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Fine’s canonicity theorem for some classes of
neighborhood frames

Kentarô Yamamoto 1

Group in Logic and the Methodology of Science, University of California, Berkeley
Berkeley, California

United States of America

Abstract

We prove an analogue of Fine’s canonicity theorem for classes of monotonic neighbor-
hood frames definable in the language of Coalgebraic Predicate Logic. The result holds
true of classes definable relative to the classes of monotonic, quasi-filter, augmented
quasi-filter, filter, or augmented filter neighborhood frames, respectively. Fine’s
original theorem follows as a special case concerning the classes of augmented filter
neighborhood frames.

Keywords: modal logic, canonicity, Fine’s theorem, neighborhood frames

1 Introduction
This article concerns a generalization of a classical result by Fine [7] on canonic-
ity of normal modal logics. Canonicity is an important property of normal modal
logics that implies Kripke completeness, which proved useful in establishing com-
pleteness of many familiar logics (see, e.g., [2]). Until a counterexample [13,12]
was found in the early 21st century, all known canonical logics were generated by
elementary classes of Kripke frames whereas all known non-canonical logics were
not elementarily determined. Fine gave to this empirical fact an explanation:
he proved that the normal modal logics determined by elementary classes of
Kripke frames are canonical.

There are a number of reasons for relaxing the axioms of normal modal
logics and considering monotonic modal logics. For instance, monotonic modal
logics are considered more appropriate to describe the ability of agents or
systems to make certain proposition true in the context of games and open
systems [21,22,1]. The standard semantics for monotonic modal logics is provided
by monotonic neighborhood frames (see, e.g., [14]), which are a particular kind
of Set-coalgebras [15].

In this article we prove an analogue of Fine’s canonicity theorem for mono-
tonic modal logics. For this purpose, we need to define what it means for a
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2 Fine’s canonicity theorem for some classes of neighborhood frames

monotonic modal logic to be canonical and for a class of monotonic neighbor-
hood frames to be elementary. Our notion of canonicity of a monotonic modal
logic is that of [14] derived from algebraic modal logic. By the elementarity of
a class of monotonic neighborhood frames, we mean the definability of the class
by a theory in a first-order-like language, namely, the language of coalgebraic
predicate logic (CPL).

The language of coalgebraic modal logic was first proposed by Chang [3]
for neighborhood frames and later generalized by Litak et al. [17] for general
T -coalgebras for an endofucntor T over the category of sets. Chang’s original
language was motivated in the context of natural language semantics; coalgebraic
predicate logic is also easy to motivate since it contains coalgebraic modal logic [5]
in a way that admits an analogue [23] of the van Benthem-Rosen theorem (see,
e.g., [2]), among other reasons (see [17]).

We will deal with a relativized notion of CPL-elementarity, relativized to
subclasses of the class of monotonic neighborhood frames. There are several
important subclasses to consider: the class of filter neighborhood frames, pro-
viding a more general semantics [11,10] for normal modal logics than relational
semantics; the class of quasi-filter neighborhood frames, providing a semantics
for regular modal logics; the class of augmented quasi-filter neighborhood frames,
providing a less general semantics for regular modal logics; and the class of
augmented filter neighborhood frames, which are Kripke frames in disguise
[4,19].

Subclass Each neighborhood family is closed under ...
monotonic supersets
quasi-filter supersets, intersections of nonempty finite fami-

lies of neighborhoods
augmented quasi-filter supersets, intersections of nonempty families of

neighborhoods
filter supersets, intersections of finite families of neigh-

borhoods
augmented filter supersets, intersections of families of neighbor-

hoods

Table 1
Classes of monotonic neighborhood frames and their definitions

The analogue of Fine’s theorem we will prove states that a sufficient condition
for the canonicity of a monotonic modal logic is that it is determined CPL-
elementarily relative to any of the classes of neighborhood frames in Table 1.

The relevance of coalgebraic predicate logic in this article is that many
monotonic modal logics are determined by classes of monotonic neighborhood
frames that are CPL-elementary. For instance, the monotonic modal logics
axiomatized by formulas of the form

〈purely propositional positive formula〉 → 〈positive formula〉 (1)
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are determined by CPL-elementary classes of monotonic neighborhood frames
(see Remark 2.4). In addition, relative to the class of augmented quasi-filter
frames, all monotonic modal logics axiomatized by Sahlqvist formulas are CPL-
elementarily determined [20] (see Example 2.5). Further discussion regarding
the relevance of this language in the context of Fine’s theorem is in Remark 4.4.

The paper is organized as follows. In § 2, we recall standard concepts
in the semantics of monotonic modal logic and introduce the language for
neighborhood frames. In § 3, we give an overview of the model theory of
neighborhood frames for this language. We also introduce a two-sorted first-
order language (Definition 3.15) and a translation of coalgebraic predicate logic
into it (Proposition 3.17), which are used later to explain the existence of ℵ0-
saturated models of languages of coalgebraic predicate logic (Proposition 3.20).
In § 4, we prove the variant of Fine’s theorem for monotonic neighborhood
frames.

Because of the dual correspondence between monotonic modal logics and
varieties of monotonic Boolean algebra expansions (see § 2), our result can be
stated in terms of varieties rather than logics. In fact, for the rest of this article,
the technical matters are presented by means of varieties of monotonic Boolean
algebra expansions for the sake of convenience. The presentation of the results
in this article does not presuppose the reader’s prior knowledge of coalgebras or
coalgebraic predicate logic.

Proofs of the starred propositions, lemmas, and theorems are found in the
Appendix.

2 Preliminaries
2.1 Languages and structures
In this subsection, we recall standard definitions in neighborhood semantics of
modal logic and the language introduced in [3] and [17] to describe them.

We define languages of coalgebraic predicate logic relative to sets of nonlogical
symbols here; this is so that we can use expansions of the smallest language in
proofs in § 4.
Definition 2.1
(i) Let L0 be a language of first-order logic. The language of coalgebraic

predicate logic L based on L0 is the least set of formulas containing L0
and closed under Boolean combinations, existential quantification, and
formation of formulas of the form x2dy : φe, where φ ∈ L, and x and y
are variables. To save space, we sometimes write x2y φ or even x2φ for
x2dy : φe.

