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ABSTRACT OF THE DISSERTATION

Statistical Analysis of Cognition at the Individual Level

By

Pele Schramm

Doctor of Philosophy in Cognitive Science

University of California, Irvine, 2019

Jeffrey N. Rouder, Chair

The focus of this dissertation pertains to effective statistical analysis of cognition at the

individual level. The first chapter challenges conventional wisdom for response time analysis

by investigating whether there is any benefit to log or reciprocal transforming response times

when doing a conventional t-test. The second chapter introduces two models for paired com-

parison data based on Cultural Consensus Theory. Through hierarchical Bayesian modeling,

these models allow for recovery of parameters describing both group level and individual

level opinion, tendency toward agreement, and consistency of evaluation as it pertains to the

items being compared. The third chapter offers critique and improvements to individual-level

True and Error analysis, a modern statistical framework for the evaluation of concurrent sets

of preferences. A Hierarchical Bayesian implementation of the model is introduced, offering

substantial gains in statistical power and accuracy in parameter estimates. Finally, the fourth

chapter is an application of the methodology proposed in the third chapter. Specifically, the

model is applied to the study of transitivity of preference in the domains of probabilistic and

temporal discounting. Many instances of violations of transitivity were found at the individ-

ual level for the domain of probabilistic discounting and for the case where temporally and

probabilistically discounted options were compared, with over 80% of people showing strong

evidence for transitivity violations in at least one case.
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Chapter 1

Are Response Time Transformations

Really Beneficial?

It is common in experimental psychology to use response times as a dependent variable that

indexes overall performance. Famous examples include Sternberg’s demonstration of exhas-

tive short-term memory scanning [64] and Shepard and Metler’s demonstration of mental

rotation [62]. Response times are ubiquitous for assessing the effect of context on a target,

and examples include classic Stroop and Simon effects [63, 66] as well as the more recent

variants such as the weapons-priming tasks [16]. Overall, the analysis of response times in

high-accuracy experiments has been a time-tested, popular, and fruitful approach in exper-

imental psychology.

The question then is how to analyze such data. In this paper, we consider testing whether

response time is affected by a covariate. A common example is the Stroop effect. Here,

participants identify the display color of a color term (e.g., the word RED). The display

color is either the same as the color term (e.g., the word RED displayed in red) or different

from the color term (e.g., the word GREEN displayed in red). Incongruent words slow
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response times, and accurately detecting this effect is a common goal.

The vast majority of researchers in these cases use familiar, well-trodden linear-model sta-

tistical tests such as t-tests, regression, and ANOVA, again with the goal of stating whether

covariates affect RT or not. What we have noticed in the literature, however, is that while

most researchers do so on untransformed variables, there are many examples of using trans-

formations before analysis, most commonly either log or reciprocal transformations. Some

examples of the use of a logarithmic transformation can be found in [28] and [36]; examples

of reciprocal transformation can be found in [7] and [41]. Is transforming wise? Indeed, the

genesis of this paper came from a friendly lunchtime disagreement among the authors about

the wisdom of transformations. Over burritos, the first author expressed his discomfort

about using normally distributed models for RTs, a recent approach favored by the second

author [26, 27, 57, 67]. The first author recommended placing normal models on the loga-

rithm of response time. This paper provides an assessment of whether it is wiser to perform

linear-model tests on transformed or untransformed response time.

The initial recommendation to transform parameters comes from the seminal work of [13].

These authors show that with simple, univariate transforms, skewed data may be brought

better in line with the normal distributional assumptions. As a result, statistical techniques

that assume normally distributed residuals may be used with less worry about the effects

of violating distributional assumptions. Based on this advice, some researchers recommend

transformations. For example [78] makes an appeal for robust statistics including using

transforms. [77] reviews the benefits of transformation, which for RT include minimizing

the impact of slow-response outliers while maintaining good power, as well as a concern

over the interpretation of transformed data. Skeptics of transformed variables include [51],

who provides a small simulation study, and [38], who recommends generalized linear mixed

models as an alternative on the basis of a case study in word naming.

In this paper, we seek to go beyond the previous assessments. Our approach relies on both an

2



analytic assessment of the noncentrality parameter that determines the power in statistical

tests as well as a simulation check among a broad array of realistic conditions. Here, we

pay particularly close attention to generate as realistic representations of RTs that we know.

We opt for a shifted, one-bound diffusion model of perception [32, 49, 65] as a generative

model. The parameters we use in the generative model are directly informed by trends in

the empirical literature, and consequently, our results are directly applicable in real world

situations.

1.1 Rationale For Transforms

To understand the dilemma facing researchers, it is helpful to review the following properties

of response times. First, response times are unimodal with a skewed upper tail [39, 73].

Second, manipulations that slow the distribution tend to increase the mean and standard

deviation together with relatively small effects in higher moments such as skew [58, 75].

Third, effects across conditions may be difficult to detect because there is excessive trial-by-

trial variability as well as much variability across people [26]. Figure 1.1, Panel A, provides an

example of these properties. Consider the two distributions that are denoted with solid lines.

These two are for two experimental conditions such as *congruent* and *incongruent*. The

distributions are unimodal with a large degree of skew for the upper tail. The distributions

are highly similar indicating that the effect is small relative to the trial-by-trial variability.

Finally. the difference between conditions is manifest in both the mean and variance.

These properties taken together indicate that a transform that disproportionately affects

the long tail may be helpful in reducing skewness and stabilizing variance. Indeed, the

aformentioned logarithm and reciprocal transform disproportionately reduce the long tail.

Therefore, it seems reasonable that these transforms are helpful in assessing small effects.

Moreover, both logarithmic and reciprocal transform have possible process interpretation.

3



Response Times (sec)
0.0 0.5 1.0 1.5

Unshifted
Shifted

A

Logarithm of Response Times
−2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5

B

Reciprocal of Response Times (1/sec)
0 1 2 3 4 5 6

C

Figure 1.1: Untransformed and Transformed Response Times Distributions. There are four
distributions in each panel forming two pairs of highly similar distributions. For each pair,
one distribution denotes a baseline condition, the other a treatment condition. Distributions
with solid lines are unshifted; those with dashed lines are highly shifted. A. Untransformed
inverse Gaussian distributions of RT. Each pair has an effect in drift rate. B The distributions
that result from the logarithm transforms. C The distributions that result from the reciprocal
transform.
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[71] provide four separate process scenarios that generate lognormally distributed data with

most centered around multiplicative gain and attenuation from attentional filters. Likewise,

[53] describe a ballistic accumulator model that naturally gives rise to response times which

are the reciprocal of a truncated normal distribution. So, given this constellation of facts, it

certainly seems plausible that RT transformations are beneficial in analysis.

The main goal was to see how easily we could detect an effect between two conditions. Hence,

the main characteristics we assess is the performance of a conventional equal-variance t-test.

For each transform, we ask which has the highest power to detect an effect with a Type I

error rate maintained at the specified level. We can get a rough guideline to the first question,

about power, by studying the effect size between two different distributions. The effect size

is the difference in expected values scaled by a measure of averaged standard deviation.1

It is a known constant for any two distributions, for example, the effect size between the

solid distributions in the untransformed case is 0.34. The effect size, for fixed N directly

determines the expectation of the noncentrality parameter of the noncentral-T, which is

monotonically related to power. Hence, bigger effect sizes correspond to more power.

How does transformation affect the effect sizes between the distributions? The effect sizes

for the logarithmic and reciprocal transsformed distributions are, respectively 0.33 and 0.28.

Notice that these values are lower than that for the untransformed distribution. This simple

effect-size analysis provides our first clue—transforming data will not increase power, and,

at least for the reciprocal transform, it may even lower it. Unfortunately, while studying the

effect size provides strong guidance, it is not the final answer to our question. First, it does

not address the level of the test, that is, the real Type I error rate. Second, while perfectly

predictive for power in the asymptotic limit, the effect-size analysis may not hold with finite

samples. Nonetheless, we should be quite skeptical of any gains from transformations off the

bat.

1Let X and Y be two distributions. The effect size is (E(X)− E(Y ))/
√
.5(V (X) + V (Y )).
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1.2 Those Pesky Shifts

There is one additional property of response times that has been overlooked by those using

transforms. This property is that all response time distrubutions have a substantial shift

away from zero. Shifted distributions are shown in Figure 1.1 as dashed lines, and these

particular distributions have a shift value of .5 sec. Notably, there is no possibility of a

response below this .5 sec value. Shifts in RT distributions are ubiquitous [39, 56]; indeed,

we know of no data set with mass near zero. Figure 1.2A, from [59], provides an example.

The data here come from 94 participants in lexical decision experiment from [21] where

people responded in about 700ms on average. The plotted values are the shift parameter

from a lognormal distributional fit as performed in [59]. The shift represents the point below

which there is no mass. The thin lines are 95% credible intervals, and shifts are located far

from zero for all participants.

Consideration of shifts, in our opinion, simply reflects the nature of response times them-

selves. After all, it is a reality of neurophysiology that the mere perception of an unantici-

pated stimulus is doomed to be delayed post exposure at least by the amount of time it takes

for the chains of action potentials from the retina to relevant brain areas to run their course.

Likewise, the same can be said for the chain of action potentials required to translate the

decision into the proper button press. No wonder so many RT modeling efforts include shift

parameters (e.g.,[18, 50, 74, 72]).

The presence of these shifts pose a serious challenge to the rationale for transforms. Figure

1.1, Panels B and C shows the effects of shifts. Here, the shift can dramatically change

the shape and scale of the resulting transformed distribution. For example, unshifted log-

transformed distributions (solid lines) are more symmetric than shifted log-transform distri-

butions (dashed lines). Likewise, shifted reciprocal transformed distributions (dashed lines)

have negative skew rather than being symmetric. Moreover, not only is the variance not

6



stabilized, the degree of variance is a function of the shifts, indicating that the transforms

may work in some paradigms better than others.

1.3 A Simulation Approach

To understand the effects of transforming response time in realistic situations, we decided

to use a simulation method. The results of a simulation are only as good as the choices

made for inputs. We strove for highly realistic choices that characterized common research.

We decided to use the diffusion model of perception as our base generative model. The key

assumption in diffusion models is that moment-to-moment evidence accumulates gradually

until there is enough total evidence to support a response. For tasks where accuracy is

relatively high, say those commonly used for examining working memory, response conflict,

and perceptual representations, the one-bound diffusion model is highly appropriate [58]. A

visualization of the evidence-accumulation process is shown in Figure 1.2B.

The distribution of absorbtion times of the one-bound diffusion process is known as an

inverse Gaussian [15] or a Wald distribution [65]. When parameterized with drift-rate (ν),

bound(λ), and shift(ψ), the density may be expressed in closed-form as:

f(t;ψ, ν, λ) =
λ√
2π

(t− ψ)−3/2 exp
(
− [λ− ν(t− ψ)]2

2(t− ψ)

)

Where t > ψ > 0, λ > 0, ν > 0. The close form nature of this density makes it far more

convenient than the two-bound diffusion model (the density is given by the convergence of

an infinite sum). Moreover, sampling from the density may be performed by transforming

chi-squared deviates as described in [42] and as implemented in the STATMOD package in

R.

The inverse Gaussian may be parameterized in terms of shift, drift rate, and bound, as

7
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Figure 1.2: A. Estimated shifts from Gomez et al. (2008). B. An example of the accumula-
tion in a one-bound diffusion model.

above, or, alternatively, in terms of shift, scale, and shape. For guidance about which

parameterization is best for empirical phenomena, we rely on [58] who competitively tested

the two different parameterzations. In one model, stimulus strength affected drift rate and

bound was held constant; in the other model stimulus strength affected scale and the shape

was held constant. The results were unequivocal—the constant bound model was superior.

Over 90,000 observations, RT distributions showed small but detectable shape differences

remarkably like those in Figure 1.1A. Given Rouder et al’s demonstration we manifest the

difference between our simulated conditions in drift rate.

We start with three modal response-time experiments. The first is what we term the per-

ceptual experiment, and the defining characteristic is fast overall response times and small

differences between conditions. We performed several variants of the fast theme, and one

of these, the most realistic, serves as our canonical version. The canonical version of this

experiment has an overall mean of 0.30 sec with a 0.02 sec difference between conditions.
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Table 1.1: Parameter Values For Simulations

Name Avg (s) Effect (s) Shift Bound Drift1 Drift2 Drift0

Perception 0.30 0.02 0.15 1.20 7.50 8.57 8.04
Attention 0.65 0.05 0.35 1.20 3.69 4.36 4.03
Linguistics 1.35 0.15 0.35 1.20 1.12 1.30 1.21

Table 1.1 shows the corresponding settings of shift, bound and drift rates for power as well

as a common drift rate for level. The canonical version has 60 trials per condition, and the

entry is shown in the top row of Table 1.2. The remaining 8 rows show different versions

made by varying the shift and the total number of trials per condition. We also simulated

data from hypothetical attention and linguistic experiments. The settings for the atten-

tion experiments are designed to capture mid-level cognition experiments which take about

6/10ths of a second and have effects on the order of 50 ms. The particular settings are

shown in Table 1.1, and the versions populate the middle set of rows in Table 1.2. Likewise,

the linguistic set of experiments is designed to capture above-second tasks that typically

have larger effects.2 In addition to simulating data from these hypothetical experiments, we

report the effect size between the distributions in each case for each transformation (Table

1.3).

