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Modeling of anatomically accurate skeletal muscle models is still a challenging

area of research to date. In general, muscles have complex architectures with spatially

varying fiber orientations. Using the conventional Finite Element analysis, the generated

mesh needs to be conformed to the muscle geometry and material interfaces to obtain

accurate simulation models. Poorly built meshes can also lead to significant errors in
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analysis. To alleviate these issues and to provide effective transformation from im-

ages to simulation models, this work introduces the meshfree strong form Reproducing

Kernel Collocation Method (RKCM) in context of nonlinear hyperelasticity. Further,

Reduced Order Modeling (ROM) for nonlinear RKCM is developed to achieve simulta-

neous computational efficiency and controllable accuracy for large scale problems. The

proposed methods are applied for modeling of skeletal muscles.

A segmentation framework is first developed for three dimensional model con-

struction from Magnetic Resonance (MR) images using level set based technique, which

incorporates multiple materials and muscle fiber orientations specified from Diffusion

Tensor (DT) images. Further, a semi-automatic method of segmentation is proposed for

segmenting individual muscles from images. A strong form RKCM is proposed to allow

discretization of problem domain using MR and DT imaging data directly for effective

image-based modeling, and to avoid the issues associated with domain integration and

essential boundary imposition that typically exist in the Galerkin meshfree methods. In

this work, nonlinear solution procedures and algorithms for RKCM analysis of hypere-

lasticity problems is formulated. It is shown that RKCM for nonlinear analysis provides

more accurate results compared to Galerkin meshfree methods with quadratic bases us-

ing Gauss integration.

ROM for RKCM is further developed for nonlinear analysis, where a Least

Squares Galerkin projection is introduced to project the over-determined system onto

a discrete system with relatively lower dimension. For nonlinear analysis using RKCM,

the construction of the stiffness matrix and force vector in each iteration is relatively

less time consuming than that for Galerkin meshfree method using Gauss integration,

making it a robust method for nonlinear model reduction. Sufficient accuracy can be

achieved in the proposed method even by using only 1-2% of degrees of freedom of the

full model in skeletal muscle modeling.
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Chapter 1

Introduction

1.1 Motivation and scope

1.1.1 Image-based skeletal muscle modeling

The skeletal muscular system forms one of the major components of the human

body mainly responsible for movement. Skeletal muscles are composed of different ma-

terials like muscle, tendon, connective tissues, fat, etc. which form an inter-dependent

system to work together and perform different kinds of activities. Considerable efforts

have been made in the past few decades, related to the modeling of the skeletal muscles

represented by various suitable mechanical models, but development of mechanically

accurate and computationally effective models is still an open area of research.

Segmentation plays a very important role in transforming the in vivo morpholog-

ical data from images into structured information that can be used for physiological in-

vestigation or numerical simulation. The most commonly used images for segmentation

are the Magnetic Resonance (MR) images. However, automatically segmenting individ-

ual muscle components from MR images poses a difficult problem since identification

1



2

of interfaces between muscle components is challenging, as the boundaries between dif-

ferent muscles are not usually distinguishable. Traditionally knowledge based methods

are used to accomplish this segmentation. The first aim of this work is to develop a

semi-automatic method to segment the individual muscles of the human lower leg from

medical images, using the muscle fiber direction (obtained from Diffusion Tensor (DT)

images) as an additional input along with MR image for segmentation. The segmented

3D multi-component images of skeletal muscles are then used as input to the meshfree

modeling.

FEM has been successfully applied to modeling simplified models of the mus-

cles, but modeling of complicated 3D muscle geometries increases the complexity of

mesh generation for FE analysis. Poorly built meshes lead to mesh distortion and inac-

curate results. In 3D subject specific models, fiber direction is measured at each of the

muscle pixel points, which need to be interpolated at the integration points in FE model,

which introduces additional approximation errors in the FE analysis. In the present

work, image based modeling is introduced under the meshfree framework, which can

be formulated using the weak form based Reproducing Kernel Particle Method (RKPM)

and the strong form based Reproducing Kernel Collocation Method (RKCM), where the

pixel points from images are directly used as nodes for discretization in the meshfree

models. Under this meshfree framework, the muscle fiber directions and material prop-

erties are specified at the nodes, without additional interpolation. A smooth transition

between different materials in the muscle is obtained by interpolating the material prop-

erties using the Reproducing Kernel (RK) shape functions and this smooth transition

in material properties can be controlled by changing the support size of the RK ker-

nel. This is suitable for modeling bio-materials without sharp discontinuities at material

interfaces.
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1.1.2 Meshfree methods based on strong form collocation

Meshfree methods like RKPM based on the weak form Galerkin governing equa-

tions have been successfully applied to linear and nonlinear problems, but certain issues

like domain integration and imposition of essential boundary conditions remain com-

plex. These complexities can be greatly reduced by the strong form methods which

have been proposed for linear problems. The approximation functions used in strong

form methods include Radial Basis (RB) functions or Reproducing Kernel (RK) func-

tions, and the corresponding methods are called the Radial Basis Collocation Method

(RBCM) and Reproducing Kernel Collocation Method (RKCM), respectively. RBCM

gives highly accurate solutions with exponential rates of convergence, but the matri-

ces are very ill-conditioned due to the non-local character of the RB functions. This

makes RBCM limited to small scale simple geometry problems. On the other hand,

RKCM yields a well-conditioned system due to its local character, and it converges al-

gebraically. In this work, the RKCM framework is developed for nonlinear analysis

in the context of hyperelasticity. RKCM is particularly suitable for modeling complex

geometries like muscles, and the issues related to domain integration and imposition of

essential boundary conditions in RKPM can be alleviated. In this research, RKCM is

applied for image based modeling of skeletal muscles where the pixel points are cho-

sen as the source and collocation points, and muscle properties like fiber direction are

assigned at these pixel points.

1.1.3 Reduced order modeling of skeletal muscles

Reduced order models intend to significantly reduce discretization dimensions

while maintaining sufficient accuracy through effective projection operators. Proper

Orthogonal Decomposition (POD) is a popular technique to construct the projection op-
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erator. In POD method for model reduction, suitable snapshots of the full scale solution

are collected and used for construction of the bases for the reduced order model. For

linear dynamic analysis, POD modes are obtained by collecting solution snapshots at

different instances of time. In nonlinear static and dynamic problems snapshots can be

collected from the selected applied load or time steps. In general for nonlinear analysis,

the tangent stiffness matrix and residual force vector need to be constructed in every load

step and iteration. The reduced order method can be effective only if the time taken to

construct the tangent stiffness matrix and residual force vector is an insignificant portion

of the total CPU. For solving nonlinear problem using the weak form type method such

as RKPM where Gauss integration is used for domain integration, the tangent stiffness

matrix and residual force vector construction in each time step consumes significant

amount of time. Whereas in RKCM for nonlinear analysis, the time taken to construct

these matrices is relatively insignificant compared to the solver time, hence its solution

by reduced order modeling becomes more effective. In view of this, in this work, a Re-

duced Order Modeling (ROM) approach is proposed for strong form collocation method

based on a Least Squares Galerkin projection to project the over-determined system of

Gauss Newton incremental equations in RKCM. The proposed method provides an effi-

cient reduced order computational model for nonlinear analysis with sufficient accuracy.

This method has also been applied to static hyperelastic analysis of skeletal muscles to

demonstrate its effectiveness.

1.2 Objectives

The objectives of this research are to develop effective computational frame-

works to allow seamless transformation from images to simulation models and to pro-

vide efficient and accurate modeling of skeletal muscles. This is achieved by developing
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a meshfree strong form Reproducing Kernel Collocation Method in context of nonlinear

hyperelasticity where the simulation model can be constructed directly from MR and

DT image data without the tedious procedures in mesh generation, domain integration,

and imposition of essential boundary conditions. Further, a reduced order modeling

approach for nonlinear RKCM is developed to achieve simultaneous computational effi-

ciency and controllable accuracy for large scale modeling of skeletal muscles. The main

tasks of this dissertation can be outlined as follows:

• Model construction from medical images:

Each 2D MR image is segmented using active contours without edges method and

are stacked to form the 3D model. For incorporating multiple materials, different

stacks of images of the same model containing pre-segmented passive material

(fat, Intra-Muscular Connective Tissue (IMCT)) information are used. A multi-

phase multichannel framework based on the active contours without edges frame-

work is introduced using the fiber direction and MR intensity data in different

channels to segment different regions in an image. The segmented pixel points

associated with different muscle tissue materials as well as the DT image data at

each pixel point are used directly as the discrete model for meshfree modeling of

skeletal muscles.

• Image based modeling using the weak form based Reproducing Kernel Particle

Method (RKPM) and application to predict force decrease in aging muscles:

RKPM is first introduced for numerical simulation of skeletal muscles. The method

of stabilized conforming nodal integration is used for integrating the matrix equa-

tions and the penalty method is used to impose the essential boundary conditions.

The model consists of different materials and muscle fiber direction is input at

each pixel point. The RK shape function is used to represent material hetero-
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geneity with smooth transition across material interfaces. A study is performed

on young and old medial gastrocnemius muscles of the human lower leg to pre-

dict the muscle force production. It can be observed from MR images of young

and elderly people that there is considerable increase in passive materials (which

include fat and IMCT) in the aging muscle. From the parametric study, a dis-

proportionate decrease in force production is observed due to decrease in muscle

volume between young and old muscles, which clearly shows that both the total

volume of passive materials and their distributions contribute to the loss in force

generation in aging muscles.

• RKCM framework for nonlinear hyperelasticity and its application for skeletal

muscle modeling:

In conventional meshfree methods based on the weak form, background meshes

are required for the purpose of domain integration. Additionally, imposing es-

sential boundary conditions requires special treatment since the meshfree approx-

imation functions are usually not interpolating functions. This work introduces

the meshfree strong form Reproducing Kernel Collocation Method for solving

boundary value problems in context of nonlinear elasticity (hyperelasticity), and

is applied for modeling of skeletal muscles using image data. The method is

derived from least-squares form of nonlinear collocation equations followed by

Gauss Newton linearization. The method can be equivalently derived from the

minimization and linearization of Least Squares functional with quadrature. It

is also shown that linearization of nonlinear strong form equations results in the

Gauss Newton method of solving the least-squares form of nonlinear collocation

equations. For convergence of the nonlinear iterations, it is show that the norm

of the projection of the residual vector needs to be converging. The proposed
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method is applied for image based modeling of skeletal muscles, which shows its

effectiveness in modeling complex geometries.

• ROM for RKCM and its application for skeletal muscle modeling:

ROM for the strong form RKCM is proposed, where a Least Squares Galerkin

projection is used to project the over-determined system of equations onto a lower

dimensional space. The proposed ROM can be applied to both linear and nonlin-

ear problems. In nonlinear static analysis the method is applied to ROM of rubber

elasticity examples and skeletal muscle models. Considerable reduction in com-

putational time with marginal loss of accuracy in the ROM-RKCM modeling of

skeletal muscles can be achieved.

All medical images used in this work are obtained from Department of Radiol-

ogy, UCSD School of Medicine [1].

1.3 Outline of the dissertation

The remaining chapters of this dissertation are arranged as follows. In Chapter

2 literature review is given. In Chapter 3, a review of the image segmentation and bias

correction methods used in this work are given. The proposed medical image segmenta-

tion methods and image based modeling of skeletal muscles using the weak form based

RKPM are introduced in Chapter 4. Chapter 5 introduces the RKCM for nonlinear

analysis of hyperelastic materials and its application to numerical simulation of skeletal

muscles. Chapter 6 introduces the proposed model order reduction method based on

Least Squares Galerkin projection, for RKCM in linear and nonlinear analysis. Conclu-

sions and recommendations for future research are given in Chapter 7.



Chapter 2

Literature Review

2.1 Image segmentation methods and diffusion tensor

imaging

2.1.1 Level set based methods for image segmentation

One of the first and the most influential work on using Level set methods was

introduced by Osher and Sethian [2], which gives numerical solutions to solving prob-

lems associated with fronts moving with a curvature dependent speed, using level set

functions for curve evolution. The level set function is an implicit function which is one

dimension higher than the interface which is an evolving curve [3]. The motion of this

interface is governed by the evolution of the level set function. Due to its implicit nature,

the level set function can easily identify topological changes, like splitting and merging

of the interface, which makes its application in segmentation problems very efficient. In

the past few years a number of image segmentation methods have been developed based

on variational principles incorporating the level set function which evolves a closed con-

tour for detection of discontinuities in images. This evolving contour is called an ‘Active

8
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contour’.

Image segmentation based on active contours was first introduced by Kass et al.

[4]. The concept was to evolve a contour called Snake by minimizing an energy func-

tional which had terms involving internal energy which controls the smoothness of the

contour; and an edge detection term which is based on the gradient of the image and

forces the contour towards the edges. Later in the work of Caselles et al. [5], a geo-

metric active contour model was presented for detecting edges by curve evolution rather

than minimization of energy functional. Further Caselles et al. [6] used the geodesic

approach to find a connection between the Snakes model and the geometric active con-

tour model. Level set function was introduced into these curve evolution models, which

could efficiently track topological changes. The above methods can be categorized as

edge based methods and work precisely only in the presence of sharp edges in the im-

ages, that is the gradient of the image near the edges should be large. They may fail to

detect weak boundaries or segment images with intensity inhomogeneity.

To overcome the difficulty of edge based segmentation, Chan and Vese [7, 8]

proposed an active contour method without edges, famously called as the ‘Chan Vese’

model. This is a seminal work in the field of image segmentation and in the last decade

many extensions and variations of this method were developed based on this same un-

derlying concept. In this method the minimization of the Mumford-Shah functional [9]

with active contours in a level set framework is introduced. The stopping term is based

on the Mumford-Shah segmentation techniques, and the method can detect edges which

are not necessarily based on change in image gradient. Due to this reason this method

can be considered as a region based method, opposed to edge based methods. This

Active Contour Without Edges (ACWE) model was extended by Vese and Chan to a

generalized multiphase level set framework in [10] to segment images having multiple

connected regions. In this method multiple level set curves are used to segment multiple
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regions (or phases) and also triple junctions, without creating any overlap or vacuum

in the segmented image. The union of all the zero isocontours of the level set func-

tions represents the final boundaries of segmentation. Application of ACWE model to

vector-valued images has been proposed by Chan et al. [11]. In this method the fitting

term derived from the Mumford-Shah functional is averaged over all the channels of

the vector-valued image for segmentation. This model can detect edges in at least one

of the channels and not necessarily in all the channels. It can also detect edges even if

some features of the image are missing in one channel or if channels are complete but

are noisy.

Although the Chan-Vese model can efficiently segment images with piece-wise

constant or homogeneous intensities in different regions of the image, it may fail to seg-

ment images correctly in the presence of intensity inhomogeneity or weak and blurred

boundaries or to segment textures or patterns in the images. The region scalable fitting

energy model proposed by Li et al. [12] was successfully applied in the segmentation

of images in the presence of intensity inhomogeneity. This model takes into account a

region scalable fitting energy at each point in the domain that locally approximate the

image intensities on the two sides of the contour. This is an extension to the local binary

fitting energy model [13] where the scalability of the local kernel could be of any size.

Other methods for segmenting images with intensity inhomogeneity include local fitting

energy models [14] and combination of local and global energy models [15, 16].

The Active Contours Without Edges based models can efficiently handle most of

the image segmentation problems but are sometimes sensitive to initialization, since the

energy function that is minimized is non-convex and has local minima. A completely

convex formulation for the Chan-Vese segmentation model is proposed in [17].
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2.1.2 Bias correction in medical images

MRI’s are often corrupted by noise or intensity inhomogeneity due to the pres-

ence of non-uniform magnetic fields produced by the MRI machinery, radio frequency

transmission and reception inhomogeneity, bandwidth filtering of the data of the fre-

quencies transmitted by the RF coil and other patient specific disturbances such as dis-

tortions due to shape, position and orientation of the object inside the magnet, specific

magnetic permeability and dielectric properties of the imaged object. Patient specific

intensity inhomogeneity is more difficult to deal with. These artifacts may produce sig-

nificant errors in medical image analysis like segmentation, and can also effect clinical

interpretation. To overcome this to a certain extent shim coils are used in the MRI ma-

chine, but these do not eliminate inhomogeneity which is patient specific. Together this

inhomogeneity in medical images is often called as a ‘Bias field’ which is commonly

assumed to be a multiplicative field to the true image. A review of sources of intensity

inhomogeneity in MRI and the various methods used to estimate this bias field in medi-

cal images can be found in [18] and the references therein. In this work bias correction

of the MRI is done using the method proposed by Li et al. in [19], where the bias field is

assumed to be a multiplicative field and is estimated using a region scalable local Gaus-

sian kernel level set based formulation, similar to the region scalable method proposed

by Li et al. in [12].

2.1.3 Prior knowledge based methods for segmentation of skeletal

muscles

In the MRI of the human lower leg, the boundaries of different muscles are not

distinct and sometimes only sparse or partial. This makes the problem of segmenting

different muscles challenging as edges or boundaries are not distinguishable even visu-
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ally. To overcome this segmentation problem, the most popular method currently used

is to introduce prior knowledge into the segmentation process. This prior knowledge is

usually a pre-segmented image with labels for different regions of segmentation and is

called an Atlas image. The atlas image can be constructed in various ways, for exam-

ple it can be a single image, or they can be a set of manually segmented images from

experts, or a population based atlas (also called probabilistic atlas) and this atlas gives

the ground-truth segmentation. Based on this atlas image as prior knowledge, different

methods have been proposed for segmenting a new image, also called Target image or

Reference image. Usually the segmentation is carried out in two steps: First the atlas

image and the target image are spatially aligned and in this process, finding a suitable

transformation between the images is called ‘Registration’ [20]. Once the images are

registered, the segmented regions (labels) of the atlas image are propagated to the target

image. The error in segmentation is dependent on the atlas chosen and the registra-

tion procedure. If the anatomical differences between the atlas and the target image are

greater, the error in the registration step will be greater. A review of atlas-based segmen-

tation methods for magnetic resonance brain images is given in [21]. Limited amount of

literature is available which deals with segmentation of the skeletal muscles of the lower

limb. They are briefly described in the following paragraph.

In [22] Baudin et al. proposed an automatic method for segmenting the thigh

muscles using prior knowledge. Initial seeds for region based segmentation algorithm

were generated by a sampling process where the partial edges of the muscles and the

local variances were considered. The clustering of these seeds with respect to different

muscle classes in the thigh MRI was achieved by a registration step between segmented

atlas and the seeds in target image, using a Markov Random Field energy optimiza-

tion formulation by comparing certain similarities. The outcome of this optimization

process (clustered seeds) is fed to a segmentation algorithm (random walker) which
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gives the final segmented regions. Similar works by Baudin et al. include [23, 24]. In

[25, 26] Prescott et al. developed a semi-automatic method to segment the four quadri-

ceps muscles in the thigh. A template (atlas image) was selected by finding the similarity

between the normalized histograms of the target image and the template, by using the

Kullback-Leibler divergence, which gives a measure of similarity between two proba-

bility distributions. The contours of the template are registered on to the target image

semi-automatically. The segmentation is further refined using a multi-phase level set

method. Segmenting DTI data was attempted in [27] by Neji et al. based on a prior

knowledge based tensor clustering algorithm. They demonstrated the potential of DTI

to discriminate different muscle groups. The prior knowledge is introduced by a Support

Vector Machine (SVM) classifier which is trained to learn a certain number of diffusion

tensors of the different muscle groups. A Markov Random Field (MRF) formulation is

used for classifying the diffusion tensors, which takes into account the spatial informa-

tion of the tensors and the SVM results. Other related works include; wavelet driven

knowledge based segmentation of muscles [28, 29], segmentation and registration using

multi-resolution simplex meshes [30], probabilistic multi-shape segmentation methods

[31], segmentation using pose-invariant higher order graphs [32].

Although the prior knowledge based methods give reasonably good segmenta-

tion results with area overlaps ranging between 60%-90% for different muscles of the

lower limb, the segmentation results are highly dependent on the prior introduced and

the registration method used. Some of these methods require robust statistical shape

learning methods which require huge number of manually segmented images as prior.

Even after learning, there might still be considerable variability in the shape of the mus-

cle between different individuals which has to be dealt with during segmentation.
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2.1.4 Diffusion Tensor Imaging (DTI)

Water molecules in skeletal muscles move or diffuse mainly along the direction

of the muscle fibers, which is called the principal direction. This movement of water is

random translational motion (Brownian motion), which is due to thermal energy present

in the molecules. In Diffusion Tensor Imaging (DTI) [33], typically a 3×3 diffusion ten-

sor is obtained at each voxel (volumetric pixel) of the image which gives the diffusion

coefficient in each direction and correlation between these directions. This diffusion

tensor quantifies the random movement of water molecules in muscles (or tissues) and

gives a good measure of the diffusion anisotropy in the muscles. DTI gives us important

information regarding diffusion taking place (in vivo) at a microscopic scale, which is

well below the scale of the actual MR image resolution. To evaluate or compare the

diffusion properties at each voxel, commonly invariants of the diffusion tensor are com-

puted, such as Fractional anisotropy or Mean Diffusivity which is given by the trace of

the diffusion tensor. Currently diffusion tensor imaging is used widely to observe differ-

ences in various diseases and normal parts of brain, organs or muscles. Diffusion tensor

images can be used to compare changes in water diffusion due to injury, differences

due to exercise and other pathologies like myopathy (muscular diseases like muscle at-

rophy), Edema (elevation of water content in tissues), etc. and also to monitor disease

progression. Some of the applications of DTI include; study of brain architecture and

pathologies [34], fiber tracking in muscles [35, 36, 37, 38, 39], and segmentation using

DTI data [40, 41, 42, 43, 44, 45, 46].
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2.2 Meshfree methods

Meshfree methods are numerical solution procedures to approximate the solu-

tion to differential equations without the use of a mesh; compared to other numerical

methods like the Finite Element Method (FEM), which requires a mesh in the domain

or the finite difference methods which require a grid. In meshfree methods the domain

is discretized with a set of nodes or points and an approximation to the solution is con-

structed using these nodes.

2.2.1 Background

Smoothed particle hydrodynamics (SPH) [47, 48] was one of the first implemen-

tation of a meshfree method used for modeling problems in astrophysics like motion of

fluids in unbounded 3D space. In this method approximation to the solution is con-

structed using a set of particles and a kernel function. The kernel function provides

certain smoothing at each particle depending upon the kernel width, which defines the

locality of the kernel support. One of the major drawback of SPH is it exhibits tensile

instability which occurs in the form of clustering of nodes and creation of artificial voids

in regions subjected to large tension. Stability analysis for SPH was done by Swegle et

al. in [49]. Another drawback is the lack of consistency in the SPH method. Due to this,

treatment of boundary conditions becomes difficult and the accuracy of the SPH method

deteriorates at the boundaries. This can be improved by modifying the kernel to satisfy

consistency conditions.

Later Nayroles et al. [50] introduced the Diffuse Element Method (DEM) in

which the standard finite element shape functions in the FEM were replaced with mesh-

free shape functions constructed using the Moving Least Squares (MLS) methods [51].

They also showed the calculation of derivatives can be done simply by taking the deriva-
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tives of the basis functions. Further Belytschko et al. developed the Element Free

Galerkin Method (EFGM) [52] which were based on the same MLS approximation

but had improved accuracy over the DEM method, by taking exact derivatives which

were more accurate and by imposing the essential boundary conditions using Lagrange

multipliers as the meshfree shape functions did not obey Kronecker delta properties like

FEM shape functions. They also showed that EFGM gave good results for nearly incom-

pressible elasticity problems without introducing any additional constraints, compared

to the results given by FEM. To overcome the inconsistency of the SPH method, Liu et

al. [53] developed the Reproducing Kernel Particle Method (RKPM) where a correction

term was included in the kernel functions which enforced consistency conditions and

increased the accuracy of the method.

2.2.2 Reproducing Kernel Particle Method (RKPM) for large de-

formation analysis

The RKPM method was further extended by Chen et al. [54] for large deforma-

tion analysis of non-linear structures. In this work a Lagrangian material kernel was in-

troduced which covers the same set of particles during material deformation and avoids

tension instability due to large deformation. The RKPM shape functions were built

using this kernel. High solution accuracy was observed in hyperelastic, elasto-plastic

and also in nearly incompressible problems compared to solutions obtained using FEM.

The application of the RKPM formulation for rubber hyperelasticity, involving large

deformations, is presented in [55]. For nearly incompressible problems, in the limit of

incompressibility, usage of higher order quadrature rules for required domain integra-

tion accuracy in RKPM, leads to volumetric locking and pressure oscillation. A pressure

projection method was introduced by Chen et al. in [56] to elevate these problems. In
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this method, the pressure is locally projected onto a lower order space to reduce the

number of independent discrete constraint equations.

2.2.3 Domain integration

Domain integration poses a problem when the weak formulation of the govern-

ing equations is used for meshfree approximations of PDE solutions. In general for the

meshfree methods in the Galerkin framework, Moving Least Squares (MLS) or the Re-

producing Kernel (RK) shape functions are used. The RK shape functions are rational

functions and have overlapping supports. In the earlier literature, the Gauss integration

method [52, 57, 54] was used and later the node based methods [58, 59] were typically

used for integrating the weak form Galerkin equations.

In the Gauss integration method, a background integration mesh is required for

integrating the weak form matrices. The main source of error using gauss integration

in meshfree methods is due to the misalignment of shape function supports with the

integration cells which was first investigated in [60]. High order quadrature rules or low

quadrature with a high number of quadrature cells are required to obtain good accuracy

in numerical solutions [60, 59, 61]. Gauss integration is convergent and stable, but is

prohibitively expensive for large scale problems.

On the other hand, node based methods are much simpler and more efficient,

and maintain the true meshfree character for solving Galerkin equations, but it is well

known that these methods lead to poor accuracy and numerical instability due to under

integration [58, 62, 59]. The first derivatives of the shape functions are nearly zero at

the nodes for displacement modes of short wavelengths, resulting in spurious oscillatory

modes in the solution. Various methods have been proposed to alleviate the stability in

nodal integration. A least squares stabilization was proposed by Beissel et al. in [58]. A

stress point method was proposed in [63, 64] to alleviate the problem of tension instabil-
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ity in SPH, which is based on avoiding derivatives of the shape functions at the nodes.

A Stabilized Conforming Nodal Integration (SCNI) for Galerkin meshfree methods was

proposed by Chen et al. in [59], which has improved accuracy and stability over direct

nodal integration. In this method a strain smoothing approach is used which avoids tak-

ing derivatives at the nodes, and additionally, Galerkin linear exactness is satisfied, and

optimal convergence rates can be achieved for linear basis. SCNI has also been applied

to solving plate and shell problems in [65, 66, 67]. SCNI was further extended to solving

nonlinear problems in [68]. A generalization of linear exactness in Galerkin meshfree

methods to arbitrary order of exactness was proposed by Chen et al. in [61]. Here the re-

quirements in domain integration to achieve arbitrary order exactness are obtained, and

a method was proposed to satisfy these requirements using a Petrov-Galerkin approach.

For problems with material separation like fragment-impact, reconstruction of SCNI

representative nodal domains is extremely tedious and prohibitively expensive. For this

class of problems a Stabilized Non-Conforming Nodal Integration (SNNI) method was

proposed in [69], where this conforming condition is relaxed and suitable nodal do-

mains for integration are chosen for each node, which do not necessarily conform. The

smoothing based methods avoid taking direct derivatives of the shape functions at the

nodes, which diminishes the spurious oscillatory modes.

In more recent studies, it has been shown that SCNI generates near zero low en-

ergy modes which are predominant in problems where the boundary influence is small,

that is where the surface to volume ratio is small, or in problems with very fine dis-

cretization or with mesh refinement; due to loss of coercivity as detailed in [70]. Only

the small amount of energy from the boundary nodes, contribute to the nonzero values at

these near zero modes. A correction has been proposed to enhance the stability of SCNI

and SNNI in [71, 70] which results in the modified SCNI (MSCNI) and SNNI (MSNNI)

methods. Due to the addition of extra terms in the modified methods, there is consider-



19

able increase in CPU time for computation. An accelerated stabilized nodal integration

has been proposed by Hillman et al. in [72] which is based on Taylor expansion using

implicit gradients [73] of the meshfree RK shape functions.

In general for weak form based meshfree methods, integration is a very impor-

tant consideration which affects the stability, efficiency and accuracy of the Galerkin-

based meshfree method.

2.2.4 Imposition of essential boundary conditions

The meshfree approximation does not obey Kronecker delta properties like the

FEM interpolation which makes the imposition of essential boundary conditions (EBC)

difficult in Galerkin based meshfree methods. In the recent years many methods have

been developed to enforce the EBC in meshfree methods. A good overview of these

methods is given in [74]. Mainly, the Lagrange multiplier method was introduced in the

EFG method [52], where EBC are imposed using Lagrange multipliers which are addi-

tion unknowns to be solved for. The Transformation method was introduced by Chen et

al. in [54], where the meshfree shape functions are transformed to obey Kronecker delta

property enabling the straight forward imposition of EBC. Further the Mixed Transfor-

mation method and the Boundary Singular Kernel method were proposed by Chen et

al. in [75] for imposing EBC with more computational efficiency. The Penalty method

was proposed by Zhu and Atluri [76] where an additional penalty term is added to the

variational functional which enforces the EBC. A coupled finite element - element free

Galerkin method was proposed by Belytschko et al. [77] in which a coupled shape func-

tion using FEM and EFG interpolation was constructed with a ramping function in the

interface zone. By using this method FEM interpolation can be used for the essential

boundary points so that EBC can be directly imposed at these points, as FEM shape

functions obey Kronecker delta properties.
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Instead of using the weak form Galerkin meshfree method, the strong form col-

location methods [78, 79, 73] can also be used with a meshfree approximation, in which

EBC can be directly imposed by enforcing the residuals to be zero at the collocation

points on the essential boundary. This provides a very convenient way to directly im-

pose the EBC without the use of additional changes to the weak form or to the shape

functions to make them obey the Kronecker delta properties.