(ii) Let L0 be a language of first-order logic and L be the language of coalgebraic
predicate logic based on L0. An L-structure F = (F,NF ) is an L0-structure
F with an additional datum NF : F →P(P(F )), a function that assigns
to each element of F a family of subsets of F . The map NF is called the
neighborhood function of F . A set U ∈ NF (w) is called a neighborhood
around w. If L0 is the empty first-order language, the L-structures are
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exactly the neighborhood frames.
(iii) A neighborhood frame F is monotonic if for every w ∈ F the family NF (w)

is closed under supersets. F is a quasi-filter neighborhood frame if for
every w ∈ F the family NF (w) is closed under intersections of nonempty
finite families of neighborhoods. F is is a filter neighborhood frame if it is
a quasi-filter frame and for every w ∈ F the family NF (w) is nonempty.
F is an augmented quasi-filter neighborhood frame if for every w ∈ F the
family NF (w) is either empty or a principal upset in the Boolean algebra
P(F ), i.e., there exists U0 ⊆ F such that U ∈ NF (w) ⇐⇒ U0 ⊆ U . A
neighborhood frame F is an augmented filter frame if for every w ∈ F the
family NF (w) is a principal upset.

Definition 2.2 Let L be a language of coalgebraic predicate logic and F be
an L-structure. We define the satisfaction predicate F |= φ for a sentence
φ ∈ L. It is convenient to define the predicate for the expanded language L(F )
of coalgebraic predicate logic. In general, for A ⊆ F , we define L(A) to be the
language of coalgebraic predicate logic that has all symbols of L and a constant
symbol w that is intended to be interpreted as w itself for each w ∈ A. 2 Now,
F is an L(F )-structure in the obvious way. We define the satisfaction predicate
F |= φ for φ ∈ L(F ). The predicate is defined by recursion on φ. For symbols
of first-order logic in L, the predicate is defined in the ordinary way. For
φ = w2y φ0, we define

F |= w2y φ0(y) ⇐⇒ φ0(F ) ∈ NF (w)

where
φ0(F ) = {v ∈ F | F |= φ0(v)}

and φ0(v) stands for a substitution instance of φ0(y) with v substituted for y.
Example 2.3 Consider the B axiom p → 2¬2¬p. We see that this modal
formula has a local frame correspondent relative to the class of monotonic
neighborhood frames in the language L= of coalgebraic predicate logic based on
the empty language, i.e., the language with just the equality symbol. Consider
the validity of the B axiom for a monotonic neighborhood frame F and w ∈ F .
By the monotonicity of F , the usual minimum valuation argument (see, e.g.,
[2]) applies: the B axiom is valid here if and only if its consequent is true under
the minimum valuation that makes its antecedent true, which is the valuation
that sends p to the set {w}. The latter condition is expressible by a formula in
L=:

w2y ¬y2z z 6= w.

Remark 2.4 It can be shown likewise that modal formulas of the form (1)
have frame correspondents relative to the class of monotonic neighborhood

2 This is standard practice in model theory (see, e.g., [18]); it makes the notation and the
definitions much simpler, particularly in later parts of this article where we deal with types
with parameters.
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frames. Moreover, a formula of the form (1) is what is called a KW formula in
[14] and thus axiomatizes a monotonic modal logic complete with respect to the
class of monotonic neighborhood frames that it defines. Hence, the monotonic
modal logics axiomatized by such formulas are determined by CPL-elementary
classes (see Definition 4.1) of monotonic neighborhood frames.

Example 2.5 Consider the 4 axiom 2p → 22p. We show that this modal
formula has a local frame correspondent relative to the class of augmented
quasi-filter neighborhood frames in the same language L= as above. Consider
the validity of the 4 axiom for an augmented quasi-filter neighborhood frame F
and w ∈ F . If w ∈ F is impossible, i.e., NF (w) = ∅, then the 4 axiom is valid
at w. Note that by monotonicity w is impossible if and only if F 6∈ NF (w),
i.e., F |= ¬w2y y = y. Otherwise, we can again use the minimum valuation
argument. Here, the minimum interpretation of p that makes the antecedent
true is R[w] because F is an augmented quasi-filter neighborhood frame, where
R ⊆ F × F is the binary relation defined by

xRy ⇐⇒ {z ∈ F | z 6= y} 6∈ NF (x) (⇐⇒ F |= ¬x2z z 6= y).

To summarize, the 4 axiom has the local frame correspondent

¬w2dy : y = ye ∨ (w2dy : y = ye ∧ w2dy1 : y1 2dy2 : ¬y2 2dz : z 6= weee).

In fact, since the accessibility relation R and the set of impossible worlds are
definable in L= as we have seen above, the first-order frame correspondence
language in [20] translates into L=, and thus all Sahlqvist formulas have frame
correspondents in L= relative to the class of augmented quasi-filter neighborhood
frames.

Definition 2.6 Let F and F ′ be neighborhood frames. A function f : F → F ′

is a bounded morphism if for each w ∈ F :

f−1(U ′) ∈ NF (w) =⇒ U ′ ∈ NF ′
(f(w)) (“forth”)

and
U ′ ∈ NF ′

(f(w)) =⇒ f−1(U ′) ∈ NF (w) (“back”)

Lemma 2.7 ([6]) Let F and F ′ be monotonic neighborhood frames and f :
F → F ′ be a function that satisfies the “forth” condition. Suppose in addition
that for all U ′ ∈ NF ′(f(w)) there exists U ∈ NF (w) such that f(U) ⊆ U ′.
Then f is a bounded morphism.

