 12.08 9.44

† Downloaded from https://github.com/hendrycks/robustness

Note that for the deterministic case of (2.43) by setting σ ≡ 0, the solution may not be stable

in certain cases (see Figure 2.14). Whereas for general cases when σ > 0, following corollary

claims that by setting σ properly, we will achieve an (almost surely) exponentially stable

system.

Corollary 2.1. For (2.43), if f(ht, t;w) is L-Lipschtiz continuous w.r.t. ht, then (2.43)

has a unique solution with the property lim sup
t→∞

1
t

log ‖εt‖ ≤ −(σ
2

2
− L) almost surely for any

ε0 ∈ Rn. In particular, if σ2 > 2L, the solution εt = 0 is almost surely exponentially stable.

2.3.4 Experiment

In this section, we show the effectiveness of our framework in terms of generalization, non-

adversarial robustness, and adversarial robustness. Throughout our experiments, we set f(·)
to be a neural network with several convolution blocks. As to G(·) we have the following

choices:
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Figure 2.16: Comparing the robustness against `2-norm constrained adversarial perturbations,

on CIFAR-10 (left), STL-10 (middle) and Tiny-ImageNet (right) data. We observe that

jump-diffusion model with either multiplicative noise or dropout noise is more resistant to

adversarial attack than Neural ODE.

• Neural ODE, this can be done by dropping the diffusion term G(ht, t) = 0.

• Additive noise, when the diffusion term is independent of ht, here we simply set it to

be diagonal G(ht, t) = σtI.

• Multiplicative noise, when the diffusion term is proportional to ht, orG(ht, t) = σtht.

• Gaussian-dropout noise, when the diffusion term is proportional to the drift term

f(ht, t;w), i.e. G(ht, t) = σtdiag{f(ht, t;w)}.

Note the last three are our proposed model with different types of randomness, as explained

in Section 3.1. For more experimental details, the architecture of f(·) and the numerical

solver for SDE, please refer to our appendix. Note that we use the same architecture for all

the methods mentioned above, so the comparisons are fair.

Generalization Performance

In the first experiment, we show a small noise helps generalization. However, note that

our noise injection is different from the randomness layer in the discrete case. For instance,
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dropout layers add Bernoulli noise at training time but not testing time, whereas our model

keeps randomness at the testing time and takes the averaged prediction of multiple forward

propagations.

As for datasets, we choose CIFAR-10, STL-10 and Tiny-ImageNet4 to include various sizes

and number of classes. The experimental results are shown in Table 2.5. We observe that

for all datasets, noisy versions consistently outperform ODE, and the reason is that adding

moderate noise to the models at training time can act as a regularizer and thus improves

testing accuracy. Based upon that, if we further keep testing time noise and ensemble the

outputs, we will obtain even better results.

Improved non-adversarial robustness

We evaluate the robustness of models under non-adversarial corruption following the idea of

[HD19b]. The corrupted datasets contain tens of defects in photography, including motion

blur, Gaussian noise, fog, etc. For each noise type, we run Neural ODE and our model

with dropout noise and gather the testing accuracy. The final results are reported by mean

accuracy (mAcc) in Table 2.6 by changing the level of corruption. Both models are trained

on clean data, which means the corrupted images are not visible to them during the training

stage, nor could they augment the training set with the same types of corruption. From

the table, we can see that our model performs better than Neural ODE in 8 out of 10

cases. For the rest two, both ODE and SDE are performing very close. This shows that our

proposed neural jump-diffusion improves the robustness of Neural ODE under non-adversarial

corrupted data.

4Downloaded from https://tiny-imagenet.herokuapp.com/
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Improved adversarial robustness

Next, we consider the performance of our models under adversarial perturbation. This scenario

is strictly harder than the previous case – perturbations are crafted through constrained loss

maximization procedure, so it represents the worst-case performance. In our experiment,

we adopt `2-PGD attack with 20 steps [MMS18a]. The experimental results are shown in

Figure 2.16. As we can see, jump-diffusion model with either multiplicative noise or dropout

noise is more resistant to adversarial attack than Neural ODE. We also observe dropout noise

outperforms multiplicative noise.

Visualizing the perturbations of hidden states
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Figure 2.17: Comparing the perturbations of hidden states, εt, on both ODE and SDE (we

choose dropout-style noise).

In this experiment, we take a look at the perturbation εt = het − ht at any time t. Recall

that in the 1-d toy example in Figure 2.14, we observe that the perturbation at time t can be

well suppressed by adding a strong diffusion term, which is also confirmed by our theorem.

However, it is still questionable whether the same phenomenon also exists in deep neural

networks since we cannot add very large noise to the network during training or testing time.
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If the noise is too large, it will also remove all useful features. Thus it becomes important to

make sure that this will not happen to our models. To this end, we first sample an input x

from CIFAR-10 and gather all the hidden states ht at time t = [0,∆t, 2∆t, . . . , N∆t]. Then

we perform regular PGD attack [MMS18a] to find the perturbation δx such that xadv = x+δx

is an adversarial image, and feed the new data xadv into network again so we get het at the

same time stamps as ht. Finally we plot the error εt = het − ht w.r.t. time t (also called

“network depth”), shown in Figure 2.17. We can observe that by adding a diffusion term

(dropout-style noise), the error accumulates much slower than the ordinary Neural ODE

model.
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CHAPTER 3

Verifiable Adversarial Defense

3.1 Provably Robust Nearest-neighbor Classifiers

In the previous chapters we went through some randomization based adversarial defense

algorithms. A clear drawback of these algorithms is that they are all attack-dependent,

meaning that we never know the actual performance under other attacks even if it works well

under the PGD attack. Verifiable adversarial defense, on the other hand, provides a worse

case accuracy regardless of what adversarial attack algorithm is chosen.

We study the problem of evaluating the robustness of Nearest Neighbor (NN) classifiers.

NN models are simple but effective, and are widely-used in many domains [BSI08, WS09,

XKS06]. Furthermore, NN models have been used as a defense mechanism recently since

they are believed to be more difficult to attack than neural networks [DMY19, PM18]. We

aim to answer the following questions:

1) Is NN really more robust or it’s just because previous methods fail to compute the

minimum adversarial perturbation? 2) Is the robustness of NN verifiable?

As a non-continuous step function, NN classifiers are quite different from neural networks.

As a result, the methods used for neural network attack and verification cannot be directly

applied to NN classifiers. Previous attempts on attacking nearest neighbor models either

resort to some simple heuristics [SW19] or apply gradient-based attacks to some continuous

substitute models of NN [SW19, PMG16c, DMY19]. Unfortunately, these methods are far

from optimal and have no theoretical guarantee. To the best of our knowledge, there is
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no existing approach on exactly computing the minimum adversarial perturbation that can

change an NN classifier’s output, and there is even no existing verification method that can

compute a meaningful lower bound for the range of the safe region of an NN classifier.

To address the above issues, we first study the 1-NN classifier and show that finding

the minimum adversarial perturbation can be formulated as a set of convex quadratic

programming (QP) problems, of which the optimal solution can be computed in polynomial

time [KTK80]. This is quite different from neural networks or tree-based models for which

finding the minimum perturbation has proven to be NP-hard [KBD17, KTJ16]. In particular,

our formulation provides a clear and novel perspective on attack and verification for nearest

neighbor classifiers: any feasible solution of any primal QP problem will be a successful

attack, and the minimum of any set of feasible solutions of the dual problems are guaranteed

lower bounds of the minimum adversarial perturbation. Moreover, the primal minimum and

the dual maximum will exactly match at the value of the minimum adversarial perturbation.

We show that the QP problems can be efficiently solved by greedy coordinate ascent, which

exploits the sparsity of the optimal solutions. Based on this primal-dual perspective, we

further provide several screening rules to speed up the process for solving the set of QP

problems.

For general K-NN models with K > 1, the number of QP problems will grow exponentially

with K. Therefore, computing the exact minimum adversarial perturbation is prohibitively

time consuming when K is large. On the one hand, we address this issue by approximately

solving a subset of the primal problems, leading to an efficient attack method. On the

other hand, we propose an efficient method to deal with the dual problems for providing a

tight lower bound of the minimum adversarial perturbation. This method does not need to

exactly solve any dual problems, leading to an efficient K-NN verification algorithm with

time complexity independent to K.

In summary, our main contributions of this work are as follows:
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• For 1-NN models, our proposed algorithm can efficiently compute the minimum adver-

sarial perturbation. Our algorithm is provably optimal, achieves much smaller values,

and is more efficient than previous attack methods. Besides, this is the first robustness

verification method for NN models.

• For K-NN models with K > 1, our formulation provides an efficient attack algorithm,

which outperforms previous attack methods. More importantly, our dual problems

lead to an efficient verification algorithm to compute the lower bound of the minimum

adversarial perturbation and have time complexity independent to K. Experiments

show that the bounds are reasonably tight.

• Equipped with our algorithms, we accurately compute the certified robust errors of

the 1-NN model on the MNIST and Fashion-MNIST datasets. We find that a simple

1-NN model can achieve better robust errors than randomly smoothed [CRK19] neural

networks on these data.

3.1.1 Background and motivation

First, we set up notations for the Nearest Neighbor (NN) classifiers. Assume there are C labels

in total. We use {(xi, yi)}ni=1 to denote the database where each xi ∈ Rd is a d-dimensional

vector and yi ∈ [C] is the corresponding label. A K-NN classifier f : Rd → [C] maps a test

instance to a predicted label. Given a test instance z ∈ Rd, the classifier will first identify

the K-nearest neighbors {xπ(1), . . . ,xπ(K)} based on the Euclidean distance ‖xi − z‖ and
then predict the final label by majority voting among {yπ(1), . . . , yπ(K)}.

Next we define the notions of adversarial robustness, attack, and verification. Given a

correctly-classified test instance z, an adversarial perturbation is defined as δ ∈ Rd such

that f(z + δ) 6= f(z). An attack algorithm aims to find the minimum-norm adversarial

perturbation, and its norm is formulated as

ε∗ =
¶

min
δ
‖δ‖ s.t. f(z + δ) 6= f(z)

©
. (3.1)
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A verification algorithm seeks to find a lower bound of ε∗, denoted as r, which defines a safe

region such that

f(z + δ) = f(z), ∀‖δ‖ ≤ r. (3.2)

Clearly, the maximum lower bound r∗ will exactly match with the minimum perturbation

norm ε∗ if both attack and verification are optimal. We will focus on `2 norm but will briefly

talk about how to extend to `∞ and `1 norms. Moreover, we will focus on 1-NN first and

then generalize to K-NN with K > 1.

Failure cases of previous attack methods. At first glance, the minimum adversarial

perturbation seems to be easy to compute for the 1-NN model. For instance, an approach is

proposed [SW19] to find the best adversarial example on the straight line connecting z and one

of the training instances belonging to a different class. Unfortunately, in Figure 3.1, we show

that the optimal perturbation may not be on the lines connecting these two points; furthermore,

only checking the line segments can find an arbitrary bad solution. Other previous approaches

try to form a continuous approximation of NN classifiers and craft adversarial perturbations

for this substitute via gradient-based attack methods [SW19, PMG16c, DMY19]; clearly,

they cannot provably find the optimal perturbation.

Connection to Voronoi diagrams and a solution for low-dimensional cases In

fact, the decision boundary of a 1-NN model can be captured by the Voronoi diagram (see

Figure 3.1(c)). In the Voronoi diagram, each training instance xi forms a cell, and the decision

boundary of the cell is captured by the convex boundary formed by bisecting hyperplanes

between xi and its neighbors. One can thus obtain the minimum adversarial perturbation

by computing the distances from z to all the cells with yi 6= f(z). However, to compute

the distance, we need to check all the faces (captured by one bisecting hyperplane) and

angles (intersections of more than one bisecting hyperplanes) of the cell. For 2-dimensional

space (d = 2), each cell can only have finite faces and angles [AK99], and there exists a
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Figure 3.1: Illustration of the minimum adversarial perturbation for 1-NN model. The goal is

to perturb z to be classified as a triangle. In (a), the red arrow is the perturbation computed

by a naive approach used in a previous paper while the optimal solution (blue perturbation

with the norm ε∗) could be much better, and the ratio can be arbitrary large by moving z

downward. (b) shows that projection to the bisecting hyperplanes may not be optimal; one

also needs to consider intersections of several bisectors which can be exponentially many. (c)

shows that the optimal perturbation can be computed by evaluating the distance from z to

each Voronoi cell of triangle instances.

polynomial-time algorithm for computing a Voronoi diagram. In general, for d-dimensional

problems with n points, Voronoi diagram computation requires O(n log n+ nd
d
2
e) time, which

only works for low-dimensional problems — since the time complexity grows exponentially

with the dimension d, it is prohibitively hard to use this algorithm unless d is very small.

3.1.2 Primal-dual quadratic programming

Finding the minimum adversarial perturbation is usually difficult. For example, computing

minimum adversarial perturbations for ReLU networks and tree ensembles are both NP-

hard [KBD17, KTJ16]. As discussed in the previous section, we can connect the 1-NN

case to the Voronoi diagram computation, but the solver will require exponential time with

respect to dimensionality. Therefore, a natural question is “Is it also NP-hard to compute the

minimum adversarial perturbation for 1-NN models?”. Surprisingly, it is not the case as we

will demonstrate in this section below.
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(Primal) Quadratic Programming Problems for Minimum Adversarial Perturba-

tion

We consider the 1-NN classifier first. For a given correctly classified instance z, we partition

the training dataset into two disjoint sets S+ = {x+
1 , . . . ,x

+
n+} and S− = {x−1 , . . . ,x−n−} such

that all instances in S+ have the same label with z and S− contains all the other instances;

accordingly, we have n = n+ + n−. If we aim to make z + δ be closer to a particular x−j than

all instances in S+, then this problem of finding the minimum perturbation can be formulated

as an optimization problem:

ε(j) = min
δ

1

2
δTδ

s.t. ‖z + δ − x−j ‖2 ≤ ‖z + δ − x+
i ‖2, ∀i ∈ [n+].

(3.3)

Each constraint can be rewritten as

δT (x−j − x+
i ) +

‖z − x+
i ‖2 − ‖z − x−j ‖2

2
≥ 0. (3.4)

Therefore (3.3) becomes

ε(j) = min
δ:Aδ+b≥0

ß
1

2
δTδ

™
:= P (j)(δ), (3.5)

where A ∈ Rn+×d is a matrix, b ∈ Rn+ is a vector, the transpose of the ith row of A is ai =

(x−j −x+
i ), and the ith element of b is bi = (‖z−x+

i ‖2−‖z−x−j ‖2)/2. Here for convenience

we omit dependence of A and b on the index j. By solving the quadratic programming (QP)

problem (3.5) for each j ∈ [n−], the final minimum adversarial perturbation norm is

ε∗ = min
j∈[n−]

√
2ε(j). (3.6)

It has been shown that convex quadratic programming problems can be solved in polynomial

time [KTK80], so our formulation leads to a polynomial-time algorithm for finding the

minimum adversarial perturbation norm ε∗.
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Dual Quadratic Programming Problems

We also introduce the dual form of each QP, which is more efficient to solve in practice and

will lead to a family of verification algorithms for adversarial robustness. The dual problem

of (3.5) can be written as

max
λ≥0

ß
−1

2
λTAATλ− λTb

™
:= D(j)(λ), (3.7)

where λ ∈ Rn+ are the corresponding dual variables. The derivation is included in Ap-

pendix 3.1.6 for completeness. The primal-dual relationship connects primal and dual

variables as δ = ATλ. Based on weak duality, we have D(j)(λ) ≤ P (j)(δ) for any dual feasible

solution λ and primal feasible solution δ. Furthermore, based on Slater’s condition it can

be shown that strong duality obtains, i.e., D(j)(λ∗) = P (j)(δ∗), where λ∗ and δ∗ are optimal

solutions for the primal and dual problems respectively, if x−j 6= x+
i holds for all i ∈ [n+].

1 Based on strong duality, we have

1

2
(ε∗)2 = min

j∈[n−]
{P (j)(δ∗)} (3.8)

= min
j∈[n−]

{max
λ≥0

D(j)(λ)} (3.9)

≥ min
j∈[n−]

{D(j)(λ(j))} with feasible λ(j), (3.10)

so a set of feasible solutions {λ(j)}j∈[n−] leads to a lower bound of the minimum adversarial

perturbation. In summary, we conclude the primal-dual relationship between 1-NN attack

and verification:

• A primal feasible solution of P (j) is a successful attack and gives us an upper bound of

ε∗. Therefore, one can solve a subset of QPs and select the minimum. Usually a x−j

closer to z will lead to a smaller adversarial perturbation, so in practice we can sort

x−j by the distance to z, solve the subproblems one by one, and stop at any time. It

1If the precondition holds, then any point in a small ball around the center δ = x−
j − z will be a feasible

solution, which implies strong duality by Slater’s condition.
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will give a valid adversarial perturbation. After solving all the subproblems, the result

will reach the minimum, i.e., the minimum adversarial perturbation norm ε∗.

• A set of dual feasible solutions {λ(j)}j∈[n−] will lead to a lower bound of ε∗ according

to (3.10). Thus any heuristic method for setting up a set of dual feasible solutions will

give us a lower bound, which can be used for robustness verification. If all the dual

problems are solved exactly, we will derive the tightest (maximum) lower bound, which

is also ε∗.

Verification for 1-NN Here we give an example of how to quickly set up dual variables to

give a non-trivial lower bound of the minimum adversarial perturbation without solving any

subproblem exactly. For a dual problem D(j), considering only having one variable λ(j)
i to be

the optimization variable while fixing all the rest variables zero, then the optimal closed-form

solution for this simplified dual QP problem will be

λ
(j)
i = max

Ç
0,− bi
‖ai‖2

å
,

D(j)([0, . . . , 0, λ
(j)
i , 0, . . . , 0]) =

max(−bi, 0)2

2‖ai‖2
.

(3.11)

Note that both bi = (‖z − x+
i ‖2 − ‖z − x−j ‖2)/2 and ai = x−j − x+

i can be computed easily,

thus according to (3.10) a guaranteed lower bound of ε∗ can be computed:

min
j∈[n−]

max
i∈[n+]

max(‖z − x−j ‖2 − ‖z − x+
i ‖2, 0)

2‖x−j − x+
i ‖

. (3.12)

This value has an interesting geometrical meaning. The inner value is the distance between z

to the bisection between x+
i and x−j , which means if we want to perturb z to make it closer

to x−j than x+
i , the perturbation must be larger than the inner value. Then, if we want to

perturb z such that the nearest neighbor is x−j , we need to by-pass all the bisections so we

need to take the max operation among all the distances to bisections. Finally a lower bound

of ε∗ can be computed by taking minimum over all the x−j .
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In general, we can also get improved lower bounds by optimizing more coordinates rather

than one variable for each subproblem.

Solving the QP Problems Efficiently

Now we discuss how to efficiently solve a series of QP problems {D(j)}j∈[n−] in practice.

Although we can do this in polynomial time, in practice a naive algorithm is still too slow.