2.2.5 Strong form collocation methods for linear problems

In the strong form collocation methods, partial differential equations can be

solved directly using the strong form of the equations and associated boundary con-

ditions. One of the most popular method used is the Radial Basis Collocation Method

(RBCM) where the solution is approximated using Radial Basis (RB) functions and

more recently the Reproducing Kernel Collocation Method (RKCM) where the solution

is approximated using the Reproducing Kernel (RK) shape functions. In collocation

methods the domain is discretized using a set of source points, which are same as the

nodes for discretizing the domain, and the solution is approximated using these points.

Also a set of collocation points are chosen which are generally greater in number than

the source points. The approximated solution is substituted in the strong form of the

governing equations, and boundary conditions; and the residual is enforced to be zero at

the collocation points.

The multiquadric RB functions were first applied for interpolating scattered data

and for solving partial differential equations by Kansa et al. in [80, 81]. Usually the

partial derivatives of the radial basis functions can be evaluated very easily and it also

offers exponential convergence in numerical approximations. This has made the RB

functions very popular, but one of the major drawbacks of RBCM is that the system of

equations obtained is very ill-conditioned. Also standard RBCM gives larger solution
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errors near the boundaries. Error analysis was done by Hu et al. [78], to show the

unbalanced error between the domain, natural boundaries and the essential boundaries.

A weighted RBCM was proposed where appropriate weights are added to the boundary

condition equations to minimize this error. The weights should be properly chosen for a

given problem to enhance numerical accuracy and convergence of solution.

A point collocation method based on RK approximation was proposed in [82].

The RK shape functions provide compact support and the system of equations obtained

are well conditioned, but due to the RK approximation algebraic convergence is obtained

rather than exponential convergence as obtained from RBCM. The convergence and

computational complexity of RKCM was analyzed in [83], where the operation counts

of RKPM and RKCM were compared and also showed that RKCM gives the same rate

of convergence as RKPM. Error analysis for the RKCM method was given by Hu et al.

in [79]. It was derived that for the RKCM method to converge the degree of monomial

basis in the RK shape function should be greater than one. Further a reproducing kernel

enhanced local radial basis collocation method was proposed by Chen et al. in [84],

which combined the advantages of the RB and the RK shape functions by introducing a

modified approximation called localized RB function, where the locality was due to the

RK shape function. This method gave a better conditioned system and a convergence

rate greater than that of the RKCM.

The main disadvantage of using the RKCM can be due to the increase in compu-

tational complexity for calculating the second order derivatives of the RK shape func-

tions which are needed to approximate the strong form of the governing equations. A

gradient reproducing kernel particle method was proposed by Chi et al. in [73], where

the order of differentiation of the RK shape functions was reduced to first order and the

partial differential equation is still solved using strong form collocation method.

In this work the RKCM is extended to solve nonlinear hyperelasticity problems
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using the strong form of the governing equations in the Total Lagrangian framework.

2.3 Modeling of muscle tissues

The skeletal muscle is a complicated composite structure, which consists of dif-

ferent regions with different material components and forms a very efficient system to

carry out the task of locomotion in mammals. In the past few decades, modeling of

skeletal muscles has been a primary topic of investigation, as it provides a virtual frame-

work to predict and solve complicated muscular disorders by giving an insight into the

behavior of muscles under different conditions, for patient specific models which incor-

porate both material as well as geometrical data.

Skeletal muscles are typically modeled as nearly incompressible or fully incom-

pressible hyperelastic materials. The Finite Element (FE) method has been widely ap-

plied for the modeling of biological tissues and skeletal muscles in the past few decades

[85, 86, 87, 88, 89, 90]. FE method works accurately and provides good results for mod-

eling simplified muscle geometries like the lumped parameter model [91]. Although 2D

models provide insight into the working behavior of muscle mechanics, they fail to pro-

vide the true representation of the complex muscle architecture which may result in

inaccurate predictions of muscle properties like fiber length and resulting force-length

behavior [92]. Muscle geometries are complex in nature and representation of the ac-

tual geometry in modeling is essential to obtain accurate results. Despite its success,

FE analysis poses some problems in accurately modeling 3D muscle geometries, with

actual anatomical muscle fiber directions specified in the model. Usually 3D models

of muscles are constructed from medical images through segmentation of the objects to

be modeled. For FE modeling the geometries need to be meshed carefully using CAD

tools before running the numerical analysis. In this process, if complex topologies ex-
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ist in the muscle models, it leads to poorly built meshes which will provide inaccurate

results due to excessive mesh distortion. Moreover, the representation of the actual mus-

cle fiber direction by interpolation through templates in FE models introduces additional

interpolation error as described in [93]. If fiber direction is input from diffusion tensor

imaging data, it needs to be re-interpolated at the quadrature points which introduces

some approximation error into the model. In the present work numerical modeling of

skeletal muscles is carried out using the meshfree methods which eliminate issues re-

lated to loss in accuracy due to poor mesh construction and representation of the true

muscle fiber direction.

2.4 Reduced Order Modeling (ROM)

Numerical modeling for problems with a large number of degrees of freedom

is computationally very expensive and even if small changes are made in the model

parameters or loading conditions the entire simulation has to be re-run. Model order

reduction deals with constructing a reduced order model for a particular problem, which

has very less number of degrees of freedom and still captures the essential features of the

full scale model. In model order reduction a lower dimensional approximation of a full

model solution is obtained by projecting the full scale solution onto a lower dimensional

space. The various methods of reduction differ by taking in to account the choice of the

projection basis used. Reduced order modeling is popularly used for design optimization

problems or real time simulations. The procedure is carried out in two phases: on-line

and off-line phases. In the off-line phase the projection basis are calculated by running

full scale simulations as required. In the on-line phase the basis saved during the off-line

phase are utilized to generate approximate real time solutions for the problem at hand.
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2.4.1 ROM for nonlinear structural analysis

For nonlinear problems, the success of obtaining a good reduced solution de-

pends on selecting the correct choice of the reduced basis, which can accurately repro-

duce the nonlinear structural behavior at any instant of time. Additionally as mentioned

in [94]; the basis should be easy to generate, selection criteria for choosing number of

basis to use should be simple, basis should have good approximation properties and be

able to capture the solution for a large interval on the nonlinear solution path. Also, they

should fully characterize the nonlinear response of the structure at least locally. Many

methods for approximate solution of nonlinear mechanics were proposed in the 1970s

to 1990s, which focused on reducing the number of degrees of freedom, by choosing ap-

propriate basis or other formulations, such that the analysis is computationally less ex-

pensive. These methods worked efficiently for mild or moderately nonlinear problems.

One of the first applications of finding approximate solution to nonlinear dynamic prob-

lems was done in [95]. In this method the principle of mode superposition is extended

to nonlinear analysis. A local mode superposition technique is employed for solving

the nonlinear dynamics problem, which states that small harmonic motions may be su-

perimposed upon large static motion and that small forced motion maybe represented

in terms of the nonlinear tangent stiffness frequency spectrum. Here the incremental

motion in each time step is decomposed as a linear combination of a set of basis vectors

and modal coordinates. The basis vectors are given by the eigenvectors corresponding

to the lowest modes of the nonlinear tangent stiffness matrix at the beginning of the time

step. This procedure requires solving an eigenvalue problem in each time step. Also the

basis vectors need to be updated if the nonlinear behavior changes within a time step,

making it computationally expensive. To reduce the computational cost, Stricklin and

Haisler [96] proposed a pseudo-force approach where the nonlinearities in the problem
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are included as a pseudo-force vector and the tangent is based on the linear stiffness ma-

trix. This avoids construction of the nonlinear tangent stiffness matrix in every iteration

within a load step. The method is suitable for moderately nonlinear problems or prob-

lems with local nonlinearities [97]. The reduced basis technique was proposed by Noor

and Peters in [94] for nonlinear static response of structures. The method uses the finite

element discretization and then the Rayleigh-Ritz basis functions to reduce the number

of degrees of freedom. These basis functions are constructed using the static perturba-

tion technique [98, 99] and consist of the nonlinear solution and its various order path

derivatives. The reduced basis method works efficiently for the case of problems with

geometric nonlinearities but is difficult to extend for problems with material nonlinear-

ities. In [100], the use of reduced basis method was extended to nonlinear problems

with prescribed non-zero edge displacements and mixed finite element formulations. In

[101], Wilson et al. proposed a new set of orthogonal mass normalized Ritz vector ba-

sis for dynamic analysis of linear dynamic problems by direct superposition. The Ritz

vectors are generated using a recursive relationship and the first vector is obtained from

the solution of a static problem. This method does not require solving an eigenvalue

problem and also the basis generated account for the loading on the structure. Idelsohn

and Cardona proposed a computational algorithm for predicting the nonlinear dynamic

response of a structure in [102]. In this method, the basis vectors for projecting the

incremental generalized coordinates of the finite element solution are chosen to be the

tangent eigenmodes together with some of the modal derivatives. Lesser number of ba-

sis updating was required compared to modal superposition method, but each change of

basis resulted in an accumulation of truncation error in the velocities and accelerations.

Further Idelsohn et al. extended the method proposed by Wilson et al. in [101] for re-

duced solutions of linear structural dynamic problems, to nonlinear problems by adding

additional basis vectors, given by the derivatives of the ritz basis vectors with respect to
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generalized displacement amplitudes of the reduced system in [103]. Updating the ba-

sis vectors is performed when required according to the characteristics of the nonlinear

system. In [104] the reduced basis approach is applied for solving dynamical response

of impulsively loaded structures. The initial Ritz vectors, derivatives of Ritz vectors and

updated Ritz vectors are chosen as candidates for the reduced basis. The use of em-

pirical eigenvectors, also known as Proper Orthogonal Decomposition (POD) modes,

as basis vectors for problems in nonlinear solid dynamics was proposed by Krysl et al.

in [105]. The POD basis are constructed by minimizing the average squared error be-

tween the vector to be projected and its projection on to a set of basis. These basis give

a linear subspace which capture the response of the full nonlinear system. Using this

method, frequent updating of the basis during the online phase of model reduction can

be avoided. In this method the reduction is applied to the linearized nonlinear equations

where the incremental displacement is projected on to the reduced space. This method

works efficiently for nonlinear structural analysis problems and provides numerical re-

sults that compare well with the full scale model. In general, for solving reduced order

models for nonlinear structural analysis, the saving of time is accomplished in solving

the set of equations obtained. The time for assembling the stiffness and force vectors

in each load step and iteration remains the same. A second level of system approxima-

tions have been proposed in the works [106, 107, 108], by constructing surrogates to the

nonlinear residual and the tangent stiffness matrices by projection onto a different set

of basis. This makes the reduced system independent of the dimension of the original

full system and reduces computational complexity associated with stiffness and force

assembly.

In this work, model order reduction method for linear and nonlinear Reproducing

Kernel Collocation Method is developed. The basis for projection is chosen to be the

POD basis which is reviewed in the next section.
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2.4.2 ROM using Proper Orthogonal Decomposition (POD)

The method of Proper Orthogonal Decomposition (POD) is currently the most

popular method used for forming the basis vectors for model reduction in both linear

and nonlinear analysis and it has been widely applied in many fields of study including

control theory (see chapter 9 in [109]), turbulent flows [110, 111], fluid dynamics [112],

image analysis [113], weather prediction [114] and structural dynamics [105]. It was

known by various names in different fields of study, for example: by Principal Compo-

nent Analysis (PCA) in statistics, KarhunenLoeve Expansion (KLE) in stochastics and

Empirical Orthogonal Eigenfunctions (EOE) in weather prediction.

In POD, a suitable approximation basis is found for the variable to be approxi-

mated say u, such that the average squared error between u and its orthogonal projection

on the basis is minimized (mathematical statement of optimality). The detailed deriva-

tion of POD basis can be found in [115, 116], and has been reviewed in section 6.1 of

chapter 6. The POD is optimal on an average. In order to carry out the reduction process,

in the offline phase where the basis are constructed, the snapshots of the solution vector

are collected when the full scale model is run. These solution vectors obtained at dif-

ferent time steps form the snapshot matrix. The orthogonal POD basis can be obtained

either from the Eigenvalue Decomposition (EVD) of the correlation matrix of the snap-

shots or by Singular Value Decomposition (SVD) of the snapshots matrix. Both methods

give equivalent results and are related to each other. Due to the optimality property of

POD, the first r POD basis functions capture more energy than the first r functions of

any other basis. That is the eigenvalues or singular values decay rapidly using POD.

(Here the term ‘energy’ is used in context of dynamic problems where the variable to be

approximated u is the velocity and the associated eigenvalues obtained from eigenvalue

analysis represent twice the kinetic energy for the corresponding mode). This property
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is most suitable and is a primary requirement for reduced order modeling, where the

system characteristics need to be captured in the smallest number of basis.

In [113] Sirovich et al. introduced a snapshot POD method, where a smaller

finite number of the snapshots of the full scale solution are used to construct the POD

basis. This reduces the computational cost associated with carrying out the EVD of the

snapshots matrix for large scale systems.



Chapter 3

Review of Image Segmentation and

Bias Correction Methods

This chapter provides detailed review of the segmentation methods used in this

work. First the level set function theory and standard two phase segmentation using ac-

tive contours without edges is presented. This is followed by discussion of multiphase

segmentation, segmentation of vector valued images and combined multichannel multi-

phase method of segmentation. A method of bias correction for medical images is also

reviewed. Segmentation examples are given for all these methods. The multichannel

multiphase method described will be used in the next chapter which deals with imple-

menting segmentation of individual muscles in human lower leg using the MR and DT

imaging data.

3.1 Level set function

One of the first and the most influential work on using Level set methods was

introduced by Osher and Sethian [2] which gives numerical solutions to solving prob-

29
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lems associated with fronts moving with a curvature dependent speed, using level set

functions for curve evolution. The level set function is an implicit, sign-distance func-

tion in nth dimension and its zeroth isocontour represents the moving interface, which is

one dimension lower than the level set function dimension. Consider a closed moving

interface Γ(t) in the domain Ω and let φ(x, t) be a continuous function defined as:

φ(x, t) > 0 if x is inside Γ(t) (3.1a)

φ(x, t) = 0 if x is on Γ(t) (3.1b)

φ(x, t) < 0 if x is outside Γ(t) (3.1c)

φ(x, t) is said to be the level set function of the interface Γ(t). The motion of this

interface is governed by the evolution of the level set function. Some of the important

parameters associated with the interface Γ(t) can be defined in terms of the level set

function as follows:

Unit outward normal:

n =
Oφ(x, t)

|Oφ(x, t)|
(3.2)

Curvature of Γ(t):

κ = O · n = O ·
(

Oφ(x, t)

|5φ(x, t)|

)
(3.3)

Area inside Γ(t):

Ain =

∫
Ω

H(φ(x, t))dx (3.4)

Area outside Γ(t):

Aout =

∫
Ω

[1−H(φ(x, t))]dx (3.5)

Length of Γ(t):

L =

∫
Ω

δ(φ(x, t)) |5φ(x, t)| dx (3.6)
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Figure 3.1: Signed distance level set function. Black contour represents the zeroth iso-
contour of the level set function

where H(•) and δ(•) represent the Heaviside function and Dirac delta function defined

as follows:

H(z) =


1 for z ≥ 0

0 for z < 0

(3.7)

δ(z) =
dH(z)

dz
(3.8)

For numerical purposes the regularized version of H(•) and δ(•) are used in

practice. For practical applications the level set function is chosen to be a signed distance

function, which an implicit smooth function and is defined below [3]:

φ(x) = min(|x− xI |) for all xI ∈ Γ (3.9)

The sign distance function also obeys the property of |Oφ(x)| = 1. Example

of a signed distance function is shown in figure 3.1, where the black contour indicates

the zeroth level set curve. During numerical time evolution the level set function tends

to deviate from a signed distance function which may cause numerical instability. To

avoid this, the level set function is re-initialized periodically to make it a signed distance

function. Additional re-initialization equation given in (3.10) should be solved which
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makes the procedure computationally expensive. In the present work re-initialization

has not been required to be done in any of the examples given.

∂ψ

∂t
= sign(φ(x, τ))(1− |Oψ|)

ψ(x, 0) = φ(x, τ) (3.10)

In the past two decades level set based methods have been very successfully ap-

plied in the field of image segmentation, where the level set function is used for bound-

ary or interface identification. The main advantage of using the level set surfaces in

image segmentation is their ability to easily identify topological changes in images, that

is, splitting and merging of regions.

3.2 Active contours without edges (ACWE)

The ACWE method was proposed by Chan and Vese [7] and is derived from the

piecewise constant Mumford-Shah functional in a level set framework for image seg-

mentation. The following paragraph illustrates this method in the context of segmenting

an image which has two distinct intensities - 2 phase segmentation.

Consider an evolving curve Γ(t) in the domain Ω. Let the image be formed by

two regions, inside region Rin surrounded by the outside region Rout as shown in figure

3.2(a). The two regions have approximately piece-wise constant intensities given by uino

in Rin and uouto in Rout, respectively. The aim is to obtain the final boundary Γ(t) such

that uo(x) ∈ Rin ≈ uino and uo(x) ∈ Rout ≈ uouto as shown in figure 3.2(b), where

uo(x) is the pixel intensity at point x. To achieve this, following fitting functional is

minimized:
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inR

outR

0x( ,t)

(a) Initial 0th isocontour of level set function

inR

outR

0x( ,t)

(b) Final contour obtained after segmentation

Figure 3.2: Two phase (region) segmentation using ACWE method

Π(c1, c2,Γ) = µ length(Γ) + ν Area inside(Γ)

+ λ1

∫
inside Γ

(uo(x)− c1)2dx+ λ2

∫
outside Γ

(uo(x)− c2)2dx (3.11)

where µ, ν, λ1, λ2 are non-negative parameters which indicate weights for their respec-

tive terms in the above functional. Introducing the level set formulation into the above

functional, equation (3.11) can be re-written as:

Π(c1, c2, φ) = µ

∫
Ω

δ(φ(x))|Oφ(x)|dx+ ν

∫
Ω

H(φ(x))dx

+ λ1

∫
Ω

(uo(x)− c1)2H(φ(x))dx

+ λ2

∫
Ω

(uo(x)− c2)2[1−H(φ(x))]dx (3.12)

The expressions for the unknowns c1 and c2 can be obtained by minimizing (3.12) with
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respect to c1 and c2, respectively, keeping all other variables constant:

c1 =

∫
Ω
uo(x)H(φ(x))dx∫

Ω
H(φ(x))dx

(3.13)

c2 =

∫
Ω
uo(x)[1−H(φ(x))]dx∫

Ω
[1−H(φ(x))]dx

(3.14)

It can be seen from equations (3.13) and (3.14) that c1 represents the average of uo(x)

inside Γ(t) and c2 the represents the average of uo(x) outside Γ(t). Minimizing the func-

tional (3.12) with respect to φ keeping c1 and c2 constant, the Euler-Lagrange equations

are deduced. In this process, the minimization is parameterized by artificial time t ≥ 0,

which gives the evolution of the level set function and associated boundary conditions

as follows:

∂φ

∂t
= δ(φ)

[
µO ·

(
Oφ
|Oφ|

)
− ν − λ1(uo(x)− c1)2 + λ2(uo(x)− c2)2

]
in Ω

δ(φ)

|Oφ|
Oφ · n = 0 on ∂Ω

φ(x, 0) = φo(x) (given) (3.15)

Here Ω represents the interior domain of the image and ∂Ω represents the boundary of

the image. As mentioned in the previous section the regularized versions of H(•) and

δ(•) as given below are used for numerical implementation.

Hε(z) =
1

2

[
1 +

2

π
arctan

(z
ε

)]
(3.16)

δε(z) =
1

π

[
ε

ε2 + x2

]
(3.17)

where ε is a positive parameter. ε is taken to be equal to 0.5 in all the examples pro-

vided in further chapters unless specified. The boundary condition in equation (3.15)
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which corresponds to the image boundary does not play a significant role in finding the

segmented regions which are in the interior of the image. In all examples in this work

a constant term is used for updating φ near the boundaries. Equation (3.15) is solved

numerically using a semi-implicit scheme, which is detailed in Appendix A.

3.2.1 Example: Two phase ACWE segmentation

This example illustrates the two phase image segmentation using one level set

function for the gray scale image shown in figure 3.2. The values of parameters used

are µ = 100, λ1 = 1, λ2 = 1, ν = 0 and 4t = 1. The final contour obtained which

segments the 2 regions, is shown in figure 3.2(b).

3.2.2 Effect of weighting terms in the ACWE model

The weighting terms in the ACWE model should be suitably adjusted for differ-

ent images to achieve the required segmentation. For this purpose it is very important to

understand the effects produced in segmentation by changing these weighting terms.

3.2.2.1 Effect of µ:

From equation (3.12) it can be observed that µ behaves like a penalty term to

the total length of the contour. If µ is increased and the functional in equation (3.12)

is minimized, it strongly imposes the condition that the length of the contour should

be a minimum, so only larger objects are detected in the process of segmentation. The

effect of this parameter µ can be alternatively explained in terms of the smoothness of

the boundary. If the boundary to be detected should be smooth, the value of µ should be

increased. Thus complex winding contours which may have sharper curves are avoided,

(that is lengthy contours are avoided). µ provides a means to regularize the length of
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(a) Initial contour
 

  

(b) µ = 1

 

(c) µ = 105

Figure 3.3: Effect of µ

the contour. This length regularization plays an important role especially in segmenting

noisy images or images where grouping of objects is required.

This is illustrated in the following example. A noisy black and white image is

selected, which has dotted regions in the interior. Only µ is varied and the remaining

parameters are taken as λ1 = 1, λ2 = 1, ν = 0 and4t = 1. The effect of changing µ

is illustrated in figure 3.3. As shown in figure 3.3(b), when µ = 1 is taken, the contours

for all the interior dots are identified. In figure 3.3(c), where the value of µ = 105, only

the larger boundary is identified, since the total length is forced to be a minimum.

Special case of µ = 0: In this case there is no length regularization term. So every

point is capable of being a boundary point, that is, it is possible to form a contour around

each point in the domain if each pixel has a different color, as there is no restriction on

the length of the detected boundary. This case cannot be used to segment noisy images or

images where grouping of objects needs to be done. Only a limited set of images which

have piece-wise constant colors can be segmented by ignoring the length regularization

term. Although in this case, the level set curve evolution equation reduces to an ordinary

differential equation and can be solved quickly, requiring very less computational time.
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(a) Initial contour  

  

(b) ν = −10  

  

(c) ν = 0  (d) ν = 10

Figure 3.4: Effect of ν

3.2.2.2 Effect of ν:

Effect of ν is similar to µ except that the regularization is done on the inside area

of the 2 phase segmentation. As the value of ν is increased the inside area is forced to

be a minimum and vice versa. This trend is illustrated in figure 3.4. The values of other

parameters used are λ1 = 1, λ2 = 1, µ = 1 and4t = 1.

3.2.2.3 Effect of λ:

In equation (3.12) the terms having λ as weight (λ1 for the inside region and λ2

for outside region) are proportional to the variance of intensities in their respective re-

gions. As λ is increased and the functional is minimized, the condition that the variance

should be a minimum is strongly imposed in that region, that is during segmentation the

level set contour evolves such that the intensities in the inside region (or outside region)

are more homogeneous. The effect of this λ parameter becomes prominent in images

having gradients in intensities or inhomogeneity or bias.

3.3 Multiphase level set method

The multiphase level set method [10] is an extension to the 2 phase ACWE

formulation described in the previous section. It is a generalized multiphase level set
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framework to segment images having multiple connected regions (or phases). In this

method multiple level set curves are used to segment multiple regions and also triple

junctions, without creating any overlap or vacuum in the segmented image. k level set

curves can segment up to 2k regions in the image. The union of all the zero isocontours

of the level set functions represents the final boundaries of segmentation.

In the following paragraphs multi-phase segmentation method using 3 level sets

is described in detail which can segment up to 8 regions in an image. In general this

method can be extended to any number of level set curves.

3.3.1 Segmentation using three level set functions

Consider an image I . Three level set curves partition the domain of the image

into 8 regions as shown in figure 3.5. The boxes denote the region numbers. Each

region is denoted by Ωi where i = 1, 2, · · · , 8 denotes the region number. Extending the

2 phase formulation, the functional for this multi-phase segmentation can be written as

Figure 3.5: Image domain partition with 3 Level sets
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follows in level set based formulation (taking ν = 0 for convenience):

Π(c1, c2, · · · , c8, φ1, φ2, φ3) =
3∑

k=1

µk

∫
Ω

δ(φk(x))|Oφk(x)|dx

+
8∑
p=1

(
λp

∫
Ω

(uo(x)− cp)2Mpdx

)
(3.18)

where

M1 = H(φ1)H(φ2)H(φ3)

M2 = H(φ1)(1−H(φ2))H(φ3)

M3 = (1−H(φ1))H(φ2)H(φ3)

M4 = H(φ1)H(φ2)(1−H(φ3))

M5 = (1−H(φ1))(1−H(φ2))H(φ3)

M6 = (1−H(φ1))H(φ2)(1−H(φ3))

M7 = H(φ1)(1−H(φ2))(1−H(φ3))

M8 = (1−H(φ1))(1−H(φ2))(1−H(φ3)) (3.19)

Here p denotes the label for different regions (p = 1, 2, · · · , 8). k denotes the label for

the level set curve. Mp denotes the region in terms of the level sets. cp is an unknown

constant and gives the mean intensity in region Ωp. The expressions for cp’s can be

obtained by minimizing equation (3.18) with respect to each cp and keeping φ1, φ2, φ3

and other c’s fixed and are given by the following equation:

cp =

∫
Ω
uo(x)Mpdx∫

Ω
Mpdx

(3.20)

Three independent Euler-Lagrange equations are obtained by minimizing the functional

with φ1, φ2, φ3, respectively, each time keeping c1, c2, · · · , c8 constant. In the following
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expressions for Euler-Lagrange equations, the weighting parameters are taken as λp = λ

for p = 1, 2, · · · , 8 and µk = µ for k = 1, 2, 3. Minimizing the functional (3.18) w.r.t

φ1, keeping c1, c2, · · · , c8, φ2, φ3 constant:

∂φ1

∂t
= δ(φ1)µO ·

(
Oφ1

|Oφ1|

)
+ δ(φ1)λ[−(uo − c1)2H(φ2)H(φ3)− (uo − c2)2(1−H(φ2))H(φ3)

− (uo − c4)2H(φ2)(1−H(φ3))− (uo − c7)2(1−H(φ2))(1−H(φ3))

+ (uo − c3)2H(φ2)H(φ3) + (uo − c5)2(1−H(φ2))H(φ3)

+ (uo − c6)2H(φ2)(1−H(φ3)) + (uo − c8)2(1−H(φ2))(1−H(φ3))] (3.21)

Minimizing the functional (3.18) w.r.t φ2, keeping c1, c2, · · · , c8, φ1, φ3 constant:

∂φ2

∂t
= δ(φ2)µO ·

(
Oφ2

|Oφ2|

)
+ δ(φ2)λ[−(uo − c1)2H(φ1)H(φ3)− (uo − c3)2(1−H(φ1))H(φ3)

− (uo − c4)2H(φ1)(1−H(φ3))− (uo − c6)2(1−H(φ1))(1−H(φ3))

+ (uo − c2)2H(φ1)H(φ3) + (uo − c5)2(1−H(φ1))H(φ3)

+ (uo − c7)2H(φ1)(1−H(φ3)) + (uo − c8)2(1−H(φ1))(1−H(φ3))] (3.22)

Minimizing the functional (3.18) w.r.t φ3, keeping c1, c2, · · · , c8, φ1, φ2 constant:

∂φ3

∂t
= δ(φ3)µO ·

(
Oφ3

|Oφ3|

)
+ δ(φ3)λ[−(uo − c1)2H(φ1)H(φ2)− (uo − c3)2(1−H(φ1))H(φ2)

− (uo − c2)2H(φ1)(1−H(φ2))− (uo − c5)2(1−H(φ1))(1−H(φ2))

+ (uo − c4)2H(φ1)H(φ2) + (uo − c6)2(1−H(φ1))H(φ2)

+ (uo − c7)2H(φ1)(1−H(φ2)) + (uo − c8)2(1−H(φ1))(1−H(φ2))] (3.23)
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where uo = uo(x). Equations (3.21), (3.22), (3.23) are the three uncoupled evolution

equations and can be solved independently in each time iteration. After steady state

is reached and final φ1, φ2, φ3 are computed, pixels belonging to the final regions of

segmentation can be obtained by taking the values of φ’s for different regions as given

in figure 3.5. The regularized versions of H and δ as given in (3.16), (3.17) respectively,

are used for numerical implementation.

The multi-phase formulation can be extended to ‘n’ level set functions which

can segment up to 2n regions. The general form of the functional is given as:

Π(cp’s, φk’s) =
n∑
k=1

µk

∫
Ω

δ(φk)|Oφk|dx+
2n∑
p=1

(
λp

∫
Ωp

(uo(x)− cp)2dx

)
(3.24)

3.3.1.1 Example: Five region segmentation

Figure 3.6 shows an image which has triple junctions and 5 regions to be seg-

mented (including background). The parameters used in the segmentation are λp = 1,

νk = 0, µk = 100 and 4t = 1. The initial contours taken for the 3 level set curves

are shown in figure 3.6(a). The final contours obtained after segmentation and the seg-

mented regions are shown in figures 3.6(b) and 3.6(c), respectively. Figures 3.6(d) to

3.6(f) shown the final 0th isocontours of the 3 level set functions, the union of which

gives the segmentation boundary.