1.4 Simulation Results

The results for power and level for each of the versions of each of the experiments are

shown in Table 1.2. Under Power and Level, there are three columns each. The first, RT

denotes results for untransformed distributions; the remaining two are for the logarithm

and reciprocal transforms, respectively. The main results here are easy to characterize. For

most cases, it matters little in power or level whether response times are transformed or

2The number of trials in the linguistic experiments is chosen to be greater than those in the perception
and attention experiments so that the power is roughly comparable.
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Table 1.2: Power from Simulation I (fixed shifts)

Power Level

N Shift RT log(RT) 1/RT RT Log(RT) 1/RT

Perception
Realistic 60 0.15 0.61 0.61 0.59 0.050 0.049 0.050
Realistic 20 0.15 0.24 0.24 0.24 0.050 0.049 0.050
Realistic 120 0.15 0.89 0.89 0.88 0.050 0.049 0.050
Zero 60 0.00 0.61 0.59 0.54 0.050 0.049 0.050
Zero 20 0.00 0.24 0.24 0.22 0.049 0.050 0.049
Zero 120 0.00 0.89 0.88 0.83 0.050 0.050 0.051
Large 60 0.30 0.61 0.61 0.60 0.049 0.051 0.050
Large 20 0.30 0.24 0.24 0.24 0.049 0.049 0.050
Large 120 0.30 0.89 0.89 0.89 0.050 0.050 0.049

Attention
Realistic 60 0.35 0.50 0.50 0.48 0.049 0.049 0.051
Realistic 20 0.35 0.19 0.20 0.19 0.049 0.049 0.050
Realistic 120 0.35 0.81 0.80 0.78 0.050 0.050 0.050
Zero 60 0.00 0.50 0.48 0.39 0.051 0.050 0.050
Zero 20 0.00 0.19 0.19 0.16 0.047 0.050 0.047
Zero 120 0.00 0.81 0.77 0.66 0.050 0.048 0.051
Large 60 0.70 0.50 0.50 0.49 0.050 0.051 0.050
Large 20 0.70 0.19 0.20 0.19 0.049 0.049 0.049
Large 120 0.70 0.80 0.80 0.79 0.049 0.051 0.051

Linguistic
Realistic 240 0.35 0.50 0.46 0.36 0.049 0.050 0.050
Realistic 80 0.35 0.20 0.18 0.15 0.049 0.050 0.049
Realistic 480 0.35 0.80 0.74 0.62 0.049 0.050 0.050
Zero 240 0.00 0.50 0.42 0.25 0.049 0.050 0.050
Zero 80 0.00 0.20 0.17 0.12 0.049 0.048 0.048
Zero 480 0.00 0.80 0.70 0.44 0.049 0.050 0.050
Large 240 0.70 0.50 0.47 0.40 0.050 0.050 0.050
Large 80 0.70 0.20 0.19 0.17 0.049 0.050 0.050
Large 480 0.70 0.80 0.76 0.68 0.050 0.051 0.049
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Table 1.3: Effect Sizes

Shift RT log(RT) 1/RT

Perception
0.150 0.417 0.416 0.410
0.000 0.417 0.409 0.381
0.300 0.417 0.417 0.414

Attention
0.350 0.368 0.368 0.360
0.000 0.368 0.357 0.314
0.700 0.368 0.369 0.366

Linguistic
0.350 0.181 0.173 0.150
0.000 0.181 0.164 0.119
0.700 0.181 0.176 0.161

not, though no transformation and log transformations seem to do marginally better than

reciprocal transformations in most instances. From 1.3 we can also see this reflected in

effect size. Although the t-test appears to be fairly robust in most of these cases under

transformation, there is no gain that we can see in transforming the data.

To understand the full range of effects of transformation on t-test results, we plotted the

receiver operating characteristic (ROC). The left column of Figure 1.3 shows the case for

the canonical versions of each modal experiment. The x-axis of each ROC is the nominal

level for a test, or, more conventionally, the α setting. The y-axis is the rejection rate, which

describes both the power of a test (when there are true differences between conditions) and

the level of a test (when there are no differences between conditions). These ROCs show

that in all cases, the level is fairly close to the nominal value, which is heartening. Moreover,

the overlap of all curves in the perception and attention experiments show how robust the

t-test is to the transformations for these ranges of observations. The outlier is the linguistics

experiments, but here, contrary to conventional wisdom, the highest power is attained with

the untransformed distributions. Therefore, we conclude that there is nothing to gain by
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transforming the data.

1.5 Variation in Shift

One feature of the above simulation is that the parameter values were held constant across

all replications of a simulation. We therefore call these the fixed parameter simulations. It is

common, however, to add variability to the parameters of the diffusion model in application.

For example, [52] added variablity to the drift rate, bound, and shift to more faithfully

model their data. [61] added exponential variability in the shift, but we believe that adding

a small-degree of normal variation is more realistic. As shown in 1.4, this addition has the

effect of making the decrease of the left tail more gentle.

We ran the simulations with a small degree of variability in the shift parameter. The shift

used to generate each simulated reaction time was drawn from a normal, centered on the

shift values indicated in Table 1.5, and with a standard deviation of 15% of the mean shift

value. Power and level results are shown in Table 1.5, effect sizes in 1.4 and ROCs are shown

in the right column of Figure 1.3. In the tables, there are no entries for zero shift in this

case because we did not wish to entertain negative shift values.

In each of the cases effect sizes appear marginally better untransformed, closely followed by

the log transform, and then by the reciprocal transform. This pattern is also for the most

part reflected in our power simulations. Again, the results of the level simulations seem to

be more or less as they should be in all cases. The ROC curves demonstrate more of the

same, though with a random shift they seem to favor untransformed data ever so slightly

more.
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Figure 1.3: ROC plots for each of the canonical cases. Left column: fixed shift, right column:
normally distributed shift.
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Figure 1.4: The effect of adding a small degree of variability to the shift parameter is to
make the left tail more gentle.

Table 1.4: Effect Sizes, Variable Shift

Shift RT log(RT) 1/RT

Perception
0.150 0.380 0.374 0.360
0.300 0.311 0.303 0.291

Attention
0.350 0.330 0.322 0.306
0.700 0.279 0.269 0.253

Linguistic
0.350 0.177 0.169 0.147
0.700 0.176 0.170 0.154
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Table 1.5: Power from Simulation II (random shifts)

Power Level

N Shift RT log(RT) 1/RT RT log(RT) 1/RT

Perception
Realistic 60 0.15 0.53 0.51 0.49 0.049 0.049 0.049
Realistic 20 0.15 0.21 0.20 0.19 0.049 0.051 0.050
Realistic 120 0.15 0.82 0.81 0.78 0.049 0.050 0.050
Large 60 0.30 0.37 0.36 0.34 0.051 0.049 0.049
Large 20 0.30 0.15 0.15 0.14 0.049 0.051 0.050
Large 120 0.30 0.64 0.62 0.59 0.049 0.050 0.049

Attention
Realistic 60 0.35 0.45 0.43 0.40 0.050 0.050 0.050
Realistic 20 0.35 0.17 0.17 0.16 0.049 0.052 0.049
Realistic 120 0.35 0.75 0.72 0.68 0.050 0.050 0.049
Large 60 0.70 0.34 0.33 0.30 0.050 0.049 0.050
Large 20 0.70 0.14 0.13 0.13 0.049 0.050 0.050
Large 120 0.70 0.60 0.57 0.53 0.049 0.049 0.051

Linguistic
Realistic 240 0.35 0.50 0.45 0.35 0.049 0.050 0.050
Realistic 80 0.35 0.20 0.18 0.15 0.050 0.050 0.050
Realistic 480 0.35 0.79 0.74 0.61 0.050 0.050 0.049
Large 240 0.70 0.50 0.45 0.37 0.050 0.050 0.050
Large 80 0.70 0.19 0.18 0.16 0.049 0.051 0.050
Large 480 0.70 0.79 0.74 0.64 0.049 0.049 0.051
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1.6 Discussion

In this paper, we consider the effects of transforming response times in realistic cases through

analysis of the effect sizes of distributions and through simulation. Our results are clear.

Transforming variables offers no more power nor any better level control than not trans-

forming. In specific cases, certain transforms, notably the reciprocal transform, provided for

lower power. Thus, we see no reason to transform response times in establishing effects.

The remaining question then is about the generality of the results. We think they hold

fairly broadly when the goal of the researcher is to establish effects through linear model

analysis. For example, we would expect no increased power from transforming if our goal

was to detect whether RT covaried with variables such as word frequency. Likewise, we see

no reason to transform variables in ANOVA analyses where the goal is to test main effects

and interactions. Simply put, if the goal is to establish the presence or absence of effects,

then transformation holds no advantages that we can identify.

A corollary to this result is that normal models may be used for response time when the goal is

to establish nominal or ordinal relationships. Consider the goals of [26] who asked what they

call the “does everybody” question. We know that on average people respond more quickly

to congruent items than incongruent ones in the Stroop task. Does this ordering, congruent-

faster-than-incongruent, hold for all people, or, alternatively, are their people who truly have

no Stroop effect or have a pathology where they truly respond more quickly to incongruent

items? Given that their questions are about detecting the presence and direction of effects,

the results here indicate that the normal is not problematic. Indeed, [67] use simulations to

show normal models of response time distributions are perfectly reasonable for such ordinal

questions.

Researchers interested in modeling the functional relationship between RT and covariates—

say whether RT goes as a power function or an exponential function of a covariate—do
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need more accurate models of RTs. [60] showed that a main concern is modeling the shifts.

A failure to do when shifts are present leads to systematic distortions of the functional

relationship between RT and covariates. The presence of shifts that vary across people is

a strong challenge because models in the linear mixed model and generalized linear mixed

model family are unable to capture individual-specific shifts. Fortunately, researchers do have

an option. Bayesian hierarchical models are perfectly suited for the challenge, and recent

developments in general purpose software such as stan [14] and JAGS [47] make analysis

with these models convenient for nonexpert researchers. There are now several excellent

sources for guidance on hierarchical models in cognition including [31] and [35].
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Chapter 2

Hierarchical Paired Comparison

Modeling, A Cultural Consensus

Theory Approach

2.1 Introduction

Paired comparisons are ubiquitous within Psychological science as a means to gain infor-

mation about people’s relative judgments regarding a set of stimuli. Because of the wide

usage of paired comparison studies, a principled analysis of such data in a manner that

incorporates information gained about differences between both people’s response patterns

and individual item effects can be useful. Developing an appropriate model to analyze such

data is the focus of this paper.

In other item response domains, Cultural Consensus Theory (CCT) has proved useful. CCT

is a set of models developed by [55] that analyze response data by means of assuming one

or more sets of latent ground truths common among a group of people. In CCT, what has
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traditionally been referred to as ”ground truth” need not be a reflection of reality, rather it is

a reflection of group opinion, although CCT has proven useful also for wisdom of the crowds

purposes in some instances as well (e.g. [1]). CCT accounts for individual differences in

propensity toward answering according to the ground truth, and also accounts for differences

in difficulty of evaluating certain items according to the consensus ground truth. CCT uses

this information to assess a consensus ground truth while simultaneously providing measures

for item difficulty and subject agreement. CCT item response models have been developed

for binary response data [4], multiple choice [55], continuous closed interval responses [6],

and ordinal data [2]. For an overview of CCT, see [5].

Thus far, there has not been a CCT model designed for paired comparisons. This paper

introduces such a model. Given a complete set of paired comparisons between a group of

items (e.g. comparing preference), the goal is to measure consensus attitudes from people’s

choices. In the spirit of CCT, our model also identifies which people’s responses tend to be

the closest to consensus, and which items are particularly difficult to assess, and take these

things into account in the measurement.

The backbone cognitive model behind our Consensus Paired-Comparison Model (CPCM)

is the Thurstonian model [68]. The assumptions of the Thurstonian model are similar in

nature to signal detection theory in that the subjective experience of stimuli is assumed to

follow a Gaussian distribution on a latent scale. In application to subjective value judg-

ments, for example, a stimuli could be thought to have its appraised latent value judgments

mean-centered at a particular value, and distributed normally. For paired comparisons, the

assumption is that each option is evaluated according to its own Gaussian distribution on

each trial and the higher-valued option is the one that is selected. Under the assumption

of equal-variance Gaussian distributions (referred to as the case V model), the Thurstonian

model reduces according to an ordinary probit model. Allowing for separate variances from

independent Gaussians gives the Case III model, which is what is used in CPCM, where the
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probability of choosing option A over option B is

PA�B = Φ

(
VA − VB√
σ2
A + σ2

B

)
(2.1)

Here Φ denotes the cumulative distribution function of the standard normal distribution, VA

and VB denote the mean of the Gaussian distributions of value assessment, whereas σ2
A and

σ2
B denote their respective variances.

Researchers who utilize the models that we introduce will likely be most interested in finding

consensus values for the Vs in equation 1 for each of the options in the set of items. Since

we utilize a Bayesian approach, we end up with posterior distributions for these values.

Below is a set of inferred posterior distributions of these values measured using the WCPCM

(described later) from a data-set in which participants were asked to compare different

professions according to which mean salary they believe to be higher. Note that the scale

used is not in monetary amounts, rather it is according to the Thurstonian scale which should

have a monotonic relationship with salary estimates.

Figure 2.1: Posterior Distributions from the WCPCM for the careers dataset
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In this paper we discuss two separate models. The first model, referred to as the Strong

Consensus Paired Comparison Model (SCPCM), reflects the essence of previous CCT models

in that it assumes individuals always answer items from the same consensus ”answer key”,

with each response carrying the possibility of independent error. We overview the model,

strengths and shortcomings of this approach in the following sections. Later we will discuss

an expansion of this model that relaxes these assumptions which we will refer to as the Weak

Consensus model.