Note that we have O(n) quadratic problems and each has O(n) dual variables, so roughly

more than O(n3) time is required naively. In the following, we propose an efficient algorithm

for this issue. First, we show that a greedy coordinate ascent algorithm can be efficiently

applied to solve the dual QP problem (3.7) with time complexity much less than O(n2). The

main idea is to exploit the sparsity of the solution — if λ∗ is the dual optimal, then a nonzero

λ∗i means the primal constraint ‖z + δ − x−j ‖2 = ‖z + δ − x+
i ‖2 is active, so the optimal

z + δ will be on the bisecting hyperplane between x+
i and x−j . Therefore, if ‖λ∗‖0 = q then

the optimal solution is the intersection of q bisecting hyperplanes, which means q is usually

small. For instance, on the MNIST dataset when we test on 100 subproblems, the average

value of ‖λ∗‖0 is only 50.06 while the average number of constraints is 7,613. Sparsity of the

optimal solution motivates the use of the greedy coordinate ascent algorithm. Starting from

λ = 0, we maintain the gradient vector with g = −AATλ− b and every time we pick the

variable with the largest projected gradient

i∗ = arg max
i
|(max(λ+ g/ diag(AAT ),0)− λ)i| (3.13)

and then update a single variable

λi∗ ← max(λi∗ + gi∗/‖ai∗‖2, 0). (3.14)

This is similar to the SMO method proposed for training kernel SVM [Pla98, CL11]; but due

to no extra equality constraint, we only need to pick one variable at a time. Since there are

only a few nonzero values in λ∗, the algorithm usually converges much more quickly than

standard quadratic programming solvers (see Figure 3.5 in the experiment section).
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Second, we propose a screening rule to remove variables in each dual QP problem (3.7).

There are only a few nonzero variables, and our screening rule will reduce the size of

optimization variables before solving the problem. We introduce the following lemma:

Lemma 2. For a specific quadratic problem P (j)(δ), the optimal dual solution has λ∗i = 0 if

−(‖z − x+
i ‖2 − ‖z − x−j ‖2)/2 + ‖x−j − x+

i ‖‖δ∗‖ < 0, (3.15)

where δ∗ is the optimal solution.

The proof is in Appendix 3.1.7. Note that checking (3.15) does not need to solve the QP

problem. To conduct the screening rule, we need to have an estimation of ‖δ∗‖ or its upper
bound. A naive upper bound ‖δ∗‖ ≤ ‖x−j − z‖ can be used for running the screening rule.

With the methods mentioned above, each dual QP can be solved efficiently. However,

there are O(n) QPs in total, and solving all of them is still expensive. So can we safely

remove most of the irrelevant QPs?

We can use the primal-dual relationship for removing most of the QP problems before

solving them. Assume we have a primal solution δ̄, then the minimum adversarial perturbation

norm ε∗ ≤ ‖δ̄‖, so every dual problem with D(j)(λ) ≥ δ̄T δ̄/2 for some λ can be removed. For

a subproblem with respect to x−j , based on (3.11) we know the subproblem can be removed

if
1

2
δ̄T δ̄ ≤ max(−bi, 0)2

2‖ai‖2
(3.16)

for some i, thus we can use (3.16) to remove redundant subproblems. In practice, we sort

the subproblems in ascending order of ‖z − x−j ‖ and iteratively run the screening rule after

solving one more subproblem. As a result, most of the subproblems can be safely removed

without need of solving them (see Figure 3.4), and hence we achieve significant speedup. Our

overall algorithm is illustrated in Algorithm 5.
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Algorithm 5 Computing minimum adversarial perturbation (QP-exact)

1: Input: Test instance z, database S+ = {x+
1 , . . . ,x

+
n+} and S− = {x−1 , . . . ,x−n−}.

2: Output: Perturbation norm ε.

3: Initial ε =∞.

4: Sort subproblems {D(j)}j∈[n−] by ascending distances of ‖z − x−j ‖.
5: for each j (according to the sorted order) do

6: if not screenable via (3.16) then

7: Solve the subproblem via greedy coordinate ascent with screening rule (3.15).

8: Update ε if we get a smaller value.

9: end if

10: end for

3.1.3 Extending beyond 1-NN

We can extend our approach toK-NN models withK > 1. Remember for a given correctly clas-

sified instance z, we partition the training dataset into two disjoint sets S+ = {x+
1 , . . . ,x

+
n+}

and S− = {x−1 , . . . ,x−n−} such that all instances in S+ have the same label with z and S−

contains the other instances. It is supposed that K is an odd number, n+ ≥ (K − 1)/2 and

n− ≥ (K + 1)/2 hold to avoid trivial results. Taking the binary classification as an example,

we can list all the possible combinations of (I, J) with I ⊆ [n+], J ⊆ [n−], |I| = (K − 1)/2,

|J| = (K + 1)/2, and then solve the following QP problem to force z + δ to be closer to x−j

for all j ∈ [J] than to all instances in S+ except x+
i for all i ∈ [I]:

ε(I,J) = min
δ

1

2
δTδ

s.t. ‖z + δ − x−j ‖2 ≤ ‖z + δ − x+
i ‖2,

∀i ∈ [n+]− I, ∀j ∈ J.

(3.17)

Then, the norm of the minimum adversarial perturbation is ε∗ = min(I,J)

√
2ε(I,J). There will

be O(nK) constraints and O((n/k)k) number of QPs in total. Therefore, in general it is not

applicable to compute the minimum adversarial perturbation by iterating all QPs. However,
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we can still obtain an upper and lower bound, corresponding to attack and verification.

Attack for K-NN For an upper bound (attack), we just need to heuristically choose a

small number of (I, J) tuples and only solve these QPs. The overall algorithm, QP-greedy,

is illustrated in Algorithm 6. The basic idea of QP-greedy is to iteratively choose I and J

and then compute ε(I,J) by solving (3.17) until ε(I,J) is a feasible solution. Specifically, I is

the indices of instances in S+ that are nearest to the test instance z. At each iteration, a

neighbor of z from S− is selected, denoted as x−. J is the indices of instances in S− that are

nearest to x− including x− itself. Then, QP-greedy tries to solve (3.17) to get an optimal

ε(I,J).

Verification for K-NN For a lower bound (verification), by extending (3.12) to the K > 1

case, we have the following lemma:

Lemma 3. For an K-NN model with any odd K, we have a lower bound for the minimum

adversarial perturbation as

ε∗ ≥ kth min sj∈[n−]

(
kth max si∈[n+]

√
2ε(i,j)

)
, (3.18)

where s = (K+1)/2 is a positive integer, “kth min s” and “kth max s” select the s-th minimum

value and the s-th maximum value respectively, and

ε(i,j) =
max(‖z − x−j ‖2 − ‖z − x+

i ‖2, 0)2

8‖x−j − x+
i ‖2

. (3.19)

The proof is in Appendix 3.1.8. Note that the lower bound (3.18) can be computed

efficiently. We need O(n2d) time to compute all ε(i,j) and then the top-s selection can be

done in linear time, so the overall complexity is just O(n2d) which is independent to K.

Attack and verification in the multi-class and K > 1 case Although the deviation

above is for the binary case, we can easily extend it to the multi-class case by simply
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Algorithm 6 QP-greedy
1: Input: Target instance z, neighbor parameter K, minimum number of iterations t,

database S+ = {x+
1 , . . . ,x

+
n+} and S− = {x−1 , . . . ,x−n−}.

2: Output: Perturbation norm ε.

3: Initialize ε =∞
4: Select I with ‖I‖ = (K − 1)/2 and it is the indices of instances in S+ that are nearest to

the test instance z

5: Sort S− by ascending distances of ‖z − x−j ‖
6: for each j (according to the sorted order) do

7: Select J with ‖J‖ = (K + 1)/2 and it is the indices of instances in S− that are nearest

to x−j including x−j itself

8: Compute ε(I,J) by solving (3.17)

9: if ε(I,J) is a feasible solution then

10: Update ε if we get a smaller value

11: if iteration number is greater than t then

12: break

13: end if

14: end if

15: end for

partitioning the training dataset in a different way. For an upper bound (attack), the training

dataset needs to be partitioned such that all instances in S− are with a same label but

different from z, and S+ contains the others including the label of z. Then we just need to

choose a small number of (I, J) tuples and solve these QPs (see (3.17)). For a lower bound

(verification), the training dataset needs to be partitioned as usual such that all instances in

S+ have the same label with z and S− contains the other instances. Then (3.18) will be a

lower bound.
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3.1.4 Extending to `∞ and `1 norms

Sometimes people are interested in finding the minimum `∞ or `1 norm adversarial perturba-

tion (replacing the `2 norm in (3.1)). Those can be solved similarly using our framework but

will require linear programming instead of quadratic programming. The minimum `∞-norm

adversarial perturbation can be formulated as

ε(j) = min
δ

v

s.t. Aδ + b ≥ 0, v ≥ δi ≥ −v, ∀i ∈ [d].

(3.20)

The minimum `1-norm adversarial perturbation can be formulated as

ε(j) = min
δ

1>v

s.t. Aδ + b ≥ 0, vi ≥ δi ≥ −vi, ∀i ∈ [d].

(3.21)

This can also be solved efficiently by linear programming solvers and the primal-dual rela-

tionship also holds.

3.1.5 Experiments

We show main results in Section 3.1.5, and analyze efficiency of our algorithm in Section 3.1.5.

Main Results

We show that our formulation leads to better attack and verification algorithms. Our

primal-dual QP framework leads to the following proposed algorithms for exact computation,

verification, and attack:

• QP-exact: computes the exact minimum adversarial perturbation for 1-NN via Algo-

rithm 5.

• QP-verifiy: computes lower bounds (verification) for 1-NN via (3.12) and for K-NN via

(3.18).
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Table 3.1: Average `2 norms of adversarial perturbations of 100 random-sampled correctly-

classified test instances for 1-NN. The attack success rates of Mean on Letter and Pendigits

are 86% and 99% respectively, and other attack algorithms (upper bounds) on these instances

have success rates 100%.

Letter Pendigits USPS Satimage MNIST Fashion-MNIST

Exact value QP-exact 0.100 0.278 0.961 0.200 1.530 1.077

Lower bound QP-verify 0.098 0.264 0.927 0.183 1.451 1.029

Upper bound

QP-top-1 0.104 0.284 0.973 0.210 1.560 1.090

QP-top-10 0.100 0.279 0.961 0.200 1.530 1.077

Naive-1 0.116 0.318 1.144 0.247 1.923 1.410

Naive-10 0.110 0.306 1.114 0.235 1.848 1.377

Mean 0.264 0.588 2.263 0.507 4.560 4.066

Substitute 0.267 0.678 1.211 0.535 1.791 1.267

• QP-top-1 and QP-top-10: compute upper bounds (attack) for 1-NN via Algorithm 5

but only iterate over the top-1 and top-10 QP problems respectively.

• QP-greedy: computes an upper bound for K-NN by greedily selecting QP problems as

Algorithm 6.

Note that there is no existing algorithm for computing the exact minimum adversarial

perturbation and no existing verification method for K-NN that can compute a lower bound.

Therefore we are only able to compare with the following attack methods:

• Naive-1 and Naive-10 [ABB17, SW19]: compute upper bounds for 1-NN by moving

towards a nearby training instance from S−. Naive-10 repeats the process for 10 times
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Table 3.2: Average `2 norms of adversarial perturbations of 100 random-sampled correctly-

classified test instances for 15-NN. ASR stands for Attack Success Rate, and only makes

sense for attack algorithms.

Letter Pendigits USPS Satimage MNIST Fashion-MNIST

ASR Avg `2 ASR Avg `2 ASR Avg `2 ASR Avg `2 ASR Avg `2 ASR Avg `2

Lower bound QP-verify – 0.082 – 0.287 – 0.929 – 0.192 – 1.395 – 1.051

Upper bound

QP-greedy 1.00 0.156 1.00 0.396 1.00 1.706 1.00 0.339 1.00 2.842 1.00 2.546

Naive-1 1.00 0.152 0.98 0.415 0.90 1.885 0.56 0.389 0.96 3.451 0.59 2.462

Naive-10 1.00 0.127 1.00 0.366 1.00 1.615 0.93 0.337 1.00 2.862 0.89 2.394

Mean 0.90 0.265 0.99 0.597 1.00 2.216 1.00 0.487 1.00 4.560 0.85 3.738

and chooses the best perturbation. For K > 1, they move towards the mean of a nearby

cluster from S− with the size (K + 1)/2 and all the instances in the cluster belong to

the same class.

• Mean [SW19]: computes an upper bound for K-NN by moving towards a class mean.

The class with the smallest class-mean distance to the test instance is chosen to move

towards.

• Substitute [PMG16c]: computes an upper bound for 1-NN by attacking a differentiable

substitute model via normalized gradient ascent.

We evaluate our proposed algorithms on six public datasets including four small or

medium sized datasets [CL11], on which nearest neighbor classifiers perform well, and two

image datasets, MNIST [LBB98] and Fashion-MNIST [XRV17], which are commonly used

for evaluating adversarial robustness of neural networks.

Perturbations for 1-NN Table 3.1 shows average `2 norms of adversarial perturbations

of 100 random-sampled correctly-classified test instances. The results suggest that
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(a) MNIST

(b) Fashion-MNIST

Figure 3.2: Adversarial examples crapted by QP-exact for MNIST and Fashion-MNIST. The

first row for every subfigure is the original images and the second row is the corresponding

adversarial images.

• QP-verify can provide a lower bound of the minimum adversarial perturbation and the

lower bound is quite tight.

• QP-top-1 and QP-top-10 achieve better attack performance than previous attack

algorithms.

• QP-exact can successfully compute the minimum adversarial perturbation.

Some adversarial examples crafted by QP-exact for MNIST and Fashion-MNIST are visualized

in Figure 3.2.

Perturbations for K-NN with K > 1 Table 3.6 shows attack success rates of attack

algorithms, and average `2 norms of adversarial perturbations of verification and attack

algorithms for K-NN (K = 15). In general, it is hard to say that K-NN is definitely more
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robust than 1-NN. It is due to the fact that the exact perturbation of 1-NN is often between

the lower bound and the upper bound of K-NN. However, our experiments show that the

lower bound of K-NN is close to the exact value of 1-NN, while the upper bound of K-NN is

much larger than the exact value of 1-NN, which leads to the conjecture that K-NN tends to

be more robust than 1-NN.

Comparing certified robust errors under `2-norm with neural networks We com-

pare certified robust errors, defined as the fraction with lower bounds less than the given

threshold (if an instance is wrongly classified, the lower bound is 0), of 1-NN, a simple

convolutional network (ConvNet), and a strong `2 certified defense network (RandSmooth)

[CRK19] in Figure 3.3. The results show that 1-NN can achieve better certified robust

errors than neural networks on these two datasets. This is partially because the proposed

verification algorithm provides very tight certified regions for NN classifiers. Note that we

are not claiming that K-NN is more robust than neural networks on more complex datasets

such as CIFAR and ImageNet. Instead, we show that, due to a more accurate verification

method, NN classifiers can achieve better certified robust errors on some simpler tasks.

Efficiency of Our Algorithm

We show runtime of the proposed algorithms for 1-NN on MNIST and Fashion-MNIST in

Table 3.3. The results show that efficiency of our proposed algorithms is comparable with

other attack algorithms. In particular, QP-exact can compute the exact minimum ad-

versarial perturbation while having similar runtime compared with other attack

algorithms. Note that we have three main contributions in speeding up QP-exact: sorting,

screening rules for reducing the number of QPs, and the greedy coordinate ascent solver for

solving each QP.
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Figure 3.3: Comparing certified (robust) errors of 1-NN, ConvNet (a simple convolutional

network), and RandSmooth (a defense neural network via random smoothing proposed

by [CRK19]). For RandSmooth, we choose the noise standard deviation σ = 0.2. 1-NN is

more robust on these two datasets.

Table 3.3: Average real runtime (s) when performing on 100 randomly-sampled correctly-

classified test instances.

QP-exact QP-verify QP-top-1 QP-top-10 Naive-1 Naive-10 Mean Substitute

MNIST 4.862 3.931 1.010 1.254 1.719 12.803 5.090 8.762

Fashion-MNIST 4.828 3.807 0.924 1.064 1.765 13.448 5.156 4.756

Sorting and screening In the MNIST case, for every test instance, we have to solve about

54, 000 (the size of S−) QP problems without screening. When running on 100 correctly-

classified test instances, the average number of QPs left to solve for QP-exact with sorting is

2.53, while the average number of QPs left to solve for QP-exact without sorting is 25.49.

Therefore, sorting and screening significantly reduces the number of QPs required to solve.

The screening parameter nscr, number of is chosen for each j in (3.16), is important for

controlling the trade-off between the number of screened subproblems and the screening

overheads. We plot the trade-off on MNIST in Figure 3.4. This shows a very small nscr
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Figure 3.4: Screening trade-off. Nearly all subproblems are removed without need of solving

them.
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Figure 3.5: Runtime of QP solvers. Average real runtime (s) when performing 100 randomly-

sampled correctly-classified test instances on 1/10 MNIST.

suffices for screening, and we choose 8 for our experiments where 2.53 lies.

Greedy coordinate ascent Due to sparsity of the optimal solution for each QP problem,

the greedy coordinate ascent solver is much more efficient than other standard QP solvers.

To verify this, we compare greedy coordinate ascent with SCS [OCP16], CVXOPT and

ECOS [DCB13] for solving these QP problems. We fix everything the same (with the same

screening rule and sorting technique) while only change the QP solver. Since it is difficult

for standard QP solvers to deal with high dimensional problems, 1/10 training samples of
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MNIST are used. The average runtime of 100 correctly-classified test instances is presented

in Figure 3.5. Greedy coordinate ascent is faster than other solvers by more than 60 times

for computing K-NN robustness.

3.1.6 Derivation of the dual form

Consider the primal problem in (3.5). The Lagrangian can be written as

L(δ,λ) =
1

2
δTδ − λT (Aδ + b). (3.22)

The dual problem is then

max
λ≥0

min
δ

L(δ,λ). (3.23)

Taking derivative of Lagrangian we get

∂

∂δ
L = δ −ATλ = 0, (3.24)

which gives us the primal-dual relationship δ = ATλ. Substitute this back to the dual

problem we get

max
λ≥0

−1

2
λTAATλ− λTb. (3.25)

3.1.7 Proof of Lemma 2

Proof. By definition we have ∇D(j)(λ) = −AATλ− b. By the primal-dual relationship, we

have

∇D(j)(λ∗) = −AATλ∗ − b (3.26)

= −Aδ∗ − b. (3.27)
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Consider the i-th element of D(j)(λ), then we have

∇D(j)
i (λ∗)

= −aTi δ∗ − bi (3.28)

= (x+
i − x−j )Tδ∗ −

‖z − x+
i ‖2 − ‖z − x−j ‖2

2
(3.29)

≤ ‖x+
i − x−j ‖‖δ∗‖ −

‖z − x+
i ‖2 − ‖z − x−j ‖2

2
. (3.30)

Therefore, when (3.15) holds, by KKT conditions of the dual problem we know λ∗i = 0.