3.4 Vector valued image segmentation

The ACWE model has been extended to the segmentation of multichannel im-

ages in [11]. A multi-channeled image can be split into multiple channels, which have

to be input together for segmentation. Each pixel has a vector as input in a multichannel

image. For example a RGB image consists of 3 channels for red, green, blue respectively
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(a) Initial contours  

  

(b) Final contours  

  

(c) Segmented regions

 

  

(d) Final contour φ1 = 0  

  

(e) Final contour φ2 = 0  (f) Final contour φ3 = 0

Figure 3.6: Multiphase Segmentation using 3 Level set functions
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(a) RGB image  

  

(b) Red channel of RGB
image

 

  

(c) Green channel of
RGB image

 

  

(d) Blue channel of
RGB image

Figure 3.7: RGB image channel splitting

as shown in figure 3.7. Each channel will be a grayscale image. Similarly a CMYK im-

age can be split into 4 channels for cyan, magenta, yellow and black, respectively. The

functional for the vector valued image segmentation for a 2 phase multi-channeled im-

age is given by:

Π(c1, c2, φ) = µ

∫
Ω

δ(φ)|Oφ|dx+ ν

∫
Ω

H(φ)dx

+

∫
Ω

1

N

N∑
i=1

λi1(uio(x)− ci1)2H(φ)dx

+

∫
Ω

1

N

N∑
i=1

λi2(uio(x)− ci2)2[1−H(φ)]dx (3.25)

where N is the number of channels in the image, superscript i denotes the channel

number, uio(x) denotes the pixel intensity in the ith channel at point x and ci1, ci2 are the

unknown constants which denote the mean values of the intensities inside and outside

the level set contour respectively, in the ith channel. As can be seen in equation (3.25)

multichannel segmentation includes averaging the contributions from the forcing terms

in each channel. The expressions for ci1, ci2 can be obtained by minimizing the functional
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in (3.25) with ci1 and ci2 respectively, for i = 1, 2, · · · , N and keeping φ constant.

ci1 =

∫
Ω
uio(x)H(φ)dx∫

Ω
H(φ)dx

(3.26)

ci2 =

∫
Ω
uio(x)[1−H(φ)]dx∫

Ω
[1−H(φ)]dx

(3.27)

The Euler Lagrange equations can be obtained by minimizing the functional with respect

to φ keeping ci1, ci2 fixed.

∂φ

∂t
= δ(φ)µO ·

(
Oφ
|Oφ|

)
+ δ(φ)

[
− 1

N

N∑
i=1

λi1(uio(x)− ci1)2 +
1

N

N∑
i=1

λi2(uio(x)− ci2)2

]
in Ω

δ(φ)

|Oφ|
Oφ · n = 0 on ∂Ω

φ(x, 0) = φo(x) (given) (3.28)

where Ω represents the interior domain of the image and ∂Ω represents the boundary of

the image. The regularized versions of H and δ as given in (3.16), (3.17) respectively,

are used for numerical implementation.

3.5 Multiphase multichannel segmentation

The multiphase segmentation can be applied to multichannel images by combin-

ing the multiphase and multichannel segmentation methods. A general framework of
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the functional for an image with N channels, using n level set curves is given by:

Π(cp’s, φk’s) =
n∑
k=1

µk

∫
Ω

δ(φk)|Oφk|dx

+
2n∑
p=1

(∫
Ωp

1

N

N∑
i=1

(
λip(u

i
o(x)− cip)2

)
dx

)
(3.29)

where uio(x) denotes the pixel intensity in the ith channel at point x and cip denotes

the unknown constant which represents the mean value of intensity in the region Ωp

of channel i. Euler Lagrange equations and the expressions for obtaining cip will be

elaborated further in the next chapter.

3.5.1 Example: Three channel, three region segmentation

Figure 3.8(a) shows an RGB image made up of 3 channels and has 3 regions to be

segmented. A multiphase multichannel segmentation is done using 2 level set functions

for 3 channels (k = 2, i = 3 and p = 4 in equation (3.29)). The values of parameters

used are: λip = 1, µk = 1, 4t = 1 and ε = 1. The results of the segmentation are

shown in figure 3.8(b) and the final contour of each level set function in figures 3.8(c)

and 3.8(d), respectively.

3.6 Estimating and correcting bias field in MR images

Almost all magnetic resonance images usually have inhomogeneous intensities

in the image (uneven shading in the image) as shown in figure 3.9(a) which are due

to presence of inhomogeneous magnetic fields produced in the MR imaging machine,

differences in frequency transmission and reception of the RF coils and many other

factors like patient positioning, dielectric properties etc. In image segmentation the

intensities of the MR image at each pixel point are input for segmentation. If the MR
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(a) Initial contours  

  

(b) Final contours  

  

(c) Final contour φ1 = 0  (d) Final contour φ2 =
0

Figure 3.8: 2 Level set 3 channel segmentation of RGB image

image is having bias in the form of inhomogeneous intensities at certain regions in the

image, this will result in giving incorrect segmentation results. As a pre-processing step

for segmentation, the MR image has to be corrected for this bias.

The bias correction method used in this work is proposed by Chunming Li et al.

in [19], where a method was developed for combined segmentation and bias correction

in images, particularly with application to MR images. In this work this method is

used for bias correction of the MR images only. The following paragraphs outline the

procedure of the method in the framework of two phase level set segmentation.

At each pixel point the observed image can be modeled as:

I(x) = b(x)J(x) + n(x) (3.30)

where I is the observed image which has to be corrected for bias, J is the true image

which is assumed to have piecewise constant intensities, b is the unknown bias field

which is approximately estimated in the method, n is the additive noise in the image

which can be neglected for MR images.

The bias field is assumed to be slowly varying and approximated to be a constant

in the local neighborhood of a pixel point. Consider a circular neighborhood Oy at each
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(a) Original MR image with bias
 

  

(b) Estimated bias field
 

(c) Bias corrected MR image

Figure 3.9: Bias correction in MR images

point y in the image domain Ω. The bias field b(x) at any point in the support Oy is

assumed to be approximately equal to b(y):

b(x) ≈ b(y) for x ∈ Oy (3.31)

The image to be segmented has two regions given by Ω1 and Ω2. Using (3.31) the

intensities in each region can be approximated to be:

I(x) ≈ b(y)J(x) + n(x)︸︷︷︸
=0

, for x ∈ Oy ∩ Ωi, i = 1, 2

I(x) ≈ b(y)ci (3.32)

where ci are the unknown fitting values of the true image intensities in the region Ωi.

The energy formulation is based on a local intensity clustering property. A local fitting

energy is defined at each point in the image given by:

EFit
y (f1(y), f2(y)) =

2∑
i=1

λi

∫
Oy∩Ωi

|I(x)− fi(y)|2dx (3.33)
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where λi are non-negative parameters and

fi(y) = b(y)ci (3.34)

Taking the local support Oy at each point as a Gaussian kernel, equation (3.33) can be

re-written as:

EFit
y (f1(y), f2(y)) =

2∑
i=1

λi

∫
Ωi

Kσ(y − x)|I(x)− b(y)ci)|2dx (3.35)

where Kσ is the Gaussian kernel function with standard deviation (or scale parameter)

σ > 0 defined below:

Kσ(u) =
1√
2πσ

e(−|u|2/2σ2)∫
Kσ(u)du = 1 (3.36)

This implements the condition that Kσ(y − x) = 0 for x /∈ Oy. The segmentation is

governed by the intensities in the local support and the bias field is approximated better

if the support size is smaller. For segmentation a contour Γ should be found, which

minimizes all EFit
y in the entire image domain. Integrating EFit

y over the entire image

domain Ω gives the functional:

E =

∫
Ω

EFit
y (f1(y), f2(y))dy (3.37)

Re-writing the above functional in 2 phase level set formulation:
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E(φ, f1(y), f2(y)) =
2∑
i=1

λi

∫
Ω

[∫
Ω

Kσ(y − x)|I(x)− fi(y)|2Mi(φ(x))dx

]
dy

+ µL(φ)x+ γP (φ) (3.38)

where φ is the level set function, µ and γ are non-negative constants >0 and

M1(φ) = H(φ)

M2(φ) = [1−H(φ)]

L(φ) =

∫
Ω

|OH(φ(x))|dx =

∫
Ω

δ(φ(x))|Oφ(x)|dx

P (φ) =

∫
Ω

1

2
(|Oφ(x)| − 1)2 dx (3.39)

L(φ) is the length regularization term of the zeroth isocontour of the level set function.

P (φ) is an additional term added to the function to keep φ as a signed distance function.

This eliminates the need to re-initialize the level set function. b(y) and ci are unknowns

and are required to be evaluated. Minimizing the functional in equation (3.38) with

respect to each ci keeping b and φ constant gives:

ci =

∫
Ω

(b ∗Kσ)IMi(φ(y))dy∫
Ω

(b2 ∗Kσ)Mi(φ(y))dy
for i = 1, 2 (3.40)

where ‘∗’ is the convolution operator. Minimizing the functional in equation (3.38) with

respect to b and keeping ci and φ constant gives:

b =

(
I
∑2

i=1 ciMi

)
∗Kσ(∑2

i=1 c
2
iMi

)
∗Kσ

(3.41)

To obtain the Euler Lagrange equations for curve evolution the functional in equation
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(3.38) is minimized with respect to φ keeping b and ci constant:

∂φ

∂t
= −δ(φ(x))(λ1e1 − λ2e2)

+ µδ(φ(x))O ·
(

Oφ
|Oφ|

)
+ γ

(
O2φ− O ·

(
Oφ
|Oφ|

))
Given φ(x, 0) = φo(x) (3.42)

where

ei =

∫
Ω

Kσ(y − x)|I(x)− b(y)ci|2dy; i = 1, 2 (3.43)

Equation (3.42) is solved numerically using finite difference methods where every gra-

dient is discretized using the central difference scheme as follows:

O2φ =
∂2φ

∂x2
+
∂2φ

∂y2
=
φi+1,j + φi−1,j − 2φi,j

h2
+
φi,j+1 + φi,j−1 − 2φi,j

h2
(3.44)

where h = 1 is the pixel spacing in the image.

The estimated bias field is obtained at the end of the time evolution. Greater ac-

curacy in the estimation is obtained if the local support is smaller and the time evolution

is done for more number of steps. The bias corrected image (J), can be obtained by

dividing the intensity at a pixel point with the corresponding bias at that point.

J(x) =
I(x)

b(x)
(3.45)

The original MR image, estimated bias field and the bias corrected MR image for an

example cross sectional of human lower leg are shown in figure 3.9.



Chapter 4

Segmentation and Image Based

Meshfree Modeling of Skeletal Muscles

In this chapter the meshfree Reproducing Kernel Particle Method (RKPM) for

three-dimensional modeling of skeletal muscles is introduced. This approach allows for

construction of simulation model based on pixel data obtained from medical images.

The muscle fiber direction obtained from Diffusion Tensor (DT) imaging and material

properties are input at each pixel point. The reproducing kernel (RK) approximation

allows a representation of material heterogeneity with smooth transition. The applica-

tion of the proposed framework for modeling skeletal muscles in the human lower leg

is demonstrated. For the construction of 3D pixel based models from images, two seg-

mentation frameworks are proposed, which are based on 2D segmentation of in-plane

images and then stacking them to get the 3D models. Further, a method is proposed to

obtain 3D normals for the boundary of the stacked 3D muscle model.

51



52

4.1 Proposed segmentation frameworks

Segmenting medical images plays a very important role in transforming the in

vivo morphological data from images into structured information that can be used for

physiological investigation or numerical simulation. This information obtained from

images can be used to achieve improvements in the field of medical education, treatment

and image guided surgery. In the present day, accurate segmentation and processing of

medical images is essential for constructing 3D models of the objects of interest from

2D image slices.

4.1.1 Level set segmentation of muscles tissues using DT enriched

MR images

Automatic segmentation of all the muscles together from MR image can be eas-

ily done using standard segmentation methods after correcting the imaging artifacts,

since all the muscles have the same intensity and this makes the boundary identification

a relatively easy task. However, automatically segmenting individual muscle compo-

nents from MR images poses a difficult problem since identification of interfaces be-

tween muscle components is challenging, as the boundaries between different muscles

are not clearly distinguishable or are partial. In this work, a framework is developed

for the segmentation of individual muscles which have different fiber orientations. The

idea proposed in this work is to use the MR image intensities in combination with mus-

cle fiber direction obtained from DT images, to semi-automatically segment individual

muscles. A combined multiphase multichannel method of segmentation as described in

Chapter 3 is used to implement this idea. A multichannel method is used to incorporate

the MR and DT images in different channels for segmentation. A multiphase framework
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is required to segment connected regions in an image. Sometimes in the final segmen-

tation obtained, regions need to be combined in order to segment a particular muscle,

due to which the method is termed as ‘Semi-Automatic’ since manual interaction is nec-

essary in particular cases. The details of the segmentation procedure are described in

the following paragraphs. Here the method is implemented to segment muscles of the

human lower leg.

In DT imaging typically a 3× 3 diffusion tensor as given in equation (4.1) is ob-

tained at each voxel (volumetric pixel) of the image which gives the diffusion coefficient

in each direction and correlation between these directions.

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (4.1)

The lead Eigen Vector (EV) (eigen vector associated with largest eigenvalue) of this

diffusion tensor gives the direction of maximum water diffusion, which is assumed to

be collinear with the muscle fiber direction at that point. This EV data consists of an unit

vector [e1, e2, e3]T as input at each pixel point which is obtained as 3 images as shown in

figure 4.1 where there is an image for each of the vector components ei. For the purpose

of segmentation the EV data is scaled suitably to match the range of intensities of the

MR image. Each of the images, that is, MR image, e1, e2 and e3 components of the EV

data are taken as 4 channels for segmentation. As the final segmentation has 7 regions (6

major muscles and background) to be identified, 3 level set functions which can segment

up to 8 regions in the image, are used for segmentation. The functional for the 3 level

set 4 channel segmentation is given by:
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(a) Bias corrected MR
image

 

  

(b) e1 component of EV  

  

(c) e2 component of EV  

  

(d) e3 component of EV

Figure 4.1: MR image and grayscale images of EV data components

Π(cip, φ1, φ2, φ3) =
3∑

k=1

µk

∫
Ω

δ(φk)|Oφk|dx

+
8∑
p=1

(∫
Ωp

1

4

4∑
i=1

(
λip(u

i
o(x)− cip)2

)
dx

)
(4.2)

where φk are the level set functions, uio(x) denotes the pixel intensity in the ith channel

at point x, p denotes the number of regions that can be segmented and cip denotes the

unknown constants which represents the mean value of intensity in the region Ωp of

the ith channel. µk and λip denote the weights for their respective terms. In level set

formulation equation (4.2) can be re-written as:

Π(cip, φ1, φ2, φ3) =
3∑

k=1

µk

∫
Ω

δ(φk)|Oφk|dx

+
8∑
p=1

(∫
Ω

1

4

4∑
i=1

(
λip(u

i
o(x)− cip)2

)
Mpdx

)
(4.3)
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where

M1 = H(φ1)H(φ2)H(φ3)

M2 = H(φ1)(1−H(φ2))H(φ3)

M3 = (1−H(φ1))H(φ2)H(φ3)

M4 = H(φ1)H(φ2)(1−H(φ3))

M5 = (1−H(φ1))(1−H(φ2))H(φ3)

M6 = (1−H(φ1))H(φ2)(1−H(φ3))

M7 = H(φ1)(1−H(φ2))(1−H(φ3))

M8 = (1−H(φ1))(1−H(φ2))(1−H(φ3)) (4.4)

The expression for cip can be obtained by minimizing equation (4.3) with respect to each

cip; keeping φ1, φ2, φ3 and other c’s fixed:

cip =

∫
Ω
uio(x)Mpdx∫

Ω
Mpdx

(4.5)

The 3 Euler Lagrange equations are obtained by minimizing the functional given in

equation (4.3) with φ1, φ2, φ3 respectively each time keeping cip fixed. The derived

equations are given in Appendix B. They are solved using a semi-implicit finite dif-

ference scheme. Since the muscle fibers in each muscle more or less point in similar

direction, it is important to account for this variability (for example due to curvature in

muscle geometry) within each muscle to obtain accurate segmentation results. In the

multiphase multichannel ACWE model above, the parameter to consider for this is the

λ terms which are the weights for the forcing terms in formulation (4.3). As mentioned

in section 3.2.2.3, if the value of λ is decreased it allows for slightly more variance of

intensities in the region to be segmented. And if λ is increased, more homogeneous re-
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gions are obtained after segmentation. If a particular muscle has multiple homogeneous

regions, these regions can be grouped to form the semi-automatically segmented mus-

cle. Depending on the muscle to be segmented and considering the amount of variance

in each muscle from images, this parameter can be adjusted appropriately to obtain the

best segmentation results.

4.1.1.1 Example 1: Multiphase multichannel DT enriched MR image segmenta-

tion

This example illustrates the segmentation obtained using the proposed formula-

tion and the effect of the λ parameter. The 4 channels as given in figure 4.1 are used.

Parameter values of λip = λ, νk = ν = 0 and µk = µ = 1 are taken. A time step

increment of 4t = 1 is used. The eigenvector data is scaled suitably so that it has the

similar range of intensities as of the MR image data. This gives equivalent level of con-

tribution from the MR image and the EV data. Two different values of λ are considered

and the results of segmentation are given in figures 4.2 and 4.3, for λ = 0.02 and λ = 2

respectively. The manual segmentation for the MR image slice is given in figure 4.4 for

comparison. As can be seen in figures 4.2 and 4.3, as the value of λ is increased, more

number of homogeneous regions are formed in the segmentation. These regions can

be grouped together to form segmented individual muscles. This process of grouping

makes the method semi-automatic. Unipennate (unidirectional) muscles like the medial

gastrocnemius in the lower leg can be automatically or semi-automatically segmented

depending upon the value of the λ used. Some muscles (like the soleus) which are

multipennate can be segmented by grouping regions together.
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Figure 4.2: Multiphase multichannel DT enriched MR image segmentation for λ = 0.02
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Figure 4.3: Multiphase multichannel DT enriched MR image segmentation for λ = 2

Figure 4.4: Manual segmentation of the 6 major muscles in MR image
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4.1.1.2 Semi-automatic segmentation of medial gastrocnemius muscle

It can be observed from the segmentation results in the previous section, that the

medial gastrocnemius (MG) muscle has been segmented very well, almost automati-

cally using the proposed method. Figures 4.5 and 4.6 show the comparison between the

segmented MG muscle using the semi-automatic multiphase multichannel segmentation

and the manual segmentation for MR image slices 15 and 30 respectively. The common

points between the semi-automatic and manual segmentation are also shown. To quan-

titatively assess the segmentation results, the amount of overlap or similarity between

the manual and the semi-automatic segmentation is calculated from each image using a

similarity index called Dice Coefficient (DC), [23, 117] which is defined as follows:

DC = 2
n{A ∩M}

n{A}+ n{M}
(4.6)

whereA andM are the set of pixels in semi-automatic and manual segmentation respec-

tively. n{X} denotes the number of pixels in set X . The DC is sensitive to differences

in both size of the segmented regions and location of pixels in these regions. A value

of DC > 0.7 is considered to be excellent agreement between the two sets of pixels A

and M , [117]. Additionally the Pearson’s Correlation Coefficient (PCC) [118], which

is used to compare two images can be calculated as follows:

PCC =

∑
i(fi − fm)(gi − gm)√∑

i(fi − fm)2
√∑

i(gi − gm)2
(4.7)

where fi is the intensity of the ith pixel in the first image, gi is the intensity of the ith

pixel in the second image, fm is the mean intensity in the first image and gm is the mean

intensity in the second image.
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Figure 4.5: MR image slice 15: DC = 0.90, PCC = 0.89
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Figure 4.6: MR image slice 30: DC = 0.84, PCC = 0.84
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4.1.1.3 Example 2: Segmentation of the medial gastrocnemius muscle

The MG muscle is segmented from 33 images and compared with manual seg-

mentation as shown in figure 4.7. An average DC value of 0.8744 and an average PCC

value of 0.8740 are obtained when comparing the semi-automatic and manual segmen-

tations, which shows very good agreement between the two.

The following points should be noted for the implementation of the proposed

method:

• The DT image giving the three components of the muscle fiber direction should be

overlapping as closely as possible with the MR image for accurate segmentation.

• Each MR image should be bias corrected such that muscle regions have uniform

intensity without shading.

• In the process of segmentation the number of regions that need to be segmented is

predefined depending upon the number of individual muscles in the cross-section

of the MR image. It is observed that more number of regions might be needed

to segment each muscle and these regions should be grouped manually to form

individual muscles.
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Figure 4.7: Semi-automatic and manual segmentation of medial gastrocnemius muscle,
dimensions in mm

4.1.2 Full model construction of human lower leg muscles from im-

ages

The following methodology is developed for constructing the full model of the

human lower leg muscles from medical images. The geometry is extracted through

segmentation of the anatomical MR image. Muscle, Intra-Muscular Connective Tissue

(IMCT), fat (including both intra-muscular fat (IMAT) and subcutaneous fat) are the ma-

terials included in the construction of the model. The Chan-Vese level set segmentation

method [7] is used for extracting boundaries of the bones and the outer boundary of the

lower leg from each MR image as shown in figure 4.8. The interior points of boundary

contours are obtained as shown in figure 4.9. The IMCT and IMAT are segmented inde-

pendently from a separate specialized sequences of MR images using the fuzzy C-means

algorithm. The segmented pixels overlapped on the MR image are shown in figure 4.10.

The segmented IMAT and IMCT points are subtracted from the interior points to obtain

an image (say image1). From the DT images, the points which have EV data (at least

one of the eigen values should be non-zero) are chosen as the muscle points in image1
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(b) Chan Vese segmentation re-
sult

 

  

(c) Outer contours and bone con-
tours obtained from segmentation

Figure 4.8: Chan Vese segmentation of anatomical MR image

and all other interior points are assigned as fat since they constitute the outer subcuta-

neous fat layer. There might be a small number of additional points in the interior of

the muscle regions with no fiber direction specified. These are labeled as intra-muscular

fat. This final image obtained which has all the different material points labeled using

different images, forms the fine scale model as shown in figure 4.11(a). The points of

each material are tested using an algorithm to check that there are no common points

between any two materials. The units of x, y and z coordinates are in pixel coordinates

where 1 pixel = 0.078125 cm. A coarse scale model was generated for computational

efficiency, by creating a coarse set of points with larger spacing between the pixels. The

nodal spacing in the fine model is 1 pixel, whereas in the coarse model it is taken as 2

pixels. The muscle, fat and IMCT of the coarse image can be obtained by sorting com-

mon points between the coarse and the fine images for each slice. The coarser image

generated is shown in figure 4.11(b). This procedure is repeated for every image (slice)

and the 3D pixel based model is constructed by stacking the 2D slices. Figure 4.11(c)

shows the 3D coarse model with an in-plane pixel spacing of 2, constructed by stacking

25 segmented images of the human lower leg. The model consists of 73, 659 nodes.
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Figure 4.9: Interior points obtained from segmentation
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Figure 4.10: Segmented IMAT and IMCT pixels
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Figure 4.11: Final segmentation results with different materials
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4.1.3 3D surface normal approximation from stacked 2D contours

As illustrated in the previous 2 sections, the 3D model geometries are obtained

by stacking the 2D segmented images to form the 3D models. In numerical simulation,

the surface normals on the natural boundaries are required in order to impose prescribed

tractions on these surfaces. The 2D level set functions obtained for each of the medical

images can only give the 2D normals to the contour obtained in that image plane. When

the 3D model is constructed by stacking the 2D contours, the 3D surface normals cannot

be directly obtained. In this section the following method is used for approximating

the 3D surface normals from the 2D level set contours. This is illustrated through an

example. Consider a sphere model, for which the points on the boundary, interior and

exterior are known a priori (say for example through 2D segmentation of in-plane slices

of the sphere). The cross section of the sphere which shows the point distribution is

shown in figure 4.12(b), where yellow, blue and red points denote the boundary, interior

and exterior points, respectively. The 3D level set function φ(x) is re-constructed such

that:

φ(x) > 0 if x is inside Γ (4.8a)

φ(x) = 0 if x is on Γ (4.8b)

φ(x) < 0 if x is outside Γ (4.8c)

where Γ represents the boundary of the model. The normal to the boundary surface at a

point is constructed using this 3D level set function and is given in equation (3.2). Here

φ(x) is approximated using the reciprocal Multiquadric Radial Basis (RB) functions as

given in [78]. The approximated normals obtained on the boundary of the sphere are

shown in figure 4.13.
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 (a) Model of the sphere for which
surface normals need to be ob-
tained

 

(b) Cross-section of the sphere with
exterior points added

Figure 4.12: Sphere model (without exterior points) and its cross-section (with exterior
points added) showing the points on the boundary (yellow color), inside the boundary
(red color) and outside the boundary (blue color)

 

Figure 4.13: 3D normal approximation for the sphere model plotted at the boundary
points
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(a) Medial gastrocnemius
muscle model  

(b) Approximated normals
obtained for the boundary
points

Figure 4.14: 3D normal approximation for the medial gastrocnemius muscle model

The above method is implemented to find the 3D surface normals for a 3D medial

gastrocnemius muscle model shown in figure 4.14(a). The approximated 3D normals

obtained are given in figure 4.14(b).

4.2 Pixel based meshfree modeling of skeletal muscles

In the conventional Finite Element (FE) approach, the meshes need to be con-

formed to muscle geometry, which increases the complexity of mesh construction. Gen-

erally muscles have a complex architecture and poorly built meshes can easily lead to

significant errors in FE analysis due to mesh distortion. Abrupt changes of topology in

the muscle cross sections could also result in failure in FE mesh generation. Addition-

ally, muscle material is anisotropic in nature due to the presence of muscle fibers. In FE

modeling, one way to introduce the anisotropy is to approximate the fiber directions by
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interpolating from some pre-defined templates as described in [93]. The fiber directions

obtained in this way could generate noticeable discretization errors in the simulation

models. To overcome these drawbacks, in this section the meshfree Reproducing Ker-

nel Particle Method (RKPM) is used for numerical modeling of heterogeneous skeletal

muscles. The fiber direction obtained from DT imaging data [33, 36] and the mate-

rial properties are defined at pixel points and are directly used as input into meshfree

modeling, without the need for additional data processing. Since no mesh is required

in meshfree methods, the complexity related to meshing in finite element method is

avoided. The Reproducing Kernel (RK) approximation also allows for a smooth tran-

sition of material properties at the interfaces between different materials in the muscle,

which is required in the context of biological materials where the material interfaces

do not exhibit sharp discontinuities. The skeletal muscle is represented as a nearly in-

compressible hyperelastic material [89]. RKPM has been used to simulate extremely

large deformation of rubber like hyperelastic material [54, 55]. The unique properties

of RKPM, such as arbitrary order continuity (smoothness) in the approximation and the

straightforward h-adaptivity, can also be applied effectively to the modeling of bioma-

terials.

4.2.1 Reproducing Kernel (RK) approximation

In meshfree modeling, the problem domain is discretized with a set of arbitrarily

distributed points (nodes) as shown in figure 4.15. Each point I is associated with an

open cover ωI which defines the locality of the approximation defined on ωI . In the

present modeling, the pixel coordinates of the geometry are obtained from the images

and are used as nodes for discretizing the domain for the meshfree modeling. The RK

shape functions are constructed based on a set of points and are used to approximate

the displacement field governed by the equilibrium equation or equation of motion of a
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Figure 4.15: Meshfree domain discretization

solid [53, 54].

Let α = α1α2 · · ·αd represent the multi-dimensional index notation where ‘d’ is

the number of spatial dimensions. The following notation is used:

pα = pα1α2···αd
(4.9a)

|α| = α1 + α2 + · · ·+ αd (4.9b)

xα = xα1
1 x

α2
2 · · ·x

αd
d (4.9c)

(x− xI)α = (x1 − x1I)
α1(x2 − x2I)

α2 · · · (xd − xdI)αd (4.9d)

Consider a domain Ω in ‘d’ dimensional space Rd which is discretized by a set

of nodes ‘NP’ given by {xI |xI ∈ Ω}NP
I=1. The Reproducing Kernel (RK) approximation

of a function ‘u’ denoted as ‘uh’ is given by:

uh(x) =
NP∑
I=1

ΨI(x)dI (4.10)

where ΨI(x) is the RK shape function at node ‘I’ and dI are the nodal coordinates at

node ‘I’. The RK shape function is expressed as:

ΨI(x) = C(x;x− xI)φa(x− xI) (4.11)
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where φa(x− xI) is a kernel function that provides the required smoothness in the RK

approximation and determines the locality of the approximation by its compact support

measured by ‘a’. The multi-dimensional kernel function can be constructed as follows

using either a circular or rectangular support.

Kernel with a circular support:

φa(x− xI) = φa (z) (4.12)

where z = ‖x−xI‖
a

.

Kernel with a rectangular support: Obtained using a product of one dimensional kernels.

φa(x− xI) =
d∏
i=1

φa

(
xi − xiI

ai

)
(4.13)

where ‘d’ is the number of spatial dimensions and ‘ai’ is the support size in the ith

direction. The term C(x;x− xI) is the correction function which is constructed using

a set of basis functions and satisfies the consistency requirements of the shape function.