2.2 Model 1: Strong Consensus

The Strong CPCM (SCPCM) model is described according to the following axioms:

Axiom 1: (Common Truth). For group c of the C cultural groups, there is a row vector

Tc of latent values on the real line for each of the M items. T is a C ×M matrix.

Axiom 2: (Thurstonian Paired Comparisons) The probability for subject i picking any

item A over any item B is given by Pi,A�B = Φ

(
TgiA−TgiB√
κi(sgiA+sgiB)

)
. Where Φ is the inverse

probit function, and gi indicates which cultural group c subject i is in. Note that this is

equivalent to the Thurstonian case III model(Thurstone, 1927), where each Gaussian for

item k is centered at Tgik and has variance equal to κisgik.

Here, κi can be seen as subject i’s tendency to diverge from the group consensus, with larger

values indicating more divergence whereas sck can be seen as a measure of the level of in-

consistency of people in group c’s evaluation of item k, with larger values indicating less

consistency.
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In this strong consensus version of the model, it is assumed that everyone in the same group

has the same latent value for each item, but individual subjects have different variances in

their assessments of an items value.

Built into the assumptions of the case III Thurstonian model is weak stochastic transitivity

on the individual level, and in the case of the SCPCM on the group level too, since all in

group c share the same latent values Tc. What this means is that if PA�B ≥ 1
2

and PB�C ≥ 1
2
,

then PA�C ≥ 1
2

for any of these probabilities from any individual in the same group c.

2.2.1 Hierarchical Bayesian Parameter Estimation

We use a hierarchical Bayesian approach to estimate the parameters in the model. Hierar-

chical Bayesian modeling involves specifying stronger distributional assumptions regarding

not only the data itself, also the parameters involved in generating the data, yielding prov-

ably better estimates [19]. In many cases one might opt to assume one single cultural group

(C = 1), as was done in the analyses in this paper. For other applications when it is sus-

pected that there is more than one cultural group (C > 1), the following specification could

be utilized.

gi ∼ Categorical(π) (2.2)

π ∼ Dirichlet(L) (2.3)

Here gi can take any integer from 1 to C. π in this case is a C dimensional vector of proba-

bilities corresponding to the probability of a person being in each group, and is specified to

come from a Dirichlet distribution parameterized by L. L can be set to equal a C dimensional

vector of ones, which is essentially a C dimensional extension of the Uniform distribution.

Alternatively, one can set L such that it gives the most weight to the first cultural group

and assigns descending weight to the succeeding groups.
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The consensus value T for item k and cultural group c is given the following prior distribution:

Tck ∼ N(5, .25)1 (2.4)

In this case, centering at 5 is completely arbitrary, chosen entirely for the sake of yielding

values usually between 0 and 10. Setting the precision (inverse variance) at .25 however is

chosen so that the model can be properly identified.

Now both subject and item specific components of the Thurstonian variance are given lognor-

mal priors, centered at 0 with uninformative gamma distributed hyperpriors for the precision:

log(κi) ∼ N(0, τκ) (2.5)

log(sck) ∼ N(0, τs) (2.6)

τκ ∼ gamma(.01, .01) (2.7)

τs ∼ gamma(.01, .01) (2.8)

Recovery Analysis for SCPCM

Data was simulated from SCPCM for different numbers of subjects and items for a recovery

analysis. Parameters used were drawn in accordance with the hierarchical specification, with

both τκ and τs set to 1. From these results we see that the model is successful in recovery,

with better results when there are more subjects and items. Under fewer subjects and items,

results are qualitatively accurate but are prone to some shrinkage from the hierarchical

structure.

1This is a mean-precision parameterization of the normal distribution
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Figure 2.2: Recovery analysis for SCPCM
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2.3 Data Sets

We applied our models to three different datasets, each with 9-15 different items. In every

case, all participants answered which item they choose between every possible pair of the

set of items. For each data set, an attempt was made to avoid repeating the same items too

close to one another to avoid memory effects.

2.3.1 Occupation Salaries

40 subjects were asked to compare the salaries of 9 different occupations, such as pharmacist

and police officer. Data was collected after a test in an undergraduate Psychology course,

giving students the opportunity to fill out the survey in exchange for bonus points.

2.3.2 Car Prices

66 participants were shown pairs of pictures of 10 cars, with their make/model. Partici-

pants were asked which car they thought was more expensive of each pair. The study was

conducted on computers, and participants were recruited through the schools online subject

pool. Participants received credits through the subject pool that can usually be used for

extra credit in some undergraduate Psychology courses.

2.3.3 Cheerfulness of Paintings

The same 66 participants that responded to Car Prices were also asked to compare which

painting seemed more cheerful for each pair out of 15 different paintings.
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Figure 2.3: Two of the paintings used. Left: Bedtime Aviation by Rob Gonsalves, Right:
The Scream by Edvard Munch

2.4 Posterior Predictive Tests

We utilized posterior predictive tests to check whether our models were effective at capturing

important nuances in the data, using the same approach as in [20].

The idea behind posterior predictive tests is as follows. Since MCMC sampling samples

from the joint posterior distribution of all parameters, we effectively get a set of possible

parameter values for each iteration. We used each sample to construct a new simulated

paired comparison data set. The simulated data sets allow for an extraction of a distribu-

tion for certain statistics of interest that we can compare with the observed statistics to

check whether the model successfully captures the necessary information. Although these

tests are traditionally referred to as posterior predictive tests, it should be noted that these

distributions aren’t actually predictions of new, untrained data, rather they represent the

data you would expect to see if the model specification reflected the true generative stochas-

tic process. Thus, it can be used as a tool to diagnose whether the model assumptions are

26



inconsistent with observations, but not as tool to protect against overfitting.

The following three subsections describe the different posterior predictive tests we employed

to evaluate whether our models were capturing what we wanted.

2.4.1 Scree Smears

Scree plots are constructed by doing a eigenvalue decomposition on the correlation matrix

of the subject by item response matrix and plotting the values of the highest eigenvalues in

a descending fashion. Previous CCT models have utilized Scree Plots primarily as a tool to

detect the number of consensus answer keys [3], in this case corresponding to the value of

C under axiom 1. When C is one, one can expect a very high first eigenvalue followed by

a sharp drop and quick plateau, whereas when C is two or more the sharp drop generally

comes later. Besides the number of cultural groups, the general degree of consensus and

similarity of people’s responses can also affect the scree plot, with less agreement leading to

scree plots that are slower to decline.

To test whether the model used is plausible, we compare the scree plots of the real data set

with those of the simulated sets. We do this with a scree plot of the raw data, as well as

using spearman rank-order correlation from the implied ranking through summation of all

the times an item was preferred by each individual according to their responses.

2.4.2 Violations of Transitivity

If during the experiment a subject picked item A over B, B over C, and C over A, that

subject has violated transitivity. From the simulated data sets, we can sum the total number

of intransitivities over every triplet of items for every subject, and compare to the actual
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observed number. This measure can help inform us of whether the model reflects behavior

on an individual level well.

2.4.3 Between-Subject Transitivity Violations

The previous check was effective in assessing the model’s accuracy accounting for individual

behaviors. But what about between people? This time, a violation of transitivity was

counted if Subject A picked item i over j, B picked item j over k, and C picked item k over

i. All possible combinations and permutations of 3 people and 3 items were examined and

summed over to calculate the total between person violations of transitivity. This is an

interesting statistic to look at because if there is a high level of consensus on a set of items

one would expect a low amount of between-subject transitivity violations, and vice versa.
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2.4.4 Posterior Predictive Results for the Strong Model

Figure 2.4: Posterior Predictive plots for the SCPCM fit to the occupations (first row), cars
(second row), and paintings (third row) datasets.

In these simulations we see that the model does a decent job with most of the posterior

predictive statistics, but it consistently drastically overestimates the number of individual

transitivity violations that should occur. Apart from that, only the Pearson scree plot

for the painting cheerfulness task seems a bit off. While this model seems to be mostly

consistent with response phenomena at a larger group level, it could use some improvement

for accounting for individual response behavior.

The reasoning behind this discrepancy was considered. The Strong Consensus Model assumes

that everybody has the same underlying ground truth, and each time people evaluate the

value of an item they are drawing from a distribution centered in the same place as it is

for everyone else. This assumption implies that every time someone makes a decision that

greatly diverges from consensus, they would have been just as likely to diverge from consensus

in the opposite direction. In other words, the model treats divergence from consensus to
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be the same as a lack of self-consistency, this seems like the likely source of the model’s

inconsistency with observations. To account for this inconsistency we developed the Weak

Consensus Paired Comparison Model (WCPCM).

2.5 Axioms of the Weak Consensus Model

The weak consensus model differs from the strong consensus model in that it assumes that

people do not necessarily share precisely the same latent opinion on the values of the items,

but people in the same group will have latent opinions on the values of the items that are

similar to one another. In essence, one can think of the WCPCM as the SCPCM with an ex-

tra layer between group consensus and deliberation, accounting for underlying disagreement.

Axiom 1: (Common Truth). For group c of the C cultural groups, there is a row vector

Tc of latent values on the real line for each of the M items. T is a C ×M matrix.

Axiom 2: (Individual Latent Item Values). Subject i has a fixed latent item value

for item k given by Yik = Tgik + εik, where εik ∼ N(0, 1
Eiλgik

) (precision notation) and gi

indicates which cultural group c subject i is in.

Axiom 3: (Thurstonian Paired Comparisons) The probability for subject i picking any

item A over any item B is given by PA�B = Φ

(
YiA−YiB√
κi(sgiA+sgiB)

)
. Where Φ is the inverse

probit function . Note that this is equivalent to the Thurstonian case III model(Thurstone,

1927), where each Gaussian for item k is centered at Yik and has variance equal to κisgik.
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It should be noted that Ei can be seen as a measure of subject i’s tendency to view items

as having a value close to his/her cultural group gi, with small Eis denoting a tendency of

being closer to their cultural group. Likewise, λck can be seen as the variability in people’s

latent item values across different people in cultural group c for item k.

Similarly, κi can be viewed as a measure of individual i’s consistency in their assessment of

item value for the same item, with lower values indicating more consistency. sgik Can be

viewed as the tendency of item k in being evaluated consistently for cultural group gi, with

lower values indicating more consistency in evaluation for that item within an individual’s

evaluations.

This time, weak stochastic transitivity is again followed as a consequence of the case III

Thurstonian model, but only on the individual level, since individuals do have different

latent values for the items.

2.5.1 Hierarchical Bayesian Parameter Estimation

The Hierarchical specification of the WCPCM is identical to the SCPCM, only with the

addition of the λ and E terms which are given the same sort of hyperprior as the κ and s

terms:

log(λck) ∼ N(0, τλ) (2.9)

log(Ei) ∼ N(0, τE) (2.10)

τλ ∼ gamma(.01, .01) (2.11)

τE ∼ gamma(.01, .01) (2.12)
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Recovery Analysis for Weak Model

Similar to before, data was simulated according to the model with all the various τs set to

1. We can see here that despite not being as accurate in terms of estimating the exact raw

parameters (being a more complex model), the qualitative results are approximately right

and get better with more participants and more items.

Figure 2.5: Recovery analysis for WCPCM

Do Items Really Vary in Individual Consistency?

It’s not immediately apparent that sgik is really a necessary parameter. One could set them

all equal to 1 and then that would only leave a measure for individual self-consistency and it

might work just as well. A Bayes Factor was used to test this for the three data sets, giving
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50 percent prior probability to all of the sgik s equaling 1, and 50 percent prior probability

for the full weak consensus model. The Bayes Factors came out just barely in favor of the

full weak consensus model for the paintings and occupations, which came out to be 1.01 and

1.56 respectively. For the car prices set however, evidence for the full weak consensus model

was very strong, with a Bayes Factor of 93.3. You can see the results summarized in the

table below.

Figure 2.6: Results for the car dataset

As we can see there were certain cars that people were substantially more inconsistent with

than others. Interestingly this was strongest for the two most expensive cars, both of which

happened to be sports cars. What’s more, we see with the Strong consensus model almost

no difference in difficulty in assessment, which might be interpreted to indicate that there is

about the same level of agreement about each car, but the results from the Weak Consensus

model tell a different story about the varying levels of agreement. From the Weak consensus

model we can see that there was more disagreement surrounding the prices of the pickups

and SUVs, while the more generic cars like the Toyota Camry and Honda Civic had more
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agreement surrounding their prices. This would go unnoticed if we stuck to the strong

consensus model.

2.5.2 Posterior Predictive Tests for the Weak Consensus Model

Figure 2.7: Posterior Predictive plots for the WCPCM fit to the occupations (first row), cars
(second row), and paintings (third row) datasets.

It can be seen that every issue with the posterior predictive checks that was present in the

strong consensus model is not present in the weak consensus model. We see true statistics

represented in reasonable locations in the posterior predictive distributions.

2.6 Discussion

The SCPCM and WCPCM presented in this paper are able to serve as effective tools in

the analysis of paired comparison data, quantifying the consensus values of a set of items
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on a Thurstonian scale. While the SCPCM makes stronger assumptions that might be less

realistic (as illustrated in posterior predictive checks), its simplicity and better identifiability

still make it worthy of use for some applications. The WCPCM’s relaxation of assumptions

and inclusion of additional measures can make it a more attractive choice when there is

a sufficient number of items and participants. Indeed, as we saw that in the car prices

dataset, the WCPCM picked up on properties regarding levels of agreement on prices between

different kinds of automobiles that were non-emergent from the SCPCM analysis, along

with tendencies regarding consistency in item analysis. By treating people’s variability in

assessment in their own choices as separate from their tendency to respond in accordance

with group consensus, we are able to uncover the full story more.

