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Abstract

A central aim of genome-wide association studies (GWASs) is to estimate direct genetic

effects: the causal effects on an individual’s phenotype of the alleles that they carry. How-

ever, estimates of direct effects can be subject to genetic and environmental confounding

and can also absorb the “indirect” genetic effects of relatives’ genotypes. Recently, an

important development in controlling for these confounds has been the use of within-family

GWASs, which, because of the randomness of mendelian segregation within pedigrees, are

often interpreted as producing unbiased estimates of direct effects. Here, we present a gen-

eral theoretical analysis of the influence of confounding in standard population-based and

within-family GWASs. We show that, contrary to common interpretation, family-based esti-

mates of direct effects can be biased by genetic confounding. In humans, such biases will

often be small per-locus, but can be compounded when effect-size estimates are used in

polygenic scores (PGSs). We illustrate the influence of genetic confounding on population-

and family-based estimates of direct effects using models of assortative mating, population

stratification, and stabilizing selection on GWAS traits. We further show how family-based

estimates of indirect genetic effects, based on comparisons of parentally transmitted and

untransmitted alleles, can suffer substantial genetic confounding. We conclude that, while

family-based studies have placed GWAS estimation on a more rigorous footing, they carry

subtle issues of interpretation that arise from confounding.

1 Introduction

Genome-wide association studies (GWASs) have identified thousands of genetic variants that

are associated with a wide variety of traits in humans. In the standard “population-based”

approach, the GWAS is conducted on a set of “unrelated” individuals. The associations that

are detected can arise when a variant causally affects the trait or when it is in tight physical

linkage with causal variants nearby.

Central to the aims of GWASs is the estimation of variants’ effect sizes on traits of interest.

These effect-size estimates are important for identifying and prioritizing variants and
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implicated genes for functional followup, and may be used to form statistical predictors of trait

values or to understand the causal or mechanistic role of genetic variation in traits. Under-

standing sources of error and bias in GWAS effect-size estimates is therefore crucial.

The interpretation of GWAS effect-size estimates is complicated by 4 broad factors [1,2].

First, the causal pathways from an allele to phenotypic variation need not reside in the individ-

uals who enrolled in the GWAS, but can also reflect causal effects on the individual’s environ-

ment of the genotypes of their siblings, parents, other ancestors, and neighbors (indirect

genetic effects or dynastic effects) [3]. Second, a phenotypic association can result from corre-

lations between the allele and environmental causes of trait variation (environmental con-

founding) [4]. Third, a phenotypic association can be generated at a locus if it is genetically

correlated with causal loci outside of its immediate genomic region (genetic confounding) [1].

Fourth, an allele’s effect on a trait might depend on the environment and the allele’s genetic

background (gene–environment and gene–gene interactions, or G×E and G×G) [5–7].

Since our primary interest here will be genetic confounding, we briefly describe some

potential sources of the long-range allelic associations that drive it: population structure, assor-

tative mating, and selection on the GWAS trait.

Population structure leads to genetic correlations across the genome when allele frequencies

differ across populations or geographic regions: sampled individuals from particular popula-

tions are likely to carry, across their genomes, alleles that are common in those populations,

which induces correlations among these alleles, potentially across large genomic distances.

Such genetic correlations persist even after the populations mix, as alleles that were more com-

mon in a particular source population retain their association until uncoupled by

recombination.

Assortative mating brings alleles with the same directional effect on a trait (or on multiple

traits, in the case of cross-trait assortative mating) together in mates, and therefore, bundles

these alleles in offspring and subsequent generations. This bundling manifests as positive

genetic correlations among alleles with the same directional effect [8,9], which can confound

effect-size estimates in a GWAS on the trait.

Finally, natural selection on a GWAS trait can result in genetic correlations by favoring cer-

tain combinations of trait-increasing and trait-decreasing alleles. A form of selection that is

expected to be common for many traits of interest is stabilizing selection, which penalizes devi-

ations from an optimal trait value. By favoring compensating combinations of trait-increasing

and trait-decreasing alleles, stabilizing selection generates negative correlations among alleles

with the same directional effect [10,11], and therefore can confound effect-size estimates in a

GWAS performed on the trait under selection or on a genetically correlated trait.