3.1.8 Proof of Lemma 3

Proof. The problem (3.17) can be formulated as

ε(I,J) ≥ max
i∈[n+]−I,j∈J

ε(i,j), (3.31)

where

ε(i,j) =

ß
min
δ

1

2
δTδ s.t. ‖z + δ − x−j ‖2 ≤ ‖z + δ − x+

i ‖2

™
. (3.32)

Based on (3.11), we have

ε(i,j) =
max(‖z − x−j ‖2 − ‖z − x+

i ‖2, 0)2

8‖x−j − x+
i ‖2

. (3.33)

Therefore, we have a lower bound for the minimum adversarial perturbation,

ε∗ = min
(I,J)

√
2ε(I,J) ≥ min

(I,J)
max

∀i∈[n+]−I,∀j∈J

√
2ε(i,j) (3.34)

= min
(I,J)

max
∀j∈J

max
∀i∈[n+]−I

√
2ε(i,j) (3.35)

≥ kth min sj∈[n−]

(
kth max si∈[n+]

√
2ε(i,j)

)
. (3.36)
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3.2 Provably Robust Metric Learning

Metric learning has been an important family of machine learning algorithms and has achieved

successes on several problems, including computer vision [KJG09, GVS09, HBW07], text

analysis [Leb06], meta learning [VBL16, SSZ17] and others [SWW08, XC06, YZS16]. Given

a set of training samples, metric learning aims to learn a good distance measurement such

that items in the same class are closer to each other in the learned metric space, which is

crucial for classification and similarity search. Since this objective is directly related to the

assumption of nearest neighbor classifiers, most of the metric learning algorithms can be

naturally and successfully combined with K-Nearest Neighbor (K-NN) classifiers.

Adversarial robustness of machine learning algorithms has been studied extensively in

recent years due to the need of robustness guarantees in real world systems. It has been

demonstrated that neural networks can be easily attacked by adversarial perturbations in the

input space [SZS14, GSS15b, BR18], and such perturbations can be computed efficiently in

both white-box [CW17, MMS18b] and black-box settings [CZS17, IEM19, CSC20, WZY20].

To tackle this issue, many defense algorithms have been proposed to improve the robustness

of neural networks [KGB17b, MMS18b]. Although these algorithms can successfully defend

from standard attacks, it has been shown that many of them are vulnerable under stronger

attacks when the attacker knows the defense mechanisms [CW17]. Therefore, recent research

in adversarial defense of neural networks has shifted to the concept of “certified defense”,

where the defender needs to provide a certification that no adversarial examples exist within

a certain input region [WK18, CRK19, ZCX20].

In this paper, we consider the problem of learning a metric that is robust against adversarial

input perturbations. It has been shown that nearest neighbor classifiers are not as robust as

expected [PMG16a, WLY19, SW20], where a small and human imperceptible perturbation

in the input space can fool a K-NN classifier, thus it is natural to investigate how to obtain a

metric that improves the adversarial robustness. Despite being an important and interesting
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research problem to tackle, to the best of our knowledge it has not been studied in the

literature. There are several caveats that make this a hard problem: 1) attack and defense

algorithms for neural networks often rely on the smoothness of the corresponding functions,

while K-NN is a discrete step function where the gradient does not exist. 2) Even evaluating

the robustness of K-NN with the Euclidean distance is harder than neural networks — attack

and verification for K-NN are nontrivial and time consuming [WLY19]. Furthermore, none

of the existing work have considered general Mahalanobis distances. 3) Existing algorithms

for evaluating the robustness of K-NN, including attack [YRW20] and verification [WLY19],

are often non-differentiable, while training a robust metric will require a differentiable

measurement of robustness.

To develop a provably robust metric learning algorithm, we formulate an objective function

to learn a Mahalanobis distance, parameterized by a positive semi-definite matrix M , that

maximizes the minimal adversarial perturbation on each sample. However, computing the

minimal adversarial perturbation is intractable for K-NN, so to make the problem solvable,

we propose an efficient formulation for lower-bounding the minimal adversarial perturbation,

and this lower bound can be represented as an explicit function of M to enable the gradient

computation. We further develop several tricks to improve the efficiency of the overall

procedure. Similar to certified defense algorithms in neural networks, the proposed algorithm

can provide a certified robustness improvement on the resulting K-NN model with the learned

metric. Decision boundaries of 1-NN with different Mahalanobis distances for a toy dataset

(with only four orange triangles and three blue squares in a two-dimensional space) are

visualized in Figure 3.6. It can be observed that the proposed Adversarial Robust Metric

Learning (ARML) method can obtain a more “robust” metric on this example.

We conduct extensive experiments on six real world datasets and show that the proposed

algorithm can improve both certified robust errors and the empirical robust errors (errors

under adversarial attacks) over existing metric learning algorithms.
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(a) Euclidean (b) NCA [GHR04] (c) ARML (Ours)

Figure 3.6: Decision boundaries of 1-NN with different Mahalanobis distances.

3.2.1 Background

Metric learning for nearest neighbor classifiers A nearest-neighbor classifier based

on a Mahalanobis distance could be characterized by a training dataset and a positive

semi-definite matrix. Let X = RD be the instance space, Y = [C] the label space where C is

the number of classes. S = {(xi, yi)}Ni=1 is the training set with (xi, yi) ∈ X × Y for every

i ∈ [N ]. M ∈ RD×D is a positive semi-definite matrix. The Mahalanobis distance for any

x,x′ ∈ X is defined as

dM (x,x′) = (x− x′)>M (x− x′), (3.37)

and a Mahalanobis K-NN classifier f : X → Y will find the K nearest neighbors of the

test instance in S based on the Mahalanobis distance, and then predicts the label based on

majority voting of these neighbors.

Many metric learning approaches aim to learn a good Mahalanobis distance M based

on training data [GHR04, DKJ07, WS09, JKD10, Sug07]. However, none of these previous

methods are trying to find a metric that is robust to small input perturbations.

Adversarial robustness and minimal adversarial perturbation There are two im-

portant concepts in adversarial robustness: adversarial attack and adversarial verification
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(or robustness verification). Adversarial attack aims to find a perturbation to change the

prediction, and adversarial verification aims to find a radius within which no perturbation

could change the prediction. Both of them can be reduced to the problem of finding the

minimal adversarial perturbation. For a classifier f on an instance (x, y), the minimal

adversarial perturbation can be defined as

arg min
δ

‖δ‖ s.t. f(x+ δ) 6= y, (3.38)

which is the smallest perturbation that could lead to “misclassification”. Note that if

(x, y) is not correctly classified, the minimal adversarial perturbation is 0, i.e., the zero

vector. Let δ∗(x, y) denote the optimal solution and ε∗(x, y) = ‖δ∗(x, y)‖ the optimal value.

Obviously, δ∗(x, y) is also the solution of the optimal adversarial attack, and ε∗(x, y) is

the solution of the optimal adversarial verification. For neural networks, it is often NP-

complete to solve (3.38) exactly [KBD17], so many efficient algorithms have been proposed

for attack [GSS15b, CW17, BRB18, CSC20] and verification [WK18, WZC18a, MGV18],

corresponding to computing upper and lower bounds of the minimal adversarially perturbation

respectively. However, these methods do not work for discrete models such as nearest neighbor

classifiers.

In this paper our algorithm will be based on a novel derivation of a lower bound of

the minimal adversarial perturbation for Mahalanobis K-NN classifiers. To the best of our

knowledge, there has been no previous work tackling this problem. Since the Mahalanobis

K-NN classifier is parameterized by a positive semi-definite matrixM and the training set S,

we further let the optimal solution δ∗S(x, y;M ) and the optimal value ε∗S(x, y;M ) explicitly

indicate their dependence on M and S. In this paper we will consider `2 norm in (3.38) for

simplicity.

Certified and empirical robust errors Let ε∗(x, y) be a lower bound of the norm of

the minimal adversarial perturbation ε∗(x, y), possibly computed by a robustness verification

algorithm. For a distribution D over X×Y, the certified robust error with respect to the
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given radius ε ≥ 0 is defined as the probability that ε∗(x, y) is not greater than ε, namely

cre(ε) = E(x,y)∼D[1{ε∗(x, y) ≤ ε}]. (3.39)

Note that in the case with ε∗(x, y) = ε∗(x, y), the certified robust error at ε = 0 is reduced

to the clean error (the normal classification error). In this paper we will investigate how to

compute the certified robust error for Mahalanobis K-NN classifiers.

On the other hand, adversarial attack algorithms are trying to find a feasible solution of

(3.38), denoted as δ̂(x, y), which will give an upper bound, i.e., ‖δ̂(x, y)‖ ≥ ε∗(x, y). Based

on the upper bound, we can measure the empirical robust error of a model by

ere(ε) = E(x,y)∼D[1{‖δ̂(x, y)‖ ≤ ε}]. (3.40)

Since δ̂(x, y) is computed by an attack method, the empirical robust error is also called

the attack error or the attack success rate. A family of decision-based attack methods,

which view the victim model as a black-box, can be used to attack Mahalanobis K-NN

classifiers [BRB18, CLC19, CSC20].

3.2.2 Adversarially robust metric learning

The objective of adversarially robust metric learning (ARML) is to learn the matrix M via

the training data S such that the resulting Mahalanobis K-NN classifier has small certified

and empirical robust errors.

Basic formulation

The goal is to learn a positive semi-definite matrix M to minimize the certified robust

training error. Since the certified robust error defined in (3.39) is non-smooth, we replace the

indicator function by a loss function. The resulting objective can be formulated as

min
G∈RD×D

1

N

N∑
i=1

`
Ä
ε∗S−{(xi,yi)}(xi, yi;M)

ä
s.t. M = G>G, (3.41)
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where ` : R → R is a monotonically non-increasing function, e.g., the hinge loss [1 − ε]+,
exponential loss exp(−ε), logistic loss log(1 + exp(−ε)), or “negative” loss −ε. We also employ

the matrix G to enforceM to be positive semi-definite, and it is possible to derive a low-rank

M by constraining the shape of G. Note that the minimal adversarial perturbation is defined

on the training set excluding (xi, yi) itself, since otherwise a 1-nearest neighbor classifier

with any distance measurement will have 100% accuracy. In this way, we minimize the

“leave-one-out” certified robust error. The remaining problem is how to exactly compute or

approximate ε∗S(x, y;M ) in our training objective.

Bounding minimal adversarial perturbation for Mahalanobis K-NN

For convenience, suppose K is an odd number and denote k = (K+ 1)/2. In the binary classi-

fication case for simplicity, i.e., C = 2, the computation of ε∗S(xtest, ytest;M ) for Mahalanobis

K-NN could be formulated as

min
J⊆{j:yj 6=ytest},|J|=k
I⊆{i:yi=ytest},|I|=k−1

min
δI,J
‖δI,J‖

s.t. dM (xtest + δI,J,xj) ≤ dM (xtest + δI,J,xi),

∀j ∈ J, ∀i ∈ {i : yi = ytest} − I.

(3.42)

This minimization formulation enumerates all the K-size nearest neighbor set containing

at most k − 1 instances in the same class with the test instance, computes the minimal

perturbation resulting in each K-nearest neighbor set, and takes the minimum of them.

Obviously, solving (3.42) exactly (enumerating all (I, J) pairs) has time complexity growing

exponentially with K, and furthermore, a numerical solution cannot be incorporated into the

training objective (3.41) since we need to write ε∗ as a function of M for back-propagation.

To address these issues, we resort to a lower bound of the optimal value of (3.42) rather than

solving it exactly.

First, we consider a simple triplet problem: given vectors x+,x−,x ∈ RD and a positive

semi-definite matrix M ∈ RD×D, find the minimum perturbation δ ∈ RD on x such that
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dM (x+ δ,x−) ≤ dM (x+ δ,x+) holds. It could be formulated as the following optimization

problem

min
δ
‖δ‖ s.t. dM (x+ δ,x−) ≤ dM (x+ δ,x+). (3.43)

Note that the constraint in (3.43) can be written as a linear form, so this is a convex quadratic

programming problem with a linear constraint. We show that the optimal value of (3.43)

can be expressed in closed form:[
dM (x,x−)− dM (x,x+)

]
+

2
√

(x+ − x−)>M>M (x+ − x−)
, (3.44)

where [·] denotes max(·, 0). The derivation for the optimal value is deferred to Appendix 3.2.4.

Note that ifM is the identity matrix and dM (x,x−) > dM (x,x+) strictly holds, the optimal

value has a clear geometric meaning: it is the Euclidean distance from x to the bisection

between x+ and x−.

For convenience, we define the function ε̃ : RD × RD × RD → R as

ε̃(x+,x−,x;M ) =
dM (x,x−)− dM (x,x+)

2
√

(x+ − x−)>M>M (x+ − x−)
. (3.45)

Then we could relax (3.42) further and have the following theorem:

Theorem 3 (Robustness verification for Mahalanobis K-NN). Given a Mahalanobis K-NN

classifier parameterized by a neighbor parameter K, a training dataset S and a positive

semi-definite matrix M , for any instance (xtest, ytest) we have

ε∗(xtest, ytest;M ) ≥ kth min
j:yj 6=ytest

kth max
i:yi=ytest

ε̃(xi,xj,xtest;M), (3.46)

where kth max and kth min select the k-th maximum and k-th minimum respectively with

k = (K + 1)/2.

The proof is deferred to Appendix 3.2.5. In this way, we only need to compute

ε̃(xi,xj,xtest) for each i and j in order to derive a lower bound of the minimal adver-

sarial perturbation of Mahalanobis K-NN. It leads to an efficient algorithm to verify the
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robustness of Mahalanobis K-NN. The time complexity is O(N2) and independent of K.

Note that any subset of {i : yi = ytest} also leads to a feasible lower bound of the minimal

adversarial perturbation and could improve computational efficiency, but the resulting lower

bound is not necessarily as tight as (3.46). Therefore, in the experimental section, to evaluate

certified robust errors as accurately as possible, we do not employ this strategy.

In the general multi-class case, the constraint of (3.42) is the necessary condition for

successful attacks, rather than the necessary and sufficient condition. As a result, the

optimal value of (3.42) is a lower bound of the minimal adversarial perturbation. Therefore,

Theorem 3 also holds for the multi-class case. Based on this lower bound of ε∗, we will derive

the proposed ARML algorithm.

Training algorithm of adversarially robust metric learning

By replacing the ε∗ in (3.41) with the lower bound derived in Theorem 3, we get a trainable

objective function for adversarially robust metric learning:

min
G∈RD×D

1

N

N∑
t=1

`

Ç
kth min
j:yj 6=yt

kth max
i:i 6=t,yi=yt

ε̃(xi,xj,xt;M )

å
s.t. M = G>G. (3.47)

Although (3.47) is trainable since ε̃ is a function of M , for large datasets it is time-

consuming to run the inner min-max procedure. Furthermore, since what we really care is the

generalization performance of the learned metric instead of the leave-one-out robust training

error, it is unnecessary to compute the exact solution. Therefore, instead of computing the

kth max and kth min exactly, we propose to sample positive and negative instances from the

neighborhood of each training instance, which leads to the following formulation:

min
G∈RD×D

1

N

N∑
i=1

`
Ä
ε̃
(
randnear+

M (xi), randnear−M (xi),xi;M
)ä

s.t. M = G>G, (3.48)

where randnear+
M (·) denotes a sampling procedure for an instance in the same class within xi’s

neighborhood, and randnear−M (·) denotes a sampling procedure for an instance in a different
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class, also within xi’s neighborhood, and the distances are measured by the Mahalanobis

distance dM . In our implementation, we sample instances from a fixed number of nearest

instances. As a result, the optimization formulation (3.48) approximately minimizes the

certified robust error and improves computational efficient significantly.

Our adversarially robust metric learning (ARML) algorithm is shown in Algorithm 7. At

every iteration, G is updated with the gradient of the loss function, while the calculations

of randnear+
M (·) and randnear−M (·) do not contribute to the gradient for the sake of efficient

and stable computation.

Algorithm 7 Adversarially robust metric learning (ARML)
1: Input: Training data S, number of epochs T .

2: Output: Positive semi-definite matrix M .

3: Initialize G and M as identity matrices.

4: for t = 0 . . . T − 1 do

5: UpdateG with the gradient E(x,y)∈S∇G`
Ä
ε̃
(
randnear+

M (x), randnear−M (x),x;G>G
)ä

6: Update M with the constraint M = G>G

7: end for

Exact minimal adversarial perturbation of Mahalanobis 1-NN

In the special Mahalanobis 1-NN case, we will show a method to compute the exact minimal

adversarial perturbation in a similar formulation to (3.42). However, this algorithm can only

compute a numerical value of the minimal adversarial perturbation δ∗, so it cannot be used

in training time. We will use this method to evaluate the robust error for the Mahalanobis

1-NN case in the experiments.

Computing the minimal adversarial perturbation ε∗S(xtest, ytest;M ) for Mahalanobis 1-NN

classifier can be formulated as the following optimization problem:

min
j:yj 6=ytest

min
δj
‖δj‖ s.t. dM (xtest + δj,xj) ≤ dM (xtest + δj,xi), ∀i : yi = ytest. (3.49)
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Interestingly and not surprisingly, it is a special case of (3.42) where we have K = 1 and

k = (K+ 1)/2 = 1, and hence I is an empty set, and J has only one element. The formulation

of (3.49) is equivalent to considering each xj in a different class from ytest and computing the

minimum perturbation needed for making xtest closer to xj than all the training instances in

the same class with ytest, i.e., xis,. It is noteworthy that the constraint of (3.49) could be

equivalently written as

(xi − xj)>Mδ ≤ 1

2

(
dM (xtest,xi)− dM (xtest,xj)

)
, ∀i : yi = ytest, (3.50)

which are all affine functions. Therefore, the inner minimization is a convex quadratic

programming problem and could be solved in polynomial time [KTK80]. As a result, it leads

to a naive polynomial-time algorithm for finding the minimal adversarial perturbation of

Mahalanobis 1-NN: solve all the inner convex quadratic programming problems and then

select the minimum of them.

Instead, we propose a much more efficient method to solve (3.49). The main idea is to

compute a lower bound for each inner minimization problem first, and with these lower

bounds, we could screen most of the inner minimization problems safely without the need

of solving them exactly. This method is an extension of our previous work [WLY19], where

only the Euclidean distance is taken into consideration. See Algorithm 8 in Appendix 3.2.6

for details and this algorithm is used for computing certified robust errors of Mahalanobis

1-NN in the experimental section.

3.2.3 Experiments

We compare the proposed ARML (Adversarial Robust Metric Learning) method with the

following baselines:

• Euclidean: uses the Euclidean distance directly without learning any metric;

• Neighbourhood components analysis (NCA) [GHR04]: maximizes a stochastic variant
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of the leave-one-out nearest neighbors score on the training set.