A limitation of these models is that they fail to account for any potential pairwise context

effects since they utilize the case III Thurstonian model. This is a potential avenue for an

extension of the currently proposed approach. For example, one might include additive terms

to either the T or the Y terms that are only added in the presence of specific alternatives to

test for context effects under this framework. The power and robustness of such approaches

to testing context effects under this framework are worthy of exploration. It may also be

feasible to utilize the Case I Thurstonian model for these purposes, which models latent

appraisals from paired comparisons as coming from multivariate normal distributions as

opposed to two independent gaussians.

As with other CCT models, it would be worthwhile to dedicate more formal exploration

into their potential for wisdom of the crowds applications. The SCPCM as introduced

here shares many similarities with [34], which was designed for these purposes. While [34]

used rank-order data and the SCPCM and WCPCM use paired-comparison data, it might be

interesting to compare these models in their usefulness for wisdom of the crowds applications.

Preliminary work into using a CCT approach for wisdom of the crowds applications such as

in [1] has shown promising results, thus it is worthy of further exploration.
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Chapter 3

The Individual True and Error Model:

Getting the Most out of Limited Data

3.1 Introduction

It is of interest to many behavioral decision researchers to determine sets of preferences

held by individuals. Indeed, there are many theories that provide for specific constraints

on possible sets of preferences one may hold. Perhaps the most well known constraint is

transitivity: for any three options a, b, and c, if a is preferred over b and b is preferred

over c, then c cannot be preferred over a. To test such theories, a common experimental

approach is to ask people to make repeated binary choices, and then analyze the frequencies

of various responses. The majority of such analysis approaches assume that responses across

the repeated measures are independent of one another for the sake of statistical convenience

(e.g. [70], [29], [54]). [8] demonstrated that this independence assumption can be tested and

has been determined to be faulty in some instances. While co-occurrences of preferences are

of particular interest when investigating theories such as transitivity, most existing analysis
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approaches look only at marginal choice probabilities, that is the probabilities of responses to

individual binary choices, rather than examining co-occurrence of choices. As pointed out by

[9], these assumptions can lead to wrong conclusions about people’s true underlying sets of

binary preferences. If we take for example transitivity of preference, it is possible that people

at any given point in time follow transitivity of preference perfectly yet have marginal choice

probabilities that reflect a violation of weak stochastic transitivity (that is, if P (a � b) > .5

and P (b � c) > .5, then P (a � c) > .5) if their set of preferences varies at different

points in the experiment [54]. Conversely, it is also theoretically possible for people to be

fully intransitive at any point in time but if they were to reverse their preference ordering

throughout the experiment the marginal choice probabilities can still give the appearance of

adherence to stochastic transitivity (e.g. if 80% of the time a � b, b � c, and c � a and 20%

of the time b � a, c � b, and a � c).

The concern with independence has motivated the development of true-and-error (TE) mod-

els which do not presume full response independence. TE models originally evolved out of

the approach in [37]. The underlying assumption is that at any given time, an individual

has a latent true set of binary preferences, but may respond in a manner inconsistent with

their current true set of preferences with a separate error probability possibly ranging from

0 to .5 for each binary choice [10]. Besides parameters describing the error probabilities for

each binary choice, the model includes parameters denoting the probability of a participant

holding each possible true set of preferences. In practice, participants are prompted with the

same or similar binary choice questions twice in each block (e.g. one question might have the

options in reverse order), usually with filler questions in between. The model is constrained

by the assumption that latent sets of true preferences remain constant within each block,

but may vary between blocks. This approach can be used to analyze group data, where

each participant completes one block, or individual data, where each participant completes

multiple blocks.
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One of the practical limitations of the TE model, especially when applied to individuals

separately, is that accurate analysis requires large sample sizes. It’s not uncommon for TE

experiments to require multiple sessions each lasting an hour or more to be necessary to

achieve the statistical power necessary to reject a set of constraints. Thus, it is of particular

interest to researchers utilizing these methods to make the most of the inherently limited

amount of data that is available to them. I describe later how the present frequentist

approach advocated for in [10] and [12] is suboptimal for efficiently detecting violations of

constraints, and will resolve one of the major concerns from a frequentist perspective. After

that, both Hierarchical and non-Hierarchical Bayesian methods of analysis will be explored

and consequentially advocated for.

While TE models can be applied to test theories in a number of different domains, such

as testing expected utility with the Allais Paradox [33], the focus of this paper is on pat-

terns of preferences between three items, especially dealing with testing whether individuals

have truly intransitive sets of preferences. The approaches highlighted in this paper can

nonetheless easily be extended to other uses of true-and-error models.

3.2 The True-and-Error Model

To understand the important points about the statistical analysis we first need to overview

the nature of the data the TE model analyzes. When utilizing a TE model to test transitivity,

subjects are prompted with the three possible pairwise comparisons between the three items

twice per block (i.e. choosing between a and b, b and c, and c and a) for multiple blocks.

Thus, there are a total of 64 possible outcomes for each block (23 = 8 possible sets of

preferences for the first iteration of questions times 23 = 8 for the second). For example, in

one block a subject might respond 011 for the first set of questions and 001 for the second

set of questions, each digit representing a single binary response to the corresponding paired
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comparison. Matrix A below denotes in each row a separate possible set of preferences.

A =




0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1




(3.1)

Now we can define pi,j to be the probability of subject i holding the true set of preferences

corresponding to the jth row in A in any one block. Formally, if we let Ti,m denote the index

of the row of A corresponding to the true set of preferences subject i holds in block m, then:

P (Ti,m = j) = pi,j (3.2)

If we let fi,m and gi,m denote the index of the row of A corresponding to the observed set

of preferences subject i reports in the first and second set of questions in block m, and let

ei,k denote the probability of error in reporting the true latent set of preferences for subject

i for paired comparison k, we have:

P (fi,m|Ti,m) =
3∏

k=1

I(Afi,m,k = ATi,m,k)[1− ei,k] + [1− I(Afi,m,k = ATi,m,k)]ei,k (3.3)
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and

P (gi,m|Ti,m) =
3∏

k=1

I(Agi,m,k = ATi,m,k)[1− ei,k] + [1− I(Agi,m,k = ATi,m,k)]ei,k (3.4)

Where I denotes an indicator taking values of 0 if the statement inside is incorrect, and 1 if

correct.

It should be noted that the Ts can be marginalized out completely from the model using the

law of total probability. Thus we can treat the combination of the two sets of preferences

observed in a block as having a joint probability following:

P (fi,m, gi,m) =
8∑

j=1

pi,jP (fi,m|Ti,m = j)P (gi,m|Ti,m = j) (3.5)

3.3 Shortcomings and Improvement to the Present Fre-

quentist Approach

For the sake of fitting and testing TE models, [10] suggests reducing the degrees of freedom

in the data down to 15 by only looking at the first set of preferences per block and noting

whether the second set matches the first perfectly. For the purpose of hypothesis testing

(comparing a less constrained null TE model vs a more constrained TE model), a Pearson’s

Chi-Squared test [46] is advised by plugging in the Chi-Squared statistics on the 16 observed

frequencies for an unrestricted model vs a restricted model (e.g. one which has a fixed

zero probability of true intransitivity). The null distribution of the difference in Chi-Square

statistics in this case is said to come from a Chi-Square distribution with degrees of freedom

equal to the difference in number of estimated TE parameters between the restricted and
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unrestricted model. While this approach is highlighted, there is acknowlegment that in some

cases use of the full data can be more appropriate, and the full data was utilized in [12].

There are two major problems with Birnbaum’s degrees of freedom reduction approach, one

that is easy to resolve and one that is less so. Perhaps the most substantial issue here is

that in the reduction of the degrees of freedom, a substantial (and indeed, useful) part of the

data collected is left unaccounted for (i.e. an entire set of observed preferences gets reduced

to whether it was the same or different from the other one). Because data is practically

limited, especially in the case of analyses on the individual level, this turns out to be a great

sacrifice.

The motivation behind the reduction in the degrees of freedom seems to be to make the

Chi-Square test a feasible option. Unfortunately, the specified Pearson’s Chi-Square test is

not appropriate for these purposes, and turns out to be overly conservative as demonstrated

by the simulations in the following section, with a true type I error rate far lower than the

nominal α level, and p-values that appear higher than they should be. Besides potential

issues of small sample sizes for frequency data with 15 degrees of freedom, the Pearson Chi-

Square test is suppose to feature a Chi-Square null distribution with degrees of freedom equal

to the difference in number of outcome probabilities fixed, while in the case of the TE model

we are fixing model parameters that have some effect on potentially all outcome probabilities.

Thus, it turns out that this reduction in degrees of freedom is costing us greatly all while

not fulfilling its original purpose.

Luckily, the likelihood of the full, unreduced data is easy to calculate by multiplying all the

probabilities of each observed block shown in equation 5, and so a potential alternative would

be a Likelihood Ratio Test [45]. The famous Neyman Pearson Lemma introduced in [45]

proves that the Likelihood Ratio Test is the single most powerful test. While the distribution

of the test statistic (2 times the log of the likelihood ratio) is often difficult to derive, [79]

showed that, just like the Pearson Chi-Squared test, the Likelihood Ratio test statistic also
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is distributed according to a Chi-Square distribution under the null under certain regularity

conditions. Unfortunately this isn’t guaranteed when parameters are being fixed at the end

points of their possible ranges, and null TE models are usually going to feature parameters

fixed at 0, their minimum possible value. Even when parameters are not being fixed at 0 or

1, it may take many blocks to reach the asymptotic limit, more than one could hope to get

from one individual. Despite solving the problem of data being needlessly thrown away, this

approach still shares the problem of an improper nominal type I error rate and inaccurate

p-values. The bright side to all this, as is about to be shown via simulations, is that both the

Chi-Square test and the Likelihood Ratio Test tend to be on the overly conservative side, so

it seems like we can trust results denoting a rejection of the null even more than usual, at

the expense of elevated Type II errors.

To avoid direct reliance on theoretical test distributions, [11] implemented a bootstrapping

procedure to calculate confidence intervals of parameter estimates, and a Monte Carlo simu-

lation procedure for estimating the distribution of test statistics. Bootstrapping is perfomed

by iteratively refitting the model with many datasets sampled from the original dataset

with replacement to yield a distribution of parameter estimates. Monte Carlo simulation is

performed by fitting the model and then generating simulated datasets from the parameter

estimates. Since we are interested in the null distribution of the test statistics, a monte-carlo

approach to hypothesis testing could be to fit the null model and generate samples from the

parameter estimates from the parameter estimates, looking at the distribution of test statis-

tics and checking whether the raw test statistic falls outside this range. While in [11] they

used the reduced data approach to fit the bootstrapped and Monte Carlo simulated data

sets, I investigate in this paper the efficacy of using the full data approach with Likelihood

Ratio Test statistics.
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3.3.1 Simulations

To explore power, type I error rate, and accuracy of parameter estimation, two separate

simulation strategies were employed to generate the parameters representing the probabilities

of a subject holding each possible set of true preferences in a block. The first one which

will be referred to as the probit simulation, uses a probit model, or Thurstonian Case V

[69] to generate the probabilities of the true sets of preferences. The three items, which

we can call a, b, and c, were given average probit values of -1, 0, and 1 respectively. For

each simulated participant, their personal probit values were drawn from standard normal

distributions centered at these 3 values. The probability of each true set of preferences was

calculated according to the corresponding probability of observing that set of preferences if

they were responding in accordance with a probit model. For example, the probability for

the true set of preferences being a is preferred to b, b is preferred to c, and a is preferred

to c would be Φ(Va − Vb) × Φ(Vb − Vc) × Φ(Va − Vc) where Vx is the probit value for item

x for that individual and Φ is the cumulative distribution function of the standard normal.

The three error probabilities were each set to 1/2 times a value independently drawn from

a Beta(1, 2) distribution, slightly favoring lower error rates. It should be noted that while

the probit model is used, the actual marginal probabilities of responses to single prompts

does not reflect the probit model, but the true and error model. The decision to use a probit

model was purely in hopes of generating realistic sets of parameters.

The second method of simulation was more flexible and general. Later in the paper a hier-

archical model is going to be introduced that exploits an assumption of similarity between

people’s parameter values to gain better estimates, so simulation in this case is done on a

group level. For the purposes of the frequentist tests, the group size is simply set to 1 since

there is no built in hierarchical structure in the model anyway. Initially, a single vector

was drawn from an 8 outcome flat Dirichlet distribution, which can be thought of as an 8

dimensional extension to the uniform distribution. After that, each subject’s true probabil-
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ities values were drawn from a Dirichlet parameterized by that initial vector multiplied by

a single random variable distributed as a Gamma(8, 1), which is a continuous distribution

defined from 0 to ∞ with a mean of 8 and a variance of 8. This Gamma random variable

represents the concentration parameter of the Dirichlet distribution. The concentration pa-

rameter dictates the expected sparcity of drawn values, with larger values indicating a bias

toward resulting vectors that are more even and smaller values indicating a bias toward vec-

tors concentrated on a small proportion of the elements. When the concentration parameter

is equal to the dimensionality of the Dirichlet, in this case 8, there is no bias of this nature.