Proof. By assumption, if U ′ ∈ NF ′(w), then there exists U such that
f−1(U ′) ⊇ U ∈ NG(w); by monotonicity, we have f−1(U ′) ∈ NG(w). 2

2.2 Algebraic concepts
In this subsection, we recall some standard definitions from the algebraic
treatment of modal logic; for more information, see [26].
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Definition 2.8 A monotonic Boolean algebra expansion (BAM for short) A =
(A,2A) is a Boolean algebra A with an additional datum 2A : A→ A, a function
that is monotonic, i.e., for all a, b ∈ A we have a ≤ b =⇒ 2A(a) ≤ 2A(b).
Lemma 2.9 Let F be a monotonic neighborhood frame. The function 2F :
P(F )→P(F ) defined by

X 7→ {w ∈ F | X ∈ NF (w)}

is monotonic. 2

Definition 2.10 [[6]] The underlying BAM F+ of a monotonic neighborhood
frame F is the BAM (P(F ),2F ), where P(F ) is the Boolean algebra of the
powerset of F .
Proposition 2.11 Let F and F ′ be monotonic neighborhood frames and f :
F → F ′ be a bounded morphism. Then f+ : F ′+ → F+ defined by f+(X) =
f−1(X) is a homomorphism. 2

Definition 2.12 Let B be a Boolean algebra. The canonical extension Bσ of
B is the Boolean algebra of the powerset of the set Uf(B) of ultrafilters in B.
An element of Bσ of the form [a] := {u ∈ Uf(B) | a ∈ u} for a fixed a ∈ B is
called clopen. Joins and meets of clopen elements of Bσ are closed and open,
respectively. The sets of closed and open elements of Bσ are denoted K(Bσ)
and O(Bσ), respectively.
Proposition 2.13 For a Boolean algebra B, the map [−] : B → Bσ is an
embedding.
Proof. See, e.g., [26]. 2

Definition 2.14 [see, e.g., [26]] Let A = (A,2) be a BAM. The canonical
extension Aσ = (Aσ,2σ) of A is the canonical extension of the Boolean algebra
A expanded by the function 2σ, where

2σ(u) =
∨

u⊇x∈K(Aσ)

∧
x⊆a∈A

2(a).

Proposition 2.15 For a BAM A = (A,2), the function 2σ is monotonic, and
thus the canonical extension Aσ = (Aσ,2σ) is again a BAM.
Proof. See, e.g., [26]. 2

Remark 2.16 Canonical extensions can be defined for larger classes of algebras.
We stick to BAMs in this article since they admit the most natural definition
for 2σ, among other reasons.
Definition 2.17 [[14]]
(i) Let A be a BAM. The ultrafilter frame of A is a neighborhood frame

(Uf(A), Nσ) with Nσ defined by

U ∈ Nσ(w) ⇐⇒ ∃X ⊆ U ∀a ∈ A([a] ⊇ X ⇒ 2F (a) ∈ w),
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where w ∈ Uf(A), and X range over closed elements of Aσ = P(UfA).
We denote the ultrafilter frame of A by Uf(A).

(ii) Let F be a monotonic neighborhood frame. The ultrafilter extension ueF
of F is Uf(F+).

Proposition 2.18 Let A be a BAM.
(i) Uf(A) is monotonic.
(ii) (Uf(A))+ ∼= Aσ. 2

Definition 2.19 A class of BAMs is canonical if it is closed under canonical
extensions.

3 Model theory of neighborhood frames
In this section, we recall as well as develop results in the model theory of
neighborhood frames and coalgebraic predicate logic.

3.1 Standard concepts in first-order model theory
Here, we define concepts that have counterparts in the classical first-order model
theory.

Definition 3.1 Let L be a language of coalgebraic predicate logic, F be an
L-structure, and A ⊆ F . A subset X ⊆ F is A-definable in F if there is an
L-formula φ(x; ȳ) and a tuple ā of elements of A (notation: ā ∈ A) such that
X = φ(F ; ā). A subset X is definable in F if it is F -definable in F .

Definition 3.2
(i) A set of L-sentences is called an L-theory.
(ii) Let L be a language of coalgebraic predicate logic and F be an L-structure.

The full L-theory ThL(F ) of F is the set of L-sentences φ such that F |= φ.
(iii) Two L-structures F, F ′ are L-elementarily equivalent, or F ≡L F ′, if

ThL(F ) = ThL(F ′).

For the rest of this section, we fix a language L of coalgebraic predicate
logic and a monotonic L-structure F . We also let T = Th(F ).

Definition 3.3 Let A ⊆ F . We write Def(F/A) for the Boolean algebra of
A-definable subset in F , its operations being the set-theoretic ones. We also
think of Def(F/A) as a BAM whose monotone operation 2 is defined 3 by

2(φ(F )) = (2φ)(F )

for an L(A)-formula φ(x), where (2φ)(x) is the L-formula x2y φ(y).

It is easy to see that Def(F/A) is a subalgebra of F+ as a BAM.

3 It is easy to see that 2 : Def(F/A)→ Def(F/A) is well-defined here. This is true of similar
definitions that appear in later parts of the article.
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Proposition? 3.4 Assume F ′ |= T . Then Def(F/∅) and Def(F ′/∅) are iso-
morphic as BAMs.

Definition 3.5
(i) The Stone space S1(T ) of 1-types over ∅ for T is the ultrafilter frame

Uf(Def(F/∅)) of Def(F/∅). (This is defined uniquely regardless of choice
of F |= T .) We consider S1(T ) as a topological space whose open subsets
are exactly the open elements of (Uf(Def(F/∅)))+ = (Def(F/∅))σ. An
element p ∈ S1(T ) is called a 1-type over ∅.

(ii) Likewise, we let SF1 (A) = Uf(Def(F/A)). An element p ∈ SF1 (A) is called
a 1-type over A.

(iii) A set Σ(X) of L(A)-formula with one variable, say, x, is called a partial
1-type over A. We write Σ(F ) for the set {w ∈ F | ∀φ ∈ ΣF |= φ(w)}.

Convention 3.6 We identify a 1-type p over A with the partial 1-type

{φ(x; ā) | φ(F ; ā) ∈ p, ā ∈ A}

over A. In fact, this is closer to how types are usually defined in classical model
theory and is what types are in [17]. Likewise, we write [φ] for the clopen set
[X] in a Stone space of 1-types if φ defines X.

Given a partial type Σ(x), the intersection
⋂
φ∈Σ[φ] is a closed set in the

Stone space of 1-types.