• Large margin nearest neighbor (LMNN) [WS09]: keeps close nearest neighbors from

the same class, while keeps instances from different classes separated by a large margin.

• Information Theoretic Metric Learning (ITML) [DKJ07]: minimizes the log-determinant

divergence with similarity and dissimilarity constraints.

• Local Fisher Discriminant Analysis (LFDA) [Sug07]: a modified version of linear

discriminant analysis by rewriting scatter matrices in a pairwise manner.

For evaluation, we use six public datasets on which metric learning methods perform favorably

in terms of clean errors, including four small or medium-sized datasets [CL11]: Splice,

Pendigits, Satimage and USPS, and two image datasets MNIST [LBB98] and Fashion-

MNIST [XRV17], which are wildly used for robustness verification for neural networks. For

the proposed method, we use the same hyperparameters for all the datasets.

Mahalanobis 1-NN

Certified robust errors of Mahalanobis 1-NN with respect to different perturbation radii are

shown in Table 3.4. It should be noted that these radii are only used to show the experimental

results, and they are not hyperparameters. In this Mahalanobis 1-NN case, the proposed

algorithm in Algorithm 8, which solves (3.49), can compute the exact minimal adversarial

perturbation for each instance, so the values we get in Table 3.4 are both (optimal) certified

robust errors and (optimal) empirical robust errors (attack errors). Also, note that when

the radius is 0, the resulting certified robust error is equivalent to the clean error on the

unperturbed test set.

We have three main observations from the experimental results. First, although NCA and

LMNN achieve better clean errors (at the radius 0) than Euclidean in most datasets, they are

less robust to adversarial perturbations than Euclidean (except the Splice dataset, on which
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Euclidean performs overly poorly in terms of clean errors and then has a large robust errors

accordingly). Both NCA and LMNN suffer from the trade-off between the clean error and the

certified robust error. Second, ARML performs competitively with NCA and LMNN in terms

of clean errors (achieves the best on 4/6 of the datasets). Third and the most importantly,

ARML is much more robust than all the other methods in terms of certified robust errors for

all perturbation radii.

Mahalanobis K-NN

For K-NN models, it is intractable to compute the exact minimal adversarial perturbation,

so we report both certified robust errors and empirical robust errors (attack errors). We set

K = 11 for all the experiments. The certified robust error can be computed by Theorem 3,

which works for any Mahalanobis distance. On the other hand, we also conduct adversarial

attacks to these models to derive the empirical robust error — the lower bounds of the certified

robust errors — via a hard-label black-box attack method, i.e., the Boundary Attack [BRB18].

Different from the 1-NN case, since both adversarial attack and robustness verification are

not optimal, there will be a gap between the two kinds of robust errors. These results are

shown in Table 3.6. Note that these empirical robust errors at the radius 0 are also the clean

errors.

The three observations of Mahalanobis 1-NN also hold for the K-NN case: NCA and

LMNN have improved clean errors (empirical robust errors at the radius 0) but this often

comes with degraded robust errors compared with the Euclidean distance, while ARML

achieves good robust errors as well as clean errors. The results suggest that ARML is more

robust both provably (in terms of the certified robust error) and empirically (in terms of the

empirical robust error).
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Comparison with neural networks

We compare Mahalanobis 1-NN classifiers with neural networks, including ordinary neural

networks certified by the robustness verification method CROWN [ZCX20] and randomized-

smoothing neural networks (with smoothness parameters 0.2 and 1) [CRK19]. The results

are shown in Figure 3.7. It is shown that randomized smoothing encounters a trade-off

between clean and robust errors, whereas ARML does not sacrifice clean errors compared

with previous metric learning methods.
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Figure 3.7: Certified robust errors comparing neural networks.

3.2.4 Optimal value of triplet problem

The triplet problem is formalized as below:

min
δ
‖δ‖ s.t. dM (x+ δ,x−) ≤ dM (x+ δ,x+). (3.51)

It is equivalent to the optimization

min
δ
δ>δ s.t. a>δ ≤ b, (3.52)

where we have

a = M
(
x+ − x−

)
, (3.53)
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b =
1

2

(
dM (x,x+)− dM (x,x−)

)
. (3.54)

The dual function is

g(λ) = inf
δ

δ>δ + λ(a>δ − b) (3.55)

= −1

4
a>aλ2 − bλ, (3.56)

where inf holds for δ = −λa/2. Then the dual problem is

max
λ≥0

− 1

4
a>aλ2 − bλ. (3.57)

The optimal point is ï
− 2b

a>a

ò
+

, (3.58)

and the optimal value is 
0 if b ≥ 0

b2

a>a
otherwise.

(3.59)

By the Slater’s condition, if x+ 6= x− holds, we have the strong duality. Therefore, the

optimal value of (3.51) isñ
−b√
a>a

ô
+

=

[
dM (x,x−)− dM (x,x+)

]
+

2
√

(x+ − x−)>M>M (x+ − x−)
. (3.60)

In fact, it is easy to verify that even if x+ = x− obtains, the optimal value also holds.

3.2.5 Proof of Theorem 3

Proof. Let ε(I,J) denote the optimal value of the inner minimization problem of (3.42). By

relaxing the constraint via replacing the universal quantifier, we have

ε(I,J) ≥ max
i∈{i:yi=ytest}−I,j∈J

ε̃(xi,xj,xtest;M ). (3.61)
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Substitute it in (3.42) and then we have

ε∗ ≥ min
I,J

ε(I,J) (3.62)

≥ min
I,J

max
i∈{i:yi=ytest}−I, j∈J

ε̃(x+
i ,x

−
j ,xtest) (3.63)

≥ min
I,J

max
j∈J

max
i∈[{i:yi=ytest}−I

ε̃(x+
i ,x

−
j ,xtest) (3.64)

≥ min
I,J

max
j∈J

kth max
i∈{i:yi=ytest}

ε̃(x+
i ,x

−
j ,xtest) (3.65)

≥ min
I,J

kth min
j∈{j:yj 6=ytest}

kth max
i∈{i:yi=ytest}

ε̃(x+
i ,x

−
j ,xtest) (3.66)

= kth min
j∈{j:yj 6=ytest}

kth max
i∈{i:yi=ytest}

ε̃(x+
i ,x

−
j ,xtest) (3.67)

3.2.6 Details of computing exact minimal adversarial perturbation of Maha-

lanobis 1-NN

The overall algorithm is displayed in Algorithm 8. We denote ε(j) as the optimal value of the

inner minimization problem with respect to j, and denote ε(j) as its lower bound. We first

sort the subproblems according to the ascending order of ‖xj −xtest‖ for {j : yj 6= ytest}. For
every subproblem, we compute the lower bound of its optimal value. If the optimal value is

too large, we just screen the subproblem safely without solving it exactly.

Greedy coordinate ascent (descent)

For the subproblem we have to solve exactly, we employ the greedy coordinate ascent method.

Note that the inner minimization problem of (3.49) is a convex quadratic programming

problem. We solve the problem by dealing with its dual formulation. The greedy coordinate

ascent method is used because the optimal dual variables are very sparse. The algorithm is

shown in Algorithm 9. At every iteration, only one dual variable is updated.
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Algorithm 8 Computing the minimal adversarial perturbation for Mahalanobis 1-NN
1: Input: Test instance (xtest, ytest), dataset S = {(xi, yi)}Ni=1.

2: Output: Perturbation norm ε.

3: Initialize ε =∞.

4: Sort {j : yj 6= ytest} by the ascending order of dM (xtest,xj)

5: for j : yj 6= ytest according to the ascending order do

6: Compute a lower bound ε(j) of the inner minimization corresponding to j

7: if ε < ε then

8: Solve the inner minimization problem exactly via the greedy coordinate ascent

method and derive the optimal value ε(j)

9: if ε(j) < ε then

10: ε = ε(j)

11: end if

12: end if

13: end for

Lower bound of inner minimization problem

The following theorem is dependent on the solution of the triplet problem.

Theorem 4. The optimal value ε(j) of the inner minimization of (3.49) with respect to j is

lower bounded as

ε(j) ≥ max
i:yi=ytest

[
ε̃(xi,xj,xtest;M)

]
+
. (3.68)

Proof. Relaxing the constraint of (3.49) by means of replacing the universal quantifier, we

know ε(j) is lower bounded by the optimal value of the following optimization problem

max
i:yi=ytest

min
δi,j

‖δi,j‖ (3.69)

s.t. dM (xtest + δi,j,xj) ≤ dM (xtest + δi,j,xi). (3.70)
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Algorithm 9 Greedy coordinate descent for QP: minx≥0
1
2
x>Px+ q>x

1: Input: P , q, ε, T , x← 0, g ← Px+ q.

2: Output: x.

3: for t = 0 to T − 1 do

4: ∀i, yi ← max
(
xi − gi

pi,i
, 0
)
− xi

5: // choose a coordinate

6: i∗ ← arg maxi|yi|
7: // update the solution

8: xi∗ ← xi∗ + yi∗

9: // update the gradient

10: g ← g + yi∗pi∗

11: end for

Obviously, the optimal value of the inner problem is
[
ε̃(xi,xj,xtest;M)

]
+
.

In this way, we could derive a lower bound of the optimal value in closed form.
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Table 3.4: Certified robust errors of Mahalanobis 1-NN. The best (minimum) certified robust

errors among all methods are in bold. Note that the certified robust errors of 1-NN are also

the optimal empirical robust errors (attack errors), and these robust errors at the radius 0

are also the clean errors.

MNIST

`2-radius 0.000 0.500 1.000 1.500 2.000 2.500

Pendigits

`2-radius 0.000 0.100 0.200 0.300 0.400 0.500

Euclidean 0.033 0.112 0.274 0.521 0.788 0.945 Euclidean 0.032 0.119 0.347 0.606 0.829 0.969

NCA 0.025 0.140 0.452 0.839 0.977 1.000 NCA 0.034 0.202 0.586 0.911 0.997 1.000

LMNN 0.032 0.641 0.999 1.000 1.000 1.000 LMNN 0.029 0.183 0.570 0.912 0.995 0.999

ITML 0.073 0.571 0.928 1.000 1.000 1.000 ITML 0.049 0.308 0.794 0.991 1.000 1.000

LFDA 0.152 1.000 1.000 1.000 1.000 1.000 LFDA 0.042 0.236 0.603 0.912 0.998 1.000

ARML (Ours) 0.024 0.089 0.222 0.455 0.757 0.924 ARML (Ours) 0.028 0.115 0.344 0.598 0.823 0.967

Fashion-MNIST

`2-radius 0.000 0.500 1.000 1.500 2.000 2.500

Satimage

`2-radius 0.000 0.150 0.300 0.450 0.600 0.750

Euclidean 0.145 0.381 0.606 0.790 0.879 0.943 Euclidean 0.108 0.642 0.864 0.905 0.928 0.951

NCA 0.116 0.538 0.834 0.950 0.998 1.000 NCA 0.103 0.710 0.885 0.915 0.940 0.963

LMNN 0.142 0.756 0.991 1.000 1.000 1.000 LMNN 0.092 0.665 0.871 0.912 0.944 0.969

ITML 0.163 0.672 0.929 0.998 1.000 1.000 ITML 0.127 0.807 0.979 1.000 1.000 1.000

LFDA 0.211 1.000 1.000 1.000 1.000 1.000 LFDA 0.125 0.836 0.919 0.956 0.992 1.000

ARML (Ours) 0.127 0.348 0.568 0.763 0.859 0.928 ARML (Ours) 0.095 0.605 0.839 0.899 0.920 0.946

Splice

`2-radius 0.000 0.100 0.200 0.300 0.400 0.500

USPS

`2-radius 0.000 0.500 1.000 1.500 2.000 2.500

Euclidean 0.320 0.513 0.677 0.800 0.854 0.880 Euclidean 0.045 0.224 0.585 0.864 0.970 0.999

NCA 0.130 0.252 0.404 0.584 0.733 0.836 NCA 0.056 0.384 0.888 0.987 1.000 1.000

LMNN 0.190 0.345 0.533 0.697 0.814 0.874 LMNN 0.046 0.825 1.000 1.000 1.000 1.000

ITML 0.306 0.488 0.679 0.809 0.862 0.882 ITML 0.060 0.720 0.999 1.000 1.000 1.000

LFDA 0.264 0.434 0.605 0.760 0.845 0.872 LFDA 0.098 1.000 1.000 1.000 1.000 1.000

ARML (Ours) 0.130 0.233 0.370 0.526 0.652 0.758 ARML (Ours) 0.043 0.204 0.565 0.857 0.970 0.999
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Table 3.5: Certified robust errors (left) and empirical robust errors (right) of Mahalanobis

K-NN. The best (minimum) robust errors among all methods are in bold. The empirical

robust errors at the radius 0 are also the clean errors.

Certified robust errors Empirical robust errors

MNIST

`2-radius 0.000 0.500 1.000 1.500 2.000 2.500 0.000 0.500 1.000 1.500 2.000 2.500

Euclidean 0.038 0.134 0.360 0.618 0.814 0.975 0.031 0.063 0.104 0.155 0.204 0.262

NCA 0.030 0.175 0.528 0.870 0.986 1.000 0.027 0.063 0.120 0.216 0.330 0.535

LMNN 0.040 0.669 1.000 1.000 1.000 1.000 0.036 0.121 0.336 0.775 0.972 1.000

ITML 0.106 0.731 0.943 1.000 1.000 1.000 0.084 0.218 0.355 0.510 0.669 0.844

LFDA 0.237 1.000 1.000 1.000 1.000 1.000 0.215 1.000 1.000 1.000 1.000 1.000

ARML (Ours) 0.034 0.101 0.276 0.537 0.760 0.951 0.032 0.055 0.077 0.109 0.160 0.213

Fashion-MNIST

`2-radius 0.000 0.500 1.000 1.500 2.000 2.500 0.000 0.500 1.000 1.500 2.000 2.500

Euclidean 0.160 0.420 0.650 0.800 0.895 0.946 0.143 0.227 0.298 0.360 0.420 0.489

NCA 0.144 0.557 0.832 0.946 1.000 1.000 0.121 0.232 0.343 0.483 0.624 0.780

LMNN 0.158 0.792 0.991 1.000 1.000 1.000 0.140 0.364 0.572 0.846 0.983 0.999

ITML 0.236 0.784 0.949 1.000 1.000 1.000 0.209 0.460 0.692 0.892 0.978 1.000

LFDA 0.291 1.000 1.000 1.000 1.000 1.000 0.263 0.870 0.951 0.975 0.988 0.995

ARML (Ours) 0.152 0.371 0.589 0.755 0.856 0.924 0.134 0.202 0.274 0.344 0.403 0.487

Splice

`2-radius 0.000 0.100 0.200 0.300 0.400 0.500 0.000 0.100 0.200 0.300 0.400 0.500

Euclidean 0.333 0.558 0.826 0.965 0.988 0.996 0.306 0.431 0.526 0.608 0.676 0.743

NCA 0.103 0.209 0.415 0.659 0.824 0.921 0.103 0.173 0.274 0.414 0.570 0.684

LMNN 0.149 0.332 0.630 0.851 0.969 0.994 0.149 0.241 0.357 0.492 0.621 0.722

ITML 0.279 0.571 0.843 0.974 0.995 0.997 0.279 0.423 0.525 0.603 0.675 0.751

LFDA 0.242 0.471 0.705 0.906 0.987 0.997 0.242 0.371 0.466 0.553 0.637 0.737

ARML (Ours) 0.128 0.221 0.345 0.509 0.666 0.819 0.128 0.196 0.273 0.380 0.497 0.639

Pendigits

`2-radius 0.000 0.100 0.200 0.300 0.400 0.500 0.000 0.100 0.200 0.300 0.400 0.500

Euclidean 0.039 0.126 0.316 0.577 0.784 0.937 0.036 0.085 0.155 0.248 0.371 0.528

NCA 0.038 0.196 0.607 0.884 0.997 1.000 0.038 0.103 0.246 0.428 0.637 0.804

LMNN 0.034 0.180 0.568 0.898 0.993 0.999 0.030 0.096 0.246 0.462 0.681 0.862

ITML 0.060 0.334 0.773 0.987 1.000 1.000 0.060 0.149 0.343 0.616 0.814 0.926

LFDA 0.047 0.228 0.595 0.904 1.000 1.000 0.043 0.104 0.248 0.490 0.705 0.842

ARML (Ours) 0.035 0.114 0.308 0.568 0.780 0.937 0.034 0.078 0.138 0.235 0.368 0.516
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Table 3.6: (Continue) Certified robust errors (left) and empirical robust errors (right) of

Mahalanobis K-NN. The best (minimum) robust errors among all methods are in bold. The

empirical robust errors at the radius 0 are also the clean errors.

Certified robust errors Empirical robust errors

Satimage

`2-radius 0.000 0.150 0.300 0.450 0.600 0.750 0.000 0.150 0.300 0.450 0.600 0.750

Euclidean 0.101 0.579 0.842 0.899 0.927 0.948 0.091 0.237 0.482 0.682 0.816 0.897

NCA 0.117 0.670 0.886 0.915 0.936 0.961 0.101 0.297 0.564 0.746 0.876 0.931

LMNN 0.105 0.613 0.855 0.914 0.944 0.961 0.090 0.269 0.548 0.737 0.855 0.910

ITML 0.130 0.768 0.959 1.000 1.000 1.000 0.109 0.411 0.757 0.939 0.990 1.000

LFDA 0.128 0.779 0.904 0.958 0.995 1.000 0.112 0.389 0.673 0.860 0.950 0.986

ARML (Ours) 0.103 0.540 0.824 0.898 0.920 0.943 0.092 0.228 0.464 0.668 0.817 0.896

USPS

`2-radius 0.000 0.500 1.000 1.500 2.000 2.500 0.000 0.500 1.000 1.500 2.000 2.500

Euclidean 0.063 0.239 0.586 0.888 0.977 1.000 0.058 0.125 0.211 0.365 0.612 0.751

NCA 0.072 0.367 0.903 0.986 1.000 1.000 0.063 0.158 0.365 0.686 0.899 0.980

LMNN 0.062 0.856 1.000 1.000 1.000 1.000 0.055 0.359 0.890 0.999 1.000 1.000

ITML 0.082 0.696 0.999 1.000 1.000 1.000 0.072 0.273 0.708 0.987 1.000 1.000

LFDA 0.134 1.000 1.000 1.000 1.000 1.000 0.118 0.996 1.000 1.000 1.000 1.000

ARML (Ours) 0.057 0.203 0.527 0.867 0.971 0.997 0.053 0.118 0.209 0.344 0.572 0.785
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CHAPTER 4

Unadversarial Robustness

4.1 Case study: Learning to Encode Position for Transformer Mod-

els

We introduce a new way of learning to encode position information for non-recurrent models,

such as Transformer models. Unlike RNN and LSTM, which contain inductive bias by

loading the input tokens sequentially, non-recurrent models are less sensitive to position.