The three error probabilities were simulated in the same way as before.

For simulations geared toward detection of transitivity or intransitivity, transitive individuals

had the two p parameters corresponding to intransitive sets of preferences set to 0 following

the afforementioned generation strategies, and then their p vector was renormalized. For

the case of intransitivity, values generated from a Normal distribution centered at 1 with

standard deviation of .2 were added to the p parameter corresponding to b � a, c � b, a � c

and then the entire vector was renormalized. To help conceptualize this, if one starts out with

a probability of 0 of having the aforementioned intransitive pattern and a 1 gets added to it,

the probability of holding that true preference pattern becomes 0.5 after renormalization.

Data with 12 blocks per person and with 24 blocks per person were simulated in each of the

cases, 12 representing a relatively small amount of data one would collect with the individual

model and 24 representing a relatively large amount of data. For simulations involving the

Hierarchical model defined later, each case included simulations with 15 simulated partic-

ipants and 60 simulated participants to illustrate differences in performance when data is

available from more subjects.

The same simulated datasets were used for power analyses of bootstrapping and monte-carlo

procedures. Each case of bootstrapping used 1000 bootstrapped datasets, and monte-carlo

also used 1000 monte-carlo samples. The null hypothesis was said to be rejected in the
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Figure 3.1: Type 1 Error Rate vs. Number of Blocks for the Likelihood Ratio Test (dashed)
and Chi Square (solid). On the left are results via simulation with the probit parameter
generation approach, and on the right the dirichlet approach. (10000 simulations)

case of bootstrapping if the 95% confidence interval of either of the two possible intransitive

probabilities did not include any value below .001. For the monte-carlo procedure, the null

was said to be rejected if 95% or more of the simulated LRT statistic distribution came out

below the real LRT statistic. 2000 experiments were simulated for each condition utilizing

the University of California, Irvine’s high performance computing cluster.

3.3.2 Results

The Mean Squared Error (MSE) of the estimates of the resulting true preference set prob-

abilities is given in the rightmost two columns in Table 3.2both using the full data (on the

left) and data reduced as suggested in [10]. As we can clearly see, utilization of the full data

provides a substantial reduction in MSE, yielding more accurate estimates with the same
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Table 3.1: Power and Level for each frequentist hypothesis testing method
for both parameter generation approaches.

LRT Chi Square Bootstrap Monte Carlo

N Blocks Power Level Power Level Power Level Power Level

Probit
12 0.396 0.008 0.292 0.009 0.439 0.004 0.288 0.040
24 0.564 0.007 0.444 0.013 0.698 0.003 0.382 0.049

Dirichlet
12 0.447 0.009 0.372 0.011 0.513 0.005 0.375 0.040
24 0.624 0.010 0.497 0.012 0.756 0.006 0.460 0.042

number of blocks.

To check whether the true type I error rates for a nominal α = .05 converge to the nominal

value for the Likelihood Ratio Test and Chi-Squared tests, type I error was estimated via

simulation for different numbers of blocks as can be seen in figure 3.1. What we can see from

these simulations is that both tests stay far below their nominal α value for any realistic

block size for individuals. The Chi-Squared test type 1 error seems to increase somewhat

faster than the likelihood ratio test but even past 1000 blocks neither of them seem to level

off at the nominal α level.

A power analysis for the Chi-Square, LRT, Bootstrap, and Monte Carlo approaches can be

found in Table 3.1. We clearly see that despite the true type I error rate being slightly worse

for the LRT, the gains in power are substantial relative to Chi-Square. While we don’t really

know the true null distributions for these tests, it seems like we can trust rejections. We

can see that while still being overly conserative, the Bootstrap procedure yields by far the

highest power. Although Monte-Carlo ends up getting the type I error rate pretty close to

the nominal alpha level, we can see that the power is actually worse relative to the other

methods. This is not too surprising, because in a sense the Monte-Carlo simulations simulate

what could be thought of as a worst-case scenario null distribution, selecting the most likely
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set of null parameters to have generated the original data.

3.4 Bayesian Hierarchical Model

Bayesian Hierarchical Models in a sense allow behavioral researchers to get the best of

both worlds: analysis on an individual subject level while still utilizing group-level infor-

mation. Hierarchical models are powerful tools that have been proven to provide more

accurate parameter estimates than non-Hierarchical Bayesian models, as measured by MSE

[19]. Bayesian statistics in general differs in that rather than providing point estimates

for parameters, posterior distributions are extracted from the data according to the model

specification.

Although it was applied to a different variation of the True and Error model involving only

two preferences per set instead of three, [33] had implemented a non-hierarchical Bayesian

analysis of the True and Error model. Since our goal is to get the most out of our limited

data, a Hierarchical model is a natural expansion of this approach. The one utilized in this

paper shares the same cognitive model as defined previously, but with hierarchical priors for

individual p parameters. More specifically, a soft-max transformation of normally distributed

latent variables is employed:
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Xi,j ∼ Normal(µj, τj)

pi,j =
eXi,j

∑8
j=1 e

Xi,j

µj ∼ Normal(0, 1)

τj ∼ Exponential(1)

Here, parameters subscripted with j represent belonging to the particular set of preferences

in the jth row of A, and i denotes the subject number. The Normal distributions here are

parameterized according to precision (that is, inverse variance). The essence of this Hierar-

chical model is that values (Xi,j) for each probability of a particular set of preferences are

drawn from the same normal distributions and then transformed into probabilities according

to a softmax function taking in the rest of subject i’s Xs.

The error probabilities, denoted by e, are all halves of Beta(1,2) distributed random variables

since it makes sense to assume low errors are more probable than ones nearing chance:

2ei,k ∼ Beta(1, 2) (3.6)

It should be noted that in [? ] implementation, these were drawn from uniform distributions.

The non-hierarchical version used in this paper differs from the hierarchical model only in

that the ps are instead drawn from a flat dirichlet distribution.

To implement this in JAGS it is possible to calculate the probability of all 64 possible

combinations of preference orderings beforehand and treat the combination as coming from

a categorical distribution similar to the approach found in [33]. Alternatively one can upload
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Table 3.2: Mean Squared Error of probability estimates for each estimation method. For the Bayesian
results, MSE(est) denotes the MSE with respect to the posterior mean, while MSE(post) denotes
the MSE with respect to the posterior distribution. MSE(full) denotes the MSE with respect to a
maximum likelihood fit using all the data, while MSE(red) denotes the MSE with respect to a fit
using reduced data as in Birnbaum (2013)

Hierarchical Bayes Individual Bayes

N Subjects N Blocks MSE(est) MSE(post) MSE(est) MSE(post) MSE(full) MSE(red)

Probit
15 12 0.0114 0.0232 0.0202 0.0276 0.0173 0.0242
15 24 0.0069 0.0147 0.0126 0.0180 0.0107 0.0150
60 12 0.0100 0.0208 0.0205 0.0279 0.0174 0.0238
60 24 0.0069 0.0144 0.0128 0.0182 0.0113 0.0155

Dirichlet
15 12 0.0085 0.0175 0.0124 0.0201 0.0186 0.0244
15 24 0.0059 0.0123 0.0089 0.0147 0.0115 0.0139
60 12 0.0078 0.0154 0.0125 0.0202 0.0183 0.0230
60 24 0.0055 0.0109 0.0091 0.0149 0.0113 0.0144

a vector with a one for each observed combination as data and treat the observation as coming

from a Bernoulli distribution with the corresponding probability as in the code given in the

appendix.

MSE performance for estimating the ps in each model from 100 simulations of each case

is shown in Table 3.2, both in posterior distribution as well as in point estimation (in this

case the mean of the posterior distribution). We see here that the Hierarchical Bayesian

model tends to outperform the Individual model substantially in all cases, often by a factor

of 2. We also see moderate performance gains with the Hierarchical model in cases with 12

blocks per person when 60 subjects are included in analysis vs only 15. It’s noteworthy that

the Hierarchical model here performs better despite the fact that the simulation approaches

do not generate people’s parameters according to softmax transformed normally distributed

variables as specified by the model, highlighting its robustness.
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3.4.1 Bayesian Hypothesis Testing

The favored approach by Bayesians for Hypothesis testing is the Bayes factor, which can be

conceptualized as the ratio of the expectation of the probability of the data over the prior

distribution of the parameters for comparing two models [30]. In this case, one can practically

calculate the Bayes factor using a spike-and-slab approach by adding a Bernoulli distributed

indicator parameter for transitivity with prior probability of 1/2. When the indicator for

transitivity is 1, then the ps corresponding to a set of preferences which violate transitivity

are automatically set to 0, and otherwise they are said to come from the distribution denoted

in the above model specification. For the non-hierarchical model, this can be implemented by

drawing from separate dirichlet’s in each case, flat in the intransitive case, and with zeros for

the intransitive parameters and 4
3

for the others in the transitive case. The Proportion of the

time the indicator shows intransitivity divided by the proportion of the time the indicator

indicates transitivity is the Bayes Factor for that individual being intransitive.

To explore relative performance of the Hierarchical vs non-Hierarchical formulations of the

model for Hypothesis testing, simulations were done as before (50 times per each case), this

time where each subject had a .5 chance of being truly transitive or intransitive. Results of

this can be seen in Table 4.2. While some researchers might want to avoid having formal

cutoffs for Bayes Factors, proportion of Bayes Factors greater than 1, 3 and 10 were reported

along with corresponding type 1 error rates. [76] suggest that Bayes factors greater than

1 correspond to ”anecdotal” evidence, 3 tend to correspond to a ”Moderate” amount of

evidence, and greater than 10 a ”strong” amount of evidence.

We can see substantially better performance here than in the frequentist tests, even with

highly conservative cutoffs at 10, and substantially better performance for the Hierarchical

implementation relative to the individual Bayesian implementation. From these simulations,

we see a Bayes factor of 3 in favor of a transitivity violation approximately corresponds to
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Table 3.3: Hypothesis test results for the two Bayesian models. ”C” denotes the proportion whose Bayes
Factors favor the right direction, BF > x denotes the proportion of intransitive people with a Bayes
Factor greater than x favoring intransitivity, and BF > xF denotes the proportion who were transitive
yet still had a Bayes Factor greater than x favoring intransitivity

Hierarchical Bayes Individual Bayes

S B C BF>3 BF>3F BF>10 BF>10F C BF>3 BF>3F BF>10 BF>10F

Probit
15 12 0.88 0.72 0.03 0.57 0.01 0.87 0.72 0.05 0.49 0.01
15 24 0.96 0.85 0.03 0.70 0.02 0.92 0.88 0.03 0.73 0.02
60 12 0.93 0.83 0.03 0.69 0.00 0.86 0.76 0.04 0.56 0.01
60 24 0.94 0.89 0.02 0.76 0.01 0.90 0.86 0.05 0.70 0.01

Dirich
15 12 0.91 0.83 0.04 0.71 0.01 0.85 0.80 0.06 0.60 0.00
15 24 0.94 0.95 0.03 0.88 0.01 0.89 0.92 0.04 0.81 0.01
60 12 0.93 0.87 0.03 0.77 0.02 0.86 0.81 0.05 0.61 0.01
60 24 0.96 0.94 0.02 0.89 0.01 0.90 0.92 0.05 0.82 0.02

a type-1 error rate of .05 in the case of the non-Hierachical individual model, and slightly

more conservative than that for the Hierarchical model, while a Bayes Factor of 10 has a

type-1 error rate of around .01. Despite the type 1 error rate of BF > 10 being somewhat

similar to the frequentist tests from the previous section, we see higher powered results in

both Bayesian implementations.

3.5 Discussion

In cases where the individual TE model is employed and there are multiple participants

responding to the same stimuli, the Hierarchical TE model that was introduced in this paper

seems to yield the best results. In other cases, there is little reason to use the frequentist

approach over the non-hierarchical Bayesian approach, even when properly utilizing all the

data, because the proper null distributions are still unknown and their explored frequentist
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tests tend to be overly conservative. Beyond that, Bayesian methods have the advantage of

natively providing a framework with easily interpretable confidence intervals for estimated

parameters. While bootstrapping and utilizing all of the data using a Likelihood Ratio Test

instead of the Chi-Squared test on a reduced number of degrees of freedom gives a substantial

gain in performance, it still fails to match the advantages of the Bayesian approach.