Definition 3.7
(i) A partial 1-type Σ(x) over A is deductively closed if [φ] ⊆

⋂
φ∈Σ[φ] =⇒

φ ∈ Σ.
(ii) For a deductively closed partial 1-type Σ(x), we write EΣ for the closed set

{p | p ⊇ Σ} =
⋂
φ∈Σ

[φ].

Proposition 3.8 Let w ∈ F and A ⊆ F . The family tpF (w/A) of A-definable
subsets of F containing w is an ultrafilter in Def(F/A) and thus a 1-type over
A. 2

Definition 3.9
(i) LetA ⊆ F . An element w ∈ F realizes p ∈ SF1 (A), or w |= p, if tpF (w/A) =

p. The 1-type p is realized in F if there is w ∈ F with w |= p.
(ii) The L-structure F is ℵ0-saturated if for every finite A ⊆ F , every p ∈ SF1 (A)

is realized in F .

Definition 3.10 [[3,17]] Let L be a language of coalgebraic predicate logic
based on L0 and (Fi)i∈I be a family of monotonic L-structures. Suppose that D
is an ultrafilter over I. Let

∏
D Fi be the ultraproduct of (Fi)i as L0-structures

modulo D. A subset A ⊆
∏
D Fi is induced if for D-almost all i there exists a
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set Ai ⊆ Fi such that

a ∈ A ⇐⇒ a(i) ∈ Ai for all i for which Ai is defined.

A quasi-ultraproduct of (Fi)i modulo D is a monotonic L-structure that is the
L0-structure

∏
D Fi equipped with a neighborhood function N that satisfies

A ∈ N(w) ⇐⇒ Ai ∈ N i(w(i)) for all i for which Ai is defined,

whenever w ∈
∏
D Fi, A is induced, and Ai are defined as above. A class K of

monotonic neighborhood frames admits quasi-ultraproducts if whenever (Fi)i is
a family of neighborhood frames from K, a quasi-ultraproduct of (Fi)i exists in
K.

Proposition? 3.11 ([17,3])
(i) Each class of the classes in Table 1 admits quasi-ultraproducts.
(ii) Let (Fi)i∈I be as in the definition above. If Fi satisfies T for all i ∈ I, so

does a quasi-ultraproduct of (Fi)i.
Remark 3.12 Since the class of filter frames is CPL-elementary relative to
the class of quasi-filter frames (see Definition 4.1), and the class of augmented
filter frames is CPL-elementary relative to the class of augmented quasi-filter
frames, it suffices to prove the claim for the classes of monotonic, quasi-filter,
and augmented quasi-filter neighborhood frames, respectively. This is also true
of the main result (Theorem 4.7).

3.2 Model theory specific to neighborhood frames
In this section, we study the model theory of neighborhood frames while we
relate it to the classical model theory.
Definition 3.13 Let L be a language of coalgebraic predicate logic based on
L0, F be an L-structure. The essential part F e of F is the L-structure whose
reduct to L0 is the same as that of F and whose neighborhood function N e is
defined by

U ∈ N e(w) ⇐⇒ U is definable in F and U ∈ NF (w)

for w ∈ F e.
Proposition 3.14 ([3]) Let L be a language of coalgebraic predicate logic and
F,G be L-structures. Suppose F e ∼= Ge.
(i) F ≡L G.
(ii) If F is ℵ0-saturated, so is G. 2

Definition 3.15 Let L0 be a language of first-order logic and L be the coal-
gebraic predicate logic based on L0. We define the language L2 to be the
two-sorted first-order language whose sorts are the state sort and neighborhood
sort and whose nonlogical symbols are those in L0, recast as symbols for the
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state sort and the relation symbols xNU and x ∈ U , where x and U are vari-
ables for the state sort and the neighborhood sort, respectively. (In general, we
will use lowercase variables for the state sort and uppercase variables for the
neighborhood sort.)

Definition 3.16 Let L be a language of coalgebraic predicate logic and F be
an L-structure. Given a family S ⊆P(F ) that contains all definable subsets of
F , we can identify F with the following L2-structure F ′. The domain of the
state sort of F ′ is that of F , and the domain of the neighborhood sort of F ′
is S. The L2-structure F ′ interprets all nonlogical symbols of L2 but N and
∈ in the same way as F . Finally, we have (w,U) ∈ NF ′ ⇐⇒ U ∈ NF (w)
and (w,U) ∈ ∈F ′ ⇐⇒ w ∈ U . A family S is large for F if U ∈ S whenever
there is w ∈ F with U ∈ NF (w). We write (F,S) for F ′ and sometimes F for
(F,P(F )).

Proposition 3.17 ([3]) Let L be a language of coalgebraic predicate logic. Let
(−)2 : L→ L2 be the translation that commutes with Boolean combinations and
satisfies

(∃xφ)2 = ∃x(φ2)
(x2y φ)2 = ∃U [∀y(y ∈ U ↔ φ2(y)) ∧ xNU ].

Let S ⊆P(F ) be a family that contains all definable subsets of F . Then for
every L-formula φ and ā ∈ F we have

F |= φ(ā) ⇐⇒ (F,S) |= φ2(ā).

2

Remark 3.18 There is a third language for neighborhood frames used before
as a model correspondence language [16,24] in regards to neighborhood and
topological semantics of modal logic and to study model theory of topological
spaces [8] in general. This is also a fragment of the two-sorted language
introduced above. Coalgebraic modal logic, in fact, embeds into the third
language.

Lemma? 3.19 Let L be a language of coalgebraic predicate logic and F be an
L-structure. Let G be an L2-structure that is an elementary extension of F as
an L2-structure. There exists an L-structure G′ whose domain is that of the
state sort of G and a family S ⊆P(G′) that satisfies the following:
(i) S contains all definable subsets in G′.
(ii) S is large for G′.
(iii) G ∼= (G′,S).