The main reason is that position information among input units is not inherently encoded,

i.e., the models are permutation equivalent; this problem justifies why all of the existing

models are accompanied by a sinusoidal encoding/embedding layer at the input. However,

this solution has clear limitations: the sinusoidal encoding is not flexible enough as it is

manually designed and does not contain any learnable parameters, whereas the position

embedding restricts the maximum length of input sequences. It is thus desirable to design

a new position layer that contains learnable parameters to adjust to different datasets and

different architectures. At the same time, we would also like the encodings to extrapolate in

accordance with the variable length of inputs. In our proposed solution, we borrow from the

recent Neural ODE approach, which may be viewed as a versatile continuous version of a

ResNet. This model is capable of modeling many kinds of dynamical systems. We model

the evolution of encoded results along position index by such a dynamical system, thereby

overcoming the above limitations of existing methods. We evaluate our new position layers on

a variety of neural machine translation and language understanding tasks, the experimental
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results show consistent improvements over the baselines.

4.1.1 Introduction

Transformer based models [VSP17, DCL18a, YDY19, RWC19, LCG19, RSR19] have become

one of the most effective approaches to model sequence data of variable lengths. Transformers

have shown wide applicability to many natural language processing (NLP) tasks such as

language modeling [RWC19], neural machine translation (NMT) [VSP17], and language

understanding [DCL18a]. Unlike traditional recurrent-based models (e.g., RNN or LSTM),

Transformer utilizes a non-recurrent but self-attentive neural architecture to model the

dependency among elements at different positions in the sequence, which leads to better par-

allelization using modern hardware and alleviates the vanishing/exploding gradient problem

in traditional recurrent models.

It is known that the self-attentive architecture corresponds to a family of permutation

equivalence functions. Thus, for applications where the ordering of the elements matters,

how to properly encode position information is crucial for Transformer based models. There

have been many attempts to encode position information for the Transformer. In the original

Transformer paper [VSP17], a family of pre-defined sinusoidal functions was adapted to

construct a set of embeddings for each position. These fixed position embeddings are then

added to the word embeddings of the input sequence accordingly. To further construct

these position embeddings in a more data-driven way, many recent Transformer variants

such as [DCL18a, LOG19] include these embeddings as learnable model parameters in the

training stage. This data-driven approach comes at the cost of limiting the maximum

length of sequence Lmax and the computational/memory overhead from additional Lmax × d
parameters, where Lmax is usually set to 512 in many applications, and d is the dimension of

the embeddings. [SUV18] propose a relative position representation to reduce the number of

parameters to (2K + 1)d by dropping the interactions between tokens with a distance greater

than K. In addition to just the input layer, [DGV18] and [LCG19] suggest that the injection
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of position information to every layer leads to even better performance for the Transformer.

More recently, [WZL19] proposes to encode positions by complex numbers of different phases

and wave-lengths. Despite being successful in several tasks, it increases the embedding matrix

size by a factor of three.

An ideal position encoding approach should satisfy the following three properties:

1. Inductive: the ability to handle sequences longer than any sequence seen in the

training time.

2. Data-Driven: the position encoding should be learnable from the data.

3. Parameter Efficient: number of trainable parameters introduced by the encoding

should be limited to avoid increased model size, which could hurt generalization.

In Table 4.1, we summarize some of the existing position encoding approaches in terms of

these three properties.

We propose a new method to encode position with minimum cost. The main idea is to

model position encoding as a continuous dynamical system, so we only need to learn the

system dynamics instead of learning the embeddings for each position independently. By

doing so, our method enjoys the best of both worlds – we bring back the inductive bias, and

the encoding method is freely trainable while being parameter efficient. To enable training

of this dynamical system with backpropagation, we adopt the recent progress in continuous

neural network [CRB18], officially called Neural ODE. In some generative modeling literature,

it is also called the free-form flow model [GCB18], so we call our model FLOw-bAsed

TransformER (FLOATER). We highlight our contributions as follows:

• We propose FLOATER, a new position encoder for Transformer, which models the

position information via a continuous dynamical model in a data-driven and parameter-

efficient manner.
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Table 4.1: Comparing position representation methods

Methods Inductive Data-Driven Parameter Efficient

Sinusoidal [VSP17] 3 7 3

Embedding [DCL18a] 7 3 7

Relative [SUV18] 7 3 3

This paper 3 3 3

• Due to the use of a continuous dynamic model, FLOATER can handle sequences of

any length. This property makes inference more flexible.

• With careful design, our position encoder is compatible with the original Transformer;

i.e., the original Transformer can be regarded as a special case of our proposed position

encoding approach. As a result, we are not only able to train a Transformer model

with FLOATER from scratch but also plug FLOATER into most existing pre-trained

Transformer models such as BERT, RoBERTa, etc.

• We demonstrate that FLOATER consistent improvements over baseline models across

a variety of NLP tasks ranging from machine translations, language understanding, and

question answering.

4.1.2 Background and related work

Importance of position encoding for transformer

We use a simplified self-attentive sequence encoder to illustrate the importance of position

encoding in the Transformer. Without position encoding, the Transformer architecture can

be viewed as a stack of N blocks Bn : n = 1, . . . , N containing a self-attentive An and a
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feed-forward layer Fn. By dropping the residual connections and layer normalization, the

architecture of a simplified Transformer encoder can be represented as follows.

Encode(x) = BN ◦BN−1 ◦ · · · ◦B1(x), (4.1)

Bn(x) = Fn ◦ An (x) , (4.2)

where x = [x1,x2, . . . ,xL]> ∈ RL×d, L is the length of the sequence and d is the dimension

of the word embedding. An(·) and Fn(·) are the self-attentive and feed-forward layer in the

n-th block Bn(·), respectively.

Each row of A1(x) can be regarded as a weighted sum of the value matrix V ∈ RL×d,

with the weights determined by similarity scores between the key matrix K ∈ RL×d and

query matrix Q ∈ RL×d as follows:

A1(x) = Softmax
(QK>√

d

)
V ,

Q = [q1, q2, ..., qL]>, qi = Wqxi + bq,

K = [k1,k2, ...,kL]>, ki = Wkxi + bk,

V = [v1,v2, ...,vL]>, vi = Wvxi + bv,

(4.3)

Wq/k/v and bq/k/v are the weight and bias parameters introduced in the self-attentive function

A1(·). The output of the feed-forward function F1(·) used in the Transformer is also a matrix

with L rows. In particular, the i-th row is obtained as follows.

the i-th row of F1(x) = W2σ(W1xi + b1) + b2, (4.4)

whereW1/2 and b1/2 are the weights and biases of linear transforms, and σ(·) is the activation
function. It is not hard to see from (4.3) and (4.4) that both A1(·) and F1(·) are permutation

equivalent. Thus, we can conclude that the entire function defined in (4.1) is also permutation

equivalent, i.e., Π×Encode(x) = Encode (Π× x) for any L×L permutation matrix Π. This

permutation equivalence property restricts the Transformer without position information

from modeling sequences where the ordering of elements matters.
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Figure 4.1: The architecture of our model (FLOATER). The main differences between

FLOATER and the original Transformer model are: 1) the position representation is integrated

into each block in the hierarchy (there are N blocks in total); and 2) there is a dynamical

model (see (4.8)) that generates position encoding vectors for each block. The dynamics are

solved with a black-box ODE solver detailed in the supplementary material.

Position encoding in transformer

As mentioned in Section 4.1.1, there are many attempts to inject position information in

self-attentive components. Most of them can be described in the following form:

Bn(x) = Fn ◦ An ◦ Φn(x), n ∈ {1, ..., N}, (4.5)

where Φn(x) is a position encoding function.

[VSP17] propose to keep Φn(x) = x, ∀n ≥ 2 and inject position information only at

the input block with a family of pre-defined sinusoidal functions: Φ1(x) = x+ p(1), where

p(1) = [p
(1)
1 ,p

(1)
2 , ...,p

(1)
L ] is a position embedding matrix with the i-th row corresponding to

the i-th position in the input sequence. In particular, the j-th dimension of the i-th row is
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defined as follows.

p
(1)
i [j] =


sin(i · c jd ) if j is even,

cos(i · c j−1
d ) if j is odd,

(4.6)

where c = 10−4. [DGV18] and [LCG19] observe better performance by further injecting the

position information at each block, i.e., Φn(x) = x+ p(n) as follows:

p
(n)
i [j] =


sin(i · c jd ) + sin(n · c jd ) if j is even,

cos(i · c j−1
d ) + cos(n · c j−1

d ) if j is odd.
(4.7)

Note that for the above two approaches, position encoding functions Φn(·) are fixed for all

the applications. Although no additional parameters are introduced in the model, both

approaches are inductive and can handle input sequences of variable length.

Many successful variants of pre-trained Transformer models, such as BERT [DCL18a] and

RoBERTa [LOG19], include the entire embedding matrix p(1) ∈ RL×d in Φ1(x) as training

parameters. As the number of training parameters needs to be fixed, the maximum length

of a sequence, Lmax, is required to be determined before the training. Although it lacks

the inductive property, this data-driven approach is found to be effective for many NLP

tasks. Note that, unlike the fixed sinusoidal position encoding, there is no attempt to inject

a learnable position embedding matrix at each block for Transformer due to a large number

of additional parameters (NLmaxd).

4.1.3 FLOATER: our proposed position encoder

We introduce our method in three steps. In the first step, we only look at one Transformer

block, and describe how to learn the position representation driven by a dynamical system;

in the second step, we show how to save parameters if we add position signals to every layer;

lastly, we slightly change the architecture to save trainable parameters further and make

FLOATER “compatible” with the original Transformer [VSP17]. The compatibility means
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our model is a strict superset of the vanilla Transformer so that it can be initialized from the

Transformer.

Position Encoding with Dynamical Systems

Position representations in Transformer models are a sequence of vectors {pi ∈ Rd : i =

1, ..., L} to be added to the sequence of the input representations {xi : i = 1, ..., L}. Existing
position encoding approaches either apply a fixed sinusoidal function to obtain {pi}, or include
them as uncorrelated learnable parameters. Both of them fail to capture the dependency or

dynamics among these position representations {pi}. We propose to use a dynamical system

to model these position representations; that is, there is a “latent force” denoted by hi that

drives the changes from pi to pi+1. To encourage smoothness, we consider p(t) : R+ 7→ Rd as

the continuous version of the discrete sequence {pi}. In particular, our proposed continuous

dynamical system is characterized as follows:

p(t)=p(s)+

∫ t

s

h(τ,p(τ);θh) dτ, 0 ≤ s ≤ t <∞, (4.8)

together with an initial vector p(0), where h(τ,p(τ);θh) is a neural network parameterized by

θh and takes the previous state (τ,p(τ)). Notice that the domain of p(·) is R+. The position

sequence {pi} can be obtained by taking p(·) on a series of points {ti : 0 ≤ t1 < · · · ≤ tL}:
pi = p(ti). One simple strategy is to set ti = i ·∆t so that the points are equidistant, where

∆ is a hyperparameter (e.g., ∆ = 0.1). With this strategy, we are implicitly assuming the

position signals evolve steadily as we go through each token in a sentence. In general, {ti}
can be any monotonically increasing series, which allows us to extend our work to more

applications where the elements in the sequence are not always observed with the same

interval. More discussions about the applicability for this general setting is included in the

Supplementary material. For the NLP applications discussed here, we choose ti = i ·∆t.

Eq. (4.8) is equivalent to an ODE problem dp(t)
dt

= h(t,p(t);θh), which is guaranteed to

have a unique solution under mild conditions [TP85]. We follow the efficient approach by
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[CRB18] to calculate the gradients of θh with respect to the overall training loss, which allows

us to include this parameterized dynamical position encoder into the end-to-end training of

Transformer models. More details can be found in the Supplementary material.

Our dynamical system (4.8) is quite flexible to admit the standard sinusoidal position

encoding (4.6) as a special case:

pi+1[j]− pi[j]

=


sin
Ä
(i+ 1) · c jd

ä
− sin

Ä
i · c jd

ä
if j is even

cos
Ä
(i+ 1) · c j−1

d

ä
− cos

Ä
i · c j−1

d

ä
if j is odd

=


∫ i+1

i
c−

j
d cos(τ · c jd ) dτ if j is even∫ i+1

i
−c− j−1

d sin(τ · c j−1
d ) dτ if j is odd,

(4.9)

This indicates that for simple sinusoidal encoding, there exists a dynamical system h(·) which
is also sinusoidal function.

Parameter Sharing among Blocks

As mentioned in Section 4.1.2, injecting position information to each block for Transformer

leads to better performance [DGV18, LCG19] in some language understanding tasks. Our

proposed position encoder FLOATER (4.8) can also be injected into each block. The idea is

illustrated in Figure 4.1. Typically there are 6 blocks in sequence-to-sequence Transformer

and 12 or 24 blocks in BERT. We add a superscript (n) to denote dynamics at n-th block:

p(n)(t) = p(n)(s) +

∫ t

s

h(n)(τ,p(n)(τ);θ
(n)
h ) dτ.

As we can imagine, having N different dynamical models h(n)(·;θ(n)
h ) for each block can

introduce too many parameters and cause significant training overhead. Instead, we address

this issue by sharing parameters across all the blocks, namely

θ
(1)
h = θ

(2)
h = · · · = θ

(N)
h . (4.10)
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Note that (4.10) does not imply that all the p(n)
t are the same, as we will assign different

initial values for each block, that is p(n1)(0) 6= p(n2)(0) for n1 6= n2.

Transformer-Base Transformer-Large

En-De En-Fr En-De En-Fr

Position encoders at all blocks

FLOATER 28.6 41.6 29.2 42.7

Pre-defined Sinusoidal Position Encoder 28.2 40.6 28.4 42.0

Fixed-length Position Embedding 26.9 40.9 28.3 42.0

Position encoder only at input block

FLOATER 28.3 41.1 29.1 42.4

Pre-defined Sinusoidal Position Encoder 27.9 40.4 28.4 41.8

Fixed-length Position Embedding 27.8 40.9 28.5 42.4

Table 4.2: Experimental results of various position encoders on the machine translation task.

Compatibility and Warm-start Training

In this section, we change the way to add position encoding so that our FLOATER can

be directly initialized from Transformer. As an example, we use the standard Transformer

model, which has a fixed sinusoidal encoding at the input block and no position encoding at

deeper levels. Note that this technique can be extended to other variants of Transformers

with different position encoding methods, such as embedding matrix. We first examine the

standard Transformer model, the query matrix Q(n) at block-n is

q∼(n)
i = W (n)

q

Ä
xi + p∼(n)

i

ä
+ b(n)

q , (4.11)
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where W (n)
q and b(n)

q are parameters in An (4.3); p∼(n) is the sinusoidal encoding; q∼(n)
i is the

i-th row of Q(n). Here we add a tilde sign to indicate the sinusoidal vectors. Formulas for

k
∼(n)
i and v∼(n)

i have a very similar form and are omitted for brevity.

Now we consider the case of FLOATER, where new position encodings pi are added

q
(n)
i = W (n)

q

Ä
xi + pi

ä
+ b(n)

q

= W (n)
q (xi + p∼(n)

i ) + b(n)
q︸ ︷︷ ︸

Eq. (4.11)

+ W (n)
q (pi − p∼(n)

i )︸ ︷︷ ︸
Extra bias term depends on i

= q∼(n)
i + b

(n)
q,i .

(4.12)

It is easy to see that the changing the position embedding from {p∼(n)
i } to {p(n)

i } is equivalent
to adding a position-aware bias vector b(n)

q,i into each self-attentive layers {An(·)}. As a result,

we can instead apply (4.8) to model the dynamics of b(n)
q . In particular, we have the following

dynamical system:

b(n)
q (t) = b(n)

q (0) +

∫ t

0

h(n)(τ, b(n)
q (τ);θh) dτ. (4.13)

After that, we set b(n)
q,i = b

(n)
q (i · ∆t). We can see that if h(·) = 0 and b(n)

q (0) = 0, then

b
(n)
q ≡ 0. This implies (4.12) degenerates to (4.11). Note that (4.13) has the same form as

(4.8), except that we are now modeling the bias terms bq,i in (4.3). We will apply the same

technique to K and V .

To summarize, our model has a tight connection to the original Transformer: if we set all

dynamical models to zero, which means h(τ,p(τ);θh) ≡ 0, then our FLOATER model will

be equivalent to the original Transformer with the sinusoidal encoding. The same trick also

works for Transformer with position embedding such as BERT [DCL18a].

We strive to make our model compatible with the original Transformer due to the following

reasons. First of all, the original Transformer is faster to train as it does not contain any

recurrent computation; this is in contrast to our dynamical model (4.8), where the next

position pi+1 depends on the previous one pi. By leveraging the compatibility of model
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architecture, we can directly initialize FLOATER model from a pre-trained Transformer

model checkpoint and then fine-tune for the downstream task for a few more epochs. By

doing so, we enjoy all the benefits of our FLOATER model but still maintain an acceptable

training budget. Likewise, for models such as BERT or Transformer-XL, we already have well-

organized checkpoints out of the box for downstream tasks. These models are costly to train

from scratch, and since our goal is to examine whether our proposed position representation

method can improve over the original one, we decided to copy the weights layer by layer for

attention as well as FFN layers, and randomly initialize the dynamical model h(τ,p(τ);θh).

4.1.4 Experimental results

In this section, we perform experiments to see if FLOATER can improve over the existing

position encoding approaches for a given Transformer model on various NLP tasks. Thus, all

the metrics reported here are computed from a single (not ensemble) Transformer model over

each evaluation NLP task. Albeit lower than top scores on the leaderboard, these metrics are

able to reveal more clear signal to judge the effectiveness of the proposed position encoder.

All our codes to perform experiments here are based on the Transformer implementations

in the fairseq [OEB19] package. Implementation details can be found in the Supplementary

material. Our experimental codes will be made publicly available.

Table 4.3: Experimental results on GLUE benchmark

Model
Single Sentence Similarity and Paraphrase Natural Language Inference

CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE

Base model

RoBERTa 63.6 94.8 88.2 91.9 91.2 87.6 92.8 78.7

FLOATER 63.4 95.1 89.0 91.7 91.5 87.7 93.1 80.5

Large model

RoBERTa 68.0 96.4 90.9 92.2 92.4 90.2 94.7 86.6

FLOATER 69.0 96.7 91.4 92.2 92.5 90.4 94.8 87.0
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Table 4.4: Experiment results on RACE benchmark. “Middle” means middle school level

English exams, “High” means high school exams. Other details can be found in [LXL17].

Model Accuracy Middle High

Single model on test, large model

RoBERTa 82.8 86.5 81.3

FLOATER 83.3 87.1 81.7

Neural Machine Translation

Neural Machine Translation (NMT) is the first application that demonstrates the superiority

of a sequence-to-sequence Transformer model over conventional recurrent sequence models.

We include the following three additive position encoders: Φ(n)(x) = x+ p(n).

• Data-driven FLOATER: p(n) is generated by our proposed continuous dynamical models

with data-driven parameters described in (4.8).

• Pre-defined sinusoidal position encoder: p(n) is constructed by a pre-defined function

described in (4.7), which is proposed by [VSP17] and extended by [DGV18].