3.6 Appendix: Hierarchical Model JAGS Code:

model{

for(i in 1:nsub){

for(j in 1:8){

X[i,j] ~ dnorm(mu[j], tau[j])

expX[i,j] <- exp(X[i,j])

}

ps[i,1:8]<- expX[i,1:8]/sum(expX[i,1:8])

}

for(i in 1:8){

mu[i] ~ dnorm(0,1)

tau[i] ~ dgamma(1,1)

}

for(su in 1:nsub){

for(i in 1:3){
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doubes[su,i] ~ dbeta(1,2)

es[su, i] <- .5*doubes[su, i]

}

}

A[1, 1:3] <-c(0,0,0)

A[2, 1:3] <-c(0,0,1)

A[3, 1:3] <-c(0,1,0)

A[4, 1:3] <-c(0,1,1)

A[5, 1:3] <-c(1,0,0)

A[6, 1:3] <-c(1,0,1)

A[7, 1:3] <-c(1,1,0)

A[8, 1:3] <-c(1,1,1)

for(h in 1:nobs){

for(i in 1:8){

probcomp[h,i] <- ps[s[h],i]*(ifelse(A[i,1]==A[fg[h,1],1], 1-es[s[h], 1],

es[s[h],1])*ifelse(A[i,2]==A[fg[h,1],2], 1-es[s[h],2], es[s[h], 2])

*ifelse(A[i,3]==A[fg[h,1],3], 1-es[s[h],3], es[s[h], 3]))

*(ifelse(A[i,1]==A[fg[h,2],1], 1-es[s[h], 1], es[s[h],1])

*ifelse(A[i,2]==A[fg[h,2],2], 1-es[s[h],2], es[s[h], 2])

*ifelse(A[i,3]==A[fg[h,2],3], 1-es[s[h],3], es[s[h], 3]))

}

onevec[h] ~ dbern(sum(probcomp[h,1:8]))

}
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Chapter 4

Transitivity Violations in

Probabilistic and Delay Discounting

4.1 Introduction

In many cases people opt for smaller monetary rewards given sooner over larger ones awarded

later. Similarly, people often choose smaller but more probable rewards over larger, less

probable rewards. A natural question that arises for behavioral economists and psychologists

to answer is how much less is a monetary reward worth given the wait time to receive it,

or given the probability that the reward won’t be received at all. Implicit in this question

is the assumption of transitivity of preference, one of the fundamental axioms of rational

choice theory, which states that if any option A is preferred over any option B, and option

B is prefferred over any option C, then C cannot be preferred over option A. The present

study explores whether this assumption really holds.

It has been widely suggested that there are inherent similarities in the domains of proba-

bilistic and temporal discounting. (e.g. [22, 40, 44, 17, 48]). Although seemingly unrelated,
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previous research has suggested that both discounting curves seem to be successfully modeled

with the same hyperbolic function, which in both cases can be derived under the assumption

that the subjective value is proportional to the expected reward over time [43]. In this case,

the functional form of the discounting curve describing depreciation in value is equivalent

when odds against winning is substituted for time. Although our methods to study the ques-

tion of transitivity in these domains does not rely on any assumptions of functional form, or

even existence of such a discounting curve, it is useful to know it to really understand the

previous research in the matter.

V$ =
A

1 + ki ∗D
(4.1)

Describes the subjective monetary value for person i with delay discounting rate ki at amount

A. In other words, when a delayed option has a subjective monetary value of V$, an imme-

diate monetary option greater than V$ is more likely to be preferred, while an immediate

option less than V$ is more likely to be rejected in favor of the delayed reward. Higher values

of ki indicate that subject i deems monetary rewards to decrease in value more rapidly with

respect to the magnitude of the delay.

Similarly:

V$ =
A

1 + hi ∗ θ
(4.2)

Describes the subjective monetary value for person i with probabilistic discounting rate hi

at amount A, where θ = 1−p
p

is the odds against success.

There has been some evidence that delay discounting may actually be sensitive to context,
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and thus has the potential to induce violations of transitivity. [23] investigated this and

concluded that when subjects compare two delayed rewards, the tendency was for the sub-

jects to discount the sooner reward less than they would if they were comparing it to the

immediate reward. The analysis by [23], however, was conducted using a parametric test

assuming a particular functional form instead of investigating transitivity directly with no

such assumptions as is done in this study. They named this context effect the Common As-

pect Attenuation Hypothesis (CAAH), and referred to the rejected null result as the Present

Value Comparison Hypothesis (PVCH). Under the CAAH as they formalized it, the way

two delayed options get discounted is slightly different than an immediate option with a

delay. Specifically, drawing from the proposed functional form from [23] the sooner option

gets discounted according to:

V$,s =
As

1 + wk,iki ∗Ds

(4.3)

while the later option gets discounted according to:

V$,l =
Al

1 + wk,iki ∗Ds + ki ∗ (Dl −Ds)
(4.4)

It should be noted that when w=1, or when D or θ are zero for one of the options, the CAAH

reduces to the PVCH.

There hasn’t been a parallel experiment done for probabilistic discounting, but given that

the common functional form for the two domains is the same, it would seem natural to

extend a possible CAAH to probabilistic discounting as follows:

V$,m =
Am

1 + wh,ihi ∗ θm
(4.5)

For the more probable option, while the less probable option’s subjective monetary value
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would be:

V$,l =
Al

1 + wh,ihi ∗ θs + hi ∗ (θl − θm)
(4.6)

Although probabilistic and temporal discounting share the same form, there have also been

findings that have set them apart as well. For example, it has been found that while in

temporal discounting the rate of discounting with respect to time gets smaller with larger

monetary amounts, the opposite is true for the rate of probabilistic discounting with respect

to odds against winning [25, 24]. Because there are such differences, it’s not implausible

that probabilistic discounting would not yield results characterized by the same formalism

as the CAAH in delay discounting. For an in-depth review of probabilistic and temporal

discounting and their relations to each other, see [22].

The CAAH gives us reason to believe that we may find violations of transitivity in delay

discounting and probabilistic discounting if subjects are asked to compare two delayed or two

probabilistic options with each other, but what about choosing between a delayed option vs

a probabilistic one? When domains cross, does subjective value get preserved, or are there

violations of transitivity? There hasn’t been much investigation into this, but results from

[40] hint that there might be intransitivities in such cases too via a parametric analysis based

on the hyperbolic discounting function.

The approach we take is unlike that in [23] and [40] in that there is no reliance on the

functional form of discounting functions. Instead, we’ve systematically selected sets of triples

and utilized a repeated measures approach. We use a True and Error (TE) model [10] to

analyze the data, which allows us to study concurrent sets of preferences instead of resorting

to stochastic transitivity and triangle inequalities like in [54] which rely on assumptions of

IID, often known to be faulty in repeated measures designs [9].
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4.2 Stimulus Generation and Experimental Procedure

A previous, unpublished study on probabilistic and delay discounting with 30 participants

was used to find optimal sets of stimuli (see attached supplementary material). Data in this

study was analyzed using a hierarchical Bayesian modeling framework based on the hyper-

bolic discounting model and the functional form for the CAAH proposed by [23]. Although

the CAAH form was designed for delay discounting specifically, the same form was adopted

also for probabilistic discounting. The study also included questions asking subjects to pick

between a probabilistic and delayed option. This was modeled with the use of an additive

term representing biased preference toward probabilistic or temporally discounted options

under the context of a comparison between the two. The results of the analysis supported the

CAAH in both the delay and probabilistic domains and suggested there may be violations

of transitivity when you mix the two domains. A detailed writeup of this study is available

in the attached supplementary material.

Starting with pre-picked immediate/certain options, a brute-force grid-search simulation

approach using the individual parameter estimates of the 30 participants was utilized to find

4 sets of triples in each of the the 3 domains that would yield the highest number of people

committing violations of transitivity. Monetary amounts were allowed to reach up to $4000,

delays up to 48 months, and probabilities as low as 0.2. The selected sets of triples are shown

in Table 4.1.

In anticipation of needing to use the True and Error model, all pairs among the 12 sets

of triples were each presented twice per block, one time in reverse order. Filler paired

comparison questions generated in the same way as the previous study were thrown in

between the pairs corresponding to the selected sets of triples. Subjects were mostly brought

in for two separate 80 minute sessions with questions automatically generated until the

timer finished, but in some cases accomodations were made so that one or more of the
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Table 4.1: Triples used

Triple A B C

Delay
1 $290 right now $568 in 28 months $661 in 34 months
2 $330 right now $972 in 18 months $2716 in 44 months
3 $440 right now $796 in 22 months $1152 in 48 months
4 $550 right now $1758 in 36 months $2275 in 46 months

Probabilistic
1 $310 for certain $771 with a chance of 0.56 $3539 with a chance of 0.29
2 $340 for certain $1164 with a chance of 0.4 $2719 with a chance of 0.26
3 $430 for certain $1144 with a chance of 0.3 $1769 with a chance of 0.24
4 $550 for certain $1758 with a chance of 0.5 $2706 with a chance of 0.45

Mixed
1 $280 right now $2363 with a chance of 0.38 $1619 in 39.5 months
2 $315 right now $536 with a chance of 0.27 $1273 in 22 months
3 $532 right now $3792 with a chance of 0.31 $3861 in 19.5 months
4 $827 right now $3937 with a chance of 0.22 $2858 in 8.5 months

sessions would be slightly shorter. In total there were 27 participants, mostly Psychology

undergraduates with some Graduate Students from Cognitive Science participating as well.

The responses on the trials from the old experiment were fit to the old model, and a posterior

predictive check was performed to see if the predictions from the old model matched the

observations on the repeated measures. The old model performed poorly on these checks,

and in fact severely underestimated the true number of transitivity violations that were

observed in the probabilistic and mixed domains. Although this approach delivered strong

results of transitivity violations as was desired, it seems like the old model needs revision to

capture people’s true behavior in these domains.
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4.3 Analysis Methods

We used the procedure recommended in [8] to check for evidence of violations of independence

assumptions inherent to many existing models of transitivity. To ensure satisfactory power

all questions in all domains were analyzed. To properly adhere to the procedure, it was

only possible to use the number of repetitions of the least repeated question for each person.

10000 samples were run, simulating random permutations of the question order. We found

that 20 out of the 27 participants had evidence of violating independence at the α = .05

level, with one more participant with a p-value just .0012 away from significance, and the

rest failing to reject the null hypothesis of response independence. Because of this evidence

that at least for most people the response independence assumption was not supported, we

opted to use the True and Error model.

The previous chapter of this dissertation offered substantial improvements to True and Error

analysis in accuracy and data efficiency. Although several new methods of analysis were

introduced, the one with most improvements and suitability for this experimental task is

the Hierarchical Bayesian implementation of the True and Error model, so that is what was

utilized in the present study.

4.4 Results

Table 4.2 summarizes the results of the tests for violations of transitivity. The columns show

the proportion of individuals whose Bayes Factors favored violations of transitivity crossing

thresholds of 1, 3, and 10 respectively. Although Bayes Factors are fundamentally different in

nature from p-values, to give a sense of the strength of the evidence the previous dissertation

chapter showed through simulation that a Bayes Factor threshold of 1 corresponded to a

type 1 error rate (α) of roughly .08 for the model used, 3 corresponded to an α level of
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Table 4.2: Proportion whose Bayes
Factors favored the Intransitive Model
(N=27)

Triple BF>1 BF>3 BF>10

Delay
1 0.22 0.00 0.00
2 0.11 0.00 0.00
3 0.22 0.15 0.04
4 0.15 0.00 0.00
Highest 0.52 0.15 0.04

Probabilistic
1 0.48 0.44 0.30
2 0.30 0.19 0.15
3 0.37 0.30 0.22
4 0.56 0.56 0.52
Highest 0.67 0.59 0.56

Mixed
1 0.44 0.37 0.37
2 0.44 0.37 0.37
3 0.63 0.56 0.48
4 0.33 0.30 0.30
Highest 0.81 0.78 0.70

All
Highest 0.96 0.89 0.81
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roughly .03-.04 , and a threshold of 10 corresponded to an α of roughly .01. The rows in 4.2

labeled “Highest” correspond to the proportion of people whose highest Bayes Factor in the

respective domain exceeded each threshold. Tables containing raw proportions of transitivity

violations in either direction are included in the appendix, along with model estimates of

the true probabilities of each direction of transitivity violations.

Although the CAAH was initially conceived as a phenomenon of delay discounting, we

actually find that the delay domain was the only one out of the three that was mostly

void of violations of transitivity. The only delay triple that showed any signs of violations of

transitivity was the third one, with only 4 out of 27 people exceeding the BF>3 threshold

and just 1 exceeding the BF>10 threshold. Examining the tables in the appendix, the

cases of transitivity violations detected were actually in the opposite direction than that

predicted by the CAAH. Since the prevalence of this detection was so low, it’s possible that

this result could be a mere fluke, and not reflective of a larger pattern. It should be stressed

that although these results didn’t support the CAAH, they are not enough to dismiss the

CAAH outright. Under the model for the CAAH from [23], the proportion of triples any one

individual would be intransitive with is quite small, so it’s plausible that the ones selected

simply weren’t the right ones to detect a violation of transitivity for any of the participants.

Far more violations of transitivity were detected in the Probabilistic domain, and every one of

them was in the direction that would be predicted by the probabilistic discounting analogue

to the CAAH. Although the direction of intransitivity is consistent with that predicted by

the CAAH, the results observed here were actually too strong for the functional form of the

CAAH analogue to hold. There is no set of parameters under that model that would allow

for an individual subject to have violations of transitivity over all four probabilistic triples,

and yet there were multiple people where this was observed decisively. In many instances,

people responded intransitively over 90% of the time. Overall, 59% of people had at least one

Bayes Factor favoring a transitivity violation in at least on case past the BF>3 threshold,
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and 56% of people had at least one past the BF>10 threshold. The 4th triple was the one

that people were most intransitive with, with 56% crossing the BF>3 threshold and 52%

crossing the BF>10 threshold, meaning that all but one person who showed intransitivity in

the Probabilistic domain were intransitive with that triple, and many were also intransitive

with the others.

The mixed domain ended up in total having the most violations of transitivity. 78% of

people crossed BF>3, and 70% crossed BF>10 in for at least one of the four triples. Results

in this case were very strong, with multiple cases of people choosing intransitively 100%

of the time. The third triple ended up inducing the most violations of transitivity, and

interestingly was the only case were transitivity violations were detected in both directions.

All other triples had the probabilistic option chosen over the delayed option in cases of

transitivity violations, but in the case of the third triple chosing the delayed option over

the probabilistic was more prominent under transitivity violations. With minor exceptions,

most of those with transitivity violations favoring delayed above probabilistic options in the

third triple did not exhibit transitivity violations for the other triples in the mixed domain.