Proposition? 3.20 Let L be a language of coalgebraic predicate logic and F
be an L-structure. There exists an L-structure G ≡L F that is ℵ0-saturated.
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4 Canonicity
In this section we prove the main result. Our proof is an adaptation of that of
the classical counterpart as presented in [2]. We do a case analysis, with the
most interesting case treated in Lemma 4.3, which is a step analogous to [25,
8.9 Theorem]. There we follow the classical proof, by taking an expansion L of
the correspondence language so that every subset of the given frame F will be
definable and taking an ℵ0-saturated extension in that language. However, we
need to add more neighborhoods to the neighborhood frame G that is being
constructed to make sure that the map from G to the ultrafilter frame of F
is a bounded morphism. Much of the proof is dedicated to show that this
construction preserves elementary equivalence in L.

Throughout the section, let L= be the language of coalgebraic predicate
logic based on the empty language of first-order logic.
Definition 4.1 Let K0 be a class of monotonic neighborhood frames. A class
K of monotonic neighborhood frames is CPL-elementary relative to K0 if there
is an L=-theory T with

K = {F ∈ K0 | F |= T}.

Lemma? 4.2 Let F , G, and G′ be as in Lemma 3.19.
(i) If F is monotonic, X,Y ⊆ G′ are definable, X ⊆ Y , and X ∈ NG′(w) for

w ∈ G′, then Y ∈ NG′(w).
(ii) If F is a augmented filter frame, then for every w ∈ G′ either NG′(w) is

empty or has a minimum element.
We are now ready to prove the key lemma used in the proof of our main

result.
Lemma 4.3 Let F be a monotonic neighborhood frame. There exists G ≡L= F
such that there is a surjective bounded morphism f : G� ueF . Moreover, if K0
is either the class of monotonic neighborhood frames or the class of quasi-filter
neighborhood frames, and F ∈ K0, then we can take G ∈ K0.
Proof. Let L be the language of coalgebraic predicate logic based on {PS |
S ⊆ F}, the unary predicates for the subsets of F . The neighborhood frame F
can be made into an L-structure naturally. Let G0 �L2 F be an ℵ0-saturated
L2-structure. By Lemma 3.19, we may assume without loss of generality that
the domain of the neighborhood sort of G0 is contained in the powerset of that
of the state sort. Let G1 be the L2-structure obtained by restricting G0 to
the subsets of (the state sort of) G0 definable with parameters from (the state
sort of) G0 in L. Let G2 be the L-structure obtained from G1 as follows: for
each state w ∈ G1, add as a neighborhood of w the set Σ(G1), where Σ(x) is
a partial type over a finite set A ⊆ G1 such that Σ(x) is deductively closed
and that for every φ ∈ Σ we have φ(G1) ∈ NG1(w) (we call such a partial
type good at w). Let G be the L-structure obtained from G2 by closing off
the value of the neighborhood functions at each w ∈ G2 by supersets, i.e.,
U ∈ NG(w) ⇐⇒ ∃U0 ⊆ U U0 ∈ NG2(w).
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We show that G ≡L F . By Proposition 3.14, it suffices to see that for every
definable X ⊆ G we have X ∈ NG(w) ⇐⇒ X ∈ NG1(w). We show =⇒
(the other direction is easy). By construction, there is either a definable set
Y ⊆ X with Y ∈ NG1(w) or a partial type Σ(x) over a finite set A good at w
with Σ(G1) ⊆ X. The former is a special case of the latter, so we assume the
latter. Let A′ be a finite set containing the parameters used in the definition
of X and A. Let f ′ : G1 � SG1

1 (A′) be defined by f ′(w) = tpG1(w/ā). By
ℵ0-saturation, f ′ is a surjection. We show that f ′(Σ(G1)) = EΣ ⊆ SG1

1 (ā). It
is easy to show that f ′(Σ(G1)) ⊆ EΣ; we show f ′(Σ(G1)) ⊇ EΣ. Let p ∈ EΣ
be arbitrary. By ℵ0-saturation, take w ∈ G1 with f ′(w) = p. Since p ⊇ Σ,
w ∈ Σ(G1). That f ′(X) = [X] can be easily shown as well. We have EΣ ⊆ [X].
By the compactness of SG1

1 (A′), we have a finite Σ0 ⊆ Σ for which EΣ0 ⊆ [X].
Being the intersection of finitely many clopen sets,

EΣ0 =
⋂
φ∈Σ0

[φ] =
[∧

Σ0

]
is clopen. Since Σ is good at w, we have (

∧
Σ0)(G1) ∈ NG1(w). We conclude

that X ∈ NG1(w) by Lemma 3.19 (i). 4

Since F+ ∼= Def(F/∅), we have ueF ∼= S1(T ). We show f : G � S1(T )
defined by f(w) = tpG(w/∅), which is surjective by ℵ0-saturation, is a bounded
morphism. In the rest of the proof, we write Nσ for the neighborhood function
of S1(T ).
The “forth” condition
Suppose that U ∈ NG(w). We show that f(U) ∈ Nσ(tpG(w)). By construction,
we have either (I) U ⊇ φ(G, ā) ∈ NG(w) or (II) U ⊇ Σ(G) ∈ NG(w), where
φ(x, ȳ) is an L-formula, ā ∈ G, and Σ(x) is a partial type over a finite set A
good at w.

For (I), assume that U ⊇ φ(G, ā) ∈ NG(w). Let

K = {q ∈ S1(T ) | (∃q′ ∈ SG1 (ā))φ(x, ā) ∈ q′}.