• Length-fixed position embedding: p(n) is included as learnable training parameters.

This is first introduced by [VSP17] and adopted in many variants of Transformer [DCL18a,

LOG19].

To better demonstrate the parameter efficiency brought by FLOATER, for each above encoder,

we also include two experimental settings: position encoder at all blocks or only at the input

block (i.e., p(n) = 0,∀n ≥ 2).

In Table 4.2, we present the BLEU scores on WMT14 Ee-De and En-Fr datasets with

both Transformer-base and Transformer-large models described in [VSP17]. Among all the

data/model combinations, our proposed FLOATER at all blocks outperforms two other

position encoders.
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On the other hand, we also observe that adding position encoders at all blocks yields better

performance than only at the input block. While there is an exception in the fixed-length

position embedding approach. We suspect that this phenomenon is due to over-fitting cased

by LmaxdN learnable parameters introduced by this approach. In contrast, our proposed

FLOATER is parameter efficient (more discussions in Section 4.1.4), so the performance can

be improved by injecting the position encoder at all the blocks of Transformer without much

additional overhead.

Language Understanding and Question Answering

Table 4.5: Experiment results on SQuAD benchmark. All results are obtained from RoBERTa-

large model.

Model
SQuAD 1.1 SQuAD 2.0

EM F1 EM F1

Single models on dev, w/o data augmentation

RoBERTa 88.9 94.6 86.5 89.4

FLOATER 88.9 94.6 86.6 89.5

Pretrained Transformer models such as BERT and RoBERTa have become the key to

achieving the state-of-the-art performance for various language understanding and question

answering tasks. In this section, we want to evaluate the effectiveness of the proposed

FLOATER on these tasks. In particular, we focus on three language understanding benchmark

sets, GLUE [WSM18], RACE [LXL17] and SQuAD [RZL16]. As mentioned in Section 4.1.3,

FLOATER is carefully designed to be compatible with the existing Transformer models.

Thus, we can utilize pretrained Transformer models to warm-start a FLOATER model easily

to be used to finetune on these NLP tasks. We download the same pre-trained RoBERTa

model from the official repository as our pretrained Transformer model for all NLP tasks
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discussed in this section.

GLUE Benchmark. This benchmark is commonly used to evaluate the language

understanding skills of NLP models. Experimental results in Table 4.3 show that our

FLOATER model outperforms RoBERTa in most datasets, even though the only difference

is the choice of positional encoding.

RACE benchmark Similar to the GLUE benchmark, the RACE benchmark is another

widely used test suit for language understanding. Compared with GLUE, each item in RACE

contains a significantly longer context, which we believe requires more important to grasp

the accurate position information. Like in GLUE benchmark, we finetune the model from

the same pretrained RoBERTa checkpoint. We keep the hyperparameters, such as batch size

and learning rate, to also be the same. Table 4.4 shows the experimental results. We again

see consistent improvement of FLOATER across all subtasks.
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Figure 4.2: Comparing BLEU scores of different encoding methods.

SQuAD benchmark SQuAD benchmark [RZL16, RJL18] is another challenging task

to evaluate the question answering skills of NLP models. In this dataset, each item contains

a lengthy paragraph containing facts and several questions related to the paragraph. The

model needs to predict the range of characters that answer the questions. In SQuAD-v2,

the problem becomes more challenging that the questions might be unanswerable by the

context. We follow the same data processing script as BERT/RoBERTa for fair comparison;
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Table 4.6: Performance comparison on WMT14 En-De data and Transformer-base architecture.

Both BLUE scores and the number of trainable parameters inside each position encoder are

included.

BLEU (↑) #Parameters (↓)

FLOATER 28.57 526.3K

1-layer RNN + scalar 27.99 263.2K

2-layer RNN + scalar 28.16 526.3K

1-layer RNN + vector 27.99 1,050.0K

1-Layer LSTM + scalar 28.17 1050.0K

1-Layer GRU + scalar 28.11 789.5K

2-Layer LSTM + scalar 28.10 2100.0K

2-Layer GRU + scalar 26.21 1580.0K

more details about the training process are described in the Supplementary material. The

experiment results are presented in Table 4.5. As we can see, the FLOATER model beats the

baseline RoBERTa model consistently across most datasets. The improvement is significant,

considering that both models are finetuned from the same pretrained checkpoint.

More Discussions and Analysis

How inductive is FLOATER? FLOATER is designed to be inductive by a data-driven

dynamical model (4.8). To see how inductive FLOATER is when comparing to existing

approaches, we design the following experiment. We first notice that in WMT14 En-De

dataset, 98.6% of the training sentences are shorter than 80 tokens. Based on that, we make

a new dataset called En-De short to long (or S2L for brevity): this dataset takes all the short

sentences (< 80 tokens) as the training split and all the long sentences (≥ 80 tokens) as the
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testing split. We further divide the testing split to four bins according to the source length

fallen in [80, 100), [100, 120), [120, 140), [140,+∞). BLEU scores are calculated in each bin,

and the results are presented in Figure 4.2.

Our FLOATER model performs particularly well on long sentences, even though only

short sentences are seen by the model during training. This empirical observation supports our

conjecture that FLOATER model is inductive: the dynamics learned from shorter sequences

can be appropriately generalized to longer sequences.

Is RNN a good alternative to model the dynamics? Recurrent neural network (RNN)

is commonly used to perform sequential modeling. RNN and our continuous dynamical

model (4.8) indeed share some commonality. Computing the value at the i-th step relies on

the results at the (i − 1)-st step. Further, they all contain trainable parameters, allowing

them to adapt to each particular task. Lastly, they can be extrapolated to any length as

needed. To see if RNN works equally well, we model the sequence {pi}i∈{1,2,... } with RNN

models:

pi+1 = RNN(zi,pi), (4.14)

where zi ∈ Rdin is the input to the RNN model at index i. Recall in RNN language models,

zi is the word embedding or hidden feature of the i-th token. In our case, since we apply

RNN to learn the encodings as opposed to hidden features, sensible inputs can be scalar value

i or vectorized value Vectorize(i) by sinusoidal encoding. We tried both choices on WMT14

En-De data and found that vectorized value generally works better, though not as good as

our FLOATER model. Detailed results can be found in Table 4.6.

What does each position encoding look like? To better understand how different

position encodings affect the sequence modeling, in Figure 4.3, we visualize the position

embedding matrix p obtained from four different position encoding approaches for the

Transformer-base backbone on WMT14 En-De dataset. We can see that sinusoidal encoding
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Figure 4.3: Visualizing the four different position methods. All models are trained using the

Transformer-base architecture and En-De dataset. For better visualization, dimension indices

are permuted in Figure 4.3b-4.3d.
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(4.3a) is the most structural, while position embedding (4.3b) is quite chaotic. Our FLOATER

model learns position representation completely from data, but still exhibits some regularities

(4.3c). Finally, the RNN model (4.3d) fails to extract sufficient positional information,

probably due to the vanishing gradient problem. Another finding is that by looking at (4.3b),

we observe that the vectors are nearly constant among different large positions (near the

bottom of Figure 4.3b, we see patterns of vertical lines with the same color). This phenomenon

is due to long sentences in the dataset being scarce, and so the positional information carried

by lower indices cannot be extrapolated to higher indices. On the contrary, the dynamical

model proposed here enjoys the best of both worlds – it is adaptive to dataset distribution,

and it is inductive to handle sequences with lengths longer than the training split.

Remarks on Training and Testing Efficiency

It is not surprising that during the training time, our flow-based method adds a non-negligible

time and memory overhead; this is because solving the Neural ODE precisely involves ∼100

times forward and backward propagations of the flow model. Even though we deliberately

designed a small flow model (consisting of only two FFN and one nonlinearity layers), stacking

them together still increases training time substantially. To make it possible to train big

models, we use the following optimizations:

• Initialize with pretrained models that do not contain flow-based dynamics, as discussed in

Section 4.1.3.

• From (4.8), we know that if h(·) is close to zero, then the position information diminishes

(derived in appendix). In this way, our model degenerates to the original Transformer.

Inspired by this property, we can initialize the FLOATER with smaller weights. Combining

with the previous trick, we obtain an informed initialization that incurs lower training loss

at the beginning.

• We observed that weights in h(·) are more stable and easy to train. Thus, we can separate

the weights of h(·) from the remaining parts of the Transformer model. Concretely, we can
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1) cache the positional bias vectors for some iterations without re-computing, 2) update the

weights of flow models less frequently than other parts of the Transformer, and 3) update

the flow models with a larger learning rate to accelerate convergence.

• For the RoBERTa model, we adopt an even more straightforward strategy: we first

download a pretrained RoBERTa model, plug in some flow-based encoding layers, and

re-train the encoding layers on WikiText-103 dataset for one epoch. When finetuning on

GLUE datasets, we can choose to freeze the encoding layers.

Combining those tricks, we successfully train our proposed models with only 20-30% overhead

compared to traditional models, and virtually no overhead when finetuning RoBERTa model

on GLUE benchmarks. Moreover, there is no overhead during the inference stage if we store

the pre-calculated positional bias vectors in the checkpoints.
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Part II

Robust Uncertainty Estimation
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CHAPTER 5

Fast Ensemble Method for Robust Uncertainty

Estimation

5.1 Motivation

As we deploy machine learning models to real-life production systems, an obstacle to many

practitioners is to what extent we can trust the prediction results generated from millions

or billions of parameters. To solve this problem, we need another layer of abstraction that

takes in the model and data information and outputs the confidence interval (for regression

task) or the expected error rate (for classification task). Ideally, such mechanism needs

to: 1) handle both expected input (called in-distribution data) or unexpected input (called

out-of-distribution data), 2) compared with the original model training time, operate efficiently

enough, so that little overhead is posted, and 3) independent of modeling details, can work

even for black-box models.

The algorithm that calibrates the model confidence to match the prediction accuracy

is formally called confidence calibration. For instance, the original machine learning model

may report 99.8%-confidence about its prediction, yet the actual accuracy is only 90% – far

below the confidence. This disparity requires us to calibrate the confidence estimation from

99.8% to 90%. A related concept is called uncertainty estimation; it is meant to generate the

confidence interval for model predictions, so we expect the true value falls into this interval

with high probability. Predictive uncertainty also alarms the human-in-the-loop (HITL)

machine learning paradigm, signaling that human intervention is needed once it raises above
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a threshold.

This work is motivated by the importance of uncertainty estimation in biomedical applica-

tions. In the past few years, many machine learning models have been deployed in biomedical

imaging, such as the cell type identification [CYA18], label-free organelle labeling [OSM18],

histology virtual staining [RWW19], and noninvasive cell phenotyping [ILL21]. Among these

applications, many involve image-to-image translation models. Unfortunately, uncertainty es-

timation in image translation has been under-explored – there exists no promising benchmarks

nor systematical studies on how existing uncertainty estimation methods perform on image

generation tasks. One of the main obstacles for this problem is the lack of benchmark and

evaluation method – it is difficult to quantitatively evaluate uncertainty estimation methods

for image generation. To evaluate an uncertainty estimation method for classification, one

can easily choose a leave-one-out set, usually a new class that is not appeared in training,

and calculate the disagreement between uncertainty estimation and prediction error rate.

However, this cannot be easily done in image-to-image translation. As the output space is

high dimensional, uncertainty estimation cannot be easily calculated in a per-sample manner,

and there could be nonuniform uncertainty for different patchs of the image. For example, it

may be the case that in the same image, some cells have been seen in training but others are

not, leading to nonuniform uncertainty within an image.

We develop the first systematic benchmark and evaluation method for uncertainty evalua-

tion in image-to-image translation. To build this evaluation benchmark, we collect a series of

phase contrast (transmitted light microscopy) and immunofluorescent images of mesenchyaml

stromal cells [ILL21] and prostatic cancer cells (LNCaP). With these microscopy data, we

measure the quality of uncertainty estimation through out-of-distribution detection and

distribution shift assessment. Equipped with this new benchmark, we evaluate six representa-

tive uncertainty estimation methods, including naive ensemble, snapshot ensemble, batch

ensemble, SGLD, variational inference, and Monte-Carlo dropout. Our experimental results

suggest that the naive ensemble consistently outperforms other more complicated algorithms
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on our biomedical image-to-image translation benchmark.

While the native ensemble approach provides an accurate estimate on the prediction

uncertainty, a major weakness of such an approach is its computational overhead for building

independent models. So it is critical to ask can we find a near zero-cost method for uncertainty

estimation? To this end, we present our solution called FastEnsemble. This solution is inspired

by the recent findings on the connectivity of local minimum of deep neural networks [GIP18].

In particular, our goal is not to find the low-loss path connecting two distinct local minima

but to find some independent low-loss paths starting from an initial solution. We search the

path efficiently so that each path only takes 3% to 5% of the time to train one model from

scratch. In total, gathering an ensemble of six models requires ∼20% extra computation.

Our contributions can be summarized as follows:

• We develop a new benchmark to evaluate uncertainty estimation algorithms on biomed-

ical image generation applications. Based on that, we try to find the best solution

out of six popular uncertainty estimators. To our knowledge, this is the first to study

uncertainty quantification on image generation tasks systematically.

• We propose a new method that generates many independent ensemble models with a

small overhead. Experimental results demonstrate that our approach can significantly

speed up the running time without sacrificing the uncertainty estimation quality.

5.2 Related work

We have seen the active development of new efficient methods for confidence calibration and

uncertainty quantification. Similar work can be roughly divided into two groups. The first

group falls into the category of Bayesian learning. Here, we include the following approximate

Bayesian methods:

Monte-Carlo dropout (MC-Dropout): [GG16] showed that the dropout layers ap-
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plied before every weight layer is mathematically equivalent to the deep Gaussian process.

The most significant benefit of this solution is simplicity, meaning that the existing neural

networks with dropout layer before (de)convolution layer or fully connected layer are naturally

becoming a Bayesian neural network.

Stochastic gradient Langevin dynamics (SGLD): [WT11, LCC16] proposed a way

to transform stochastic gradient optimizer to imitate the Langevin dynamics. Similar to

MC-Dropout, this method does not change the architecture of neural networks as long as the

stochastic gradient can be computed efficiently. Like SGD optimizer, a damping step size εt

is required to guarantee that the injected Gaussian noise eventually dominates the stochastic

gradient noise so that the parameter trajectory converges to the true posterior. In practice,

we follow the previous implementations to turn off the noise injection at the burn-in phase,

then turn on the noise injection in the sampling phase.

Stochastic variational inference (SVI) [WJ08, BKM17]: This method approximate

the posterior by maximizing the ELBO. Unlike MC-Dropout and SGLD, to apply SVI we need

to double the number of parameters to learn both mean and standard deviation (assuming

factorized Gaussian is used).

The other group we will include in the experiments is the ensemble methods. Specifically,

the ones featuring low training overhead, detailed as follows

Snapshot ensemble [HLP17]: It generates different model parameters with cyclic cosine

learning rate, a checkpoint is stored whenever the learning rate drops to the minimum.

Although there are other ensemble methods by the cyclic learning rate, such as the piece-wise

linear rate in [GIP18], we only experiment with snapshot ensemble here for brevity.

Batch ensemble [WTB20]: The more recent advancement is batch ensemble. This

method generates less correlated models by learning a series of rank-1 vectors vi ∈ Rd and

ui ∈ Rd, which are later element-wise multiplied by the weights wi ← w � (viu
>
i ).

Finally, we would like to address the differences between our work and [OFR19]. In our
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work, we intend to dive deeper into the biomedical imaging domain (both image2image and

image classification), where uncertainty estimation is critical and out-of-distribution data is

abundant. In contrast, [OFR19] studies classification problems exclusively, including image

classification, text classification and Ads-click binary classification problems. Most of the

datasets studied here are originated from real applications. To our knowledge, this is the

first systematical study concerning image2image. Our study is unique because in-distribution

data and out-of-distribution data coexist in the same image, so the uncertainty values are

directly comparable.

5.3 A new uncertainty estimation benchmark for image generation

task

The predictive uncertainty originates from a lack of training data (namely epistemic uncer-

tainty) or the inherent randomness in the data generation model (aleatory uncertainty) [KG17,

HW21, APH21]. In machine learning applications, uncertainty arises from unpredictable

changes in the environment. For example, researchers may hand-pick the biomedical images

in the training set uniformly, so low-quality images are cleaned up. At the same time, the

model is deployed at hospitals owning different brands of microscopes in suboptimal working

conditions, or there may be impurities of various shapes/components that are impossible to

enumerate beforehand.

In this section, we introduce a new benchmark for evaluating uncertainty estimation

methods on the image-to-image translation task. As image-to-image translation is crucial

to many biomedical applications, our datasets primarily consist of microscopy cell images.

Following [OFR19], we investigate how different models behave under two Out of Distribution

(OOD) settings: the first context is the local perturbation, meaning that the whole image is

in-distribution except for some small patches. This scenario frequently happens in biomedical

experiments, where impurities contaminate the cell culture. The other context is called
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global perturbation. The whole image distribution is drifted away from the original data

generation distribution in the training set. It happens when the cells are cultured under

different conditions (e.g., drug treatment, growth media changes, or image acquisition at

different time points).

Out of distribution detection

The first benchmark is a collection of pairwise image to image translation tasks closely

related to biomedical imaging. This work mainly used the same dataset that was tested

and published in our previous study (Imboden etal). In addition, in the current study we

acquired new LNCaP images for mimicking non-trivial image contaminations. To benchmark

the out-of-distortion detection of our model, we tested three conditions: MSC clean (control),

MSC-impurities (non-cellular objects), and MSC-LNCaP (cellular objects).

MSC-Clean (quality control): The dataset used for training purposes contains pairs

of phase contrast and the respective fluorescence (IF) images of mesenchymal stromal cells

(MSC). The cells were immunofluorescently stained for CD105, a surface marker, widely

used to define MSC subpopulations. All images were acquired with an inverted microscope

(Etaluma LS720, Lumaview 720/600-Series software) with a 20x phase contrast objective

(Olympus, LCACHN 20XIPC). This is called a cleaned dataset as a quality control was

performed where blurry or corrupt images were excluded.

MSC-Impurities: This dataset includes images of the same cell type (MSCs) and

surface marker (CD105) as the cleaned dataset. To evaluate the impact of image impurities

on the training accuracy, the MSC-Impurities dataset contains images of which 25% show

artifacts. We included three different types of image artifacts: microscope slide impurities

(e.g. scratches, bubbles, slide dust), fluorescent speckles and non-specific binding of the

antibody.

MSC-LNCaP: This dataset is artificially created by mixing the images of MSC cells
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(majority) with LNCaP cells (read patch boxes in Figure 5.3). MSC cells and LNCaP cells

are visually different, but for non-expert humans it is non-intuitive to tell them apart. So we

expect this dataset to be much harder than MSC-Impurities.