4.5 Discussion

Overall the results were stronger than anticipated in all but the delay domain. It seems

like there’s a need to rethink the exact mathematical formalism behind these strong context

effects in probabilistic discounting, because simply transferring over the model of the CAAH

from [23] into the probabilistic domain doesn’t seem to cut it. The transitivity violations in

the mixed domain were strongest and most common, but the model from the supplementary

paper was insufficient in capturing everything that was going on. It’s clear that this needs to

be explored more in depth if an accurate model that accounts for context is to be developed.
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4.6 Appendix
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Table 4.3: Proportion of time A > B > C > A (Raw Data)

Delay Probabilistic Mixed

ID 1 2 3 4 1 2 3 4 1 2 3 4

1 0.23 0.03 0.00 0.04 0.87 0.70 0.86 0.93 0.73 0.65 0.13 0.57
2 0.08 0.14 0.06 0.08 0.00 0.00 0.03 0.03 0.05 0.05 0.00 0.05
3 0.00 0.05 0.08 0.11 0.35 0.10 0.42 0.04 0.14 0.15 0.04 0.11
4 0.09 0.09 0.05 0.05 0.55 0.11 0.22 0.23 0.68 0.65 0.20 0.75
5 0.14 0.00 0.07 0.06 0.58 0.17 0.58 0.17 0.07 0.19 0.00 0.25
6 0.04 0.00 0.08 0.07 0.81 0.32 0.71 0.43 0.07 0.04 0.00 0.07
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.70 1.00 0.00 0.00
8 0.09 0.03 0.03 0.00 0.03 0.07 0.00 0.03 0.12 0.10 0.00 0.03
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.97 0.87 0.47 0.60
10 0.00 0.00 0.00 0.00 0.05 0.00 0.05 0.00 0.91 0.86 0.23 0.68
11 0.06 0.00 0.00 0.00 0.28 0.28 0.22 0.78 0.00 0.00 0.00 0.00
12 0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.25 0.00 0.04
13 0.00 0.00 0.00 0.00 0.32 0.14 0.59 0.91 0.05 0.05 0.00 0.00
14 0.00 0.00 0.00 0.00 0.03 0.03 0.03 0.06 0.94 0.97 0.56 0.61
15 0.00 0.05 0.00 0.00 0.23 0.41 0.36 0.50 0.14 0.82 0.00 0.18
16 0.06 0.00 0.06 0.06 0.94 0.07 0.06 0.44 0.06 0.25 0.00 0.06
17 0.00 0.06 0.05 0.11 0.61 0.44 0.62 0.45 0.25 0.33 0.06 0.18
18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.18 1.00
19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.95 1.00 0.00 1.00
20 0.00 0.00 0.00 0.00 0.80 0.10 0.20 0.70 0.00 0.00 0.00 0.00
21 0.00 0.00 0.00 0.12 0.75 0.00 0.12 0.75 0.25 0.25 0.00 0.00
22 0.00 0.33 0.00 0.17 0.50 0.25 0.88 0.67 0.00 0.17 0.00 0.00
23 0.00 0.00 0.00 0.00 0.95 0.72 0.94 0.95 0.00 0.00 0.00 0.00
24 0.00 0.00 0.00 0.00 0.12 0.00 0.19 0.00 1.00 1.00 0.88 0.88
25 0.10 0.08 0.25 0.14 0.93 0.20 0.75 0.50 0.00 0.14 0.07 0.00
26 0.09 0.17 0.00 0.00 0.54 0.58 0.59 0.46 0.04 0.17 0.00 0.18
27 0.10 0.10 0.30 0.06 0.90 0.20 0.44 0.85 0.15 0.30 0.00 0.05
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Table 4.4: Proportion of time A < B < C < A (Raw Data)

Delay Probabilistic Mixed

ID 1 2 3 4 1 2 3 4 1 2 3 4

1 0.00 0.03 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.27 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00
3 0.05 0.15 0.04 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.18 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00
5 0.07 0.14 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.43 0.00
6 0.21 0.11 0.19 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.39 0.00
7 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 0.16 0.00 0.30 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00
9 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.09 0.09 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.83 0.00
12 0.00 0.05 0.09 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
13 0.27 0.04 0.50 0.05 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
14 0.00 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
15 0.05 0.23 0.00 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.38 0.00
16 0.19 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00
17 0.06 0.06 0.10 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.44 0.00
18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00
21 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.00
22 0.00 0.33 0.00 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.00
23 0.00 0.00 0.06 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.83 0.00
24 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
25 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.64 0.00
26 0.05 0.04 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.32 0.00
27 0.00 0.05 0.05 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.45 0.00
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Table 4.5: Proportion of time A > B > C > A (True Probability Estimate)

Delay Probabilistic Mixed

ID 1 2 3 4 1 2 3 4 1 2 3 4

1 0.02 0.00 0.01 0.01 0.90 0.97 0.98 0.98 0.73 0.70 0.04 0.64
2 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.02 0.04 0.01 0.01 0.03 0.00 0.12 0.02 0.03 0.03 0.02 0.00
4 0.00 0.02 0.00 0.01 0.67 0.04 0.01 0.26 0.73 0.86 0.03 0.85
5 0.05 0.03 0.04 0.03 0.74 0.01 0.65 0.17 0.03 0.03 0.01 0.09
6 0.00 0.01 0.05 0.03 0.99 0.03 0.97 0.73 0.01 0.00 0.01 0.01
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.93 0.97 0.02 0.01
8 0.01 0.00 0.02 0.01 0.00 0.05 0.00 0.01 0.01 0.02 0.01 0.00
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.99 0.97 0.22 0.85
10 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.99 0.96 0.13 0.77
11 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.96 0.00 0.00 0.00 0.00
12 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.03 0.01 0.00 0.00
13 0.00 0.00 0.02 0.01 0.03 0.00 0.78 0.93 0.00 0.00 0.00 0.01
14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.99 0.99 0.50 0.93
15 0.00 0.00 0.00 0.00 0.00 0.71 0.03 0.77 0.05 0.98 0.01 0.10
16 0.03 0.04 0.01 0.02 0.99 0.01 0.00 0.82 0.01 0.03 0.01 0.00
17 0.02 0.04 0.03 0.02 0.84 0.46 0.85 0.62 0.32 0.41 0.02 0.05
18 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.99 0.98 0.04 0.98
19 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.99 0.98 0.01 0.98
20 0.01 0.01 0.00 0.01 0.97 0.05 0.01 0.89 0.01 0.01 0.01 0.01
21 0.00 0.00 0.00 0.01 0.88 0.01 0.01 0.81 0.23 0.04 0.02 0.01
22 0.00 0.05 0.03 0.02 0.44 0.03 0.96 0.89 0.04 0.06 0.02 0.02
23 0.03 0.00 0.01 0.00 0.99 0.93 0.99 0.97 0.00 0.00 0.00 0.01
24 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.98 0.98 0.88 0.97
25 0.02 0.01 0.01 0.01 0.99 0.02 0.96 0.75 0.00 0.01 0.03 0.01
26 0.05 0.03 0.02 0.01 0.60 0.82 0.63 0.76 0.01 0.02 0.03 0.15
27 0.07 0.01 0.00 0.02 0.99 0.02 0.17 0.97 0.10 0.06 0.01 0.01
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Table 4.6: Proportion of time A < B < C < A (True Probability Estimate)

Delay Probabilistic Mixed

ID 1 2 3 4 1 2 3 4 1 2 3 4

1 0.01 0.01 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.26 0.01
2 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.03 0.06 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00
4 0.00 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.27 0.00
5 0.05 0.04 0.16 0.04 0.00 0.00 0.00 0.02 0.00 0.00 0.72 0.00
6 0.00 0.02 0.30 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.91 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.00
8 0.02 0.00 0.45 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
10 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
11 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.97 0.00
12 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
13 0.01 0.00 0.78 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.00
14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.90 0.00
16 0.05 0.03 0.03 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.64 0.00
17 0.03 0.04 0.06 0.03 0.00 0.00 0.00 0.01 0.00 0.01 0.65 0.00
18 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
19 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00
20 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.04 0.00
21 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.02 0.00 0.23 0.00
22 0.00 0.06 0.08 0.03 0.00 0.00 0.00 0.00 0.00 0.01 0.86 0.01
23 0.02 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.00
24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
25 0.04 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.87 0.00
26 0.04 0.02 0.04 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.66 0.00
27 0.04 0.02 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.00
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Appendix A

Supplementary Material

Attached is a write-up of the experiment that preceded that which was described in the

fourth chapter.
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Approach
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Abstract

This study further explores the mechanics of both probabilistic and temporal dis-
counting and their relation to each other under a hierarchical Bayesian modeling
framework that includes a stochastic model for the raw data. Strong evidence for con-
text effects were found at the individual level for forced-choice comparisons between
two delayed monetary rewards, two probabilistic monetary rewards, and comparisons
between a delayed and a probabilistic reward. Findings from previous experiments
regarding changes in discounting rate with respect to monetary amount in both delay
and probabilistic domains were confirmed true in most individuals.

Keywords:
Probabilistic, Temporal, Discounting, Thurstone, Hierarchical, Bayesian, Decision
Making

1. Introduction

The subjective devaluation of a monetary reward given the time it will take to
receive the reward is a classic area of study within behavioral economics and de-
cision science, as is the devaluation of a potential monetary reward with respect
to the probability of receiving it. Many researchers have suggested that there is
an inherent similarity between these two (e.g. Green and Myerson (2004); Luck-
man et al. (2017); Myerson et al. (2003); Du et al. (2002); Rachlin et al. (1991)).
Both probabilistic and temporal discounting seem to be well represented under a
hyperbolic discounting model, which itself can be derived under the assumption that
the subjective value is proportional to the expected reward over time (Myerson and
Green, 1995). In this case, the functional form of the discounting curve describing
depreciation in value is equivalent when odds against winning is substituted for time.
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There have been a number of interesting findings regarding both probabilistic and
temporal discounting. Firstly, it has been found that while in temporal discount-
ing the rate of discounting with respect to time gets smaller with larger monetary
amounts, the opposite is true for the rate of probabilistic discounting with respect
to odds against winning (Green et al., 1999, 1997). Green et al. (2005) found that
when comparing two delayed rewards, subjects tend to discount the sooner reward
less than they would if they were comparing it to an immediate reward. This ef-
fect is referred to as the Common Aspect Attenuation Hypothesis (CAAH), vs the
Present Value Comparison Hypothesis (PVCH) which states that this context ef-
fect isn’t there. Under a discounting framework, there doesn’t seem to have been
much investigation of this effect under the probabilistic counterpart. There also has
not been much investigation into subjects comparing probabilistic vs temporal re-
wards, although there has been some evidence that there is a potential context effect
there (Luckman et al., 2017). Besides research that has delved into the mechanics of
probabilistic and temporally discounted decision making, there has also been a large
body of research that has found connections between temporal discounting rates and
various addictions such as heroin addiction (Kirby et al., 1999), alcoholism (Petry,
2001), cigarette addiction (Baker et al., 2003), as well as other behavioral tendencies.
For an in-depth review, see Green and Myerson (2004).

Most of the previous research has used a psychophysical procedure developed by
Rachlin et al. (1991) to measure discounting curves. In this procedure, the discount-
ing curve for a single monetary amount is measured by iteratively asking subjects
whether they would prefer that monetary amount at a certain delay or a smaller
monetary amount immediately, each time adjusting the immediate amount higher
or lower until there is a preference reversal. This is then repeated at a number of
different delay points, plotting the points of preference reversal and using them to
fit the discounting curve. While this procedure does get at the question at hand,
there are a number of drawbacks. Firstly, there is susceptibility to order effects and
memory effects. These can be diminished through varying the starting position of
the immediate option to start high or low, which works well if finding an aggregate
function, but may still suffer from memory effects when evaluating individual dis-
counting functions. Something else that is lacking is a theory on the probability of
choosing one option over the other, creating a level of separation between the statisti-
cal analysis and the raw data and inhibiting ability to make probabilistic predictions
of responses to new pairs of options using the data. To study context effects, this
procedure must be combined with specific other items, and with no probabilistic
framework for individual responses it becomes difficult to effectively study context
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effects at an individual level rather than aggregate to really determine what propor-
tion, if any at all, really have susceptibility to context effects and how.

This study aims to resolve these issues, allowing us to efficiently study a variety
of context effects in discounting for a range of different monetary values in a manner
that effectively differentiates between individuals and aggregate. In addition to look-
ing at the CAAH at the individual level in both probabilistic and temporal domains,
this study also investigates whether individual subjects are biased more towards fa-
voring delayed options or probabilistic options when given a choice between the two.

A useful framework for formalizing subjective value as it relates to choice proba-
bilities under paired comparisons can be taken from Thurstone (1927). The Thursto-
nian model assumes that the subjective value of each option in a paired comparison
task is estimated at each comparison in a Gaussian distributed fashion, and the op-
tion which at that comparison was estimated to have a higher subjective value is
chosen. The mean of this Gaussian distribution can be treated as the true subjective
value, while the variance corresponds to the degree to which the subjective value of
the option may vary. It is important to note that in this context, subjective value is
measured on a latent scale, which is not necessarily linearly proportional to subjec-
tive monetary value.