It is expressed as:

C(x;x− xI) =
n∑
|α|=0

(x− xI)αbα(x) = HT (x− xI)b(x) in Rd (4.14)

where ‘n’ is the order of the basis functions, HT (x − xI) = {(x− xI)α}n|α|=0 is a

vector containing all the monomial basis functions, and bα(x) is an unknown vector

which is determined by enforcing the following nth order reproducing conditions (nth

order completeness requirement):

NP∑
I=1

ΨI(x)xαI = xα; |α| = 0 to n (4.15)
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This is equivalent to:

NP∑
I=1

ΨI(x)(x− xI)α = δ0|α|; |α| = 0 to n (4.16)

where δ is the Kronecker delta. Expressing equation (4.16) in matrix notation:

NP∑
I=1

ΨI(x)H(x− xI) = H(0) (4.17)

From equation (4.11) RK shape function can be re-written as:

ΨI(x) = HT (x− xI)b(x)φa(x− xI) (4.18)

Substituting the expression for the shape function from equation (4.18) in equation

(4.17) gives the expression for the vector b(x).

b(x) = M−1(x)H(0) (4.19)

whereM is called the moment matrix and is given by:

M (x) =
NP∑
I=1

H(x− xI)HT (x− xI)φa(x− xI) (4.20)

Using the expression for the RK shape function in equation (4.18) and substituting the

b vector from equation (4.19) the RK shape function can be written as:

ΨI(x) = HT (0)M−1(x)H(x− xI)φa(x− xI) (4.21)

Example of the two dimensional RK shape function, constructed using the quintic B-

spline kernel function, is shown in figure 4.16.

For the moment matrix to be invertible at any point ‘x’ in the domain, ‘x’ has
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Figure 4.16: 2D Reproducing Kernel shape function

to be covered by at least ‘k’ non-coplanar shape functions where ‘k’ is the number of

terms in the basis vector. The RK approximation satisfies the reproducing conditions

everywhere in the domain and on the boundary in the discrete form [119]. The order of

completeness of the RK approximation is determined by the order of consistency, that

is, the order of basis functions ‘n’. The RK approximation functions do not possess

Kronecker Delta property, that is, ΨI(xJ) 6= δIJ . Due to this condition, numerous

methods have been proposed to impose the essential boundary conditions, including the

Lagrange multiplier method [52, 55], transformation method [75, 54], Nitsches method

and penalty method [74]. In the present formulation, the penalty method is used for

imposing the essential boundary conditions.

As can be seen in the full lower leg model given in figure 4.11(c), the pixel

resolution in the longitudinal z-direction is lower than the resolution in the transverse

xy-direction. This is due to the fact that in the MR image acquisition, the scanning

in the vertical direction is only taken at certain intervals. In the meshfree modeling,

this is taken into account by using a suitable support size in the RK approximation

function, which is adjusted according to the nodal spacing in different directions in the

model. For this modeling, RK shape function with rectangular support is used, with

the length in the longitudinal direction about 3 times of that in the transverse direction.
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In the following examples for muscle simulation in this chapter, the reproducing kernel

approximation functions are constructed using a cubic spline kernel function and linear

basis. A normalized support size of a/h = 1.65 is used, where a is the support size of

the kernel function and h is the nodal (pixel) spacing.

4.2.2 Muscle material properties interpolation using RK approxi-

mation

It has been shown in many studies [120] that the change of material properties

from skeletal muscle to tendon is a smooth transition. Heterogeneous material modeling

using FE representation results in jumps in material properties at the material interfaces,

and the computed stresses and strains are also discontinuous across the element bound-

aries. On the contrary, in the proposed meshfree RKPM analysis the material proper-

ties are assigned to the nodes and the material properties transition represented by the

smooth RK approximation can be made with the desired smooth transition, which avoids

the abrupt jumps of stresses and strains. This RK representation of the smooth transi-

tion in material properties is illustrated in the following example. Consider a region

x ∈ [0, 10] with the interface at x = 5 between two materials, where the Young’s mod-

uli (E) are given by: E = 30 for x ∈ [0, 5) and E = 5 for x ∈ [5, 10]. As can be seen in

figure 4.17 finite element approximation exhibits a sharp discontinuity at x = 5 while

the RK approximation shows smooth transition in representing the material property

transition across the material interface by choosing appropriate kernel function support

size ‘a’ in the RK approximation.
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Figure 4.17: Comparison of RK and FE approximations of the Young’s modulus

4.2.3 Meshfree RKPM formulation for hyperelasticity

In this section, a 3D RKPM formulation is used to solve the hyperelastic prob-

lem, in which the penalty method is used to impose the essential boundary conditions.

The formulation is based on the total Lagrangian framework, where the implementation

is carried out in the reference or undeformed configuration. Let the problem domain

in the undeformed configuration be denoted by ΩX , with the corresponding essential

boundary and natural boundary denoted by ∂Ωg
X and ∂Ωh

X , respectively. The energy

functional for this total Lagrangian formulation can be written as follows:

U =

∫
ΩX

W (u)dΩ−
∫

ΩX

uibidΩ−
∫
∂Ωh

X

uihidΓ +
β

2

∫
∂Ωg

X

(ui−gi)(ui−gi)dΓ (4.22)

where W (u) is the strain energy density function, b is the body force per unit unde-

formed volume, h is the prescribed surface force per unit undeformed area on the nat-

ural boundary ∂Ωh
X , β is the penalty number and g is the prescribed displacement on

the essential boundary ∂Ωg
X . The stationary condition is obtained by taking variation of
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equation (4.22), which yields:

∫
ΩX

δFijPjidΩ + β

∫
∂Ωg

X

δuiuidΓ

=

∫
ΩX

δuibidΩ +

∫
∂Ωh

X

δuihidΓ + β

∫
∂Ωg

X

δuigidΓ (4.23)

where F is the deformation gradient and P is the first Piola-Kirchhoff stress. Due to the

geometric and material nonlinearities, Newton’s method is used to solve the nonlinear

equations and the linearization of equation (4.23) is required. Let n and ν denote the

current load step counter and iteration step counter, respectively, the linearized equation

is given by:

∫
ΩX

δFij(Cijkl)
ν
n+1∆FkldΩ + β

∫
∂Ωg

X

δui∆uidΓ

=

∫
ΩX

δui(bi)n+1dΩ +

∫
∂Ωh

X

δui(hi)n+1dΓ

+ β

∫
∂Ωg

X

δui[(gi)n+1 − (ui)
ν
n+1]dΓ−

∫
ΩX

δFij(Pji)
ν
n+1dΩ (4.24)

where Cijkl is the first elasticity tensor. The displacement vector, its variation and the in-

cremental displacement vector are approximated by the RK shape functions as follows:

u =
NP∑
I=1

NIdI , δu =
NP∑
I=1

NIδdI , ∆u =
NP∑
I=1

NI∆dI (4.25)

where

u = [u1 u2 u3], dTI = [d1I d2I d3I ], NI =


ΨI 0 0

0 ΨI 0

0 0 ΨI

 (4.26)
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Here ΨI is the Lagrangian RK shape function defined as:

ΨI(X) = C(X;X −XI)φ
X
a (X −XI) (4.27)

and the kernel φXa is called the ‘material kernel’ given by:

φXa (X −XI) = φXa

(
‖X −XI‖

a

)
(4.28)

As shown in the above equation, the material kernel is defined using the distance mea-

sured by the material coordinate in the reference configuration. The support of the ma-

terial kernel function covers the same set of nodes throughout the history of deformation

and hence the associated shape function is called the ‘Lagrangian’ shape function.

The incremental deformation gradient in vector form is given by:

∆F =
∑
I

BI∆dI (4.29)

where

F T
I = [F11 F22 F33 F12 F21 F13 F31 F23 F32]

BT
I =


ΨI,1 0 0 ΨI,2 0 ΨI,3 0 0 0

0 ΨI,2 0 0 ΨI,1 0 0 ΨI,3 0

0 0 ΨI,3 0 0 0 ΨI,1 0 ΨI,2

 (4.30)

Here ΨI,j = ∂ΨI/∂Xj . Taking the material derivative of the Lagrangian RK shape

function is straightforward and is detailed in section ??. By introducing the RK approx-

imation for displacements given in equation (4.25) and the deformation gradient given

in equation (4.29) into the linearized equation (4.24) the following matrix equation is
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obtained:

KIJ∆dJ = f ext
I − f int

I (4.31)

where I, J = 1, · · · , NP . The dimension of stiffness KIJ is 3 × 3 and that of ∆dJ is

3× 1 and

KIJ =

∫
ΩX

BT
I C̃BJdΩ + β

∫
∂Ωg

X

NT
I NJdΓ

f int
I =

∫
ΩX

BT
I P dΩ

f ext
I =

∫
ΩX

NT
I bdΩ +

∫
∂Ωh

X

NT
I hdΓ + β

∫
∂Ωg

X

NT
I (g − uνn+1)dΓ (4.32)

and

P = [P11 P22 P33 P12 P21 P13 P31 P23 P32]T

b = [b1 b2 b3]T

h = [h1 h2 h3]T (4.33)

where C̃ is a 9× 9 matrix and each element is given by C̃AB = ∂2W/∂FA∂FB.

The method of Stabilized Conforming Nodal Integration (SCNI) [59, 68, 71]

is used for integrating the discrete equations in (4.31) where a smoothed derivative of

the approximation function is used in conjunction with a nodal integration in equation

(4.30) to achieve computational efficiency and accuracy. SCNI ensures a quadratic rate

of convergence in Galerkin meshfree approximation of the equilibrium equation, and it

achieves greater computational efficiency and accuracy for the meshfree method com-

pared to conventional Gauss quadrature rules. In the proposed image based modeling,

using SCNI in RKPM muscle modeling, the pixel points which constitute the nodes in

the domain are also used as integration points for integrating the variational equation
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(weak form). RKPM with SCNI has been shown to be accurate for nearly incompress-

ible problems [68] and hence is suitable for modeling skeletal muscles.

4.2.4 Material laws for components of skeletal muscle

A transversely isotropic hyperelastic model is employed to represent the me-

chanical behavior of skeletal muscle. The strain energy density function for the muscle

is decoupled into isotropic and anisotropic parts as defined below:

Wmuscle = Wmatrix(Ī1, Ī2, J) +Wfiber(λ̂) (4.34)

where Wmatrix is the strain energy stored within the isotropic muscle matrix, Wfiber is

the strain energy stored within muscle fiber and this introduces anisotropy to the model.

Ī1 = I1I
−1/3
3 , Ī2 = I1I

−2/3
3 where I1, I2 and I3 are the three invariants of right Cauchy-

Green strain tensor C, λ̂ =
√
N̂ · C̄ · N̂ is the stretch ratio along the fiber direction

N̂ and C̄ = J−2/3C, where J = det(F ). A quadratic polynomial type strain energy

density function for Wmatrix as employed in [89] is used, which is given below:

Wmatrix =
2∑

i+j=1

Aij(Ī1 − 3)i(Ī2 − 3)j +
K

2
(J − 1)2 (4.35)

Here, Aij and K are the material constants and bulk modulus of muscle respectively.

The fiber stress is related to the energy density function Wfiber as follows:

λ̂
∂Wfiber

∂λ̂
= σmax

λ̂

λ̂o
(αfactive + fpassive) (4.36)

where λ̂o is the stretch ratio at optimal length, σmax is the maximum isometric stress, α

is the activation factor which represents the level of activation in the muscle fiber, factive
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Table 4.1: Material constants for muscle matrix (in N/cm2)

A10 A01 A20 A02 A11 K

6.43 -3.8 0.94 0.0005 -0.0043 5000

and fpassive are the normalized active and passive fiber forces, respectively, given by:


fpassive = 0 for λ∗ ≤ 1

fpassive = γ1(eγ2(λ∗−1) − 1) for 1 < λ∗ ≤ 1.4

fpassive = (γ1γ2e
0.4γ2)λ∗ + γ1(e0.4γ2 − 1) for λ∗ > 1.4

(4.37)


factive = 9(λ∗ − 0.4)2 for λ∗ ≤ 0.6

factive = 1− 4(1− λ∗)2 for 0.6 < λ∗ ≤ 1.4

factive = 9(λ∗ − 1.6)2 for λ∗ > 1.4

(4.38)

where λ∗ = λ̂/λ̂o is the normalized stretch ratio, and γ1 = 0.05, γ2 = 6.6.

Connective tissue and fat are modeled by an isotropic cubic hyperelastic model

with the strain energy density function defined as [89]:

W = A10(Ī1 − 3) + A20(Ī1 − 3)2A30(Ī1 − 3)3 +
K

2
(J − 1)2 (4.39)

The calibrated values of material constants for muscle and connective tissue are adopted

from [89]. The material constants for the fat are 10 times softer than those of the con-

nective tissue. The material constants used in this work are summarized in table 4.1 for

muscle and table 4.2 for connective tissue and fat.
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Table 4.2: Material constants for connective tissue and fat (in N/cm2)

A10 A20 A30 K

Connective tissue 30 80 800 50,000
Fat 3 8 80 5000

4.2.5 Numerical analysis of isometric contraction of the lower leg

using RKPM

In this example, isometric contraction of the 3D muscle model of the lower leg

shown in figure 4.11(c), which is constructed from slices of the coarse image (figure

4.11(b)), is simulated using the RKPM formulation. Isometric contraction is achieved

by fixing the top and bottom boundaries. For the points near the interior bone bound-

aries, the displacements in the cross-sectional plane are fixed, but are free to move along

the longitudinal direction of the muscle. The activation factor α of the muscle material

is linearly increased from 0 to 0.95. In the simulation, all muscle points are activated

simultaneously. The generated force due to muscle contraction is calculated at the fixed

end. The reaction force generated at different levels of muscle activation is shown in

figure 4.18. A convergence study is performed to ensure that the discretization res-

olution of muscle model (figure 4.11(c)) is sufficient for desired accuracy. A refined

RKPM model is generated from finer cross-sectional images (shown in figure 4.11(a)).

The spacing in the longitudinal direction (vertical z-direction) is not refined due to the

limitation in the image acquisition. This is also justified due to the fact that the spatial

variations in the stress and strain fields in the longitudinal direction are much smaller

than those in the transverse direction. The force generation results obtained from the

coarse and refined models are shown in figure 4.18, which confirm convergence of the

RKPM solution. In figure 4.19 the nodal displacement vectors are plotted on sample
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Figure 4.18: Reaction force generated at different levels of muscle activation predicted
by the coarse and refined models

planes (transverse, coronal, sagittal) on the reference (undeformed) configuration. The

muscle fiber directions in the undeformed configuration are also plotted for comparison.

The results show that while in certain areas the nodal displacement vectors are approx-

imately in the direction of the muscle fibers, no particular correlation between them is

observed. As can be seen in the sagittal cross-section in figure 4.19(e), the points near

the posterior region displace downwards towards the distal end and the points near the

anterior region move upwards toward the proximal end due to muscle contraction. Fig-

ure 4.20 shows the maximum principal Cauchy stress in the full model and on sample

planes at the final configuration. It is important to note that the stress fields shown in

figure 4.20 are calculated using the RK approximation functions which are continuous

in its first order derivatives. Thus, the computed stress field is continuous, in contrast to

finite element method which yields discontinuous stress field across element boundaries.

4.2.6 Comparison of force production in young and old muscles

Two Medial Gastrocnemius (MG) muscle models from young and old subjects

were selected to investigate the effect of aging on force generation. Sample MR image

slices of these young and old subjects are given in figure 4.21(a) and 4.21(b), respec-
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(a) (b)

(c) (d)

(e) (f)

Figure 4.19: Displacement vectors (left) and corresponding fiber directions (right) plot-
ted on reference configuration on (a)-(b) transverse plane at z = 5 cm; (c)-(d) coronal
plane at y = 10.1 cm; (e)-(f) sagittal plane at x = 10 cm. (units of u magnitude: cm).
Note: The fiber directions are plotted only at the muscle points, whereas displacements
are shown at all material points.
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Figure 4.20: Distribution of the maximum principal Cauchy stress (N/cm2) at the final
deformed configuration for full model (left), at transverse plane z = 5.0 cm (center),
and at coronal plane y = 10.1 cm (right)

tively, which clearly show the increased amount of connective tissue in the older sub-

ject. The MG muscle is outlined in red in these figures. The segmented MG models of

the young and old subjects with the same axial length are shown in figure 4.22(a) and

4.22(b), respectively. Here green points are the connective tissue, red points are muscle

and blue points are fat (IMAT). The MG is surrounded by an outer layer of connective

tissue which forms the aponeurosis. The volumes of the different material components

in the young and the old models are given in table 4.3. It should be noted that IMCT

here does not include the aponeurosis.

In the numerical simulation, both ends of the muscle are fixed and the activation

of the muscle is increased to simulate isometric contraction. The muscle force activation

characteristics for both the young and the old muscles are taken to be the same. The

force generation at maximum activation shows that the younger model generates much

bigger force than the older model (figure 4.22(c)). The effective force generated per unit

total volume (including the outer layer of connective tissue) for the younger model is

0.430 N/cm3 and for the old model is 0.294 N/cm3. This shows that the amount of non-

contractile tissue strongly affects the force production. It is worth noting that the muscle

volume of the older model is about 37% smaller than that of the younger model but the

force generation in the older model drops by around 45% compared to the young model.



83

 

  

(a) Young subject
 

 

(b) Old subject

Figure 4.21: Connective tissue visualization from MR image of (a) young and (b) old
models. The MG muscle is outlined in red.

Table 4.3: Young versus old models results comparison

Young model Old model
Old normalized

by young
Muscle (cm3) 98.93 61.89 62.5%
IMAT (cm3) 2.83 6.15 217.3%
IMCT (cm3) 20.86 29.15 139.7%

Fmax (N) 68.76 37.74 54.8%

There is a disproportionate decrease in force production due to the decrease in muscle

volume. These results from numerical modeling support the hypothesis that the amount

of connective tissue in the muscle affects the force production considerably [121].

In this chapter, an image based meshfree RKPM computational framework is

developed for skeletal muscle modeling. A method for RKPM simulation model con-

struction with different material components is developed by extracting pixel data from

medical images. The pixel points from these images can be directly used as nodes for

domain discretization in the meshfree modeling, and the fiber direction obtained from

the DT imaging data is input directly at each pixel point, without the need for addi-
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Figure 4.22: MG muscles of young and old models. Comparison of force generation
versus activation level between young and old models

tional processing or interpolation. The employed reproducing kernel approximation can

represent the smooth transition of material properties in heterogeneous materials. The

variation of material properties in the transition zone can be controlled by adjusting the

support size of the kernel function in the RK approximation. These properties of image

based meshfree methods render it suitable for subject specific modeling.

A multiphase multichannel level set approach for segmenting individual muscles

using both MR and DT imaging data is also proposed. Using this method, adjacent

muscles in the image which have different fiber orientations can be segmented. The

multichannel method enables the incorporation of MR image and EV image data in

different channels for segmentation, and a multiphase framework is required to segment

connected regions in an image. Additionally a method is proposed for approximating

the 3D surface normals for the 3D muscle models which are constructed by stacking 2D

segmented images.

Numerical examples are given to demonstrate the effectiveness of the proposed

image based meshfree method for modeling the mechanical behavior of skeletal mus-

cles. A preliminary study of force production between young and old skeletal muscles
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having different amounts of non-contractile tissue volumes is performed. A dispropor-

tionate decrease in force production is observed due to the decrease in muscle volume

between the young and the old MG muscles.

This chapter in part has been published in the following book chapter and jour-

nal paper respectively: Book Chapter: R. R. Basava, J.-S. Chen, Y. Zhang, S. Sinha, U.

Sinha, J. Hodgson, R. Csapo, and V. Malis, “Pixel based meshfree modeling of skele-

tal muscles”, in Computational Modeling of Objects Presented in Images. Fundamen-

tals, Methods, and Applications (Y. Zhang and J. Tavares, eds.), vol. 8641 of Lecture

Notes in Computer Science, pp. 316-327, Springer International Publishing, 2014. The

dissertation author was the primary investigator and author of this book chapter. The

contribution of all the co-authors is greatly acknowledged, particularly the second co-

author for guiding the research. Journal paper: J.-S. Chen, R. R. Basava, Y. Zhang, R.

Csapo, V. Malis, U. Sinha, J. Hodgson, and S. Sinha, “Pixel-based meshfree modelling

of skeletal muscles”, Computer Methods in Biomechanics and Biomedical Engineering:

Imaging & Visualization, no. (ahead-of-print), pp. 1-13, 2015. The contribution of all

the co-authors is greatly acknowledged, particularly the first co-author for guiding the

fundamental development of the research.



Chapter 5

Reproducing Kernel Collocation

Method For Nonlinear Hyperelasticity

5.1 Derivatives of the RK shape function

The expression for the RK shape function is given in equation (4.21). The first

derivative of the RK shape function is given by:

ΨI,i(x) = C,i(x;x− xI)φa(x− xI) + C(x;x− xI)φa,i(x− xI) (5.1)

where A,i = ∂A/∂xi, i = 1, 2, · · · , d and C(x;x− xI) = HT (0)M−1(x)H(x− xI)

is the correction function. The derivative of the correction function is derived to be:

C,i(x;x− xI) = HT (0)
[
M−1

,i (x)H(x− xI) +M−1(x)H,i(x− xI)
]

(5.2)

When the strong form collocation methods are used for solving differential equa-

tions, the strong form of the differential equation is used directly which contains second

order derivatives of the unknown variable. To approximate this, the second order deriva-

86
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tives of the shape functions are required. The second derivative of the RK shape function

is given by:

ΨI,ij(x) = C,ij(x;x− xI)φa(x− xI) + C,i(x;x− xI)φa,j(x− xI)

+ C,j(x;x− xI)φa,i(x− xI) + C(x;x− xI)φa,ij(x− xI) (5.3)

where A,ij = ∂2A/∂xi∂xj and i, j = 1, 2, · · · , d. The second derivative of the correc-

tion function is given by:

C,ij(x;x− xI) = HT (0)[M−1
,ij (x)H(x− xI)

+M−1
,i (x)H,j(x− xI)

+M−1
,j (x)H,i(x− xI)

+M−1(x)H,ij(x− xI)] (5.4)

In the above expressions the derivatives of the inverse of the moment matrix can be

evaluated as follows:

M−1
,i (x) = −M−1M,iM

−1 (5.5a)

M−1
,ij (x) = −M−1

[
M,ijM

−1 +M,iM
−1
,j +M,jM

−1
,i

]
(5.5b)

In this work the quintic B-spline function given below is used as the kernel function.

φa(z) =



11
20
− 9z2

2
+ 81z4

4
− 81z5

4
for 0 ≤ z < 1

3

17
40

+ 15z
8
− 63z2

4
+ 135z3

4
− 243z4

8
+ 81z5

8
for 1

3
≤ z < 2

3

81
40
− 81z

8
+ 81z2

4
− 81z3

4
+ 81z4

8
− 81z5

40
for 2

3
≤ z < 1

0 for z ≥ 1

(5.6)
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where

z =
‖x− xI‖

a

5.2 Review of Reproducing Kernel Collocation Method

(RKCM) for linear problems

For solving differential equations (DE) using the strong form collocation meth-

ods, the strong form of the DE is discretized directly for numerical implementation.

The following procedure illustrates the implementation of the strong form collocation

method using RK approximation for a general Boundary Value Problem (BVP). Typi-

cally a set of source points S with NS number of points and set of collocation points C

with NC number of points are selected in the problem domain and usually NC > NS to

obtain accurate results. The source points and collocation points may or may not have

common points. The numerical approximation is substituted in the strong form of the

DE of the BVP and the residuals are enforced to be zero at the collocation points. This

results in a system of equations which can be solved for the unknowns. The numerical

procedure is presented below:

Consider the BVP in general form:

Lu = f in Ω ∈ Rd (5.7a)

Bhu = h on ∂Ωh (5.7b)

Bgu = g on ∂Ωg (5.7c)

where Ω is the problem domain (excluding the boundaries), ∂Ωh is the Natural boundary

and ∂Ωg is the Essential boundary. Here ∂Ωh ∩ ∂Ωg = ∂Ω and ∂Ω ∩ Ω = Ω̄ where Ω̄

is the entire problem domain. L, Bh and Bg are the differential operators on Ω, ∂Ωh
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and ∂Ωg, respectively. f , h and g are the prescribed values for the forcing term, natural

boundary condition and essential boundary condition on Ω, ∂Ωh and ∂Ωg respectively.

The unknown variable ‘u’ can be a scalar like in heat conduction problems or a vector

like in linear elasticity problems.

Introducing the approximation of u based on RK approximation:

uh(x) = ΨTa (5.8)

where ΨT = [Ψ1,Ψ2, · · · ,ΨNS
] with ΨI = ΨIId̂×d̂, and aT =

{
aT1 ,a

T
2 , · · · ,aTNS

}
with aTI = {a1I , a2I , · · · , ad̂I}. Here ΨI represents the RK shape function at node ‘I’.

It can be seen that in the collocation method, the discretized points for constructing the

approximation of u are the source points NS . Id̂×d̂ is the identity matrix of size d̂ × d̂

where u ∈ Rd̂.

Let P be the set of NP collocation points in Ω, Q be the set of NQ collocation

points on ∂Ωh andR be the set of NR collocation points on ∂Ωg.

P = [p1,p2, · · · ,pNP
] ∈ Ω (5.9a)

Q =
[
q1, q2, · · · , qNQ

]
∈ ∂Ωh (5.9b)

R = [r1, r2, · · · , rNR
] ∈ ∂Ωg (5.9c)

The total number of collocation points will be NC = NP + NQ + NR denoted

previously by set C.

C =
[
p1,p2, · · · ,pNP

, q1, q2, · · · , qNQ
, r1, r2, · · · , rNR

]
∈ Ω̄ (5.10)

The approximation of u given in equation (5.8) is substituted in the strong form
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of the BVP (5.7) and the residual is forced to be zero at the collocation points which

leads to a system of equations given by:

Aa = b (5.11)

where

A =


A1

A2

A3

 ; b =


b1

b2

b3

 (5.12)

and

A1 =



L(ΨT (p1))

L(ΨT (p2))

...

L(ΨT (pNP
))


;A2 =



Bh(ΨT (q1))

Bh(ΨT (q2))

...

Bh(ΨT (qNQ
))


;A3 =



Bg(ΨT (r1))

Bg(ΨT (r2))

...

Bg(ΨT (rNR
))


(5.13)

b1 =



f(p1)

f(p2)

...

f(pNP
)


; b2 =



h(q1)

h(q2)

...

h(qNQ
)


; b3 =



g(r1)

g(r2)

...

g(rNR
)


(5.14)

It was shown in [78] that there is unbalanced error between the domain, natural

boundary and essential boundary terms given in equation (5.11). This unbalanced error

can be balanced by properly weighting the boundary terms which gives the Weighted

Collocation Method (WCM) and the system of equations can be re-written as follows
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with the weight terms included:
A1

√
αhA2

√
αgA3

a =


b1

√
αhb2

√
αgb3

 (5.15)

where
√
αh and

√
αg are the weights for the natural and essential boundary terms re-

spectively. For the Poisson problem, the weights of
√
αh ≈ O(1) and

√
αg ≈ O(NS)

should be used and for the elasticity problem weights are derived to be
√
αh ≈ O(1)

and
√
αg ≈ O(max{λ, µ}NS) where λ and µ are the Lame’s constants [78].

Since the number of collocation points are taken to be greater than the number

of source points, the above system of equations is over determined as there are more

number of equations than unknowns. This linear system (5.11) can be solved for the

unknown nodal coordinates ‘a’ using the method of Least Squares where the square of

the Euclidean norm of the residual e = Aa − b is minimized with respect to a, which

leads to the equation:

ATAa = ATb (5.16)

whereATA is a square invertible matrix.

5.2.1 Convergence of RK approximation and RKCM error

Let V = span {Ψ1,Ψ2, · · · ,ΨNS
} where ΨI ∈ Hm

1 is the RK shape function of

degree ‘p’ and the support size satisfies minimum requirement. Let uh ∈ V be the RK

approximation of u. The following property is given for the RK approximation error

estimation [122]: ∥∥u− uh∥∥
L,Ω
≤ Chr|u|p+1,Ω (5.17)
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where r = p + 1 − L is the rate of convergence and ‘h’ is the nodal spacing. The

following estimates can be obtained from equation (5.17) [78, 79]:

∥∥u− uh∥∥
0,Ω
≈ Ohp+1 (5.18a)∥∥u− uh∥∥

1,Ω
≈ Ohp (5.18b)∥∥u− uh∥∥

2,Ω
≈ Ohp−1 (5.18c)

The RKCM method converges in the following norm [78, 79, 73]:

∣∣∥∥u− uh∥∥∣∣ = inf
v∈V
|‖u− v‖| (5.19a)∣∣∥∥u− uh∥∥∣∣ ≤ C
{
‖u− v‖2,Ω + ‖(u− v)n‖0,∂Ωh + ‖u− v‖0,∂Ωg

}
≤ Chp−1|u|p+1,Ω (5.19b)

It can be observed from the above equation (5.19) that the RKCM error converges only

if p ≥ 2. So RK shape functions should be constructed using at least quadratic basis

for the solution to converge. In all the examples that follow, quadratic bases are used

in the RK shape functions. The numerical convergence rates in the following examples

are measured by computing the L2 and H1 norm of the error in the solution, as defined

below.

L2 norm: ∥∥u− uh∥∥
0

=

(∫
Ω

(uhi − ui)(uhi − ui)dΩ

)1/2

(5.20)

H1 norm:

∥∥u− uh∥∥
1

=

(∫
Ω

(uhi − ui)(uhi − ui)dΩ +

∫
Ω

(uhi,j − ui,j)(uhi,j − ui,j)dΩ

)1/2

(5.21)

whereu is the analytical solution anduh is the numerical solution obtained from RKCM.