Being the image of a clopen set under the restriction map SG1 (ā) � S1(T ),
which is continuous and thus closed, K is a closed set. Note that 2χ ∈ f(w) =
tpG(w/∅) if and only if χ(G) ∈ NG(w). It suffices to show (i) that for every
χ(x) ∈ L we have [χ] ⊇ K =⇒ χ(G) ∈ NG(w) and (ii) that K ⊆ U ′. For
(i), assume that [χ] ⊇ K. For arbitrary v ∈ φ(G, ā), since tpG(v/ā′) contains
φ(x, ā), tpG(v/∅) is in K and thus contains χ(x). Hence, χ(G) ⊇ φ(G, ā), and
by monotonicity χ(G) ∈ NG(w). For (ii), let q ∈ K be arbitrary. It suffices

4 We can replace the topological argument by the following, even though we have not
defined the concepts used there. Suppose X is definable by ψ(x; ā) where ψ ∈ L and ā ∈ G.
By ℵ0-saturation of G1, we have ThL(ā)G1 ∪ Σ(x) |= ψ(x, ā) (otherwise, realize the type
Σ(x) ∪ {¬ψ(x, ā)} by some element in G1, which would be in Σ(G1) \X.) By compactness,
there is finite Σ0 ⊆ Σ such that Σ0(G1) ⊆ ψ(G1, ā). Since

∧
Σ0(x) is a single formula of L,

by deductive closure
∧

Σ0(x) ∈ Σ(x). Hence
∧

Σ0(G1) ∈ NG1 (w). By Lemma 3.19(i), we
have X = ψ(G1, ā) ∈ NG1 (w) as desired.
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to show that q is realized by some v ∈ U . By the definition of K, there exists
q′ ∈ SG1 (ā) that extends q with φ(x, ā) ∈ q′. By ℵ0-saturation, there is some
v ∈ G that realizes q′; since φ(x, ā) ∈ q′, we have v ∈ φ(G, ā) ⊆ U .

For (II), assume that U ⊇ Σ(G) ∈ NG(w), where Σ is a partial 1-type
over finite A good at w. We would like to show (i) and (ii) from above for
K = r(EΣ), where r : SG1 (A)→ S1(T ) is the closed continuous map dual to the
embedding Def(G/∅) ↪→ Def(G/A). For (i), assume that [χ] ⊇ r(EΣ), where
[χ] denotes a subset in SG1 (A). This implies that [χ] ⊇ EΣ, where [χ] denotes a
subset in S1(T ). By deductive closure χ ∈ Σ. By construction, χ(G) ∈ NG(w).
For (ii), it suffices to show that arbitrary q ∈ EΣ can be realized by an element
of U . Since q is a type over a finite set, by saturation, we may take v |= q; this
means v |= Σ, i.e., v ∈ Σ(G) ⊆ U .
The “back” condition.
Suppose that U ′ ⊆ S1(T ) is in Nσ(tpG(w/∅)). We show that there is U ⊆ G in
NG(w) such that f(U) ⊆ U ′. By the definition of Nσ, there is a partial type
Σ(x) over ∅ good at w such that EΣ ⊆ U ′. By construction, Σ(G) ∈ NG(w).
Let U := Σ(G). Then for every v ∈ U , the type tpG(w/∅) extends Σ and thus
is in EΣ ⊆ U ′.
Closure in relatively CPL-elementary classes.
By construction, G is monotonic.

Suppose that F is a quasi-filter neighborhood frame. Let w ∈ G and
U,U ′ ∈ NG(w) be arbitrary. By construction, there are deductively closed
partial types Σ(x),Σ′(x) over a finite set of parameters both of which are good
at w with Σ(G) ⊆ U and Σ′(G) ⊆ U ′. The partial type Σ ∪ Σ′ is also over
a finite set, good at w. Moreover, Σ ∪ Σ′ is deductively closed since F is a
quasi-filter frame. Therefore, we have (Σ ∪Σ′)(G) = Σ(G) ∩Σ(G) ⊆ U ∩U ′, so
U ∩ U ′ ∈ NG(w). We have seen that G is a quasi-filter neighborhood frame.2

Remark 4.4 In the proof above, we obtain G not only by compactness but also
by altering the neighborhoods in an ad-hoc way while maintaining elementary
equivalence in L=. There is no reason for us to believe that the G has the same
theory as F in L=

2 or in the language described in Remark 3.18. This is why
we find it difficult to extend our main result to the more expressive languages.

Lemma? 4.5 Let F be an augmented quasi-filter neighborhood frame. There
exist an augmented quasi-filter neighborhood frame G ≡L=2 F and a surjective
bounded morphism f : G� ueF .

Lemma? 4.6 Let K be a class CPL-elementary relative to any of the classes
in Table 1. Let S ⊇ K+ be the least class of BAMs closed under subalgebras.
(i) S is closed under canonical extensions.
(ii) S is closed under ultraproducts.

Theorem 4.7 Let K be a class CPL-elementary relative to any of the classes
in Table 1. The variety of BAMs generated by K+ is canonical.
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Proof. Recall Remark 3.12. Gehrke and Harding [9] showed that if S is a class
of BAMs closed under ultraproducts and canonical extensions, then S generates
a canonical variety. Apply this result for the class S in Lemma 4.6 to conclude
that the variety generated by K+, which is identical to the variety generated by
S, is canonical. 2

Note that Fine’s original theorem follows as a special case concerning the
classes of augmented neighborhood frames.

Example 4.8 Consider the B axiom p→ 2¬2¬p, which we considered earlier
in this article. Recall that it defined a CPL-elementary class relative to the
class of monotonic neighborhood frames. By [14, Proposition 6.5], the variety V
defined by the B axiom is canonical and hence generated by K+. The canonicity
of V is explained by the CPL-elementarity of K.

Example 4.9 Consider the 4 axiom 2p → p, which we considered earlier in
this article. Recall that it defined a CPL-elementary class relative to the class
of augmented quasi-filter neighborhood frames. The usual argument [2] shows
that the variety V of BAMs defined by the 4 axiom is canonical and hence
generated by K+. The canonicity of V is explained by the CPL-elementarity of
K.

5 Conclusion
We proved an analogue of Fine’s canonicity theorem relative to the classes in
Table 1 of monotonic neighborhood frames. Our version of the theorem deals
with a generalized notion of elementarity of classes of monotonic neighborhood
frames, which is elementarity in coalgebraic predicate logic.