Under the assumption of independence of the Gaussian distributions of the Thursto-
nian model (known as Case III), the equation for choosing option x over option y
is:

Px�y = Φ
(VT (x)− VT (y)√

σ2
x + σ2

y

)
(1)

It’s easy to see that under the assumption of equal variances (Case V), this
equation can become:

Px�y = Φ
(
c ∗ (Vt(x)− Vt(y))

)
(2)

Traditionally the Thurstonian model has been used to model items that are said
to have a fixed subjective Thurstonian value Gaussian distribution, but in the case of
this study the mean of this distribution can be free to shift under different contexts
in the presence of context effects.
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2. Experimental Procedure

30 participants were asked to respond to a series of likert and paired comparison
questions given in random order. Items were generated in several different ways.
62 paired comparisons in both the probabilistic and temporal domains were chosen
at random, with a smaller sooner and a larger later option in the temporal domain
and a smaller but more likely versus a larger less likely option in the probabilistic
domain. In order to gather information efficiently, lower delays were more likely to
be chosen as options, and pairs were generated in a way that favored pairs likely
to be judged to be similar in subjective value. 45 Pairs were chosen at random
comparing probabilistic options with temporal options. In addition, 5 pairs in each
of the three categories were chosen by the experimenter and were the same for each
subject. Possible monetary rewards ranged from $1 to $4000, possible chances of
reward ranged from 0.2 to 1, and possible delays ranged from 0 to 48 months.

In addition, participants were asked to compare 4 different monetary amounts at 4
different delays and 4 different probabilities with immediate certain rewards 3 differ-
ent times. The immediate certain rewards were chosen randomly, but were bounded
to be above amounts that the participant had chosen the probabilistic/delayed option
over for the same discounted option or worse (lower or the same amount, less or the
same delay/higher probability), and below amounts the participant had chosen when
comparing to the same discounted option or better. Thus, as the experiment went
on the possible range of immediate certain options shrunk to be more representative
of the individual’s true subjective value. Discounted amounts tested were at $500,
$1000, $2500, and $4000, delayed at 3, 8, 18 or 48 months, or in the probabilistic
case with chances of reward at 0.2, 0.4, 0.6, or 0.8.

Likert questions asked participants to rate on a scale from 0 to 9 (the keys on
the keyboard) how good a particular delayed or probabilistic reward sounded. 55
delayed and 55 probabilistic items were chosen completely at random, with some
chance for a certain or immediate reward, while 5 in each category were chosen by
the experimenter and were the same for each individual. The response time for these
likert questions was recorded. After each likert question, an additional likert question
asked them to rate how difficult it was for them to assess the value of the item in
question from 0 to 9. The point of these questions was to assess whether there might
be evidence for differing degrees of uncertainty in subjective value across the attribute
spaces to hint at whether a case III Thurstonian model should be used instead of a
case V. After trying to fit a multivariate polynomial to individual percentile rankings
of both reaction time and reported subjective difficulty of assessment, the R2 was
lower than 0.15 in both domains even with a 4th degree multivariate polynomial, so
no evidence was found that there was a non-uniform amount of uncertainty across
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both attribute spaces.

3. Modeling

The hyperbolic function was used to quantify people’s subjective monetary equiv-
alent for both delayed options and probabilistic options.

V$ =
A

1 + ki(A) ∗D (3)

Describes the subjective monetary value for person i with delay discounting rate
ki at amount A. In other words, when a delayed option has a subjective monetary
value of V$, an immediate monetary option greater than V$ is more likely to be pre-
ferred, while an immediate option less than V$ is more likely to be rejected in favor
of the delayed reward. Higher values of ki indicate that subject i deems monetary
rewards to decrease in value more rapidly with respect to the magnitude of the delay.

Similarly:

V$ =
A

1 + hi(A) ∗ θ (4)

Describes the subjective monetary value for person i with probabilistic discounting
rate hi at amount A, where θ = 1−p

p
is the odds against success.

Since both k and h have previously been found to vary with respect to monetary
amount, they were modeled to vary linearly with respect to A:

ki(A) = βk,i,0 + βk,i,1 ∗ A (5)

hi(A) = βh,i,0 + βh,i,1 ∗ A (6)

Under the CAAH, the way two delayed options get discounted is slightly different
than an immediate option with a delay. Specifically, drawing from the proposed
functional form from Green et al. (2005) the sooner option gets discounted according
to:

V$,s =
As

1 + wk,iki(As) ∗Ds

(7)

while the later option gets discounted according to:

V$,l =
Al

1 + wk,iki(Al) ∗Ds + ki(Al) ∗ (Dl −Ds)
(8)
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This can easily be extended to probabilistic discounting with the more probable
option being discounted according to:

V$,m =
Am

1 + wh,ihi(Am) ∗ θm
(9)

while the less probable option’s subjective monetary value is:

V$,l =
Al

1 + wh,ihi(Al) ∗ θs + hi(Al) ∗ (θl − θm)
(10)

It should be noted that when w=1, or when D or θ are zero for one of the options,
the CAAH reduces to the PVCH.

3.1. Linking the subjective monetary equivalent to the Thurstonian value

In the past, some other researchers have utilized the logistic function to study
discounting (e.g. Luckman et al. (2017)). However, those that have done this did so
with no transformation of the subjective monetary equivalent. This is problematic,
since the comparison between options with subjective values equal to 1 USD vs 2
USD is likely to be much more substantial than 3000 USD vs 3001 USD, yet with no
transformation this approach assumes the same probability of choosing the smaller
vs the larger option. Also, the logistic function assumes a range of values from −∞
to ∞, whereas here we are dealing with values from 0 to ∞.

It can be shown that the logistic function used here is the equivalent of what
Luce’s Choice Rule (Luce, 1959) would be under logarithmic transformation of the
subjective monetary values. In the case of Luce’s Choice Rule, the probability of
selecting option x over option y is given by:

Px�y =
V (x)

V (x) + V (y)
(11)

It is a matter of personal opinion that the Thurstonian model, which assumes the
evaluation of each option is Gaussian Distributed and the option deemed to be of
higher value at that moment is a more plausible model. Either way, under a log
transformation and utilization of the logistic function and an assumption of equal
variance under the Thurstonian Model (Case V), the characteristics of the two sig-
moidal functions are fairly similar and unlikely to yield dramatically different results.
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The log transformation of V$ as being reflective of subjective value has a cen-
turies old history going back to Daniel Bernoulli (Bernoulli, 1738). It has also been
well known for over a century that many psychophysical stimuli have a subjective
intensity that is proportional to the logarithm of the physical intensity according to
the Fechner-Weber law (Fechner, 1860). There is also an advantage that taking the
logarithm delivers the same results regardless of currency exchange rates. For this
study, we assume that the Thurstonian Value is thus equal to the log transformation
of the monetary subjective value:

VT = log(V$) (12)

Under the Case V Thurstonian Model this yields:

Px�y = Φ
(
ci(VT (x)− VT (y|x))

)
(13)

3.2. Bayesian Hierarchical Model

Although each individual’s parameters were estimated individually, it was as-
sumed that certain individual parameters were drawn from the same distribution.

3.2.1. Discounting Rates

Discounting rates and their rate of change were estimated hierarchically, with
individual parameters for subject i being drawn as follows:

βk,i,0 ∼ N(µk,0, σ
2
k,0)T (max(0,−βk,i,1 ∗ 4000),∞) (14)

βk,i,1 ∼ N(µk,1, σ
2
k,1) (15)

βh,i,0 ∼ N(µh,0, σ
2
h,0)T (max(0,−βh,i,1 ∗ 4000),∞) (16)

βh,i,1 ∼ N(µh,1, σ
2
h,1) (17)

The truncation on the coefficient terms was placed to bound the discounting rate to
always be positive.

The hyperparameters for the discounting rates were given semi-informative dis-
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tributions as follows:

µk,0 ∼ N(0, 1) (18)

µk,1 ∼ N(0,
1

1000
) (19)

µh,0 ∼ N(0, 10) (20)

µh,1 ∼ N(0,
1

400
) (21)

σ2
k,0 ∼ invgamma(0.5, 0.0002) (22)

σ2
k,1 ∼ invgamma(0.3, 3 ∗ 10−11) (23)

σ2
h,0 ∼ invgamma(0.4, 0.2) (24)

σ2
h,1 ∼ invgamma(0.6, 4 ∗ 10−8) (25)

3.2.2. Testing the Common Aspect Attenuation Hypothesis

To test the CAAH for the probabilistic and temporal domains, the probability
of person i having a wk,i or wh,i equal to one (indicating adherence to PVCH) was
assumed to be equal for all individuals, but not necessarily equal for the probabilistic
and temporal domains. These probabilities were both estimated with a uniform prior
from 0 to 1. In the case that an individual was estimated to be adhering to the
CAAH, wk,i and wh,i were both drawn from uniform distributions from 0 to 1. The
Bayes Factor in the results section for each participant’s adherence to CAAH was
calculated according to the proportion of times wk,i or wh,i were not equal to one
compared to the times they were.

3.2.3. Individual Sensitivity to Differences in Value

cm,i was given the following hierarchical prior:

cm,i ∼ gamma(am, bm) (26)

am ∼ N(0, 109)T (0,∞) (27)

bm ∼ N(0, 109)T (0,∞) (28)

With m corresponding to either the probabilistic, temporal, or probabilistic with
temporal domains.

3.2.4. Probabilistic Option vs Temporal Option

The analyses that did not have anything to do with the cross-domain questions
were run without taking into account the cross-domain data. After it was concluded
that the CAAH was being followed (see results), the cross-domain data was analyzed
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under that assumption pertaining to the within-domain data.

The Cross-Domain model used assumed that people were comparing the present
value comparisons of the temporal and probabilistic options with each other, but
with an additive bias for the probabilistic option under the Thurstonian model that
was estimated hierarchically for each individual. The equation for this is given below:

Ppr�del = Φ
(
cc,i(VT (pr) +Bp,i − VT (del))

)
(29)

Bp,i for subject i was estimated with the following hierarchical prior:

Bp,i ∼ N(µB, σ
2
B) (30)

µB ∼ N(0, 10) (31)

σ2
B ∼ invgamma(0.01, 0.01) (32)

3.2.5. Allowing For Error Trials

Since subjects were asked to answer a lot of questions back to back, it was as-
sumed that they may have selected some on accident. For each trial, the model
specified that person i answered randomly with probability ri, and otherwise an-
swered according to the Thurstonian model. Each ri was given a Beta(2,100) prior.

4. Results

4.1. Common Aspect Attenuation Hypothesis

For each individual, a Bayes factor was calculated to determine the relative poste-
rior probability of the CAAH (w < 1) vs the PVCH (w = 1) in both the probabilistic
and temporal domains. Figure 1 below shows a histogram of the Bayes factors in
the temporal domain for each individual. It was found that everyone had between
moderate to strong support in favor of the CAAH, indicating a violation of stochastic
transitivity under the assumptions of the model.
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Figure 1:

In the probabilistic domain, there was a larger degree of variance in the individual
Bayes factors, so the log Bayes factor in support of the CAAH is given in Figure 2.
Although a couple people did not show evidence of response patterns favoring the
CAAH over the PVCH, the overwhelming majority of participants showed strong to
overwhelming support for CAAH, indicating a similar violation of stochastic transi-
tivity under the assumptions of the model as was found in the delay case.

Figure 2:
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4.2. Change in discounting rates with respect to monetary amount

For the most part, the results were consistent with previous research in finding
that the majority of people decreased their discounting rate for larger monetary
amounts for delayed rewards, and increased their discounting rate for larger monetary
amounts for probabilistic rewards. This wasn’t true for everyone, however. In fact, a
few people in both domains had moderate evidence for having a change in discounting
rate in the opposite direction, while a few did not show much change. A majority of
people in both cases exhibited strong to overwhelming evidence in support of being
consistent with the previous literature. The log Bayes Factors for individuals in both
domains in favor of previous findings are presented in the two histograms below.

Figure 3:
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Figure 4:

4.3. Are people biased towards Delayed or Probabilistic options?

Looking at the posterior estimates for the bias term in favor of probabilistic
options, we found that some people showed favor more towards the probabilistic
option, while others showed more favor towards the delayed option, and some did
not show any bias. The histogram of the individual posterior means for the additive
pro-probability bias term is shown below.

Figure 5:
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Although for the group there was no consistent favoring of one side or the other,
we find strong support for bias towards both probabilistic options and delayed op-
tions in certain individuals. The figure below shows the histogram of the posterior
probability of having a positive pro-probabilistic bias. For some people, all of their
posterior samples for the bias term were positive, while for others all of the samples
were negative, and there were also many in-between. Given the assumptions of the
model, this points to a context effect when comparing delayed with probabilistic
options versus delayed with immediate or probabilistic with certain options in some
individuals.

Figure 6:

5. Conclusion and Future Directions

The results of this experiment have largely confirmed findings from previous re-
search regarding probabilistic and temporal discounting, as well as produced some
new results. The results of this study point toward a number of different violations
of stochastic transitivity in these domains at the individual level. At the same time,
numerous assumptions have been made here regarding the functional form of the
discounting functions, choice probabilities, and their behavior under different differ-
ent contexts. A potentially fruitful future direction to take this research is to test
these violations of individual stochastic transitivity in a manner that does not make
assumptions on the functional form. It is possible to use a posterior predictive dis-
tribution from this experiment to find items that are most likely to elucidate these
stochastic transitivity violations under a new experimental approach. This can not
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only provide further evidence for these context effects, but also potentially point
us in a direction that allows us to improve our understanding of the mathematical
structure behind discounting.
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