Among those datasets, MSC-Clean is the one to train the U-Net [RFB15] model to

be experimented later. At this moment, the model hasn’t encountered the OOD patches

in the subsequent two datasets. After that, we apply the model on MSC-Impurities and

MSC-LNCaP to collect the uncertainty of each pixel. Finally, we examine whether the

model assigns high uncertainties inside the bounding boxes and low uncertainties outside

the bounding boxes. To this end, we encapsulate this problem by the ranking problem.

Specifically, we leverage two commonly used metrics in information retrieval, Precision@k

and Recall@k, to compare different methods. Here we treat pixels inside bounding boxes as

positive instances S1 (and vice versa); we then rank the pixels by the uncertainty values in

descending order. The top-k highest uncertainty pixels S2 are selected. Then we have

TP@k = |S1 ∩ S2|, Precision@k =
TP@k

k
, Recall@k =

TP@k

|S1|
, (5.1)

here TP means number of true positives. We illustrate this idea in Figure 5.1.

Moreover, by changing k, we can plot the ROC curve to compare different methods

visually. The experimental results are displayed in Figure 5.2. In this comparison, we include

six popular uncertainty estimation methods, including the naive ensemble, snapshot ensemble,

batch ensemble, SGLD, SVI, and MC-Dropout. Details of these methods can be found in

related work.

From this figure, we can observe that the naive ensemble method outperforms all other

methods, sometimes with a significant margin (MSC-LNCaP). We remark that this finding

supports a similar conclusion in [OFR19], where the authors found that the simple ensemble

method outperforms other Bayesian methods in image recognition datasets. Our experiment

further indicates that existing fast ensemble methods (BatchEnsemble, Snapshot Ensemble)

cannot close the gap concerning OOD robustness.
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Input with label Prediction Ex. of False Positive Ex. of False Negative

MSC-LNCaP

MSC-Impurities

Figure 5.1: Image samples from the MSC-LNCaP and MSC-Impurities datasets and

the corresponding uncertainty estimation generated by the ensemble method. The first row

highlights bounding boxes (drawn to highlight the ground truth inaccessible to models) in an

image from MSC-LNCaP. It is difficult even for humans to notice the out-of-distribution

LNCaP cells surrounded by MSC cells without expertise. The second row is generated

from MSC-Impurities data. This is an easier task because impurities usually are easily

distinguishable from the cells.

Distribution shift assessment

In this experiment, we show that ensemble method is more robust even under large pertur-

bations. Previous benchmark datasets are mostly in-distribution except for small patches

labeled by bounding boxes, a more challenging case where the testing samples are different

from the whole training set remains to be investigated. To evaluate different algorithms in

this condition, we introduce a new dataset called LNCaP-Density.

LNCaP-Density: In contrast to MSC-Clean and MSC-Impurities, the images used

for this dataset are of an LNCaP cell type. LNCaP cells are androgen-sensitive human prostate
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Figure 5.2: Comparison of some widely used ensemble methods and Bayesian inference

algorithms. Notice the naive ensemble method performs similarly to batch ensemble or SGLD

in MSC-Impurities data and significantly better in MSC-LNCaP data. In practice, we

want to control the false positive rate to a small value, so we mainly look at the AUC when

false positive ≤ 0.2.

adenocarcinoma cells. In this dataset, time-lapse phase contrast images of 12 different fields

of view (FOVs) were acquired over a period of 72 hours. Cell density increases significantly

over the time period due to cell division and growth. We did some manual sorting work to

distribute all images into four subsets: namely VSparse ("very sparse"), Sparse, Dense, and

VDense. Figure 5.3 gives some samples in each groups.

We train two models: model A is trained using the most sparsely populated cells (VSparse),

and model B is trained with the most densely populated cells (VDense). After completing

training, we run the predictions on all groups (VSparse, Sparse, Dense, VDense). The Pearson

correlation between prediction and ground truth is calculated as the metric. We plot the

histogram in Figure 5.4.

Similar to the previous local perturbation benchmark, from Figure 5.4, we can see naive
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Training
Very sparse Sparse Dense Very dense

Model A

Model B

Sparse/Dense
Testing

Figure 5.3: Samples from the LNCaP-Density dataset and illustration of the distribution

shift experiment. Model A is trained with the "very sparse" subset of LNCaP-Density,

and Model B is trained with the "very dense" subset. Both models are then tested with all

subsets of varying densities.

ensemble is still the best performing method in nearly every case. But the gap between

batch ensemble / snapshot ensemble is small. Moreover, we generally find the ensemble-based

methods more stable than Bayesian methods by comparing the error bar length. This finding

aligns well again with [OFR19].

5.4 Accelerating ensemble method

In the previous section, we tested three Bayesian methods and three ensemble methods on

two OOD benchmarks. Our investigation reveals that the most robust uncertainty estimator

is the naive ensemble aggregation, despite the Bayesian methods being more theoretically

principled.

include a problem statement We hypothesize that the power of the Bayesian method is

restricted by choice of prior distributions and approximate inference. On the other hand, the
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Figure 5.4: Comparing our method with other ensemble or Bayesian methods under a

distribution shift setting. Left : Training on the “very sparse” subset and evaluation on each

subset (Model A of Fig. 5.3). Right : Training on the “very dense” subset (Model B) and

evaluation on each subset. The error bar is computed over all images. We can see the

correlation drops more quickly for the "very sparse" training set (Left); this is because the

“very sparse” subset contains mostly dark backgrounds and so less meaningful information

can be extracted.

training cost of the naive ensemble method makes the deployment prohibitive to large-scale

databases. Training an ensemble of K models will increase the computational cost by K

times. As we have seen in the previous experiments, current fast ensemble methods are not

meant for robust uncertainty estimation.

In the following sections, we introduce a simple yet effective ensemble method called

FastEnsemble. Our approach is inspired by the recent findings mode connectivity of local

minimum [GIP18]: we first find a seed model w0, then explore along the “loss valley” by adding

a bias term ‖w − w0‖1 to the classification or regression loss. On convergence, we expect the

new model w′ to be as good as w0, but show enough independence. Our idea contrasts to

snapshot ensemble or batch ensemble, where the former is controlled by a cyclically climbing

up and decaying learning rate. The latter takes no direct measure to achieve this.
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FastEnsemble Algorithm

Denote the loss function of data pair (xi, yi) as `; f(·;w) is the neural network parameterized

by w. Our algorithm has two stages: in the initial stage, we train a “seed model” to convergence

following the usual routine, the model is denoted as w0. Then in the next stage, we augment

the loss function ` by a series of `1 distances defined over model setM.

`+(w) = `
(
f
Ä
xi;w

ä
, yi

)
− λ

|M| ·
∑

wanchor∈M

‖w − wanchor‖1 . (5.2)

Previous finding [GIP18] suggests that the low loss area (Figure 5.5) is connected. Once we

train the seed model to a low loss, we can generate many good and independent models by

simultaneously minimizing the training loss and maximizing the distance between the new

model and all existing ones inM. The algorithm in pseudo-code is shown in Algorithm 10.

Figure 5.5: Loss landscape around a local minimum. There are multiple directions (in red

arrows) we can choose to escape the local minimum while staying in the low loss “valley”.

Notice in this algorithm, we choose the number of iterations k1 � k2, k3 so that compared

to the one-time seed model training, the restN−1 ensemble members only takes k2+k3
k1
≈ 3∼8%

overhead. That makes our new training overhead considerably cheaper than in snapshot
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Algorithm 10 Algorithm of FastEnsemble
1: Initialize: N : number of ensemble models parameterized by wi; `(ŷ, y): the loss function;

λ: the hyperparameter to be tuned. k1 � k2, k3: number of iterations for training seeding

model, training sub-models and fintuning sub-models.

2: // Train the seeding model

3: for all i ∈ {0 . . . k1 − 1} do
4: Run one step of optimizer and learning rate scheduler.

5: end for

6: Initial model listM = {w0}.
7: // Train the rest N − 1 models

8: for all n ∈ {1 . . . N − 1} do
9: for all i ∈ {0 . . . k2 − 1} do
10: // Quick training

11: Minimize `+(w) in Eq. (5.2).

12: end for

13: for all i ∈ {0 . . . k3 − 1} do
14: Minimize `(ŷ, y). . Finetuning

15: end for

16: Append to model listM =M+ wn.

17: end for
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ensemble. Our algorithm introduces a hyperparameter λ, which controls the trade-off between

model accuracy and inter-model independence. In other words, a larger λ causes a lower

model correlation (due to longer distances betweenM), but the individual model performs

worse than before.

Dataset Naive MC-Dropout SGLD SVI BatchEnsemble Snapshot FastEnsemble

Measured by AUC (controlling FPR≤ 0.2)

MSC-Impurities 0.112 0.074 0.099 0.050 0.098 0.002 0.108

MSC-LNCaP 0.082 0.035 0.021 0.023 0.059 0.001 0.090

LNCaP-Desity(Model A), measured by mean Pearson correlation

Very dense 0.869 0.803 0.756 0.762 0.865 0.853 0.865

Dense 0.925 0.869 0.803 0.807 0.919 0.909 0.923

Sparse 0.952 0.909 0.853 0.849 0.947 0.939 0.950

Very sparse 0.974 0.933 0.894 0.887 0.968 0.960 0.971

LNCaP-Density(Model B), measured by mean Pearson correlation

Very dense 0.956 0.865 0.861 0.734 0.953 0.945 0.952

Dense 0.963 0.863 0.887 0.778 0.961 0.957 0.962

Sparse 0.967 0.843 0.902 0.818 0.965 0.962 0.966

Very sparse 0.971 0.815 0.924 0.846 0.969 0.970 0.972

Table 5.1: Experimental results in image generation benchmark. For clarity, the first place is

marked in bold font, the second place is in red, the third place is in blue.

We repeat all the experiments in Section 5.3 again with our proposed method, then make

some comparisons in AUROC or Pearson correlation measures. The results are displayed in

Table 5.1. The naive ensemble method is still better than the others except MSC-LNCaP

dataset; this indicates that current fast ensemble models are still sacrificing accuracy for the

speed. Among all efficient methods, our FastEnsemblesurpasses all others in the MSC-LNCaP

dataset and ranked second on all other datasets.
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5.5 Classification benchmark and calibration robustness

In this section, we intend to show that the proposed FastEnsemble method can also work on

regular classification tasks. In particular, we first run on CIFAR10 and CIFAR100 as two

standard datasets, then we move to out-of-distribution robustness on CIFAR10-C [HD19a]

and CIFAR100-C. Finally, we focus on biomedical imaging datasets, Camelyon17 [BGM18]

and RxRx1 [TEM19], as two larger-scale real applications.

We measure three things: accuracy, log-likelihood, and confidence calibration. Confidence

is defined as the probability in the model output (values after sigmoid or softmax function).

As the size of the deep learning model grows, the model can easily fit the training set to a

low NLL loss by generating probabilities closer to one-hot distribution, which implicitly hurts

the confidence estimation [GPS17]. We quantify the miscalibration level by the expected

calibration error (ECE) [NCH15]:

ECE =

∫ 1

0

w(p) ·
∣∣Acc(p)− p∣∣ dp. (5.3)

In this equation p is the confidence output from Softmax; w(p) is percent of data having

confidence p ; Acc(p) is the accuracy as a function of confidence. In practice, the integra-

tion (5.3) is computed by confidence binning ECE =
∑M

m=1
|Bm|
n

∣∣Acc(Bm)− Conf(Bm)
∣∣, in

which Bm = ((m−1)/M,m/M] is the m-th bin between [0, 1].

For the network architecture and training configurations, we mostly follow the previous

literature. Specifically:

• CIFAR: This configuration applies to all CIFAR based datasets. We train with AdamW

optimizer for 200 epochs, batch size is 128. We adopt the linear learning rate scheduler,

the initial learning rate is 1.0× 10−3.

• Camelyon17: This is a collection of tissue slides under microscopy, in which training

and testing distributions differ due to patient population or in slide staining and

image acquisition. We follow the configuration in WILDS benchmark [KSX21]. The
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model architecture is a ImageNet-1k pretrained DenseNet121 [HLV17], finetuned with

momentum SGD and batch size = 32.

• RxRx1: Similar to Camelyon17, there is a distribution shift due to the batch effect. We

choose ImageNet-1k pretrained ResNet50 [HZR16] to initialize the model, finetuned

with Adam and batch size = 72.

More experiment details can be found in Appendix. First, we explore the accuracy and ECE

under distribution shift. The results can be found in Figure 5.6.
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Figure 5.6: CIFAR10-C: accuracy and ECE (the lower the better) degrade as image skewness

intensifies. The box plot is made by aggregating the measurements over 15 kinds of corruptions

made by [HD19a].

The figure shows that the naive ensemble method is still the best choice considering

the best accuracy and calibration in all cases. But our approach is on par with the naive

ensemble; both are significantly better than batch ensemble and snapshot ensemble. Next,

we repeat the same routine to all six datasets to compare accuracy, log-likelihood, as well

as ECE. We repeated the experiments three times by changing random seeds. Finally, we

report the mean measures and standard deviations. From Table 5.2, we can conclude that

our method is the closest to naive ensemble in terms of accuracy, and often has the lowest

calibration error on the datasets we tested.
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Single Naive Batch Snapshot Ours

ACC / NLL / ECE ACC / NLL / ECE ACC / NLL / ECE ACC / NLL / ECE ACC / NLL / ECE

CIFAR10+VGG16:

92.89 0.492 0.058 94.64 0.306 0.041 92.79 0.566 0.061 93.62 0.375 0.049 93.24 0.308 0.047

0.10 0.031 0.002 0.06 0.018 0.001 0.08 0.019 0.001 0.21 0.029 0.001 0.19 0.015 0.002

CIFAR100+VGG16:

68.65 2.496 0.236 75.15 1.516 0.173 68.44 2.954 0.252 70.52 1.775 0.198 71.14 1.326 0.149

0.10 0.137 0.004 0.07 0.105 0.003 0.16 0.074 0.003 0.39 0.126 0.015 0.29 0.103 0.012

Camelyon17+DenseNet121:

84.99 0.397 0.083 85.96 0.347 0.066 84.39 0.399 0.081
Failure

87.71 0.305 0.048

1.06 0.038 0.012 0.04 0.004 0.003 — 0.33 0.016 0.009

RxRx1+ResNet50:

25.82 7.908 0.469 34.80 5.638 0.370 30.31 7.409 0.450 19.36 5.556 0.265 31.08 6.490 0.407

0.27 0.025 0.002 0.07 0.195 0.012 0.51 0.272 0.012 0.06 0.167 0.019 0.39 0.091 0.003

Test-only datasets using models trained from CIFAR10 and CIFAR100

CIFAR10-C+VGG16:

86.84 0.980 0.110 89.21 0.671 0.084 85.91 1.180 0.121 87.00 0.810 0.102 87.38 0.623 0.089

0.56 0.105 0.006 0.27 0.052 0.003 0.13 0.018 0.001 0.21 0.061 0.003 0.31 0.312 0.002

CIFAR100-C+VGG16:

55.81 4.117 0.335 63.45 2.670 0.256 55.15 5.054 0.359 58.36 3.035 0.282 58.96 2.249 0.220

0.28 0.286 0.006 0.36 0.246 0.009 0.14 0.100 0.003 0.35 0.224 0.019 0.31 0.139 0.007

Table 5.2: Experiment results on distribution shifted or clean datasets. Mean values are

in normal font. Standard deviations are computed over three independent runs, and we

display them in gray color. The metrics are NLL/ACC/ECE. Notice that CIFAR10-C and

CIFAR100-C are test-only datasets; we evaluate them using the same model checkpoint

acquired from CIFAR10 and CIFAR100. In Camelyon17+DenseNet121 combination, we

found the snapshot ensemble method failed to converge in all three trials. The reason is that

when the learning rate spikes at the beginning of the second cycle, the optimizer makes an

unnecessarily big step to drive the model out of the low loss area.
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CHAPTER 6

Demo: An AI-based Biomedical Imaging Software

6.1 Goal of this software

We want to design a user-friendly software for the biological researchers to build their own

models without writing any code. There will be several essential components as follows:

• Model training and inference. This is the core of our software. It is composed of

a data loader, trainer, and U-Net backbone. The data loader reads pair-wise images

from file system, preprocessing it with multiple data augmentation algorithms, then

normalize it to [0, 1]. The trainer is a Bayesian ensemble trainer, we choose ensemble

model to support uncertainty estimation at inference time.

• Web-based user-interface. This is the only place to collect information from users.

Since we assume no programming ability is required, we added a few widgets to gather

dataset URLs, user name, email address, etc. all by HTML pages. Apart from that, we

also need another page to display all current and historical jobs. For instance, users

may want to know the current status of the job they submitted a few hours ago, or the

download link once the job is finished.

• Control panel. This panel belongs to the web interface but worth to be mentioned

separately. Although our default hyperparameters are tested on many datasets (see the

Data repository item below), some advanced users with deep learning backgrounds

will be able to change the hyperparameters so fit their needs. Often they want to
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increase the number of ensemble models to generate higher precision results, or better

uncertainty estimations. Or, they want to decrease the number of training epochs

because the dataset is large.

• Data repository. This repository contains some datasets that are ready to use out-

of-the-box. There are MSC cells, Enza cells, etc. Users can try our software without

collecting their own images, just download the zip files from this data repository and

upload to their own Google drive.

6.2 Design

Our software is open sourced in https://github.com/xuanqing94/fnet-web. The core

model training and inference is open sourced in https://github.com/xuanqing94/BNNBench.

The website is implemented with Bootstrap and Flask, with a built-in database powered by

sqlite. We use PyTorch to implement all the deep learning training and inference pipelines.

The workflow can be shown in Figure 6.1.
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Figure 6.1: Workflow of the Web-UI training interface.
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The submission page is shown in Figure 6.2. In the left panel, users will input their

contact information such as name and email. The right panel contains some of the most

important hyper-parameters that users might need to change.

Figure 6.2: The control panel of our system

The job status page is shown in Figure 6.3. There are currently five different status:

SUBMIT, QUEUE, RUN, SUCCESS, FAILURE. When the job is completed in SUCCESS

state, the downloadable link will be displayed in the last column.

The results are packaged in a zip file with following contents: the source images, ground

truth target images, and the prediction images.
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Figure 6.3: Job queue table
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Part III

Model Interpretation
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CHAPTER 7

Model Interpretation by Robustness Analysis

7.1 Robustness Analysis for Evaluating Explanations

7.1.1 Problem notation

We consider the setting of a general K-way classification problem with input space X ⊆ Rd,

output space Y = {1, . . . , K}, and a predictor function f : X → Y where f(x) denotes the

output class for some input example x = [x1, . . . ,xd] ∈ X . Then, for a particular prediction

f(x) = y, a common goal of feature based explanations is to extract a compact set of relevant

features with respect to the prediction. We denote the set of relevant features provided by an

explanation as Sr ⊆ U where U = {1, . . . , d} is the set of all features, and use Sr = U \ Sr,
the complementary set of Sr, to denote the set of irrelevant features. We further use xS to

denote the features within x that are restricted to the set S.