As we mentioned in Remarks 3.18 and 4.4, one could attempt to use a
different notion of elementarity in stating and proving an analogue of Fine’s
theorem, but we stuck to coalgebraic predicate logic due to the limitation of
the proof technique we used. A natural question to ask here would be whether
there is a more expressive first-order-like logic that admits an analogue of Fine’s
theorem possibly by a different kind of proof. Another question would be to
characterize classes of monotonic neighborhood frames that admit analogues of
Fine’s theorem in the same sense as in the main result of this article.
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Appendix
Proposition? 3.4 Assume F ′ |= T . Then Def(F/∅) and Def(F ′/∅) are iso-
morphic as BAMs.
Proof. It is easy to see that they are isomorphic as Boolean algebras. Indeed,
the inclusion of a definable set in another is a CPL-elementary property (it is
the universal closure of the implication from the definition of the first set to
that of the other). Likewise, the two algebras are isomorphic also as BAMs
because the value of the operation at a definable set being another is also CPL-
elementary, which can easily be seen by using the operation 2 for L-formulas
in Definition 3.3. 2

Proposition? 3.11 ([17,3])
(i) Each class of the classes in Table 1 admits quasi-ultraproducts.
(ii) Let (Fi)i∈I be as in the definition above. If Fi satisfies T for all i ∈ I, so

does a quasi-ultraproduct of (Fi)i.
Proof.
(i) This can be proved by using the machinery introduced in Litak et al. [17],

but it is easy to prove it in the following elementary way.
Let K0 be either the class of monotonic neighborhood frames or the class

of quasi-filter neighborhood frames. Let (Fi)i be a family of neighborhood
frames in K0. Let Ni be the neighborhood function of Fi. Define the
neighborhood function N on

∏
D Fi as follows: A subset U ⊆

∏
D Fi is in

N(w) if and only if there is an induced set A ⊆
∏
D Fi with Ai ∈ N i(wi)

for all i for which Ai is defined. It is easy to see that this indeed defines
a quasi-ultraproduct and that if each Fi is in K0 then so is the quasi-
ultraproduct.
Let K0 be the class of augmented quasi-filter frames. Each Fi can be

thought of as a first-order structure in the language L0 ∪ {R,P}, where R
and P are binary and unary predicate symbols, respectively,

PFi = {w ∈ Fi | NFi(w) 6= ∅},

and
RFi = {(w,w′) ∈ Fi2 | w ∈ PFi and w′ ∈ minNFi(w)},

where min is with respect to ⊆. Take the ultraproduct
∏
D Fi as an

L0 ∪ {R,P}-structure. Consider this as an L-structure by definining its
neighborhood function N by

U ∈ N(w) ⇐⇒ w ∈ P

(∏
D

Fi

)
and U ⊇ R

(
w,
∏
D

Fi

)
.

It is easy to see that this is a quasi-ultraproduct and that it is an augmented
quasi-filter neighborhood frame.

(ii) The usual argument by induction works; see Litak et al. [17].
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2

Lemma? 3.19 Let L be a language of coalgebraic predicate logic and F be an
L-structure. Let G be an L2-structure that is an elementary extension of F as
an L2-structure. There exists an L-structure G′ whose domain is that of the
state sort of G and a family S ⊆P(G′) that satisfies the following:
(i) S contains all definable subsets in G′.
(ii) S is large for G′.
(iii) G ∼= (G′,S).
Proof. Note that F satisfies extensionality:

F |= ∀U ∀V [∀x(x ∈ U ↔ x ∈ V )→ U = V ].

By CPL-elementarity, so does G. Let G′, SG be the domain of the state sort
and the neighborhood sort of G, respectively. Let i : SG →P(G′) be defined
by

i(U) = {w ∈ G′ | G |= w ∈ U}.

By the extensionality of G, i is injective. Let S be the range of i. Define the
neighborhood function NG′ by

U ∈ NG′
(w) ⇐⇒ G |= wNU.

Let φ(x; ȳ) be an L-formula and X := φ(G′, ā) be a definable set in G′,
where ā ∈ G′. Note that the L2-structure F satisfies comprehension:

F |= ∀ȳ ∃U ∀x(φ(x; ȳ)↔ x ∈ U).

So does G. Let U witness the satisfaction by G of the existential formula
∃U ∀x(φ(x; ā)↔ x ∈ U). It can easily be seen that i(U) = φ(G′, ā).

It is easy to see that S is large for G′ and that G ∼= (G′,S). 2

Proposition? 3.20 Let L be a language of coalgebraic predicate logic and F
be an L-structure. There exists an L-structure G ≡L F that is ℵ0-saturated.
Proof. Consider the L2-structure F = (F,P(F )), and take an elementary
extension G0 of F . By Lemma 3.19(iii), take an L-structure G and S ⊆P(G)
with G0 ∼= (G,S). Suppose that A ⊆ G is finite. Let p ∈ SG1 (A) be arbitrary.
We show that p is realized in G. There is a surjective continuous map π from
the Stone space in L2 onto that in L. Let p2 ∈ π−1(p). By the ℵ0-saturation of
G0, we can take w ∈ G0 realizing p2. By Proposition 3.17, we have w |= p. 2

Lemma? 4.2 Let F , G, and G′ be as in Lemma 3.19.
(i) If F is monotonic, X,Y ⊆ G′ are definable, X ⊆ Y , and X ∈ NG′(w) for

w ∈ G′, then Y ∈ NG′(w).
(ii) If F is a augmented filter frame, then for every w ∈ G′ either NG′(w) is

empty or has a minimum element.
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Proof. For (i), let L(G′)-formulas φ(x; ā) and ψ(x; b̄) define X and Y , respec-
tively. Since F is monotonic, we have

F |= ∀ȳ ∀z̄ ∀v[ ∀x(φ(x; ȳ)→ ψ(x; z̄))
∧ v2x φ(x; ȳ)→ v2x ψ(x; z̄)],

where F is seen as an L-structure. Since F as an L2-structure satisfies the (−)2-
translation of the right-hand side of the displayed formula by Proposition 3.17,
so does G. Again by Proposition 3.17,

G′ |= ∀x(φ(x; ā)→ ψ(x; b̄)) ∧ w2x φ(x; ā)→ w2x ψ(x; b̄).