93

5.2.2 Numerical examples

For all the examples in this section, quadratic basis and a support size of 3h is

used for the RK shape function where ‘h’ is the nodal spacing of the source points.

5.2.2.1 1D Poisson problem

Consider the 1D Poisson problem with essential boundary conditions as given

below:

∆u(x) = ex in Ω = {x|0 < x < 1} (5.22a)

u(x) = ex on ∂Ω = {x|x = 0, x = 1} (5.22b)

The analytical solution to the problem is u(x) = ex. The domain is discretized using 10

source points and 20 collocation points which do not overlap in the interior domain as

shown in figure 5.1(a) and the problem is solved using RKCM. The weight on the essen-

tial boundary is taken to be
√
αg = NS . The numerical solution obtained in the domain

using RKCM is plotted in figure 5.1(b) and compared with the analytical solution. The

RKCM result is very close to the analytical solution.

The convergence of the solution in L2 and H1 norm using RKCM was studied

using a discretization of {10, 15, 20, 25, 30} source points and {20, 30, 40, 50, 60} col-

location points. Gauss integration was used for integrating the error. The convergence

plots are shown in figure 5.2. The rate of convergence obtained in L2 norm is 3.07 which

corresponds well to the theoretical prediction of 3. The rate of convergence obtained in

H1 norm is 2.49 which is better than the theoretical prediction of 2.
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Figure 5.1: Domain discretization and RKCM solution comparison for 1D Poisson prob-
lem
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Figure 5.2: Convergence of RKCM for 1D Poisson problem
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Figure 5.3: Domain discretization and RKCM solution comparison for 2D Poisson prob-
lem

5.2.2.2 2D Poisson problem

Consider the 2D Poisson problem with essential boundary conditions as given

below:

∆u(x, y) = (x2 + y2)exy in Ω = {(x, y)|0 < x < 1, 0 < y < 1} (5.23a)

u(x, y) = exy on ∂Ω = {(x, y)|x = 0, 1 and y = 0, 1} (5.23b)

The analytical solution to the problem is u(x, y) = exy. The domain is discretized using

10×10 source points and 20×20 collocation points which do not overlap in the problem

domain as shown in figure 5.3(a) and the problem is solved using RKCM. The weight on

the essential boundary is taken to be
√
αg = NS . The numerical solution using RKCM

obtained along the diagonal line passing through the points (0, 0) and (1, 1) is plotted in

figure 5.3(b) and compared with the analytical solution. The RKCM result is very close

to the analytical solution.

The convergence of the solution in L2 and H1 norm using RKCM was studied

using a discretization of {10× 10, 15× 15, 20× 20, 25× 25, 30× 30} source points and
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Figure 5.4: Convergence of RKCM for 2D Poisson problem

{20× 20, 30× 30, 40× 40, 50× 50, 60× 60} collocation points. Gauss integration was

used for integrating the error. The convergence plots are shown in figure 5.4. The rate

of convergence obtained in L2 norm is 3.03 which corresponds well to the theoretical

prediction of 3. The rate of convergence obtained in H1 norm is 2.43 which better than

the theoretical prediction of 2.

5.2.2.3 2D Linear elastic cantilever beam

Consider a plane strain elastic beam subjected to traction on the right edge as

shown in figure 5.5(a). The equilibrium equations and associated boundary conditions
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(a) Cantilever beam geometry and boundary condi-
tions
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Figure 5.5: Domain discretization and RKCM solution comparison for 2D linear elastic
cantilever beam

are given by:

σij,j = 0 in Ω = {(x, y)|0 < x < L, −D/2 < y < D/2} (5.24a)

at x = 0, y = 0, u1 = u2 = 0

at x = 0, y = ±D/2, u1 = h2 = 0

on x = L,−D/2 ≤ y ≤ D/2, h1 = 0, h2 =
6P

D3

(
D2

4
− y2

)
on x = 0,−D/2 < y < 0, 0 < y < D/2, h1 =

12PL

D3
y, h2 = −6P

D3

(
D2

4
− y2

)
on 0 < x < L, y = ±D/2, h1 = h2 = 0 (5.24b)

The analytical solution to the problem is given by:

u1(x, y) = − Py

6ĒI

[
(6L− 3x)x+ (2 + ν̄)

(
y2 − D2

4

)]
(5.25a)

u2(x, y) =
P

6ĒI

[
(3L− x)x2 + 3ν̄y2(L− x) + (4 + 5ν̄)

D2x

4

]
(5.25b)
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Figure 5.6: Comparison of RKCM and analytical shear stress for cantilever beam prob-
lem

Here I = D3/12, Ē = E/(1 − ν2) and ν̄ = ν/(1 − ν), where E, ν are the Young’s

modulus and Poisson’s ratio respectively. The values of parameters used are: L =

8m, D = 2m, P = 100N/m, E = 3 × 107Pa and ν = 0.25. The domain of the

beam is discretized using 73 × 19 source points and 147 × 39 collocation points and

the problem is solved using RKCM. The weight on the essential boundary is taken to

be
√
αg = max{λ, µ}NS and weight on the natural boundary is taken to be

√
αh = 1.

The comparison of RKCM solution with exact solution for the shear stress along line

x = L/2 is shown in figure 5.5(b) and the comparison of the solution for shear stress in

the entire domain is shown in figure 5.6.

The convergence of the solution in L2 norm and H1 norm using RKCM was

studied using the discretization of {17 × 5, 25 × 7, 33 × 9, 41 × 11, 49 × 13, 57 × 15}

source points and {35 × 11, 51 × 15, 67 × 19, 83 × 23, 99 × 27, 115 × 31} collocation

points. Gauss integration was used for integrating the error. The convergence plots are

shown in figure 5.7. The rates of convergence obtained are shown on the figure.
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Figure 5.7: Convergence of RKCM for cantilever beam problem

5.2.2.4 3D Poisson problem

Consider the following 3D Poisson problem with given essential boundary con-

ditions:

∆u(x, y, z) = f in Ω = {(x, y, z)|0 < x < 1, 0 < y < 1, 0 < z < 1} (5.26a)

u(x, y, z) = 0 on ∂Ω = {(x, y, z)|x = 0, 1; y = 0, 1 and z = 0, 1} (5.26b)

Here f = −3π2sin(πx)sin(πy)sin(πz). The analytical solution to the problem is

u(x, y, z) = sin(πx)sin(πy)sin(πz) as given in [123]. The domain is discretized using

11× 11× 11 source points and 21× 21× 21 collocation points as shown in figure 5.8.

The weight on the essential boundary is taken to be
√
αg = NS . The numerical solution

using RKCM obtained along the diagonal line passing through the points (0, 0, 0) and

(1, 1, 1) is plotted in figure 5.9 and compared with the analytical solution. The RKCM

result is very close to the analytical solution.
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5.3 RKCM for nonlinear hyperelasticity

In conventional meshfree methods based on the weak form, background meshes

are required for the purpose of domain integration. Additionally, imposing essential

boundary conditions requires special treatment since the meshfree approximation func-

tions are usually not interpolating functions. In this chapter the meshfree strong form

Reproducing Kernel Collocation Method (RKCM) for solving boundary value problems

in context of nonlinear elasticity (in particular hyperelasticity) is introduced. The RK

approximation function with a material kernel [54] that deforms with material defor-

mation is used. Several examples are provided in the context of deformation of rubber,

which is classified as an isotropic hyperelastic material. The method is further imple-

mented for modeling human skeletal muscles using image data. The muscle models are

constructed from segmentation of anatomical Magnetic Resonance (MR) images using

level set based techniques as described in chapter 4. The pixel points obtained from

these segmented MR images are used directly as nodes (source and collocation points)

for domain discretization in the meshfree RKCM formulation. This method fully elim-

inates the need for complex mesh construction and domain integration for complex ge-

ometries. Also both essential and natural boundary conditions can be enforced directly.

The method is derived by least squares minimization and linearization (using Newton’s

method) of the strong form nonlinear collocation equations. Additionally it can be de-

rived by variation of the weighted least squares functional followed by linearization

and collocation. Both the above derivations give the exact tangent operators for the

incremental equations. Further it is shown that direct linearization of the strong form

governing equations followed by least squares solution to solve the over-determined

system results in the Gauss Newton method for the incremental iterative solution, where

the tangent operator is approximate and not exact. The detailed derivations for the three
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cases, computational algorithm and examples are given in the following sections.

5.3.1 Strong form of the governing equations for nonlinear elastic-

ity

For nonlinear elasticity the strong form of the governing equations related to the

undeformed configuration are considered and are given by:

σAi(u),A + bi = 0 in ΩX (5.27a)

σAi(u)NA = hi on ∂Ωh
X (5.27b)

ui = gi on ∂Ωg
X (5.27c)

where σ is the first Piola-Kirchhoff stress (PK1) and is a nonlinear function of u,

(•),A = ∂(•)/∂XA is the derivative with respect to the material coordinate X , b is the

body force per unit undeformed volume, h is the surface force per unit undeformed

area on the natural boundary ∂Ωh
X ,N is the outward normal vector to the surface ∂Ωh

X ,

u is the displacement and g is the prescribed displacement on the essential boundary

∂Ωg
X . Additionally ΩX represents the problem domain excluding the boundary, ∂ΩX =

∂Ωh
X ∩ ∂Ωg

X represents the entire boundary and Ω̄X = ΩX ∩ ∂ΩX represents the full

problem domain.

The deformation of a material particle X ∈ Ω̄X at time t is described by the

one-to-one mapping function given by x = φ(X, t) and the displacement of particleX

is defined by:

u(X, t) = φ(X, t)−X = x(X, t)−X (5.28)

The deformation gradient F , Green-Lagrangian strainE and right Cauchy Green strain
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tensor C, are defined as follows:

Fij =
∂xi
∂Xj

=
∂ui
∂Xj

+ δij (5.29a)

Eij =
1

2
(FkiFkj − δij) (5.29b)

Cij = 2Eij + δij = FkiFkj (5.29c)

For hyperelastic material, PK1 is calculated from the strain energy density function W

using the relationship:

σAi =
∂W

∂FiA
(5.30)

The second Piola-Kirchhoff stress (PK2), S and Cauchy stress τ can be obtained from

PK1 using the following relationships:

S = σF−T (5.31a)

τ = J−1FSF T (5.31b)

where J = det(F ).

5.3.2 Review of hyperelasticity for nearly incompressible materials

The strain energy density for elastic materials can be expressed in terms of the

three invariants (I1, I2, I3) of the right Cauchy Green strain tensor [124, 125]:

W (I1, I2, I3) =
∞∑

i+j+k=1

Aijk(I1 − 3)i(I2 − 3)j(I3 − 1)k (5.32)
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where

I1 = tr(C) (5.33a)

I2 =
1

2

[
(tr(C))2 − tr(C2)

]
(5.33b)

I3 = det(C) (5.33c)

and Aijk are the material constants. If the material behavior is incompressible, I3 = 1

and the strain energy density reduces to:

W (I1, I2) =
∞∑

i+j=1

Aij(I1 − 3)i(I2 − 3)j (5.34)

For nearly incompressible materials, a volume conservation condition is required to be

imposed (using Penalty or Lagrange multiplier method) and the strain energy density is

modified as:

W (I1, I2, I3) = W̄ (I1, I2) + W̃ (I3) (5.35)

where W̃ (I3) is the part of the strain energy density which accounts for the small change

in volume. Additionally for nearly incompressible materials, the invariants I1 and I2

are not measures of pure distortion alone and contain a certain amount of dilatational

strain energy. A fully decoupled strain energy density function can be written as follows

[124, 125]:

W (Ī1, Ī2, J) = W̄ (Ī1, Ī2) + W̃ (J) (5.36)
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where W̄ (Ī1, Ī2) and W̃ (J) are the distortional and dilatational strain energy density

functions, respectively, given by:

W̄ (Ī1, Ī2) =
∞∑

i+j=1

Aij(Ī1 − 3)i(Ī2 − 3)j (5.37a)

W̃ (J) =
K

2
(J − 1)2 (5.37b)

Here Aij are the material constants and K is the bulk modulus. Ī1, Ī2 are the reduced

invariants which separate the distortional and dilatational deformation:

Ī1 = I1I
−1/3
3 (5.38a)

Ī2 = I2I
−2/3
3 (5.38b)

The hydrostatic pressure P is related to W̃ (J) by:

P =
∂W̃

∂J
(5.39)

5.3.3 Derivation from strong form of the nonlinear governing equa-

tions

Consider the strong form of the governing equations in the undeformed config-

uration as given in equation (5.27). These equations can be written in operator form as

given below:

l(u) + f = 0 in ΩX (5.40a)

bh(u) = h on ∂Ωh
X (5.40b)

bg(u) = g on ∂Ωg
X (5.40c)
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where the nonlinear operators are given by the following matrices:

l(u) =


σA1(u),A

σA2(u),A

σA3(u),A

 ; bh(u) =


σA1(u)NA

σA2(u)NA

σA3(u)NA

 ; bg(u) =


u1

u2

u3

 (5.41)

and the forcing terms are given by:

f =


b1

b2

b3

 ; h =


h1

h2

h3

 ; g =


g1

g2

g3

 (5.42)

Let P be the set of NP collocation points in domain ΩX ,Q be the set of NQ collocation

points on ∂Ωh
X andR be the set of NR collocation points on ∂Ωg

X defined as:

P = [p1,p2, · · · ,pNP
] ∈ ΩX (5.43a)

Q =
[
q1, q2, · · · , qNQ

]
∈ ∂Ωh

X (5.43b)

R = [r1, r2, · · · , rNR
] ∈ ∂Ωg

X (5.43c)

The total number of collocation points will be NC = NP +NQ +NR denoted by setC.

C =
[
p1,p2, · · · ,pNP

, q1, q2, · · · , qNQ
, r1, r2, · · · , rNR

]
∈ Ω̄ (5.44)

The approximation of u denoted by uhand based on the RK approximation functions is

given by:

uh(x) = ΨTa (5.45)

where ΨT = [Ψ1,Ψ2, · · · ,ΨNS
] with ΨI = ΨIId̂×d̂, and aT =

{
aT1 ,a

T
2 , · · · ,aTNS

}
with aTI = {a1I , a2I , · · · , ad̂I}. Here ΨI represents the RK shape function at node ‘I’
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andNS denote a set of source points on which the RK approximation ofu is constructed.

Id̂×d̂ is the identity matrix of size d̂× d̂ where u ∈ Rd̂.

Typically the number of collocation points NC selected are greater than the

number of source points NS to obtain accurate results. Substituting uh in the strong

form governing equations (5.40), and enforcing the residual to be zero at the collocation

points NC results in the following set of over-determined system of nonlinear equations

in a:

l(uh(p1)) + f(p1) = 0

...

l(uh(pNP
)) + f(pNP

) = 0

bh(uh(q1))− h(q1) = 0

...

bh(uh(qNQ
))− h(qNQ

) = 0

bg(uh(r1))− g(r1) = 0

...

bg(uh(rNR
))− g(rNR

) = 0 (5.46)

Here it is assumed that f and h are independent of deformation. The above equation

can be re-written as:

ξ(a)− η = 0 (5.47)

where

ξ(a) =


ξ1(a)

ξ2(a)

ξ3(a)

 ; η =


η1

η2

η3

 (5.48)
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with

ξ1(a) =


l(uh(p1))

...

l(uh(pNP
))

 ; ξ2(a) =


bh(uh(q1))

...

bh(uh(qNQ
))

 ; ξ3(a) =


bg(uh(r1))

...

bg(uh(rNR
))

 (5.49)

η1 =


−f(p1)

...

−f(pNP
)

 ; η2 =


h(q1)

...

h(qNQ
)

 ; η3 =


g(r1)

...

g(rNR
)

 (5.50)

A weighted equation is considered analogous to linear problems, to balance the error

between the domain and the boundary terms. This results in the following system of

equations:

ξ(a) =


ξ1(a)
√
αhξ2(a)
√
αgξ3(a)

 ; η =


η1

√
αhη2

√
αgη3

 (5.51)

where
√
αh is the weight on the natural boundary and

√
αg is the weight on the essential

boundary. Following the results given in [78, 79], the following weights are used for

hyperelasticity:

√
αh ≈ O(1) (5.52a)

√
αg ≈ O(κNS) (5.52b)

where κ is taken to be the maximum value of strain energy density at that boundary

collocation point.

The above over-determined system is solved by minimizing the least squares
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error of these nonlinear equations, as follows:

Π(a) = e (5.53)

with e = 1
2
(ξ(a) − η)T (ξ(a) − η). Minimization of this functional with respect to a

gives:
∂e

∂ai
δai = 0 ⇒ ∂e

∂ai
= 0, ∀δai 6= 0 (5.54)

where ai = a(i). This leads to the following nonlinear equations in a:

A′(a)(ξ(a)− η) = 0 (5.55)

whereA′ is the transpose of the Jacobian matrix J and is given by:

A′(a) = JT (a) =


∂ξT (a)
∂a1

...

∂ξT (a)
∂aN

 (5.56)

Here, N is the length of the vector a. For example in 3D, N = 3NS . The above non-

linear equations are solved using the Newton’s method, where an incremental equation

is considered. This requires linearization of equation (5.55). Let n denote the load step

number and ν denote the iteration number. The body force, surface traction, prescribed

displacements and deformed state of the body at the n + 1th load step and ν th iteration

are known from previous iterations. The linearization is carried out as follows to obtain

the incremental nodal coordinates ∆a:

(
∂A′(a)

∂a1

∆a1 + · · ·+ ∂A′(a)

∂aN
∆aN

)
(ξ(a)− η)︸ ︷︷ ︸

r(a)

+A′(a)(A′(a))T∆a

= −A′(a)(ξ(a)− η)]νn+1 (5.57)
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where ∆a = [∆a1, · · · ,∆aN ]T and r(a) is the residual. The above equation can be

re-written as follows:

(
∂A′(a)

∂a1

r(a), · · · , ∂A
′(a)

∂aN
r(a)

)
︸ ︷︷ ︸

Ā′′(a)

∆a+A′(a)(A′(a))T∆a

= −A′(a)r(a)]νn+1 (5.58)

which gives:

(
A′′(a) +A′(a)(A′(a))T

)
∆a = −A′(a)r(a)]νn+1 (5.59)

The above equation (5.59) can be solved for ∆a in each iteration of the load step. The

tangent operator obtained here is the exact tangent.

The expression for the Jacobian matrix J is given by:

(A′(a))T = J(a) =

[
∂ξ(a)
∂a1

, . . . , ∂ξ(a)
∂aN

]
≡ ∂ξ(a)

∂a
(5.60)

Here
∂ξ(a)

∂a
=

∂ξ

∂uh
∂uh

∂a
(5.61)

here
∂ξ

∂uh
=

[
∂ξ
∂uh1

, . . . , ∂ξ
∂uh3

]
(5.62)

∂uh

∂a
=

[
∂uh

∂a1
, . . . , ∂u

h

∂aN

]
=


∂uh1
∂a1

, . . . ,
∂uh1
∂aN

...
∂uh3
∂a1

, . . . ,
∂uh3
∂aN

 = ΨT (5.63)
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This gives:

∂ξ

∂uh
=

∂

∂uh


ξ1(uh)
√
αhξ2(uh)
√
αgξ3(uh)

 =


Â1(uh)
√
αhÂ2(uh)
√
αgÂ3(uh)

 = Â(uh) (5.64)

with

Â1(uh) =


L̂(uh(p1))

...

L̂(uh(pNP
))

 ; Â2(uh) =


B̂h(uh(q1))

...

B̂h(uh(qNQ
))

 ; Â3(uh) =


B̂g(uh(r1))

...

B̂g(uh(rNR
))


(5.65)

The the nonlinear matrix operators L̂(uh), B̂h(uh) and B̂g(uh) are given by:

L̂(uh) = L̂1(uh) + L̂2(uh) (5.66)

with

L̂1(uh) =


C6

1AjB1Cu
h
j,BADC C6

1AjB2Cu
h
j,BADC C6

1AjB3Cu
h
j,BADC

C6
2AjB1Cu

h
j,BADC C6

2AjB2Cu
h
j,BADC C6

2AjB3Cu
h
j,BADC

C6
3AjB1Cu

h
j,BADC C6

3AjB2Cu
h
j,BADC C6

3AjB3Cu
h
j,BADC

 (5.67a)

L̂2(uh) =


C4

1A1BD
2
BA C4

1A2BD
2
BA C4

1A3BD
2
BA

C4
2A1BD

2
BA C4

2A2BD
2
BA C4

2A3BD
2
BA

C4
3A1BD

2
BA C4

3A2BD
2
BA C4

3A3BD
2
BA

 (5.67b)

B̂h(uh) =


C4

1A1BNADB C4
1A2BNADB C4

1A3BNADB

C4
2A1BNADB C4

2A2BNADB C4
2A3BNADB

C4
3A1BNADB C4

3A2BNADB C4
3A3BNADB

 (5.68)
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B̂g(uh) = I3×3 =


1 0 0

0 1 0

0 0 1

 (5.69)

DA =
∂

∂XA

; D2
AB =

∂2

∂XA∂XB

(5.70)

The residual vector r(a) is given by:

r(a) =


r1

√
αhr2

√
αgr3

 (5.71)

with

r1 =


R1(uh(p1))

...

R1(uh(pNP
))

 ; r2 =


R2(uh(q1))

...

R2(uh(qNQ
))

 ; r3 =


R3(uh(r1))

...

R3(uh(rNR
))

 (5.72)

and

R1(uh) =


σA1(uh),A + b1

σA2(uh),A + b2

σA3(uh),A + b3

 ; R2(uh) =


σA1(uh)NA − h1

σA2(uh)NA − h2

σA3(uh)NA − h3

 ; R3(uh) =


uh1 − g1

uh2 − g2

uh3 − g3


(5.73)

Here,

C4
iAjB =

∂2W

∂FiA∂FjB
, (5.74a)

C6
iAjBkC =

∂3W

∂FiA∂FjB∂FkC
(5.74b)

and here FiA = uhi,A + δiA. The expressions for σAi, C4
iAjB, C6

iAjBkC are given in
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Appendix C. From equations (5.60) – (5.64) the following equation is obtained:

(A′(a))T = ÂΨT (5.75)

5.3.4 RKCM using Gauss Newton method

The term A′′(a) in equation (5.59) involves the computation of second order

derivatives of the residual, which are complicated to derive and involve high computa-

tional expense in evaluating them. If the nonlinearity in the problem is not high, these

second order derivatives of the residual terms can be omitted which results in the Gauss

Newton method given by the following updated equation:

A′(a)(A′(a))T∆a = −A′(a)r(a)]νn+1 (5.76)

Substituting equation (5.75) in (5.76), the following equation is obtained:

ΨÂT ÂΨT∆a = −ΨÂTr]νn+1 (5.77)

The Gauss Newton method results in a loss of quadratic rate of convergence in the New-

tons method. If the degree of nonlinearity is very high in the problem, the Gauss Newton

method will fail to converge and in this case the full Newton method as discussed in pre-

vious section needs to be employed.

5.3.5 Convergence criteria

As can be seen from the nonlinear equations in equation (5.55) and the incre-

mental equations in (5.59), as A′(a)r(a) converges ∆a also converges. Taking this
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into account the following two convergence criteria can be used:

‖A′(a)r(a)‖0 < ε(‖A′(a)r(a)‖0)ν=1 (5.78a)

‖∆a‖0 < ε(‖a‖0)ν=1 (5.78b)

where ε is the specified tolerance.

5.3.6 Derivation from nonlinear least squares functional

The above RKCM formulation can be equivalently derived from the variation

and linearization of the weighted least squares functional for the strong form of the

governing equations given in (5.27):

Π(ui; fi, gi, hi) =
1

2

∫
ΩX

(σPi,P + bi)(σAi,A + bi)dΩX

+
αh

2

∫
∂Ωh

X

(σPiNP − hi)(σAiNA − hi)dΓ

+
αg

2

∫
∂Ωg

X

(ui − gi)(ui − gi)dΓ (5.79)

where αh and αg are the square of the weights on the natural and essential boundary

conditions, respectively. The variational equation (minimization) is obtained by the

stationary condition of the functional (5.79) and is given by:

δΠ ≡
∫

ΩX

δ(σPi,P + bi)(σAi,A + bi)dΩX + αh
∫
∂Ωh

X

δ(σPiNP − hi)(σAiNA − hi)dΓ

+ αg
∫
∂Ωg

X

δui(ui − gi)dΓ = 0 (5.80)

The above nonlinear equation is solved using the Newton’s method, where an incremen-

tal equation of motion is considered. This requires linearization of equation (5.80). Let

n denote the load step number and ν denote the iteration number. The body force, sur-



115

face traction, prescribed displacements and deformed state of the body at the n+1th load

step and ν th iteration are known from previous iterations. The linearization is carried out

as follows to obtain the incremental displacement, ∆u defined by, xν+1
n+1 = xνn+1 + ∆u:

δΠν
n+1 + ∆[δΠ] = 0

⇒∆[δΠ] = −δΠν
n+1 (5.81)

which gives:

∫
ΩX

[∆(δ(σPi,P + bi))(σAi,A + bi) + δ(σPi,P + bi)∆(σAi,A + bi)] dΩX

+ αh
∫
∂Ωh

X

[∆(δ(σPiNP − hi))(σAiNA − hi) + δ(σPiNP − hi)∆(σAiNA − hi)] dΓ

+ αg
∫
∂Ωg

X

δui∆uidΓ

= −
[ ∫

ΩX

δ(σPi,P + bi)(σAi,A + bi)dΩX + αh
∫
∂Ωh

X

δ(σPiNP − hi)(σAiNA − hi)dΓ

+ αg
∫
∂Ωg

X

δui(ui − gi)dΓ

]ν
n+1

(5.82)

Assuming that the body force and surface traction are independent of deformation, equa-

tion (5.82) can be simplified as:

∫
ΩX

[∆(δ(σPi,P ))(σAi,A + bi) + δ(σPi,P )∆(σAi,A)] dΩX

+ αh
∫
∂Ωh

X

[∆(δ(σPiNP ))(σAiNA − hi) + δ(σPiNP )∆(σAiNA)] dΓ

+ αg
∫
∂Ωg

X

δui∆uidΓ

= −
[ ∫

ΩX

δ(σPi,P )(σAi,A + bi)dΩX + αh
∫
∂Ωh

X

δ(σPiNP )(σAiNA − hi)dΓ

+ αg
∫
∂Ωg

X

δui(ui − gi)dΓ

]ν
n+1

(5.83)
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The above equation gives the exact tangent operator for the incremental equations. If

the nonlinearity in the problem is not high, the Gauss Newton method is employed by

omitting the second order derivatives of the residual terms, which results in the following

equation:

∫
ΩX

δ(σPi,P )∆(σAi,A)dΩX + αh
∫
∂Ωh

X

δ(σPiNP )∆(σAiNA)dΓ

+ αg
∫
∂Ωg

X

δui∆uidΓ

= −
[ ∫

ΩX

δ(σPi,P )(σAi,A + bi)dΩX + αh
∫
∂Ωh

X

δ(σPiNP )(σAiNA − hi)dΓ

+ αg
∫
∂Ωg

X

δui(ui − gi)dΓ

]ν
n+1

(5.84)

The variation and increment terms are given by the following equations:

σAi =
∂W

∂FiA
(5.85)

σAi,A =
∂

∂XA

(
∂W

∂FiA

)
= C4

iAjB

∂FjB
∂XA

= C4
iAjBFjB,A (5.86)

δ(σPi,P ) = C6
iP ĵQk̂R

δFk̂RFĵQ,P + C4
iP ĵQ

δFĵQ,P (5.87)

∆(σAi,A) = C6
iAjBkC∆FkCFjB,A + C4

iAjB∆FjB,A (5.88)

δ(σPiNP ) = C4
iP ĵQ

NP δFĵQ (5.89)

∆(σAiNA) = C4
iAjBNA∆FjB (5.90)
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∆(δ(σPi,P )) = C8
iP ĵQk̂Rl̂S

FĵQ,P∆Fl̂SδFk̂R

+ C6
iP ĵQk̂R

(
δFk̂R∆FĵQ,P + ∆Fk̂RδFĵQ,P

)
(5.91)

∆(δ(σPiNP )) = δFĵQC
6
iP ĵQk̂R

NP∆Fk̂R (5.92)

Here,

C8
iAjBkClD =

∂4W

∂FiA∂FjB∂FkC∂FlD
(5.93)

5.3.6.1 Discrete equations

Equation (5.84) can be re-written as follows:

≡
∫

ΩX

δuT L̃T L̃∆u dΩX + αh
∫
∂Ωh

X

δuT (B̃h)T B̃h∆u dΓ

+ αg
∫
∂Ωg

X

δuT (B̃g)T B̃g∆u dΓ

= −
[ ∫

ΩX

δuT L̃T R̃1 dΩX + αh
∫
∂Ωh

X

δuT (B̃h)T R̃2 dΓ

+ αg
∫
∂Ωg

X

δuT (B̃g)T R̃3 dΓ

]ν
n+1

(5.94)

where the nonlinear matrix operators L̃(u), B̃h(u) and B̃g(u), R̃1(u), R̃2(u) and

R̃3(u) are given by:

L̃(u) = L̃1(u) + L̃2(u) (5.95)
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with

L̃1(u) =


C6

1AjB1Cuj,BADC C6
1AjB2Cuj,BADC C6

1AjB3Cuj,BADC

C6
2AjB1Cuj,BADC C6

2AjB2Cuj,BADC C6
2AjB3Cuj,BADC

C6
3AjB1Cuj,BADC C6

3AjB2Cuj,BADC C6
3AjB3Cuj,BADC

 (5.96a)

L̃2(u) =


C4

1A1BD
2
BA C4

1A2BD
2
BA C4

1A3BD
2
BA

C4
2A1BD

2
BA C4

2A2BD
2
BA C4

2A3BD
2
BA

C4
3A1BD

2
BA C4

3A2BD
2
BA C4

3A3BD
2
BA

 (5.96b)

B̃h(u) =


C4

1A1BNADB C4
1A2BNADB C4

1A3BNADB

C4
2A1BNADB C4

2A2BNADB C4
2A3BNADB

C4
3A1BNADB C4

3A2BNADB C4
3A3BNADB

 (5.97)

B̃g(u) = I3×3 =


1 0 0

0 1 0

0 0 1

 (5.98)

R̃1(u) =


σA1(u),A + b1

σA2(u),A + b2

σA3(u),A + b3

 ; R̃2(u) =


σA1(u)NA − h1

σA2(u)NA − h2

σA3(u)NA − h3

 ; R̃3(u) =


u1 − g1

u2 − g2

u3 − g3


(5.99)

For the strong form collocation method the integrals in equation (5.94) are carried out

using quadrature rules where the quadrature points correspond to a set of collocation

points. Consider a set of collocation points in the domain and on the essential and

natural boundaries as defined in (5.43). Also consider the approximation of u as defined

in equation (5.45). Similarly the approximation of the increment of displacement ∆u
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denoted by ∆uh and the variation of displacement δu denoted by δuh are given by:

∆uh(x) = ΨT∆a (5.100a)

δuh(x) = ΨT δa (5.100b)

where ∆aT =
{

∆aT1 ,∆a
T
2 , · · · ,∆aTNS

}
with ∆aTI = {∆a1I ,∆a2I , · · · ,∆ad̂I} and

δaT =
{
δaT1 , δa

T
2 , · · · , δaTNS

}
with δaTI = {δa1I , δa2I , · · · , δad̂I}. Introducing the ap-

proximations for u, δu and ∆u in equation (5.94) and integrating using the collocation

points, results in the following equation:

NP∑
I=1

(δaTΨ)L̃T (uh(pI))L̃(uh(pI))(Ψ
T∆a)

+

NQ∑
I=1

αhI (δaTΨ)
(
B̃h
)T

(uh(qI))B̃
h(uh(qI))(Ψ

T∆a)

+

NR∑
I=1

αgI(δa
TΨ)

(
B̃g
)T

(uh(rI))B̃
g(uh(rI))(Ψ

T∆a)

= −
[ NP∑
I=1

(δaTΨ)L̃T (uh(pI))R̃1(uh(pI))

+

NQ∑
I=1

αhI (δaTΨ)
(
B̃h
)T

(uh(qI)R̃2(uh(qI))

+

NR∑
I=1

αgI(δa
TΨ)

(
B̃g
)T

(uh(rI))R̃3(uh(rI))

]ν
n+1

(5.101)

where a = aνn+1. It should be noted that L̃(uh) = L̂(uh), B̃h(uh) = B̂h(uh),

B̃g(uh) = B̂g(uh), R̃1(uh) = R1(uh), R̃2(uh) = R2(uh), R̃3(uh) = R3(uh).