7.1.2 Evaluation through robustness analysis

A common thread underlying evaluations of feature based explanations [SBM16, PDS18],

even ranging over axiomatic treatments [STY17, LL17], is that the importance of a set of

features corresponds to the change in prediction of the model when the features are removed

from the original input. Nevertheless, as we discussed in previous sections, operationalizing

such a removal of features, for instance, by setting them to some reference value, introduces

biases. To finesse this, we leverage adversarial robustness, but to do so in this context, we

rely on two key intuitive assumptions that motivate our method:
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Assumption 1: When the values of the important features are anchored (fixed), perturba-

tions restricted to the complementary set of features has a weaker influence on the model

prediction.

Assumption 2: When perturbations are restricted to the set of important features, fixing

the values of the rest of the features, even small perturbations could easily change the model

prediction.

Based on these two assumptions, we propose a new framework leveraging the notion

of adversarial robustness on feature subsets, as defined below, to evaluate feature based

explanations.

Definition 7.1.1. Given a model f , an input x, and a set of features S ⊆ U where U is the

set of all features, the minimum adversarial perturbation norm on xS, which we will also

term Robustness-S of x is defined as:

ε∗xS = g(f,x, S) =

ß
min
δ
‖δ‖p s.t. f(x+ δ) 6= y, δS = 0

™
, (7.1)

where y = f(x), S = U \ S is the complementary set of features, and δS = 0 means that the

perturbation is constrained to be zero along features in S.

Suppose that a feature based explanation partitions the input features of x into a relevant

set Sr, and an irrelevant set Sr, Assumption 1 implies that the quality of the relevant set can

be measured by ε∗xSr – by keeping the relevant set unchanged, and measuring the adversarial

robustness norm by perturbing only the irrelevant set. Specifically, from Assumption 1, a

larger coverage of pertinent features in set Sr entails a higher robustness value ε∗xSr . On the

other hand, from Assumption 2, a larger coverage of pertinent features in set Sr would in

turn entail a smaller robustness value ε∗xSr , since only relevant features are perturbed. More

formally, we propose the following twin criteria for evaluating the quality of Sr identified by

any given feature based explanation.
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Definition 7.1.2. Given an input x and a relevant feature set Sr, we define Robustness-Sr

and Robustness-Sr of the input x as the following:

Robustness-Sr = ε∗xSr
. Robustness-Sr = ε∗xSr .

Following our assumptions, a set Sr that has larger coverage of relevant features would

yield higher Robustness-Sr and lower Robustness-Sr.

Evaluation for Feature Importance Explanations. While Robustness-Sr and Robustness-

Sr are defined on sets, general feature attribution based explanations could also easily fit into

the evaluation framework. Given any feature attribution method that assigns importance

score to each feature, we can sort the features in descending order of importance weights,

and provide the top-K features as the relevant set Sr. The size of K (or |Sr|), can be

specified by the users based on the application. An alternative approach that we adopt in

our experiments is to vary the size of set K and plot the corresponding values of Robustness-

Sr and Robustness-Sr over different values of K. With a graph where the X−axis is the

size of K and the Y−axis is Robustness-Sr or Robustness-Sr, we are then able to plot an

evaluation curve for an explanation and in turn compute its the area under curve (AUC)

to summarize its performance. A larger (smaller) AUC for Robustness-Sr (Robustness-Sr)

indicates a better feature attribution ranking. Formally, given a curve represented by a set

of points C = {(x0, y0), . . . , (xn, yn)} where xi−1 < xi, we calculate the AUC of the curve by:

AUC(C) =
∑n

i=1(yi + yi−1)/2 ∗ (xi − xi−1).

Relation to Insertion and Deletion Criteria. We relate the proposed criteria to a

set of commonly adopted evaluation metrics: the Insertion and Deletion criteria [SBM16,

PDS18, SLL20]. The Insertion score measures the model’s function value when only the

top-relevant features, given by an explanation, are presented in the input while the others are

removed (usually by setting them to some reference value representing feature missingness).

The Deletion score, on the other hand, measures the model’s function value when the most
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relevant features are masked from the input. As in our evaluation framework, we could plot

the evaluation curves for Insertion (Deletion) score by progressively increasing the number

of top-relevant features. A larger (smaller) AUC under Insertion (Deletion) then indicates

better explanation, as the identified relevant features could indeed greatly influence the model

prediction. We note that optimizing the proposed Robustness-Sr and Robustness-Sr could

roughly be seen as optimizing a lower bound for the Insertion and Deletion score respectively.

This follows from the intuition: Robustness-Sr considers features that when anchored, would

make the prediction most robust to “adversarial perturbation". Since adversarial perturbation

is the worst case of “any arbitrary perturbations", the prediction will also be robust to different

removal techniques (which essentially correspond to different perturbations) considered in

the evaluation of Insertion score; The same applies to the connection between Robustness-Sr

and Deletion score. We shall see in the experiment section that explanation optimizing

our robustness measurements enjoys competitive performances on the Insertion / Deletion

criteria.

Untargeted v.s. Targeted Explanation. Definition 7.1.1 corresponds to the untargeted

adversarial robustness – a perturbation that changes the predicted class to any label other

than y is considered as a successful attack. Our formulation can also be extended to targeted

adversarial robustness, where we replace (7.1) by:

ε∗xS ,t =

ß
min
δ
‖δ‖p s.t. f(x+ δ) = t; δS = 0

™
, (7.2)

where t is the targeted class. Using this definition, our approach will try to address the

question “Why is this example classified as y instead of t” by highlighting the important

features that contrast between class y and t. Further examples of the “targeted explanations”

are in the experiment section.

Robustness Evaluation on Feature Subset. It is known that computing the exact

minimum distortion distance in modern neural networks is intractable [KBD17], so many
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different methods have been developed to estimate the value. Adversarial attacks, such as

C&W [CW17] and projected gradient descent (PGD) attack [MMS18a], aim to find a feasible

solution of (7.1), which leads to an upper bound of ε∗xS . They are based on gradient based

optimizers which are usually efficient. On the other hand, neural network verification methods

aim to provide a lower bound of ε∗xS to ensure that the model prediction will not change within

certain perturbation range [SGM18, WK18, WZC18a, GMD18, ZWC18, WPW18, ZZH19].

The proposed framework can be combined with any method that aims to approximately

compute (7.1), including attack, verification, and some other statistical estimations. However,

for simplicity we only choose to evaluate (7.1) by the state-of-the-art PGD attack [MMS18a],

since the verification methods are too slow and often lead to much looser estimation as

reported in some recent studies [SYZ19]. Our additional constraint restricting perturbation

to only be on a subset of features specifies a set that is simple to project onto, where we set

the corresponding coordinates to zero at each step of PGD.

7.2 Extracting Relevant Features through Robustness Analysis

Our adversarial robustness based evaluations allow us to evaluate any given feature based

explanation. Here, we set out to design new explanations that explicitly optimize our

evaluation measure. We focus on feature set based explanations, where we aim to provide an

important subset of features Sr. Given our proposed evaluation measure, an optimal subset

of feature Sr would aim to maximize (minimize) Robustness-Sr (Robustness-Sr), under a

cardinality constraint on the feature set, leading to the following set of optimization problems:

maximize
Sr⊆U

g(f,x, Sr) s.t. |Sr| ≤ K (7.3)

minimize
Sr⊆U

g(f,x, Sr) s.t. |Sr| ≤ K (7.4)

where K is a pre-defined size constraint on the set Sr, and g(f,x, S) computes the the

minimum adversarial perturbation from (7.1), with set-restricted perturbations.
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It can be seen that this sets up an adversarial game for (7.3) (or a co-operative game

for (7.4)). In the adversarial game, the goal of the feature set explainer is to come up with

a set Sr such that the minimal adversarial perturbation is as large as possible, while the

adversarial attacker, given a set Sr, aims to design adversarial perturbations that are as small

as possible. Conversely in the co-operative game, the explainer and attacker cooperate to

minimize the perturbation norm. Directly solving these problems in (7.3) and (7.4) is thus

challenging, which is exacerbated by the discrete input constraint that makes it intractable

to find the optimal solution. We therefore propose a greedy algorithm in the next section to

estimate the optimal explanation sets.

7.2.1 Greedy algorithm to compute optimal explanations

We first consider a greedy algorithm where, after initializing Sr to the empty set, we iteratively

add to Sr the most promising feature that optimizes the objective at each local step until Sr

reaches the size constraint. We thus sequentially solve the following sub-problem at every

step t:

arg max
i

g(f,x, Str ∪ i), or arg min
i

g(f,x, Str ∪ i), ∀i ∈ Str (7.5)

where Str is the relevant set at step t, and S0
r = ∅. We repeat this subprocedure until the

size of set Str reaches K. A straightforward approach for solving (7.5) is to exhaustively

search over every single feature. We term this method Greedy. While the method eventually

selects K features for the relevant set Sr, it might lose the sequence in which the features

were selected. One approach to encode this order would be to output a feature explanation

that assigns higher weights to those features selected earlier in the greedy iterations.
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7.2.2 Greedy by set aggregation score

The main downside of using the greedy algorithm to optimize the objective function is that

it ignores the interactions among features. Two features that may seem irrelevant when

evaluated separately might nonetheless be relevant when added simultaneously. Therefore,

in each greedy step, instead of considering how each individual feature will marginally

contribute to the objective g(·), we propose to choose features based on their expected

marginal contribution when added to the union of Sr and a random subset of unchosen

features. To measure such an aggregated contribution score, we draw from cooperative game

theory literature [DS79, HH92] to reduce this to a linear regression problem. Formally, let

Str and Str be the ordered set of chosen and unchosen features at step t respectively, and

P(Str) be all possible subsets of Str. We measure the expected contribution that including

each unchosen feature to the relevant set would have on the objective function by learning

the following regression problem:

wt, ct = arg min
w,c

∑
S∈P(Str)

((wT b(S) + c)− v(Str ∪ S))2, (7.6)

where b : P(Str) → {0, 1}|S
t
r| is a function that projects a set into its corresponding binary

vector form: b(S)[j] = I(Str[j] ∈ S), and v(·) is set to be the objective function in (7.3) or

(7.4): v(Sr) = g(f,x, Sr) for optimizing (7.3); v(Sr) = g(f,x, Sr) for optimizing (7.4). We

note that wt corresponds to the well-known Banzhaf value [Ban64] when Str = ∅, which can

be interpreted as the importance of each player by taking coalitions into account [DS79].

[HH92] show that the Banzhaf value is equivalent to the optimal solution of linear regression

with pseudo-Boolean functions as targets, which corresponds to (7.6) with Str = ∅. At each
step t, we can thus treat the linear regression coefficients wt in (7.6) as each corresponding

feature’s expected marginal contribution when added to the union of Sr and a random subset

of unchosen features.

We thus consider the following set-aggregated variant of our greedy algorithm in the

previous section, which we term Greedy-AS. In each greedy step t, we choose features
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that are expected to contribute most to the objective function, i.e. features with highest

(for (7.3)) or lowest (for (7.4)) aggregation score (Banzhaf value), rather than simply the

highest marginal contribution to the objective function as in vanilla greedy. This allows

us to additionally consider the interactions among the unchosen features when compared

to vanilla greedy. The chosen features each step are then added to Str and removed from

Str. When Str is not ∅, the solution of (7.6) can still be seen as the Banzhaf value where the

players are the unchosen features in Str, and the value function computes the objective when

a subset of players is added into the current set of chosen features Str. We solve the linear

regression problem in (7.6) by sub-sampling to lower the computational cost, and we validate

the effectiveness of Greedy and Greedy-AS in the experiment section. 1

7.3 Experiments

In this section, we first evaluate different model interpretability methods on the proposed

criteria. We justify the effectiveness of the proposed Greedy-AS. We then move onto further

validating the benefits of the explanations extracted by Greedy-AS through comparisons to

various existing methods both quantitatively and qualitatively. Finally, we demonstrate the

flexibility of our method with the ability to provide targeted explanations as mentioned in

Section 7.1.2. We perform the experiments on two image datasets, MNIST [LCB10] and

ImageNet [DDS09a], as well as a text classification dataset, Yahoo! Answers [ZZL15]. On

MNIST, we train a convolutional neural network (CNN) with 99% testing accuracy. On

ImageNet, we deploy a pre-trained ResNet model obtained from the Pytorch library. On

Yahoo! Answers, we train a BiLSTM sentence classifier which attains testing accuracy of

71%.

1We found that concurrent to our work, greedy with choosing the players with the highest restricted
Banzhaf was used in [EFL17].
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Setup. In the experiments, we consider p = 2 for ‖ · ‖p in (7.1) and (7.2). We note that

(7.1) is defined for a single data example. Given n multiple examples {xi}ni=1 with their

corresponding relevant sets provided by some explanation {Si}ni=1, we compute the overall

Robustness-Sr (-Sr) by taking the average: for instance, 1
n

∑n
i=1 g(f,xi, Si) for Robustness-Sr.

We then plot the evaluation curve as discussed in Section 7.1.2 and report the AUC for different

explanation methods. For all quantitative results, we report the average over 100 random

examples. For the baseline methods, we include vanilla gradient (Grad) [SGK17], integrated

gradient (IG) [STY17], and expected gradient (EG) [EJS19, SLL20] from gradient-based

approaches; leave-one-out (LOO) [ZF14, LMJ16], SHAP [LL17] and black-box meaningful

perturbation (BBMP) (only for image examples) [FV17] from perturbation-based approaches

[ACO18]; counterfactual explanation (CFX) proposed by [WMR17]; Anchor [RSG18] for

text examples; and a Random baseline that ranks feature importance randomly. Following

common setup [STY17, ACO18], we use zero as the reference value for all explanations that

require baseline.

7.3.1 Robustness analysis on model interpretability methods

Comparisons between Different Explanations. From Table 7.1, we observe that the

proposed Greedy-AS consistently outperforms other explanation methods on both criteria.

On one hand, this suggests that the proposed algorithm indeed successfully optimizes towards

the criteria; on the other hand, this might indicate the proposed criteria do capture different

characteristics of explanations which most of the current explanations do not possess. Another

somewhat interesting finding from the table is that while Grad has generally been viewed

as a baseline method, it nonetheless performs competitively on the proposed criteria. We

conjecture the phenomenon results from the fact that Grad does not assume any reference

value as opposed to other baselines such as LOO which sets the reference value as zero

to mask out the inputs. Indeed, it might not be surprising that Greedy-AS achieves the

best performances on the proposed criteria since it is explicitly designed for so. To more
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Table 7.1: AUC of Robustness-Sr and Robustness-Sr for various explanations on different

datasets. The higher the better for Robustness-Sr; the lower the better for Robustness-Sr.

Datasets Explanations Grad IG EG SHAP LOO BBMP CFX Random Greedy-AS

MNIST Robustness-Sr 88.00 85.98 93.24 75.48 74.14 78.58 69.88 64.44 98.01

Robustness-Sr 91.72 91.97 91.05 101.49 104.38 176.61 102.81 193.75 82.81

ImageNet Robustness-Sr 27.13 26.01 26.88 18.25 22.29 21.56 27.12 17.98 31.62

Robustness-Sr 45.53 46.28 48.82 60.02 58.46 158.01 46.10 56.11 43.97

Yahoo!Answer Robustness-Sr 1.97 1.86 1.96 1.81 1.74 - 1.95 1.71 2.13

Robustness-Sr 2.91 3.14 2.99 3.34 4.04 - 2.96 7.64 2.41

objectively evaluate the usefulness of the proposed explanation, we demonstrate different

advantages of our method by comparing Greedy-AS to other explanations quantitatively on

existing commonly adopted measurements, and qualitatively through visualization in the

following subsections.

7.3.2 Qualitative results

Image Classification. To complement the quantitative measurements, we show several

visualization results on MNIST and ImageNet in Figure 7.1 and Figure 7.2. On MNIST, we

observe that existing explanations tend to highlight mainly on the white pixels in the digits;

among which SHAP and LOO show less noisy explanations comparing to Grad and IG. On

the other hand, the proposed Greedy-AS focuses on both the “crucial positive” (important

white pixels) as well as the “pertinent negative” (important black regions) that together

support the prediction. For example, in the first row, a 7 might have been predicted as

a 4 or 0 if the pixels highlighted by Greedy-AS are set to white. Similarly, a 1 may be

turned to a 4 or a 7 given additional white pixels to its left, and a 9 may become a 7 if

deleted the lower circular part of its head. From the results, we see that Greedy-AS focuses

on “the region where perturbation on its current value will lead to easier prediction change”,
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Figure 7.1: Visualization on top 20 percent

relevant features provided by different ex-

planations on MNIST. We see Greedy-AS

highlights both crucial positive and pertinent

negative features supporting the prediction.

Figure 7.2: Visualization of different explana-

tions on ImageNet, where the predicted class

for each input is “Maltese", “hippopotamus",

“zebra", and “Japanese Spaniel". Greedy-AS

focuses more compactly on objects.

which includes both the crucial positive and pertinent negative pixels. Such capability of

Greedy-AS is also validated by its superior performance on the proposed robustness criteria,

on which methods like LOO that highlights only the white strokes of digits show relatively

low performance. The capability of capturing pertinent negative features has also been

observed in explanations proposed in some recent work [DCL18b, BBM15, OWT19]. From

the visualized ImageNet examples shown in Figure 7.2, we observe that our method provides

more compact explanations that focus mainly on the actual objects being classified. For

instance, in the first image, our method focuses more on the face of the Maltese while others

tend to have noisier results; in the last image, our method focuses on one of the Japanese

Spaniel whereas others highlight both the dogs and some noisy regions.

Text Classification. Here we demonstrate our explanation method on a text classification

model that classifies a given sentence into one of the ten classes (Society, Science, . . . , Health).

We showcase an example in Figure 7.3. We see that the top-5 keywords highlighted by

Greedy-AS are all relevant to the label “sport”, and Greedy-AS is less likely to select stop

words as compared to other methods.
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Figure 7.3: Explanations on a text classification model which correctly predicts the label

“sport". Unlike most other methods, the top-5 relevant keywords highlighted by Greedy-AS

are all related to the concept “sport".

Figure 7.4: Visualization of targeted explanation. For each input, we highlight relevant

regions explaining why the input is not predicted as the target class. We see the explanation

changes in a semantically meaningful way as the target class changes.

Targeted Explanation Analysis. In section 7.1.2, we discussed about the possibility of

using targeted adversarial perturbation to answer the question of “why the input is predicted as

A but not B”. In Figure 7.4, for each input digit, we provide targeted explanation towards two

different target classes. Interestingly, as the target class changes, the generated explanation

varies in an interpretable way. For example, in the first image, we explain why the input

digit 7 is not classified as a 9 (middle column) or a 2 (rightmost column). The resulting

explanation against 9 highlights the upper-left part of the 7. Semantically, this region is

indeed pertinent to the classification between 7 and 9, since turning on the highlighted pixel

values in the region (currently black in the original image) will then make the 7 resemble a 9.

However, the targeted explanation against 2 highlights a very different but also meaningful

region, which is the lower-right part of the 7; since adding a horizontal stroke on the area

would turn a 7 into a 2.
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