By assumption, we have ψ(G′, ȳ) ∈ NG′(w).
For (ii), first observe that the L2-structure F satisfies the sentence

∀x[¬∃U xNU ∨ ∃U0 ∀U(xNU → U0 ⊆ U)],

where ⊆ is an abbreviation of the obvious L2-formula. Since G′ satisfies the
same L2-formula, the claim follows. 2

Lemma? 4.5 Let F be an augmented quasi-filter neighborhood frame. There
exist an augmented quasi-filter neighborhood frame G ≡L=2 F and a surjective
bounded morphism f : G� ueF .
Proof. Expand the language as before to obtain the two-sorted language L.
Take a 2-saturated G �L F . We show that f = tpG : G� S1(T ) is a bounded
morphism, where T = ThL(F ).

Let Σ be the partial type {φ | 2φ ∈ tpG(w)} over ∅. We show that EΣ is the
minimum element of Nσ(w). First, we show EΣ ∈ Nσ(w). Suppose that for a
formula χ we have [χ] ⊇ EΣ. Since F is an augmented quasi-filter neighborhood
frame, and Σ is the set of (the definitions of) definable sets in F including
the minimum set of NF (w), the partial type Σ is deductively closed. Thus
χ ∈ Σ, and 2χ ∈ tpG(w). Hence, EΣ ∈ Nσ(tpG(w)). Secondly, we show that if
U ( EΣ, then U 6∈ Nσ(tpG(w)). Consider an arbitrary closed set included in
U ; without loss of generality we may assume that the closed set is of the form
EΣ′ for some deductively closed Σ′. By the proper inclusion, Σ′ ) Σ. Take
χ ∈ Σ′ \ Σ; then [χ] ⊇ EΣ′ and 2χ 6∈ tpG(w). Hence, U 6∈ Nσ(tpG(w)).

We show that f−1(U ′) ∈ NG(w) ⇐⇒ U ′ ∈ Nσ(tpG(w)), where Nσ is the
neighborhood function of S1(T ). Since G and S1(T ) are augmented quasi-filter
neighborhood frames, if w and tpG(w) are impossible, then there are {w}-
and {tpG(w)}- definable sets which are the minimum elements of NG(w) and
Nσ(tpG(w)), respectively. We write RG[w] and Rσ[tpG(w)] for these sets. They
are defined by (the 2-translation of) the (same) formula

¬a2z z 6= x,

where the parameter a is either w or tpG(w). It suffices to show that

w is possible and f−1(U ′) ⊇ RG[w]
⇐⇒ tpG(w) is possible and U ′ ⊇ Rσ[tpG(w)].
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By the definition of Nσ,

tpG(w) is impossible ⇐⇒ G 6|= (2χ)(w) for every L-formula χ
⇐⇒ w is impossible.

Hence, we may assume that both w and tpG(w) are possible. It suffices to show

Rσ[f(w)] ⊆ f(RG[w]), (back)
Rσ[f(w)] ⊇ f(RG[w]). (forth)

The (forth) condition is clear. We show the (back) condition. Suppose that
q ∈ Rσ[tpG(w)] for q ∈ S1(T ). Consider the partial type Σ(x) = q(x)∪{R(w, x)}
over {w}, where R(w, x) is the definition of RG[w]. This is finitely satisfiable.
Indeed, consider the finite partial type {φ1, . . . , φn} ∪ {R(w, x)} where φi ∈ q.
Note that

∧
i φi ∈ q. Since q ∈ Rσ[tpG(w)], we must have (¬2¬

∧
i φi) ∈

tpG(w), i.e., RG[w]∩ (
∧
i φi) (G) 6= ∅. Any element in this nonempty set realizes

the finite partial type. We have shown Σ(x) is satisfiable; we may take v |= Σ(x)
by 2-saturation. We have v ∈ RG[w] as desired. 2

Lemma? 4.6 Let K be a class CPL-elementary relative to any of the classes
in Table 1. Let S ⊇ K+ be the least class of BAMs closed under subalgebras.
(i) S is closed under canonical extensions.
(ii) S is closed under ultraproducts.

Proof.
(i) Let A ∈ S. For some F ∈ K we have A ↪→ F+. By duality theory [9,

Theorem 5.4], we have Aσ ↪→ (F+)σ. By Lemma 4.3, there is G ∈ K with
(F+)σ ↪→ G+. Thus, we have Aσ ∈ S by definition.

(ii) It suffices to do the following: given an ultraproduct
∏
D F

+
i where I is an

index set, D is an ultrafilter over I, and (Fi)i is a family of neighborhood
frames in K, we show that the ultraproduct embeds into (

∏
D Fi)

+, where∏
D Fi is a quasi-ultraproduct of (Fi)i modulo D. In fact, we show that

ι :
∏
D F

+
i → (

∏
D Fi)

+ defined by

s ∈ ι(a) ⇐⇒ s(i) ∈ a(i) for D-almost all i,

where s ∈
∏
D Fi and a ∈

∏
D F

+
i is a BAM embedding (we do not write

equivalence classes modulo D explicitly; it is easy to see that ι is well-
defined). It can easily be seen that ι is a Boolean algebra embedding. We
show that ι ◦ 2pu = 2cm ◦ ι, where 2pu and 2cm are the operations of
the domain and the target of ι, respectively. Let N be the neighborhood
function of the quasi-ultraproduct. We write 2i and N i for the operation
of F+

i . Note that for all a the set ι(a) is an induced subset of the quasi-
ultraproduct; if we let πi(A) be the projection of an induced subset A
of the quasi-ultraproduct onto the coordinate i, then πi(ι(a)) = a(i) for
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D-almost all i. We now have

s ∈ (ι ◦2pu)(a) ⇐⇒ s(i) ∈ (2pu(a))(i) for D-almost all i
⇐⇒ s(i) ∈ 2i(a(i)) for D-almost all i (*)
⇐⇒ s(i) ∈ 2i(πi(ι(a))) for D-almost all i
⇐⇒ ι(a) ∈ N i(s(i)) for D-almost all i
⇐⇒ ι(a) ∈ N(s)
⇐⇒ s ∈ (2cm ◦ i)(a),

where we have the equivalence (*) since (2pu(a))(i) = 2i(a(i)) forD-almost
all i.
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