Re-arranging in matrix form:

δaTΨ
[
ÂT

1 Â1 + ÂT
2 Â2 + ÂT

3 Â3

]
ΨT∆a

= −δaTΨ
[
ÂT

1 r1 + ÂT
2 r2 + ÂT

3 r3

]
(5.102)
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which gives:

δaTΨÂT ÂΨT∆a = −δaTΨÂTr, ∀δaT 6= 0 (5.103)

which results in the final set of equations:

ΨÂT ÂΨT∆a = −ΨÂTr (5.104)

where the matrix Â and vector r are defined in equations (5.64) – (5.65) and (5.71) –

(5.72), respectively.

It can be seen that equations (5.104) and (5.77), which give derivations from the

nonlinear least squares functional and the nonlinear strong form governing equations,

respectively, result in exactly the same system of Gauss Newton equations.

5.3.7 Note on linearization followed by minimization of governing

equations

Direct linearization of the strong form equilibrium equations and using least

squares method to solve the over-determined system is equivalent to solving nonlinear

least squares collocation using Gauss Newton method. This is derived as follows.

Consider the strong form of the governing equations as given in equation (5.27).

Linearization of these equations using Newton’s method gives:

∆σAi,A = −(σAi,A + bi)
ν
n+1 in ΩX (5.105a)

∆(σAiNA) = −(σAiNA − hi)νn+1 on ∂Ωh
X (5.105b)

∆ui = −(ui − gi)νn+1 on ∂Ωg
X (5.105c)
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assuming bi, hi and gi are independent of deformation. This gives:

C6
iAjBkCuj,BA∆uk,C + C4

iAjB∆uj,BA = − (σAi,A + bi)
ν
n+1 in ΩX (5.106a)

C4
iAjBNA∆uj,B = − (σAiNA − hi)νn+1 on ∂Ωh

X (5.106b)

∆ui = −(ui − gi)νn+1 on ∂Ωg
X (5.106c)

The above equations can be re-written as:
L̃(u)

B̃h(u)

B̃g(u)

∆u = −


R̃1(u)

R̃2(u)

R̃3(u)

 (5.107)

where the nonlinear matrix operators L̃(u), B̃h(u), B̃g(u), R̃1, R̃2 and R̃3 are given

in equations (5.95) – (5.99). Consider a set of collocation points as given in equation

(5.43). Substituting the approximations for u and ∆u given in equations (5.45) and

(5.100a), respectively, in the above linearized strong form equilibrium equations (5.106)

and enforcing the residual to be equal to zero at the collocation points results in the

following over-determined system of equations:

ÂΨT∆a = −r (5.108)

where weights are added on the essential and natural boundaries to balance the error

between the domain and boundary terms, as discussed in section 5.3.3. The Â and vector

r are defined in equations (5.64) – (5.65) and (5.71) – (5.72), respectively. Solving the

above over-determined system of equations using the method of least squares results in

equation (5.104) which was derived from the nonlinear least squares functional using

Gauss Newton method. This procedure directly gives the approximate tangent in the
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incremental equations.

5.3.8 Algorithm for implementing RKCM using the Gauss Newton

method

• Input NS , NC , material parameters, load increment

• Loop over the collocation pointsXA

– Compute the shape functions Ψ(XA) and the first and second order material

derivatives of the shape function at the collocation pointsXA.

• End loop over collocation points

• Initiate the nodal coordinates a = 0

• In (n+ 1)th load step and (ν+ 1)th iteration: Loop over the collocation pointsXA

– Compute uh(XA) = ΨTaνn+1 and derivatives of displacement using aνn+1

from the previous iteration.

– Using aνn+1 compute the deformation gradient F , right Cauchy Green tensor

G, invariants of right Cauchy Green tensor I1, I2, I3, reduced invariants Ī1,

Ī2 and J at the collocation point.

– Compute the matrices Â1, Â2, Â3 and r1, r2, r3

– Estimate the weight on the essential boundary
√
αg

• End loop over collocation points

• Assemble the matrices to form the over-determined system of equations

ÂΨT∆a = −r
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• Solve the above equations for ∆a using the method of least squares or QR least

squares and update aν+1
n+1 = aνn+1 + ∆a.

• Check convergence

• If convergence criteria is satisfied, go to next load step else go to next iteration

5.3.9 Remarks

• Least squares solution of strong form collocation equations followed by Newton’s

linearization results in giving the exact tangent in the incremental equations.

• Equivalently, variation minimizing of the least squares functional followed with

quadrature by Newton’s linearization gives the exact tangent in the incremental

equations.

• For derivations using both the above methods, the second order derivatives of

the residual terms can be omitted if the nonlinearity in the problem is not high.

This results in an approximate tangent for the incremental equations and gives the

Gauss Newton method of solution.

• Alternatively, collocation of incremental strong form equations followed by least

squares method to solve the over-determined system results in an approximate

tangent in the Gauss Newton incremental equations. The exact tangent is not

obtained in this process.

• For most problems if significant nonlinearity does not exist, the Gauss Newton

method can be used for solution. If there exists significant nonlinearity and the

Gauss Newton method converges slowly or ceases to converge, the omitted terms

need to be added to get the exact tangent in the nonlinear iterations.
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Table 5.1: Material constants (in N/cm2) for cubic hyperelastic model of rubber

A10 A20 A30

37.3 -3.1 0.5

• For image-based modeling using RKCM, the source points and collocation points

are chosen from the segmented images. A coarser discretization is chosen for

the source points compared to the collocation points which can have the same

fine scale discretization as the image pixels. The material and fiber properties are

specified at these collocation pixel points.

5.3.10 Numerical examples

In all examples provided in sections 5.3.10.1 and 5.3.10.2, the body force is taken

to be zero. RK approximation function with quadratic basis and a rectangular support

is used. A support size of 3h is used in all directions where h is the nodal spacing of

the source points in each of the directions, unless specified otherwise. The weight on

the natural boundary
√
αh = 1 is used in all examples. A cubic polynomial type strain

energy density function as given in equation (5.37) is used, with material parameters

for rubber model adopted from [125]. They are listed in table 5.1 for convenience. The

bulk modulus (K) and the weight on the essential boundary
√
αg, is specified for each

example. The units of Newton (N ) and centimeter (cm) are used for force and length,

respectively.
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Figure 5.10: ‘Near’ simple shear deformation of rubber

5.3.10.1 Fundamental test problems

5.3.10.1.1 ‘Near’ simple shear deformation

Simple shear deformation of rubber block in 3D is considered as shown in fig-

ure 5.10, with width w = 4, height h = 1 and thickness t = 1. When the width

to height ratio (w/h) approaches infinity, rubber deforms in simple shear. In this ex-

ample the width to height ratio of the rubber block is 4 which generates a ‘near’ sim-

ple shear deformation. The value of bulk modulus used is K = 1E8 N/cm2 which

makes the material very nearly incompressible. The problem domain is defined by

Ω̄X = {(x, y, z)|0 ≤ x ≤ 4, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1} where x, y and z correspond

to w, h and t respectively. The domain is discretized using 9 × 3 × 3 source points

and 17 × 5 × 5 collocation points. A total of 425 collocation points in the domain and

290 collocation points on the boundary are used. The essential boundary conditions are

prescribed as follows:

y = 0 : ux = uy = uz = 0 (5.109a)

y = 1 : ux = γy, uy = uz = 0 (5.109b)

z = 0, z = 1 : uz = 0 (5.109c)
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(a) Undeformed configuration

 

  

(b) Deformed configuration

Figure 5.11: Undeformed and deformed configuration for simple shear problem using
RKCM

Here γ is prescribed and is equal to the tangent of the shearing angle. Remaining bound-

aries are treated as traction free natural boundaries. The out-of-plane displacement on

z = 0 and z = 1 is restricted to simulate plane strain condition. The weight on the

essential boundary is taken to be
√
αg(XA) = NS max(CiAjB(XA)). The rubber block

is sheared up to 500% engineering shear strain as shown in figure 5.11. The analytical

solution for Cauchy shear stress in the xy plane is given by [126]:

σxy = 2γ

(
∂W

∂I1

+
∂W

∂I2

)
(5.110)

with

I1 = I2 = 3 + γ2 (5.111)

The RKCM Cauchy shear stress at the midpoint of domain is compared with analyti-

cal solution in figure 5.12 which shows excellent agreement. In figure 5.13 the Cauchy

shear stress distribution in the final deformed state is plotted in the domain and is com-

pared using two methods, RKCM and Reproducing Kernel Particle Method (RKPM).

For RKPM which is a weak form based method, 2 point gauss integration (reduced inte-

gration for nearly incompressible material) was used to integrate the stiffness matrix and

force vector. Additionally for RKPM, the transformation method [54] is used to impose

essential boundary conditions. The exact solution in the final deformed state is close to

8198N/cm2. It can be seen that RKCM gives a more accurate solution throughout the
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Figure 5.12: Cauchy shear stress (in N/cm2) comparison for simple shear problem
using RKCM

domain and a smoother stress distribution with less oscillations, compared to RKPM.

5.3.10.1.2 Uniaxial tension and compression

Uniaxial tension and compression of a rubber block is considered. A symmetric

part of the 3D model is used, with width w = 4, height h = 1 and thickness t = 1. The

problem domain is defined by Ω̄X = {(x, y, z)|0 ≤ x ≤ 4, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}

where x, y and z correspond to w, h and t respectively. A displacement is prescribed

on the plane perpendicular to the x–axis which produces an extension or compression

of the rubber block as shown in figure 5.14. The value of bulk modulus used is K =

1E8 N/cm2 which makes the material very nearly incompressible. The same domain

discretization for source and collocation points as given in the simple shear problem is

used. The essential boundary conditions are prescribed as follows:
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(a) σxy plotted in domain using RKPM
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(b) σxy plotted in domain using RKCM

Figure 5.13: Comparison of Cauchy shear stress distribution using RKPM and RKCM
for simple shear problem

(a) Uniaxial tension (b) Uniaxial compression

Figure 5.14: Uniaxial tension and compression of rubber (symmetric part of the model)
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Symmetry boundary conditions:

x = 0 : ux = 0 (5.112a)

y = 0 : uy = 0 (5.112b)

z = 0 : uz = 0 (5.112c)

Loading boundary conditions:

x = 4 : ux = g1; (for Uniaxial tension) (5.113a)

x = 4 : ux = −g2; (for Uniaxial compression) (5.113b)

where g1 and g2 are the prescribed displacements in tension and compression respec-

tively. Remaining boundaries are treated as traction free natural boundaries. The weight

on the essential boundary is taken to be
√
αg(XA) = NS max(CiAjB(XA)) for the uni-

axial tension and
√
αg(XA) = max(CiAjB(XA)) for uniaxial compression. The rubber

block is stretched up to 500% for uniaxial tension case and compressed to 90% for the

uniaxial compression case as shown in figure 5.15. The analytical solution for Cauchy

stress σxx is given by [127]:

σxx = 2
(
λ2 − λ−1

)(∂W
∂I1

+ λ−1∂W

∂I2

)
(5.114)

with

I1 = λ2 + 2λ−1 (5.115a)

I2 = 2λ+ λ−2 (5.115b)

where λ is the stretch ratio in the x direction. It should be noted that the exact solution
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 (a) Uniaxial tension

 

(b) Uniaxial compression

Figure 5.15: Undeformed (dark grey color) and deformed (light grey color) configura-
tions for uniaxial tension and compression using RKCM
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(a) Uniaxial tension
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(b) Uniaxial compression

Figure 5.16: Cauchy stress σxx (in N/cm2) comparison for uniaxial tension and com-
pression problem using RKCM

corresponds to a plane stress case where a thin sheet of rubber material is considered and

the thickness is close to zero. The RKCM Cauchy stress σxx at the midpoint of domain

is compared with analytical solution in figure 5.16 for both the tension and compression

cases. Very close agreement between the RKCM and analytical solution is obtained.

In figure 5.17 the Cauchy stress distribution in the x-direction in the final deformed

state is plotted in the domain for the uniaxial compression case only, for demonstration

purpose. It is compared using two methods, RKCM and RKPM. For RKPM, 4 point

gauss integration was used to integrate the stiffness matrix and force vector. Additionally

for RKPM, the transformation method is used to impose essential boundary conditions.

The exact solution in the final deformed state is close to −7309N/cm2. It can be seen

that RKCM gives a very accurate solution throughout the domain and also a smoother

stress distribution with less oscillations compared to RKPM.

5.3.10.1.3 Equibiaxial deformation

Equibiaxial deformation of a rubber block is considered. A symmetric part of

the 3D model is used, with width w = 4, height h = 4 and thickness t = 1. The
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Figure 5.17: Comparison of Cauchy stress (σxx) distribution using RKPM and RKCM
for uniaxial compression problem

problem domain is defined by Ω̄X = {(x, y, z)|0 ≤ x ≤ 4, 0 ≤ y ≤ 4, 0 ≤ z ≤ 1}

where x, y and z correspond to w, h and t respectively. Displacements are prescribed

on planes perpendicular to the x and y axis which produce an extension of the rubber

block in these directions as shown in figure 5.18. The value of bulk modulus used is

K = 1E8 N/cm2 which makes the material very nearly incompressible. The domain is

discretized using 9 × 9 × 3 source points and 17 × 17 × 5 collocation points. A total

of 1445 collocation points in the domain and 770 collocation points on the boundary are

used. The essential boundary conditions are prescribed as follows:

Symmetry boundary conditions:

x = 0 : ux = 0 (5.116a)

y = 0 : uy = 0 (5.116b)

z = 0 : uz = 0 (5.116c)
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Figure 5.18: Equibiaxial deformation of rubber (symmetric part of the model)

Loading boundary conditions:

x = 4 : ux = g (5.117a)

y = 4 : uy = g (5.117b)

where g is the prescribed displacement. Remaining boundaries are treated as trac-

tion free natural boundaries. The weight on the essential boundary is taken to be
√
αg(XA) = max(CiAjB(XA)). The rubber block is stretched up to 100% in each of

the two directions x and y as shown in figure 5.19. The analytical solution for Cauchy

stress is given by [128]:

σxx = σyy = σ = 2

(
λ2 − 1

λ4

)(
∂W

∂I1

+ λ2∂W

∂I2

)
(5.118)

with

I1 = 2λ2 + λ−4 (5.119a)

I2 = λ4 + 2λ−2 (5.119b)
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Figure 5.19: Undeformed (dark grey color) and deformed (light grey color) configura-
tions for equibiaxial deformation problem using RKCM
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Figure 5.20: Cauchy stress σxx (in N/cm2) comparison for equibiaxial deformation
problem using RKCM

where λ1 = λ2 = λ is the stretch ratio in the x and y directions. It should be noted

that the exact solution corresponds to a plane stress case where a thin sheet of rubber

material is considered and the thickness is close to zero. The RKCM Cauchy stress σxx

at the midpoint of domain is compared with analytical solution in figure 5.20. Very close

agreement between the RKCM and analytical solution is obtained.

5.3.10.1.4 Pure dilation

Pure dilation of a compressible rubber block is considered. The strain energy

density considered is decoupled in to distortional and dilatational parts as given in
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Figure 5.21: Pure dilation of compressible rubber (symmetric part of the model)

section 5.3.2. Under pure dilation, Ī1 and Ī2 are constant and the distortional part

of strain energy W̄ (Ī1, Ī2) = 0. The deformation is described only by the dilata-

tional strain energy W̃ (J). A symmetric part of the 3D model is used with width

w = 1, height h = 1 and thickness t = 1. The problem domain is defined by

Ω̄X = {(x, y, z)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1} where x, y and z correspond

to w, h and t respectively. Displacements are prescribed on planes perpendicular to the

x, y and z axis which produce an extension of the rubber block in these directions as

shown in figure 5.21. The value of bulk modulus used is K = 250N/cm2. The domain

is discretized using 6× 6× 6 source points and 11× 11× 11 collocation points. A total

of 1331 collocation points in the domain and 602 collocation points on the boundary are

used. The essential boundary conditions are prescribed as follows:
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Symmetry boundary conditions:

x = 0 : ux = 0 (5.120a)

y = 0 : uy = 0 (5.120b)

z = 0 : uz = 0 (5.120c)

Loading boundary conditions:

x = 1 : ux = g (5.121a)

y = 1 : uy = g (5.121b)

z = 1 : uz = g (5.121c)

where g is the prescribed displacement. Remaining boundaries are treated as trac-

tion free natural boundaries. The weight on the essential boundary is taken to be
√
αg(XA) = max(CiAjB(XA)). The rubber block is stretched up to 500% in each

of the three directions x, y and z and the deformed configuration is shown in figure

5.22. The analytical solution for Cauchy stress is given by:

σxx = σyy = σzz = σ = K(J − 1) (5.122)

The RKCM Cauchy stress σxx at the midpoint of the domain is compared with analytical

solution in figure 5.23. Excellent agreement between the RKCM and analytical solution

is obtained.
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Figure 5.22: Undeformed (dark grey color) and deformed (light grey color) configura-
tions for pure dilation problem using RKCM
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Figure 5.23: Cauchy stress σxx (in N/cm2) comparison for pure dilation problem using
RKCM

5.3.10.2 Inflation of a rubber tube

Inflation of a rubber tube is considered using 2D plane strain analysis. For this

problem the pressure displacement behavior is highly nonlinear. An infinitely long rub-

ber cylinder with inner radius of Ri = 6 and outer radius of Ro = 8 is subjected to an

internal pressure as shown in figure 5.24(a). Using symmetry, a quarter of the geometry
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is modeled as shown in figure 5.24(b). Bulk modulus of K = 1E3N/cm2 is used. For

this analysis an incremental radial displacement is prescribed and radial Cauchy stress

is calculated in each load step. A support size of 4h is used for the RK shape function.

The domain is discretized using 459 source points, 1717 collocation points in the do-

main and 232 collocation points on the boundary as shown in figure 5.25. The essential

boundary conditions are prescribed as follows:

Symmetry boundary conditions:

x = 0 : ux = 0 (5.123a)

y = 0 : uy = 0 (5.123b)

Loading boundary conditions:

r = Ri : ux = γcos(θ), uy = γsin(θ) (5.124)

Here γ is the prescribed radial displacement. Remaining boundaries are treated as

traction free natural boundaries. The weight on the essential boundary is taken to be
√
αg(XA) = NS max(CiAjB(XA)). The analytical solution can be found in [125]. The

tube is inflated till the inner radius is doubled. The RKCM radial Cauchy stress σrr at

the midpoint of the inner circumference is compared with analytical solution in figure

5.26. Good agreement between the RKCM and analytical solution is obtained. The un-

deformed and deformed geometry along with the distribution of the radial Cauchy stress

is given in figure 5.27.
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Figure 5.24: Inflation of a rubber tube problem geometry
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Figure 5.25: Inflation of a rubber tube problem discretization
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Figure 5.26: Radial Cauchy stress σrr (in N/cm2) comparison for inflation of a rubber
tube problem using RKCM
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Figure 5.27: Undeformed and deformed configuration with radial Cauchy stress σrr (in
N/cm2) distribution for inflation of a rubber tube problem
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5.3.10.3 Isometric contraction of skeletal muscle

5.3.10.3.1 Validation with RKPM using simple geometry

Isometric contraction of a simple geometry composed of muscle material is con-

sidered. A 3D model is used, with width w = 1, height h = 1 and thickness t = 2. The

problem domain is defined by Ω̄X = {(x, y, z)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 2}

where x, y and z correspond tow, h and t respectively as shown in figure 5.28. The strain

energy density for muscle material as described in section 4.2.4 is used for modeling,

with material parameters given in table 4.1. The fiber direction at all the collocation

points in the muscle is taken to be vertically pointing in the z direction. The ends of

the muscle are fixed and the activation factor is incremented to a maximum level in the

load steps to simulate isometric contraction of the muscle. The domain is discretized

using 9 × 9 × 17 source points and 17 × 17 × 33 collocation points. A total of 9537

collocation points in the domain and 2562 collocation points on the boundary are used.

The essential boundary conditions are prescribed as follows:

z = 0 : ux = uy = uz = 0 (5.125a)

z = 2 : ux = uy = uz = 0 (5.125b)

Remaining boundaries are treated as traction free natural boundaries. The weight on

the essential boundary is taken to be
√
αg(XA) = NS max(CiAjB(XA)). The unde-

formed and deformed (scaled 500 times) configurations are shown in figure 5.29. For

the purpose of validation RKPM solution was obtained for the same discretization using

8 point gauss quadrature rule for background integration. The transformation method

is used for imposing the essential boundary conditions. The RKCM solution for the

Cauchy stress σzz at the midpoint of the domain is compared with the results obtained
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Figure 5.28: Isometric contraction of muscle, simple geometry

from RKPM as shown in figure 5.30(a). The reaction force generated at the fixed end is

compared in figure 5.30(b) which shows very good agreement. For RKCM the reaction

force is obtained by integrating the traction in the z-direction at the fixed end and for

RKPM the reaction force is obtained by summing the internal force in the z-direction at

the fixed end.

5.3.10.3.2 Modeling of Medial Gastrocnemius (MG) muscle

The medial gastrocnemius muscle under isometric contraction is simulated us-

ing RKCM. The ends of the muscle are fixed and the activation factor is incremented to

a maximum level in the load steps to simulate isometric contraction of the muscle. The

entire muscle is considered as muscle material and the same material law as described

in the previous example is used. The actual muscle fiber directions as obtained from

the DT images are specified at the collocation points. The domain is discretized using

1837 source points, 3727 collocation points in the domain and 1320 collocation points

on the boundary as shown in figure 5.31. Sample image slice, showing the source and

collocation points is shown in figure 5.32, where coarse models for both source and
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(a) Undeformed configuration  (b) Deformed configuration (deforma-
tion scaled by 500 times)

Figure 5.29: Undeformed and deformed configurations for the muscle validation prob-
lem
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(a) Comparison of Cauchy stress σzz in N/cm2 at
the mid point of the domain
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(b) Comparison of Reaction force at the fixed end

Figure 5.30: Comparison of Cauchy stress σzz in N/cm2 and reaction force generated
using RKCM and RKPM
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(a) Source points
 

(b) Collocation points
 

(c) Boundary collocation
points

Figure 5.31: Source and collocation points for MG muscle under isometric contraction

collocation points are taken from the fine scale MR image. The weight on the essential

boundary is taken to be
√
αg(XA) = NS max(CiAjB(XA)). The muscle deforma-

tion and distribution of maximum principle Cauchy stress obtained are shown in figure

5.33(a), 5.33(b) and 5.34, respectively. This example demonstrates the ability of RKCM

to simulate complicated muscle geometries where the points discretization for domain

and boundary is directly input from the segmentation results.

5.3.10.3.3 Effect on muscle force production due to fiber direction

This example demonstrates the effect in muscle force generation under isometric

contraction for using anatomically accurate fiber direction from DT images compared

with a case where fiber direction is assumed to be in a particular direction. The same GM

model as given in the previous example is taken. Two cases are considered as shown

in figure 5.35 corresponding to two different fiber orientations. For case 1, the fiber

direction at each pixel point is fixed at an inclination close to the orientation assumed
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 (a) Sample MR image
slice with the GM muscle
outlined in magenta
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Figure 5.32: Source and collocation points on sample slice for MG muscle under iso-
metric contraction

 

(a) Undeformed
configuration  

(b) Deformed con-
figuration

Figure 5.33: Deformation of MG muscle under isometric contraction
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Figure 5.34: Distribution of maximum principal Cauchy stress (in N/cm2) at maximum
isometric contraction, plotted on the deformed configuration

from muscle physiology of GM [129]. Case 2 corresponds to the actual fiber direction

at each pixel point obtained from DT imaging. Figure 5.36 shows the comparison of

reaction force generated by the muscle for the two cases. Case 1 orientation predicts an

increased reaction force, which is 1.69 times greater than the force generated in case 2,

at 50% muscle activation. This shows that considerable errors in force production are

generated when the fiber direction specified is approximated in modeling. This error

could increase as model size increases when multiple muscles are considered.

5.3.11 Performance analysis of RKCM for hyperelasticity

The computational time taken for RKCM for nonlinear analysis in two iterations

in a load step is compared with RKPM using the Gauss integration method. For both

the methods, quadratic basis is used with a support size of 3h for the RK shape function.

Consider 2D plane strain analysis of the ‘near’ simple shear deformation problem as
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 (a) Case1: Inclined
fiber direction

 

(b) Case2: Actual
fiber direction from
DT images

Figure 5.35: Fiber directions for the two cases
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Figure 5.36: Reaction force at the fixed end for MG muscle under isometric contraction
for the two cases of fiber orientation
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shown in figure 5.37, with width w = 4 and height h = 1. The value of bulk modulus

used is K = 1E3 N/cm2. The problem domain is defined by Ω̄X = {(x, y)|0 ≤ x ≤

4, 0 ≤ y ≤ 1} where x and y correspond to the directions of w and h respectively. The

essential boundary conditions are prescribed as follows:

y = 0 : ux = uy = 0 (5.126a)

y = 1 : ux = γy, uy = 0 (5.126b)

For RKCM, the domain is discretized using 17 × 5 source points and 33 × 9 colloca-

tion points. A total of 85 source points, 297 collocation points in the domain and 80

collocation points on the boundary are used. The over-determined system is solved us-

ing QR with least squares (LAPACK subroutine). For RKPM the domain is discretized

using 17 × 5 points. 5 point Gauss quadrature rule is used for integrating the stiffness

and force matrices accurately and the transformation method is used for imposing the

essential boundary conditions. The determined system is solved using LU factoriza-

tion (LAPACK subroutine). The total CPU time taken to run the 2 iterations (including

solver time), CPU time taken for computing the shape functions and its derivatives, CPU

time taken for assembling the stiffness and force matrices, and the CPU time taken for

solving the systems is given in table 5.2. Additionally a much finer model with 1105

source points, 4257 collocation points in the domain and 320 collocation points on the

boundary for RKCM, and 1105 points for RKPM with 5 point Gauss quadrature rule,

is analyzed and the results for timings are given in table 5.3. The solution at the mid

point of the domain is compared for the 2 methods in figure 5.38 for 100% shear strain,

for both the coarse and fine models. It can be seen from both these results that, compu-

tationally RKCM requires lesser CPU time for stiffness and force assembly compared

to RKPM with Gauss quadrature. Also the result shows that the solver time taken for
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Figure 5.37: 2D ‘near’ simple shear deformation problem geometry, RKCM perfor-
mance analysis problem
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Figure 5.38: Comparison of Cauchy shear stress at the mid point of the domain using
RKCM and RKPM for performance analysis problem

RKCM is greater. In the next chapter, reduced order modeling in the RKCM framework

is introduced, where this solver time is reduced substantially, giving a very computa-

tionally efficient reduced order model for RKCM.
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Table 5.2: Performance analysis for RKCM compared to RKPM, for 2D plane strain
‘near’ simple shear deformation problem, for 2 iterations, degrees of freedom = 170

RKCM: CPU
time (secs)

RKPM: CPU
time (secs)

Total CPU time 5.17E-1 5.247E+0
CPU time taken for
computing the shape

functions and its derivatives
2.16E-1 4.579E-1

CPU time taken for
assembling the stiffness

matrices and force vectors
1.439E-1 4.675E+0

CPU time taken for solving
the system of equations

1.319E-1 9.997E-3

Table 5.3: Performance analysis for RKCM compared to RKPM, for 2D plane strain
‘near’ simple shear deformation problem, for 2 iterations, degrees of freedom = 2210

RKCM: CPU
time (secs)

RKPM: CPU
time (secs)

Total CPU time 8.65E+1 1.148E+3
CPU time taken for
computing the shape

functions and its derivatives
1.797E+0 5.063E+0

CPU time taken for
assembling the stiffness

matrices and force vectors
1.455E+0 1.027E+3

CPU time taken for solving
the system of equations

8.279E+1 7.597E+0



Chapter 6

Model Order Reduction (MOR) for

Linear and Nonlinear RKCM

The main aim of model order reduction is to find a lower dimension approxima-

tion of a full model solution by projecting it onto a lower dimensional space. Proper

Orthogonal Decomposition (POD) is one of the most popular methods used to construct

this projection operator. In this method the proper orthogonal modes of a system of

equations are constructed and then these modes are truncated as required to construct

the lower dimensional approximation. In this chapter, model reduction for the strong

form collocation method (RKCM) is proposed where a Least Squares Galerkin projec-

tion is used to project the over-determined system of equations. Examples are provided

for both linear and nonlinear problems for the RKCM framework. In the nonlinear case,

the method is applied for solving static problems, with incremental loading and where

the Gauss Newton method is used to solve the incremental equations. Error analysis is

carried out to compare the accuracy of the reduced solution with respect to the full scale

solution. As demonstrated in this chapter, the proposed framework provides accurate

reduced order models with substantial reduction in time taken for solving.
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6.1 Reduced bases from Proper Orthogonal Decompo-

sition (POD)

In this section the detailed derivation for obtaining the reduced order POD bases

is given [111, 116]. Consider a function u(x, t) defined on the domain x ∈ Rn, for

which a approximate reduced order function is to be obtained by projection on to a

reduced bases (here POD bases). The POD bases are obtained under the following

statement of optimality:

Find a bases φ such that; the averaged squared error between u(x, t) and its orthogonal

projection on to φ is minimized, [111]. This is given by the following expression:

min
φ∈L2

〈∥∥∥∥u− (u, φ)

‖φ‖2
φ

∥∥∥∥2
〉

(6.1)

where (•, •) is the inner product defined by (f, g)Ω =
∫

Ω
f(x)g∗(x)dx. Here ‘∗’ denotes

the complex conjugate. ‖ • ‖ = (•, •) 1
2 is the induced norm and 〈•〉 is the averaging

operator. This is equivalent to maximizing the averaged inner product between u and φ

suitably normalized [111, 116]:

max
φ∈L2

〈|(u, φ)|2〉
‖φ‖2

(6.2)

subject to the condition ‖φ‖2 = 1. Here | • | denotes the absolute value. The proof for
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equivalence of equation (6.1) and (6.2) is given as follows:〈∥∥∥∥u− (u, φ)

‖φ‖2
φ

∥∥∥∥2
〉

=

〈(
u− (u, φ)

‖φ‖2
φ, u− (u, φ)

‖φ‖2
φ

)〉
=

〈
(u, u)− 2

(u, φ)

‖φ‖2
(u, φ) +

(u, φ)

‖φ‖2

(u, φ)

‖φ‖2
‖φ‖2

〉
=

〈
‖u‖2 − |(u, φ)|2

‖φ‖2

〉
=
〈
‖u‖2

〉
−
〈
|(u, φ)|2

‖φ‖2

〉
(6.3)

From the above proof, it can be seen that:

min
φ∈L2

〈∥∥∥∥u− (u, φ)

‖φ‖2
φ

∥∥∥∥2
〉
⇒ max

φ∈L2

〈|(u, φ)|2〉
‖φ‖2

; ‖φ‖2 = 1 (6.4)

For example, consider the case when u represents velocity. Equation (6.2) means

that if u is projected along φ, the average energy content (kinetic energy) is greater than

if u is projected along any other bases function. The maximization problem in equation

(6.2) can be recast into a constrained minimization problem with the functional defined

by:

J [φ] =
〈
|(u, φ)|2

〉
− λ

(
‖φ‖2 − 1

)
(6.5)

where λ is the Lagrange multiplier. Using calculus of variations, the necessary condition

for extrema is reached when the functional derivative vanishes for all variations of φ +

εη ∈ L2. Here η 6= 0 is an auxillary function and ε ∈ R is a small parameter.

d

dε
J [φ+ εη]

∣∣∣∣
ε=0

= 0 (6.6)
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Using the inner product property; (f, g) = (g, f)∗, the above equation can be written as:

d

dε
[〈(u, φ+ εη)(φ+ εη, u)〉 − λ(φ+ εη, φ+ εη)]

∣∣∣∣
ε=0

= 0

⇒2 [〈(u, η)(φ, u)〉 − λ(φ, η)] = 0

⇒
〈∫

Ω

u(x)η∗(x)dx

∫
Ω

φ(x′)u∗(x′)dx′
〉
− λ

∫
Ω

φ(x)η∗(x)dx = 0 (6.7)

Interchanging the order of the averaging operator and inner product (averaging operator

commutes with the integral):

∫
Ω

[∫
Ω

〈u(x)u∗(x′)〉φ(x′)dx′ − λφ(x)

]
η∗(x)dx = 0 (6.8)

This results in the following Euler–Lagrange equation:

∫
Ω

〈u(x)u∗(x′)〉φ(x′)dx′ = λφ(x); ∀η∗(x) 6= 0 (6.9)

The above equation gives the integral eigenvalue problem. HereR(x,x′) = 〈u(x)u∗(x′)〉

is the averaged auto correlation function. The solution to the integral eigenvalue prob-

lem given in equation (6.9), gives a series of eigenvector or eigenfuctions which are

called Proper Orthogonal Modes φi(x)∞i=1 (POM’s or POD modes) and the correspond-

ing eigenvalues λ∞i=1 are called Proper Orthogonal Values (POV’s). The energy con-

tained is defined as:

E =
∞∑
i=1

λi (6.10)

and the energy captured by the ith POM is given by λi/E. The reduced order solution

to u is obtained by truncating the bases and considering only the first r modes which

capture say around 99% of energy. From the mathematical statement of optimality used

for constructing the POD bases, it can be seen that on an average, the reduced POD bases
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form the ‘best’ bases as the POD eigenvalues decay rapidly and capture more amount of

energy in the first r POD modes, than any other bases.

Finally the approximation of u denoted by uh is obtained by projecting u on to

the reduced POD bases as follows:

u(x) ≈ uh(x) =
r∑
i=1

φ(x)ai = Ua (6.11)

where U = [φ1, · · · , φr] are the reduced bases functions and a = {a1, · · · , ar} are

unknown coefficients.

6.1.1 POD computation in the discrete case using eigenvalue analy-

sis

In general the continuous governing equations are discretized in space when

solving using finite difference, finite element or meshfree methods. For example con-

sider solving a linear elastodynamics problem using the meshfree Reproducing Kernel

Particle Method (RKPM), where u(x, t) is the field variable which is the displacement

at point x at time t. The Galerkin weak form in u is discretized in space using the

meshfree RK approximation to obtain the following matrix equation:

Md̈+Kd = F (6.12)

where,M is the mass matrix of size n×n where n is the number of degrees of freedom,

K is the stiffness matrix of size n×n, F is the force vector of size n and d is the vector

of nodal coordinates of size n.

The method of snapshots is used to find the reduced order solution to the above

equation [111, 116]. In the off-line phase where the full model simulations are run, a set
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of ‘S’ snapshots of the nodal coordinate vector d ∈ Rn, at different time intervals are

collected in a matrixD, which is called the Response matrix and is of size n× S.

D = [d1, · · · ,dS] =


d11 · · · d1S

... . . . ...

dn1 · · · dnS


n×S

(6.13)

In this chapter, when a subscript is used for matrices and vectors, this denotes their size.

The discrete averaged auto-correlation matrix R̂ is given by:

R̂ =
1

S
DDT =

1

S


∑S

j=1(d1j)
2 · · ·

∑S
j=1(d1j)(dnj)

... . . . ...∑S
j=1(dnj)(d1j) · · ·

∑S
j=1(dnj)

2

 (6.14)

The eigenvalue problem in the discrete form is given by:

R̂U = UΛ (6.15)

where

U = [φ1, · · · ,φn] (6.16)

is the matrix containing the POD bases, and

Λ = diag(λ1, · · · , λn) (6.17)

is the matrix having the eigenvalues as the diagonal entries. This discrete eigenvalue

problem is analogous to the continuous version given in equation (6.9). The above

discrete eigenvalue problem given in equation (6.15) can be solved to obtained the POD

bases. In equation (6.15), the discrete averaged auto-correlation matrix R̂, is a self-
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adjoint matrix. The Hilbert-Schmidt theorem states that: ‘The eigenvalues of a self-

adjoint matrix are real and the eigenvectors corresponding to distinct eigenvalues are

orthogonal’. According to this theorem the POD bases vectors are orthogonal.

It can be seen from (6.15) that a n × n eigenvalue problem needs to be solved

to obtain the POD bases, but as this part of the process can be carried out off-line,

this computational expense need not be considered. In general if n >> S and if it is

required to reduce this off-line computational cost, the method of snapshots as proposed

by Sirovich et al. in [113] can be used. In this method the n × n eigenvalue problem

is transformed to a S × S eigenvalue problem as follows. Since the POD bases and

the snapshots span the same space, each eigenvector φ can be expressed as a linear

combination of the snapshots.

φ = D(n×S) â(S×1) (6.18)

where âT = {â1, · · · , âS} are the unknown coefficients. Substituting this in the discrete

eigenvalue problem given in equation (6.15) gives:

R̂U = UΛ

⇒ 1

S
DDTφ = λφ; (n× n eigenvalue problem)

⇒ 1

S
DDTDâ = λDâ

⇒ 1

S
DTDâ = λâ; (S × S eigenvalue problem) (6.19)

In order for the above equation to be a necessary condition, the snapshots need to be

linearly independent [111]. Provided â is scaled to be orthonormal, that is, âT â = I:

φTφ = âTDTDâ = λS (6.20)
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To get a set of orthonormal bases φ divide by:

φi =
1√
Sλi

Dâi; i = 1, · · · , S (6.21)

This results in φTφ = I . In this way the first ‘S’ POD modes can be obtained.

6.1.2 POD computation in the discrete case using Singular Value

Decomposition (SVD)

Alternately the POD bases can be equivalently obtained by SVD of the response

matrix as follows:

D(n×S) = U(n×n) Σ(n×S) V
T

(S×S) (6.22)

here U ∈ Rn×n and V ∈ RS×S are the orthogonal matrices containing the left singular

vectors and right singular vectors ofD, respectively. The matrixU gives the POD bases.

Σ ∈ Rn×S is a semi positive definite psuedo-diagonal matrix and contains diagonal

entries with singular values ofD, given by σi.

Σ(i, i) = σi; i = min(n, S) (6.23)

and σ1 > σ2 > · · · > σmin(n,S) ≥ 0.
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6.1.3 Equivalence of EVD and SVD

The equivalence between EVD and SVD and the relationship between the eigen-

values and singular values can be obtained from the following equations:

1

S
DDT =

1

S
UΣΣTUT = U diag(

σ2
1

S
, · · · , σ

2
n

S
) UT (6.24)

1

S
DTD =

1

S
V ΣTΣV T = V diag(

σ2
1

S
, · · · , σ

2
S

S
) V T (6.25)

From the above equations, the relationship between the eigenvalues and singular values

is given by:

λi =
σ2
i

S
(6.26)

6.2 Galerkin and Petrov-Galerkin projections

Consider the general case of the matrix equation for a linear elastodynamics

problem as given in equation (6.12). The reduced order approximation for d denoted by

dh is given by the expression:

dh(n×1) = Ū(n×r) d
r
(r×1) (6.27)

where r is the order of reduction with r << n, Ū = [φ1, · · · , φr] is the projection matrix

containing the reduced set of POD bases and dr are the reduced nodal coordinates.

Substituting equation (6.27) in the system of equations (6.12) gives:

MŪd̈r +KŪdr − F = e (6.28)

where ‘e’ is the residual error as the approximation of d is substituted in the matrix

equations (6.12). In order to minimize this error, the residual error is constrained to be
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orthogonal to a subspace W, defined by the basesW ∈ Rn×r, which gives:

W Te = 0

W TMŪd̈r +W TKŪdr −W TF = 0 (6.29)

For the case of Galerkin projection, W = Ū and in the case of a Petrov-Galerkin

projection,W 6= Ū .

Finally the reduced system of equations are given by:

M̂d̈r + K̂dr = F̂ (6.30)

where

M̂(r×r) = W T
(r×n) M(n×n) Ū(n×r) (6.31a)

K̂(r×r) = W T
(r×n) K(n×n) Ū(n×r) (6.31b)

F̂(r×1) = W T
(r×n) F(n×1) (6.31c)

The matrices M̂(r×r) and K̂(r×r) are usually fully populated. POD transforms large

sparse matrices to small dense systems. Equation (6.30) gives the reduced system with

r degrees of freedom and can be solved for dr. The reduced solution dh can be obtained

from equation (6.27). It can be seen that when r << n, the computational cost for

solving the system is greatly reduced. For discrete systems, the number of POD modes

to be considered for the reduced system can be chosen such that the energy given by:

E =

∑r
i=1 λi∑n
i=1 λi

(6.32)

is greater close to 1. The critical part in model order reduction using POD is choosing
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the correct snapshots which capture the response of the full model which is essential to

give results close to the full scale model.

6.3 Model order reduction using least squares Galerkin

projection for RKCM

In the meshfree Reproducing Kernel Collocation Method (RKCM) for linear

problems and for nonlinear problems using Gauss Newton method as described in sec-

tion 5.3.4, result in solving an over-determined system of equations. In case of nonlinear

problems an over-determined system has to be solved in every iteration of a load step.

This over-determined system of equations cannot be projected using a standard Galerkin

projection, as this projection is not compatible. This will be illustrated in sections 6.3.1

and 6.3.2 for linear and nonlinear problems, respectively. To overcome this, the Least

Squares Galerkin (LSG) projection is proposed to be used in conjunction with RKCM to

form the reduced set of equations in the RKCM framework. Using the LSG projection

the bases W is chosen to be K(n×n) Ū(n×r). This method is detailed in the following

two sections for linear and nonlinear problems, respectively, with examples and error

estimates to demonstrate the effectiveness of the method.

6.3.1 Linear problems

Consider the following general linear elastodynamics problem for RKCM.

αü(x, t) +Lu(x, t) = f(x, t); x ∈ Ω, t ∈ (0, T ] (6.33)
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with boundary conditions,

Bhu(x, t) = h(x, t); x ∈ ∂Ωh, t ∈ (0, T ] (6.34a)

Bgu(x, t) = ū(x, t); x ∈ ∂Ωg, t ∈ (0, T ] (6.34b)

and initial conditions

u(x, 0) = u0(x); x ∈ Ω̄ (6.35a)

u̇(x, 0) = v0(x); x ∈ Ω̄ (6.35b)

where L,Bh andBg are the spacial differential operators in the domain, on the natural

and essential boundary, respectively. u is the displacement vector, f , h and ū are

the body force, applied boundary traction vector and prescribed displacement vector,

respectively. α is the density. u0 is the initial displacement vector, v0 is the initial

velocity vector and Ω̄ = Ω ∪ ∂Ωh ∪ ∂Ωg represents the entire problem domain.

The temporal discretization is carried out using the central difference scheme as

follows:

α(un+1(x)− 2un(x) + un−1(x)) + ∆t2Lun(x) = ∆t2 f(x, tn)︸ ︷︷ ︸
fn(x)

; x ∈ Ω (6.36a)

Bhun+1(x) = h(x, tn+1)︸ ︷︷ ︸
hn+1(x)

; x ∈ ∂Ωh (6.36b)

Bgun+1(x) = ū(x, tn+1)︸ ︷︷ ︸
ūn+1(x)

; x ∈ ∂Ωg (6.36c)

u0(x) = u0(x); x ∈ Ω̄ (6.36d)

u1(x)− u0(x) = ∆tv0(x); x ∈ Ω̄ (6.36e)

Here n is the time step counter and un(x) = u(x, tn). For the spatial discretization,
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un(x) is discretized using the Reproducing Kernel (RK) shape function as follows:

un(x) ≈ uhn(x) = ΨT (x)an (6.37)

where ΨT = [Ψ1,Ψ2, · · · ,ΨNS
] with ΨI = ΨIId̂×d̂ and

aTn =
{

(aT1 )n, (a
T
2 )n, · · · , (aTNS

)n
}

with (aTI )n = {(a1I)n, (a2I)n, · · · , (ad̂I)n}. Here

ΨI represents the RK shape function at node ‘I’. The discretization points for con-

structing the approximation of un are the source points NS . Id̂×d̂ is the identity matrix

of size d̂× d̂ where un ∈ Rd̂. Consider a set of collocation points as given in equations

(5.9) and (5.10). The approximation of un given in equation (6.37) is substituted in the

strong form of the governing equations (6.36) and the residual is enforced to be zero at

the collocation points which leads to an over-determined system of equations given by:

Man+1 = 2Man −Man−1 −∆t2A1an + ∆t2Fn︸ ︷︷ ︸
b1n,n−1

(6.38a)

A2an+1 = b2
n+1 (6.38b)

A3an+1 = b3
n+1 (6.38c)
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where

M =


αΨ(p1)

...

αΨ(pNP
)

 ; A1 =


LΨ(p1)

...

LΨ(pNP
)

 ; Fn(t) =


f(p1, tn)

...

f(pNP
, tn)

 (6.39a)

A2 =


BhΨ(q1)

...

BhΨ(qNQ
)

 ; b2
n+1 =


h(q1, tn+1)

...

h(qNQ
, tn+1)

 (6.39b)

A3 =


BgΨ(r1)

...

BgΨ(rNR
)

 ; b3
n+1 =


g(r1, tn+1)

...

g(rNR
, tn+1)

 (6.39c)

Re-writing equations (6.38) with added weights on the essential and natural boundaries:
M√
βhA2

√
βgA3


︸ ︷︷ ︸

A

an+1 =


b1
n,n−1√
βhb2

n+1

√
βgb3

n+1


︸ ︷︷ ︸

b

(6.40)

here,
√
βh and

√
βg are the weights to be applied on the natural and essential boundaries,

respectively, to balance the error between the domain and the boundary terms. They are

given by [130]:

√
βh = O(κ−1N−2

S σ) (6.41a)√
βg = O(N−1

S σ) (6.41b)

where κ is the material constant and σ = max(α,∆t2, N2
S). The initial conditions are
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given by:

Ha0 = ū0 (6.42a)

H(a1 − a0) = ∆tv̄0 ⇒Ha1 = ∆tv̄ +Ha0 (6.42b)

where the matrices are given by:

H =


ΨT (χ1)

...

ΨT (χNC
)

 ; ū0 =


u0(χ1)

...

u0(χNC
)

 ; v̄0 =


v0(χ1)

...

v0(χNC
)

 (6.43)

where χ = [χ1, · · · ,χNC
] =

[
p1, · · · ,pNP

, q1, · · · , qNQ
, r1, · · · , rNR

]
are the colloca-

tion points and NC = NP +NQ +NR. The over-determined system of equations (6.40)

can be solved using the method of least squares.

Model order reduction using Least Squares Galerkin projection:

The over-determined system of equations Aan+1 = b are reduced as follows.

Consider a one-dimensional case where the over-determined system matrices have the

following size:

A(NC×NS) (an+1)(NS ,1) = (b)(NC ,1) (6.44)

The reduced approximation of a is given by:

a ≈ ah(NS×1) = Ū(NS×r)a
r
(r×1) (6.45)

where Ū = [φ1, · · · , φr] is the reduced bases obtained by truncating POD modes of

the response matrix and r is the number of reduced modes or the reduced degrees of

freedom for solving the reduced system. ar are the unknown coefficients in the reduced
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system. Substituting the reduced approximation (6.45) in (6.44) results in the equation:

A(NC×NS) Ū(NS×r)a
r
(r×1) − (b)(NC ,1) = e (6.46)

where e is the residual error. To minimize this error, the residual error is constrained to

be orthogonal to a subspace W, defined by the basesW ∈ RNC×r, which gives:

W Te = 0

⇒W T
(r×NC)A(NC×NS) Ū(NS×r)a

r
(r×1) = W T

(r×NC)(b)(NC ,1) (6.47)

It can be seen that the bases W should belong to RNC×r for projecting the RKCM

equations. A projection using W = Ū is not possible since in this case W ∈ RNS×r.

Hence a Least Squares Galerkin projection is used with:

W = A(NC×NS) Ū(NS×r) (6.48)

This results in the reduced equation:

(A(NC×NS) Ū(NS×r))
TA(NC×NS) Ū(NS×r)a

r
(r×1) = (A(NC×NS) Ū(NS×r))

T (b)(NC ,1)

(6.49)

which is re-written as:

ŪT
(r×NS)A

T
(NS×NC)A(NC×NS) Ū(NS×r)a

r
(r×1) = ŪT

(r×NS)A
T
(NS×NC)(b)(NC ,1) (6.50)

As the above system of equations (6.50) has a symmetric matrix ŪTATA Ū on the

left hand side, Cholesky decomposition can be used to solve these reduced determined

system of equations.
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6.3.1.1 Error analysis for linear dynamic problems

The error between the full and reduced solution is determined using the follow-

ing error estimate:

e1 =
n∑

ts=1

(
|||ufull − ured|||
|||ufull|||

)
(6.51)

where ts denotes the time step counter and n is the total number of time steps, ufull is

the full scale solution evaluated at a set of N̂ points in the problem domain and obtained

off-line, ured is the reduced order solution evaluated at the same set of N̂ points. The

norm ||| • ||| is defined as follows:

|||x||| =

√∑N̂
i=1(xi)2√
N̂

(6.52)

where N̂ is the length of the vector x.

6.3.1.2 Numerical examples

6.3.1.2.1 1D Wave equation

Consider a 1D string clamped at both ends. The governing equation of motion

is given by:

αü = Eu,xx; x ∈ [0, L], t ∈ [0, T ] (6.53)

with boundary conditions:

u(0, t) = 0 (6.54a)

u(L, t) = 0 (6.54b)
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Table 6.1: Error e1 for 1D wave equation problem

r
% DOF of full

model
e1

1 1.96% 3.202E-003
5 9.8% 4.791E-004
25 49.02% 5.597E-009

and with initial conditions:

u(x, 0) = 0 (6.55a)

u̇(x, 0) = ωsin(kx) (6.55b)

The following values for the parameters are used: density α = 1, length L = 16,

Young’s modulus E = 1, wavenumber k = 5π/L and the total time T = 6. The angular

frequency is given by ω = kc, where c =
√

(E/α). A time step of ∆t = 0.2 is used.

For RKCM the domain is discretized using NS = 51 and NC = 2NS − 1 collocation

points. A support size of 3h is used in the RK approximation function where h is the

nodal spacing of the source points. A total of 31 snapshots are collected. The decay of

the first 31 POV’s is shown in figure 6.1. As the eigenvalues decay very rapidly after

the first eigenvalue, for the reduced order solution the number of POD modes is chosen

to be r = 1 which is 1.96% of degrees of freedom (DOF) of the full model. Figure 6.2

shows the comparison of the full solution for u and the reduced solution for u at the

mid point of the domain at each time step. Figure 6.3 shows the comparison of the full

solution and the reduced solution at all the points in the domain at the final time T = 6.

It can be seen that the reduced solution is very close to the full order solution. Table 6.1

gives the error e1 for different values of r. It can be seen that the error reduces as the

number of modes r are increased, as expected.
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Figure 6.1: Decay of Proper Orthogonal Values for the 1D wave equation problem
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Figure 6.2: Comparison of the solution at the mid point of the domain, plotted for
t ∈ [0, T ] for 1D wave equation problem
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Figure 6.3: Comparison of the solution at the final time T = 6 plotted over the domain,
for 1D wave equation problem
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Figure 6.4: 1D bimaterial bar with clamped ends

6.3.1.2.2 1D Bar with heterogeneous material

Consider a 1D heterogeneous bar clamped at both ends as shown figure 6.4. The

governing equation of motion is given by:

αü = (E(x)u,x),x; x ∈ [0, L], t ∈ [0, T ] (6.56)

with boundary conditions:

u(0, t) = 0 (6.57a)

u(L, t) = 0 (6.57b)

and with initial conditions:

u(x, 0) = 0 (6.58a)

u̇(x, 0) = sin(kx) (6.58b)

A smooth transition of material properties at the interface is considered where the

Young’s modulus is interpolated using the RK approximation functions with linear bases

and a support size of 4h. The interpolated E values and E,x values plotted over the

domain are shown in figure 6.5. The following values for the parameters are used:

density α = 1, length L = 16, wavenumber k = 2π/L and the total time T = 6. A

time step of ∆t = 0.2 is used. For RKCM the domain is discretized using NS = 51 and

NC = 2NS−1 collocation points. A support size of 3h is used in the RK approximation
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Figure 6.5: Interpolation of E and E,x in the domain using RK approximation function

Table 6.2: Error e1 for 1D heterogeneous bar problem

r
% DOF of full

model
e1

1 1.96% 5.776E+000
5 9.8% 3.547E-002
25 49.02% 3.018E-007

function where h is the nodal spacing of the source points. A total of 31 snapshots

are collected. The decay of the first 31 POV’s is shown in figure 6.6. Considering the

eigenvalues decay, for the reduced order solution the number of POD modes is chosen

to be r = 5 which is 9.8% of degrees of freedom (DOF) of the full model. Figure 6.7

shows the comparison of the full solution for u and the reduced solution for u at the

mid point of the domain at each time step. Figure 6.8 shows the comparison of the full

solution and the reduced solution at all the points in the domain at the final time T = 6.

It can be seen that the reduced solution is very close to the full order solution. Table 6.2

gives the error e1 for different values of r. It can be seen that the error reduces as the

number of modes r are increased, as expected.
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Figure 6.6: Decay of Proper Orthogonal Values for the 1D heterogeneous bar problem
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Figure 6.7: Comparison of the solution at the mid point of the domain, plotted for
t ∈ [0, T ] for 1D heterogeneous bar problem
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6.3.2 Nonlinear problems

Consider the Gauss Newton method for solving the nonlinear strong form equa-

tions for static hyperelastic problems using RKCM. The incremental equation is given

in (5.76) and re-written again below:

A′(a)(A′(a))T∆a = −A′(a)r(a)]νn+1 (6.59)

here n is the load step number and ν is the iteration counter for convergence of the Gauss

Newton iterations. A′ is the transpose of the Jacobian matrix and is defined in equation

(5.56). ∆a is the vector of incremental nodal coordinates which needs to be obtained in

ν + 1th iteration of n+ 1th load step. r is the residual force vector. In the off-line phase

when the full model solution is run, the snapshots matrix consists of the collection of

nodal coordinates vectors, a, obtained at the end of every load step. The reduced bases

Ū are obtained by truncation of the POD bases, which are obtained from singular value

decomposition of the snapshots matrix.

In order to carry out the Least Squares Galerkin projection for getting the re-

duced order model, consider the equations in (6.59) without the least squares projection,

that is the overdetermined system given below:

(A′(a))T∆a = −r(a) (6.60)

The subscript and superscript (]νn+1) on the right hand side of equation (6.60) have been

ignored for convenience. Consider a 1D case where NS source points and NC colloca-

tion points are used to discretize the domain. The dimensions of the matrices given in
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equation (6.60) will be as follows:

(A′(a))T(NC×NS)∆a(NS×1) = −r(a)(NC×1) (6.61)

∆a is approximated by projecting on to the reduced bases as follows:

∆a ≈ ∆ah(NS×1) = Ū(NS×r)∆a
r
(r×1) (6.62)

where Ū = [φ1, · · · , φr] is the reduced bases obtained from truncating POD modes

of the response matrix and r is the number of reduced modes or the reduced degrees

of freedom for solving the reduced system. ∆ar are the unknown coefficients in the

reduced system. Substituting the reduced approximation given in (6.62) in the matrix

equation (6.61) results in:

(A′(a))T(NC×NS)Ū(NS×r)∆a
r
(r×1) + r(a)(NC×1) = e (6.63)

where e is the residual error. To minimize this error, the residual error is constrained to

be orthogonal to a subspace W, defined by the basesW ∈ RNC×r, which gives:

W Te = 0

⇒W T
(r×NC)(A

′(a))T(NC×NS)Ū(NS×r)∆a
r
(r×1) = −W T

(r×NC)r(a)(NC×1) (6.64)

It can be seen that the bases W should belong to RNC×r for projecting the RKCM

equations. A projection using W = Ū is not possible since in this case W ∈ RNS×r.

Hence a Least Squares Galerkin projection is used with:

W = (A′(a))T(NC×NS)Ū(NS×r) (6.65)
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This results in the reduced equation:

((A′(a))T(NC×NS)Ū(NS×r))
T (A′(a))T(NC×NS)Ū(NS×r)∆a

r
(r×1)

= −((A′(a))T(NC×NS)Ū(NS×r))
Tr(a)(NC×1) (6.66)

which is re-written as:

ŪT
(r×NS)A

′(a)(NS×NC)(A
′(a))T(NC×NS)Ū(NS×r)∆a

r
(r×1)

= −ŪT
(r×NS)A

′(a)(NS×NC)r(a)(NC×1) (6.67)

As the above system of equations (6.67) has a symmetric matrix ŪTA′(a)(A′(a))T Ū

on the left hand side, Cholesky decomposition can be used to solve these reduced deter-

mined system of equations.

As it can be seen from the above procedure, the saving in time using the reduced

order model is achieved for solving the system of equations in every iteration of a load

step, in case of the static nonlinear analysis. The cost associated with constructing

the tangent stiffness and residual force matrices remains the same. As shown in the

last chapter, compared to RKPM with Gauss integration, for RKCM the time taken for

assembling the stiffness and force vectors in each iteration is much lesser, which makes

the reduced order modeling very efficient. In general for nonlinear analysis using a

reduced order projected solution, it should be noted that for the reduced order model, the

method is effective only if the time for projecting the matrices and solving the reduced

system is greater than the time taken to solve the full system in each iteration. This is

true only when the size of the full scale model is large enough and in fact for smaller

systems, the time for projecting and solving the reduced system might be comparable

with the full scale system.
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6.3.2.1 Convergence check for nonlinear iterations

For the reduced order model, where the reduced system of equations are solved

in each iteration, the convergence in each load step is checked in the reduced system.

That is, norm of the projected residual force vector should converge. From the reduced

system of equations given in (6.67), the condition for convergence in the Newton itera-

tions should be:

ŪTA′(a)r(a) = 0 (6.68)

Taking this into account the following convergence criteria is used:

‖ŪTA′(a)r(a)‖0 < ε(‖ŪTA′(a)r(a)‖0)ν=1 (6.69)

where ε is the specified tolerance.

6.3.2.2 Error analysis for nonlinear static problems

The error between the full and reduced solution is determined using the follow-

ing two error estimates. The first one is used to compare the error between the full and

the reduced solutions, and is given by:

e1 =
N∑
n=1

(
|||ufull − ured|||
|||ufull|||

)
(6.70)

where n denotes the load step counter and N is the total number of load steps, ufull is

the full scale solution evaluated at a set of N̂ points in the problem domain and obtained

off-line, ured is the reduced order solution evaluated at the same set of N̂ points. The

norm ||| • ||| is defined as follows:

|||x||| =

√∑N̂
i=1(xi)2√
N̂

(6.71)
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where N̂ is the length of the vector x.

The second error estimate is used to compare the error between the derivatives

of the full and the reduced solutions, and is given by:

e2 =
N∑
n=1

(
|||
∑3

i=1

∑3
j=1(ui,j(full) − ui,j(red))|||

|||
∑3

i=1

∑3
j=1(ui,j(full))|||

)
(6.72)

6.3.2.3 Numerical examples

Using the proposed method, examples for nonlinear static problems for hypere-

lasticity are given. Details of reduction in CPU time using the reduced model and error

analysis results are also presented.

Note about the linear solver used:

For the present study standard subroutines from LAPACK are used for solving the linear

system of equations in every iteration, in order to be consistent for the different methods

used to solve the full and reduced systems. For the full scale model the system of

overdetermined equations is solved using QR factorization. For the reduced model, the

determined system is solved using Cholesky factorization as discussed in sections 6.3.1

and 6.3.2.

6.3.2.3.1 ‘Near’ simple shear deformation

Near simple shear deformation of a rubber block as given in section 5.3.10.1.1

is considered again. The geometry and material parameters are the same as taken previ-

ously. The domain is discretized using 17×5×5 source points and 33×9×9 collocation

points. A total of 2673 collocation points in the domain and 1154 collocation points on

the boundary are used. The rubber block is sheared up to 500% engineering shear strain

as shown in figure 5.11. A total of 50 snapshots are collected which is equal to the num-

ber of load steps applied. The decay of the first 50 POV’s is shown in figure 6.9. The
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Figure 6.9: Decay of Proper Orthogonal Values for the 3D simple shear problem
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Figure 6.10: Cauchy shear stress (in N/cm2) comparison for full and reduced models
for the 3D simple shear problem using RKCM

total number of degrees of freedom (DOF) in the full model are 1275. Figure 6.10 shows

the comparison of the Cauchy shear stress at the mid point of the domain for full and re-

duced models in every load step. As the POV’s decay rapidly, for the reduced solutions

three cases are chosen where the number of POD modes are taken to be r = 1 which

is 0.078% of DOF of the full model, r = 5 which is 0.392% of DOF of the full model

and r = 20 which is 1.568% of DOF of the full model. It can be seen that very good

agreement between the full and reduced models is obtained. The total CPU time taken

for solving the full and reduced systems is given in table 6.3. Considerable reduction of

CPU time is obtained for the reduced model compared to the full model. Table 6.4 gives
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Table 6.3: Timings comparison for 3D simple shear problem

Model CPU time (mins)
% Reduction of time

compared to full model
RKCM-Full 98.504 –

RKCM-POD: r = 1 10.681 89.156
RKCM-POD: r = 5 15.109 84.661
RKCM-POD: r = 20 18.445 81.274

Table 6.4: Errors e1 and e2 for 3D simple shear problem

r
% DOF of full

model
e1 e2

1 0.078% 9.271E-03 4.076E-02
5 0.392% 1.188E-03 5.267E-03

20 1.568% 2.393E-06 1.060E-05

the errors e1 and e2 for different values of r. It can be seen that the errors reduce as the

number of modes r is increased. Also for this problem, even with r being only 1.568%

of DOF of the full model, very less error values are obtained.

6.3.2.3.2 Inflation of a rubber tube

Inflation of a rubber tube using 2D plane strain analysis as given in section

5.3.10.2 is considered again. The geometry and material parameters are the same as

taken previously. The domain is discretized using 1717 source points, 6633 collocation

points in the domain and 464 collocation points on the boundary. The tube is inflated

till the inner radius is doubled. A total of 24 snapshots are collected which is equal to

the number of load steps applied. The decay of the first 24 POV’s is shown in figure

6.11. The total number of degrees of freedom (DOF) in the full model are 3434. Figure
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Figure 6.11: Decay of Proper Orthogonal Values for inflation of rubber tube problem

6.12 shows the comparison of the radial Cauchy stress σrr at the midpoint of the inner

circumference for full and reduced models in every load step. The POV’s decay rapidly

after the first two modes. For the reduced solutions three cases are chosen where the

number of POD modes are taken to be r = 2 which is 0.058% of DOF of the full model,

r = 5 which is 0.145% of DOF of the full model and r = 10 which is 0.291% of DOF

of the full model. Additionally the comparison of radial Cauchy stress σrr in the final

deformed configuration for the full and the reduced model with r = 5 is shown in figure

6.13. It can be seen that very good agreement between the full and reduced models is

obtained for the cases where r ≥ 5. The total CPU time taken for solving the full and

reduced systems is given in table 6.5. Considerable reduction of CPU time is obtained

for the reduced model compared to the full model. Table 6.6 gives the errors e1 and e2

for different values of r. It can be seen that the errors reduce as the number of modes r

is increased. Also for this problem, even with r being only 0.291% of DOF of the full

model, very less error values are obtained.
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Figure 6.12: Radial Cauchy stress σrr (in N/cm2) comparison for full and reduced
models for inflation of rubber tube problem using RKCM
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Figure 6.13: Radial Cauchy stress σrr in the final deformed configuration for the full
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Table 6.5: Timings comparison for inflation of rubber tube problem

Model CPU time (mins)
% Reduction of time

compared to full model
RKCM-Full 196.983 –

RKCM-POD: r = 2 2.491 98.735
RKCM-POD: r = 5 2.684 98.637
RKCM-POD: r = 10 2.968 98.493

Table 6.6: Errors e1 and e2 for inflation of rubber tube problem

r
% DOF of full

model
e1 e2

2 0.058% 6.356E-02 2.917E-01
5 0.145% 5.021E-05 2.777E-04

10 0.291% 5.305E-06 2.933E-05

6.3.2.3.3 Isometric contraction of muscle using standard geometry

Isometric contraction of skeletal muscle using standard geometry in 3D as given

in section 5.3.10.3.1 is considered again. The model geometry and material parameters

are the same as taken previously, with fiber direction vertically pointing in the z direction

at all collocation points. The domain is discretized using 9 × 9 × 17 source points and

17 × 17 × 33 collocation points. A total of 9537 collocation points in the domain and

2562 collocation points on the boundary are used. The ends of the muscle are fixed

and the activation factor is increased to a maximum in 10 load steps and a total of 10

snapshots are collected, one in each load step. The decay of the first 10 POV’s is shown

in figure 6.14. The total number of degrees of freedom (DOF) in the full model are 4131.

Figure 6.15(a) shows the comparison of the Cauchy stress σzz at the mid point of the

domain for full and reduced models in every load step. The comparison of reaction force
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Figure 6.14: Decay of Proper Orthogonal Values for isometric contraction of muscle
problem using standard geometry

generated at the fixed end for the full and reduced models is shown in figure 6.15(b).

As the POV’s decay rapidly, for the reduced solutions three cases are chosen where the

number of POD modes are taken to be r = 1 which is 0.0242% of DOF of the full

model, r = 2 which is 0.0484% of DOF of the full model and r = 10 which is 0.242%

of DOF of the full model. Additionally the comparison of Cauchy stress σzz in the final

deformed configuration for the full and the reduced model with r = 1 is shown in figure

6.16. It can be seen that very good agreement between the full and reduced models is

obtained. The total CPU time taken for solving the full and reduced systems is given

in table 6.7. 32 cores parallel processing was used for both the full and reduced models.

The parallelization was done only for assembling the stiffness and force matrices and

not for solving the linear system in each iteration. Considerable reduction of CPU time

is obtained for the reduced model compared to the full model. Table 6.8 gives the errors

e1 and e2 for different values of r. It can be seen that the errors reduce as the number of

modes r is increased. Also for this problem, even with r being only 0.242% of DOF of

the full model, very less error values are obtained.
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Figure 6.15: Comparison of Cauchy stress σzz (in N/cm2) at the mid point of the do-
main and muscle reaction force (in N ) at the fixed end for full and reduced models for
isometric contraction of 3D muscle problem using standard geometry using RKCM
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Table 6.7: Timings comparison for 3D muscle problem using standard geometry

Model CPU time (mins)
% Reduction of time

compared to full model
RKCM-Full 372.567 –

RKCM-POD: r = 1 23.843 93.600
RKCM-POD: r = 2 23.961 93.568
RKCM-POD: r = 10 24.420 93.445

Table 6.8: Errors e1 and e2 for 3D muscle problem using standard geometry

r
% DOF of full

model
e1 e2

1 0.0242% 4.975E-02 5.622E-02
2 0.0484% 5.685E-03 6.973E-03

10 0.242% 2.277E-06 2.402E-06

6.3.2.3.4 Isometric contraction of medial gastrocnemius muscle

Isometric contraction of the medial gastorcnemius muscle as given in section

5.3.10.3.2 is considered again. The model geometry and material parameters are the

same as taken previously. The actual muscle fiber directions as obtained from the DT

images are specified at the collocation points. The domain is discretized using 1837

source points, 3727 collocation points in the domain and 1320 collocation points on

the boundary. The ends of the muscle are fixed and the activation factor is increased

to a maximum in 10 load steps and a total of 10 snapshots are collected, one in each

load step. The decay of the first 10 POV’s is shown in figure 6.17. The total number

of degrees of freedom (DOF) in the full model are 5511. The comparison of reaction

force generated at the fixed end for the full and reduced models is shown in figure 6.18.

As the POV’s decay rapidly, for the reduced solutions two cases are chosen where the
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Figure 6.17: Decay of Proper Orthogonal Values for isometric contraction of medial
gastorcnemius muscle problem
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Figure 6.18: Comparison of reaction force generated at the fixed end for isometric con-
traction of medial gastrocnemius muscle

number of POD modes are taken to be r = 5 which is 0.0907% of DOF of the full model

and r = 10 which is 0.1814% of DOF of the full model. The comparison of maximum

principal Cauchy stress in the final deformed configuration for the full and the reduced

models is shown in figure 6.19. It can be seen that very good agreement between the

full and reduced models is obtained. The total CPU time taken for solving the full and

reduced systems is given in table 6.9. 32 cores parallel processing was used for both the

full and reduced models. The parallelization was done only for assembling the stiffness

and force matrices and not for solving the linear system in each iteration. Considerable
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(c) Reduced model with r = 10

Figure 6.19: Comparison of maximum principal Cauchy stress (in N/cm2), in the final
deformed configuration for the full and reduced models for isometric contraction of
medial gastrocnemius muscle problem

reduction of CPU time is obtained for the reduced model compared to the full model.

Table 6.10 gives the errors e1 and e2 for different values of r. It can be seen that the

errors reduce as the number of modes r is increased. Also for this problem, even with r

being only 0.1814% of DOF of the full model, very less error values are obtained.
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Table 6.9: Timings comparison for isometric contraction of medial gastrocnemius mus-
cle problem

Model CPU time (mins)
% Reduction of time

compared to full model
RKCM-Full 1868.9 –

RKCM-POD: r = 5 19.9 98.935
RKCM-POD: r = 10 21.932 98.826

Table 6.10: Errors e1 and e2 for isometric contraction of medial gastrocnemius muscle
problem

r
% DOF of full

model
e1 e2

5 0.0907% 1.365E-02 1.376E-02
10 0.1814% 3.999E-05 3.983E-05



Chapter 7

Conclusion

7.1 Conclusions

To obtain accurate results for skeletal muscle simulation, anatomically accurate

models and efficient computational methods are essential. The objective of this work is

to develop the effective segmentation methods, image-based computational framework

and model order reduction method to enable efficient and accurate modeling of skeletal

muscles.

Two segmentation schemes have been proposed and implemented. One for con-

struction of full 3D skeletal models by stacking 2D segmented images with multiple

materials and the other is a semi-automatic method for segmenting adjacent muscles

with different fiber directions, using MR and DT images. The actual muscle fiber direc-

tions obtained from DT imaging are also used in the models for simulation. Meshfree

methods are introduced to allow for using the image pixels directly as nodes for do-

main discretization, avoiding the construction of meshes for complicated geometries.

A smooth transition of material properties across material interfaces in the muscles is

achieved by approximating the material properties using the reproducing kernel shape
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functions. Numerical simulation using weak form based RKPM for medial gastrocne-

mius muscle of young and old subjects shows a non-proportional decrease in muscle

force generation associated with the decrease in muscle volumes. In meshfree methods

based on the weak form, special treatment is necessary to deal with domain integration

and imposition of essential boundary conditions. To alleviate this problem, the strong

form RKCM is proposed for nonlinear analysis of skeletal muscles. In strong form

collocation methods, the need for domain integration is eliminated and the essential

boundary conditions are imposed directly in the collocation equations. The Gauss New-

ton method is employed for solving the nonlinear iterations and suitable convergence

criteria are proposed. Numerical results show that RKCM gives more accurate results

compared to RKPM.

Reduced order modeling (ROM) has been proposed for RKCM in solving both

linear and nonlinear problems. In this approach, the POD bases are constructed from

snapshots, and a Least Squares Galerkin projection is proposed to project the system of

over-determined equations to a lower dimensional discrete system. In nonlinear analysis

using RKCM, the construction of stiffness and force vectors is less time consuming com-

pared to weak form based methods such as RKPM using Gauss integration. Using the

proposed ROM approach, significant reduction in computational time can be achieved

while maintaining sufficient accuracy. Error analysis is also performed to show the ac-

curacy of the proposed method. It is shown that high accuracy can be obtained even for

reduced models with only 1-2% of degrees of freedom of the full model.

7.2 Recommendations for future research

Directions for future research include:

1. Extension of RKCM for nonlinear analysis to nearly incompressible materials
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without locking and pressure oscillation requires further investigation. Mixed for-

mulation for RBCM in solving nearly incompressible linear problems has been

proposed in [131], and this approach can be extended to RKCM for hyperelastic-

ity.

2. Extend ROM for RKCM for patient specific modeling of skeletal muscles with

multiple materials.



Appendix A

Finite difference scheme for ACWE

method

Equation (3.15) for the ACWE method, is solved numerically using a semi-

implicit scheme as given below:

φn+1
i,j − φni,j
4t

= δε(φ
n
i,j)

µ

h2

[(
φni+1,j − φn+1

i,j

A

)
−

(
φn+1
i,j − φni−1,j

B

)]

+ δε(φ
n
i,j)

µ

h2

[(
φni,j+1 − φn+1

i,j

C

)
−

(
φn+1
i,j − φni,j−1

D

)]

+ δε(φ
n
i,j)
[
−ν − λ1(uo,i,j − c1(φn))2 + λ2(uo,i,j − c2(φn))2

]
(A.1)
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where

A =

√(
φni+1,j − φni,j

h

)2

+

(
φni,j+1 − φni,j−1

2h

)2

(A.2a)

B =

√(
φni,j − φni−1,j

h

)2

+

(
φni−1,j+1 − φni−1,j−1

2h

)2

(A.2b)

C =

√(
φni+1,j − φni−1,j

2h

)2

+

(
φni,j+1 − φni,j

h

)2

(A.2c)

D =

√(
φni+1,j−1 − φni−1,j−1

2h

)2

+

(
φni,j − φni,j−1

h

)2

(A.2d)

h is the spacing between the pixels in the image, which is the same in both x and y

directions and4t is the time step increment.



Appendix B

Euler Lagrange equations for

multichannel multiphase segmentation

For the multiphase multichannel segmentation the 3 Euler Lagrange equations

are obtained by minimizing the functional given in equation (4.3) with φ1, φ2, φ3 respec-

tively each time keeping cip fixed. Assuming for convenience λi = λ for i = 1, · · · , 8

and µk = µ for k = 1, · · · , 3 in all channels.

Minimizing the functional in equation (4.3) with respect to φ1 keeping cip, φ2, φ3
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constant:

∂φ1

∂t
= δ(φ1)µO ·

(
Oφ1

|Oφ1|

)
− δ(φ1)

(
1

4

4∑
i=1

λi1
(
uio(x)− ci1

)2

)
H(φ2)H(φ3)

− δ(φ1)

(
1

4

4∑
i=1

λi2
(
uio(x)− ci2

)2

)
(1−H(φ2))H(φ3)

− δ(φ1)

(
1

4

4∑
i=1

λi4
(
uio(x)− ci4

)2

)
H(φ2)(1−H(φ3))

− δ(φ1)

(
1

4

4∑
i=1

λi7
(
uio(x)− ci7

)2

)
(1−H(φ2))(1−H(φ3))

+ δ(φ1)

(
1

4

4∑
i=1

λi3
(
uio(x)− ci3

)2

)
H(φ2)H(φ3)

+ δ(φ1)

(
1

4

4∑
i=1

λi5
(
uio(x)− ci5

)2

)
(1−H(φ2))H(φ3)

+ δ(φ1)

(
1

4

4∑
i=1

λi6
(
uio(x)− ci6

)2

)
H(φ2)(1−H(φ3))

+ δ(φ1)

(
1

4

4∑
i=1

λi8
(
uio(x)− ci8

)2

)
(1−H(φ2))(1−H(φ3)) (B.1)

Minimizing the functional in equation (4.3) with respect to φ2 keeping cip, φ1, φ3
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constant:

∂φ2

∂t
= δ(φ2)µO ·

(
Oφ2

|Oφ2|

)
− δ(φ2)

(
1

4

4∑
i=1

λi1
(
uio(x)− ci1

)2

)
H(φ1)H(φ3)

− δ(φ2)

(
1

4

4∑
i=1

λi3
(
uio(x)− ci3

)2

)
(1−H(φ1))H(φ3)

− δ(φ2)

(
1

4
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i=1

λi4
(
uio(x)− ci4

)2

)
H(φ1)(1−H(φ3))

− δ(φ2)

(
1

4

4∑
i=1

λi6
(
uio(x)− ci6

)2

)
(1−H(φ1))(1−H(φ3))

+ δ(φ2)

(
1

4

4∑
i=1

λi2
(
uio(x)− ci2

)2

)
H(φ1)H(φ3)

+ δ(φ2)

(
1

4

4∑
i=1

λi5
(
uio(x)− ci5

)2

)
(1−H(φ1))H(φ3)

+ δ(φ2)

(
1

4

4∑
i=1

λi7
(
uio(x)− ci7

)2

)
H(φ1)(1−H(φ3))

+ δ(φ2)

(
1

4

4∑
i=1

λi8
(
uio(x)− ci8

)2

)
(1−H(φ1))(1−H(φ3)) (B.2)

Minimizing the functional in equation (4.3) with respect to φ3 keeping cip, φ1, φ2
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constant:

∂φ3

∂t
= δ(φ3)µO ·

(
Oφ3

|Oφ3|

)
− δ(φ3)

(
1

4
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4
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(
uio(x)− ci3

)2

)
(1−H(φ1))H(φ2)

− δ(φ3)

(
1

4

4∑
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(
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1

4
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(
1

4
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(
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)
H(φ1)H(φ2)
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(
1

4
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(
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(1−H(φ1))H(φ2)

+ δ(φ3)

(
1

4

4∑
i=1
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(
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1

4
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Appendix C

Hyperelasticity material tensors for

RKCM

The expressions for the first PK stress σAi and the material tensors C4
iAjB, C6

iAjBkC

and C8
iAjBkClD are given as follows:

σAi =
∂W

∂FiA
=

∂W̄

∂FiA
+

∂W̃

∂FiA
(C.1)

where
∂W̄

∂FiA
=
∂W̄

∂Ī1

∂Ī1

∂FiA
+
∂W̄

∂Ī2

∂Ī2

∂FiA
(C.2)

here

∂Ī1

∂FiA
= 2J−2/3

(
FiA −

1

3
I1F

−1
Ai

)
(C.3a)

∂Ī2

∂FiA
= 2J−4/3

(
I1FiA − FipGpA −

2

3
I2F

−1
Ai

)
(C.3b)

and
∂W̃

∂FiA
= PJF−1

Ai (C.4)
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The tensor C4
iAjB is given by:

C4
iAjB =

∂2W

∂FjB∂FiA
=

∂2W̄

∂FjB∂FiA
+

∂2W̃

∂FjB∂FiA
(C.5)

where

∂2W̄

∂FjB∂FiA
= K̄11

∂Ī1

∂FjB

∂Ī1

∂FiA
+ K̄12

∂Ī2

∂FjB

∂Ī1

∂FiA
+ K̄1

∂2Ī1

∂FiA∂FjB

+ K̄21
∂Ī1

∂FjB

∂Ī2

∂FiA
+ K̄22

∂Ī2

∂FjB

∂Ī2

∂FiA
+ K̄2

∂2Ī2

∂FiA∂FjB
(C.6)

∂2W̃

∂FjB∂FiA
=
∂2W̃

∂J2
J2F−1

Bj F
−1
Ai +

∂W̃

∂J
J
(
F−1
Bj F

−1
Ai − F

−1
Aj F

−1
Bi

)
(C.7)

and

∂2Ī1

∂FiA∂FjB
= J−2/3

[
− 4

3
F−1
Bj FiA + 2δijδAB +

4

9
I1F

−1
Ai F

−1
Bj

− 4

3
FjBF

−1
Ai +

2

3
I1F

−1
Aj F

−1
Bi

]
(C.8)

∂2Ī2

∂FiA∂FjB
= J−4/3

[
− 8

3
F−1
Bj I1FiA +

8

3
F−1
Bj FipGpA

+
16

9
F−1
Bj I2F

−1
Ai + 4FiAFjB + 2I1δijδAB

− 2δijGBA − 2FiBFjA − 2FipFjpδAB

− 8

3
I1FjBF

−1
Ai +

8

3
FjpGpBF

−1
Ai +

4

3
I2F

−1
Aj F

−1
Bi

]
(C.9)

The tensor C6
iAjBkC is given by:

C6
iAjBkC =

∂3W

∂FkC∂FjB∂FiA
=

∂3W̄

∂FkC∂FjB∂FiA
+

∂3W̃

∂FkC∂FjB∂FiA
(C.10)
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where

∂3W̄

∂FkC∂FjB∂FiA
=

2∑
α=1

2∑
β=1

2∑
γ=1

(
∂3W̄

∂Īα∂Īβ∂Īγ

∂Īα
∂FiA

∂Īβ
∂FjB

∂Īγ
∂FkC

)

+
2∑

α=1

2∑
β=1

(
∂2W̄

∂Īα∂Īβ

∂Īα
∂FiA

∂2Īβ
∂FjB∂FkC

+
∂2W̄

∂Īα∂Īβ

∂Īα
∂FjB

∂2Īβ
∂FiA∂FkC

+
∂2W̄

∂Īα∂Īβ

∂Īα
∂FkC

∂2Īβ
∂FiA∂FjB

)
+

2∑
α=1

∂W̄

∂Īα

∂3Īα
∂FkC∂FjB∂FiA

(C.11)

∂3W̃

∂FkC∂FjB∂FiA
=
∂3W̃

∂J3
J3F−1

Ai F
−1
Bj F

−1
Ck

+
∂2W̃

∂J2
J2

(
3F−1

Ai F
−1
Bj F

−1
Ck − F

−1
Ai F

−1
BkF

−1
Cj

− F−1
AkF

−1
Bj F

−1
Ci − F

−1
Aj F

−1
Bi F

−1
Ck

)
+
∂W̃

∂J
J

(
F−1
Ai F

−1
Bj F

−1
Ck + F−1

AkF
−1
Bi F

−1
Cj + F−1

Aj F
−1
BkF

−1
Ci

− F−1
Aj F

−1
Bi F

−1
Ck − F

−1
Ai F

−1
BkF

−1
Cj − F

−1
AkF

−1
Bj F

−1
Ci

)
(C.12)
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and

∂3Ī1

∂FkC∂FjB∂FiA
= −2

3
J−2/3F−1

Ck

(
− 4

3
F−1
Bj FiA + 2δijδAB +

4

9
I1F

−1
Ai F

−1
Bj

− 4

3
FjBF

−1
Ai +

2

3
I1F

−1
Aj F

−1
Bi

)
+ J−2/3

[
− 4

3

(
− F−1

BkF
−1
Cj FiA + F−1

Bj δikδAC

)
+

4

9

(
2F−1

Ai F
−1
Bj FkC − I1F

−1
AkF

−1
Bj F

−1
Ci − I1F

−1
Ai F

−1
BkF

−1
Cj

)
− 4

3

(
δjkδBCF

−1
Ai − FjBF

−1
AkF

−1
Ci

)
+

2

3

(
2FkCF

−1
Aj F

−1
Bi − I1F

−1
AkF

−1
Bi F

−1
Cj − I1F

−1
Aj F

−1
BkF

−1
Ci

)]
(C.13)

∂3Ī2

∂FkC∂FjB∂FiA
= −4

3
J−4/3F−1

CkB + J−4/3 ∂B
∂FkC

(C.14)

here

B =

[
− 8

3
F−1
Bj I1FiA +

8

3
F−1
Bj FipGpA

+
16

9
F−1
Bj I2F

−1
Ai + 4FiAFjB + 2I1δijδAB

− 2δijGBA − 2FiBFjA − 2FipFjpδAB

− 8

3
I1FjBF

−1
Ai +

8

3
FjpGpBF

−1
Ai +

4

3
I2F

−1
Aj F

−1
Bi

]
(C.15)

and

∂B
∂FkC

= (i) + (ii) + (iii) + (iv) + (v) + (vi) + (vii) + (viii) + (ix) + (x) + (xi)

(C.16)
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with:

(i) = −8

3

[
− F−1

BkF
−1
Cj I1FiA + 2FkCF

−1
Bj FiA + F−1

Bj I1δikδAC

]
(C.17a)

(ii) =
8

3

[
− F−1

BkF
−1
Cj FipGpA + F−1

Bj δikGCA + F−1
Bj FiCFkA + F−1

Bj FipFkpδAC

]
(C.17b)

(iii) =
16

9

[
− I2F

−1
BkF

−1
Cj F

−1
Ai + 2F−1

Bj I1FkCF
−1
Ai − 2F−1

Bj FkpGpCF
−1
Ai

− F−1
Bj I2F

−1
AkF

−1
Ci

]
(C.17c)

(iv) = 4[δikδACFjB + FiAδjkδBC ] (C.17d)

(v) = 4FkCδijδAB (C.17e)

(vi) = −2[δijδBCFkA + δijFkBδAC ] (C.17f)

(vii) = −2[δikδBCFjA + FiBδjkδAC ] (C.17g)

(viii) = −2[FjCδikδAB + FiCδjkδAB] (C.17h)

(ix) = −8

3

[
2FkCFjBF

−1
Ai + I1δjkδBCF

−1
Ai − I1FjBF

−1
AkF

−1
Ci

]
(C.17i)

(x) =
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−1
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Ai + FjpFkpδBCF

−1
Ai

− FjpGpBF
−1
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]
(C.17j)

(xi) =
4

3

[
2I1FkCF

−1
Aj F

−1
Bi − 2FkpGpCF

−1
Aj F

−1
Bi − I2F

−1
AkF

−1
Cj F

−1
Bi

− I2F
−1
Aj F

−1
BkF

−1
Ci

]
(C.17k)

Similarly, the expression for the tensor C8
iAjBkClD can be derived by taking the

next consecutive differential of C6
iAjBkC :

C8
iAjBkClD =

∂C6
iAjBkC

∂FlD
(C.18)
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