The potential for dynastic, environmental, and genetic confounds to bias GWAS effect-size

estimates has long been recognized [4,12], and so a major focus of the literature has been to

develop methods to control for these confounds [13,14]. Standard approaches include using

estimates of genetic relatedness as covariates in GWAS regressions [15,16] or downstream

analyses such as LD-Score regression [17–19]. Such methods aim to control for both environ-

mental and genetic confounding, but do so imperfectly (e.g., [20,21]). Further, it is often

unclear what features of genetic stratification are being addressed [1,2]: assortative mating in

particular may not be well accounted for by these methods [22]. Additionally, dynastic con-

founding will be particularly difficult to control for using population-level covariates.

One promising way forward is to estimate allelic effects within families, either by compar-

ing the separate associations of parentally transmitted and untransmitted alleles with trait val-

ues in the offspring [23–27], or by associating differences in siblings’ trait values with

differences in the alleles they inherited from their parents [28–30]. The idea is that, by control-

ling for parental genotypes, within-family association studies control for both environmental
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stratification and indirect/dynastic effects, while mendelian segregation randomizes alleles

across genetic backgrounds. In principle, this allows the “direct genetic effect” of an allele—the

causal effect of an allele carried by an individual on their trait value—to be estimated. Recog-

nizing that a variant detected in a GWAS will usually not itself be causal for the trait variation

but instead will only be correlated with true causal variants, the direct effect of a genotyped

variant is usually interpreted as reflecting the direct causal effects of nearby loci that are geneti-

cally correlated with the focal locus [2]—but not the effects of more distant loci that might also

be correlated with the focal genotyped locus (e.g., because of population structure or assorta-

tive mating).

Consistent with both the presence of substantial confounds in some population-based

GWASs and the mitigation of these confounds in within-family GWASs, family-based esti-

mates of direct effect sizes and aggregate quantities based on these estimates (e.g., SNP-based

heritabilities) are substantially smaller than population GWAS estimates for a number of traits,

most notably social and behavioral traits [30–34]. Likewise, estimates of genetic correlations

between traits are sometimes substantially reduced when calculated using direct effect esti-

mates from within-family GWASs (e.g., [33]). While some of these findings could reflect the

contribution of indirect genetic effects to population GWASs, it is also likely that, at least for

some traits, standard controls for population stratification in population GWASs have been

insufficient [20,21,34–37].

Our aim in this paper is to study a general model of confounding in GWASs, to generate

clear intuition for its influence on estimates of effect sizes in both population- and family-

based designs. A number of the issues that we analyze have previously been raised, particularly

in the context of population-based GWASs (e.g., [1,2,38,39]); here, we analyze them in a com-

mon framework that allows for comparison of multiple sources of confounding in both popu-

lation and family-based GWASs. There is a large literature on GWASs in nonhuman

organisms (e.g., [40–43]). However, although the results and intuition that we derive here

apply equally well to human and nonhuman GWASs, we shall interpret them primarily from

the perspective of human GWASs, in which the inability to experimentally randomize envi-

ronments, together with the small effects that investigators hope to detect, makes confounding

a particular concern.

To focus on confounding, we assume no G×E and G×G interactions (the effects of G×E

and G×G on estimates produced by population- and family-based designs are studied in ref.

[44]). We derive expressions for estimators of direct effects in both population and within-

family GWASs, as functions of the true direct and indirect effects at a locus and the genetic

confounds induced by other loci. In doing so, we find that family-based estimates of direct

effects are in fact susceptible to genetic confounding, contrary to standard interpretation.

Reassuringly, in many of the models we consider, the resulting biases are likely to be small in

humans. We also address a related case: family-based GWAS designs that consider transmitted

and untransmitted parental alleles and in which the indirect (or “dynastic”) effect of an allele is

estimated from its association with the offspring’s phenotype when carried by the parent but

not transmitted to the offspring. We show that this estimator of indirect effects can be substan-

tially biased by genetic and environmental confounds, in a similar way to population estimates

of direct effects. Next, we consider various sources of genetic confounding—assortative mat-

ing, population structure, and stabilizing selection on GWAS traits—and how they influence

estimates of direct effects in both population and within-family GWASs.

We then turn to sibling indirect effects, which are known to bias estimates of direct effects

in sibling-based GWASs [2,34]. We characterize this bias in a simple model and contrast it to

the bias caused by sibling indirect effects in a population GWAS.
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2 Effect-size estimates in association study designs

Our primary focus will be on how genetic confounding can bias the estimation of direct

genetic effects. These genetic confounds are due to associations between a genotyped variant

at a GWAS locus and causal variants at other loci. As we will see, 2 kinds of association must

be distinguished: cis-linkage disequilibrium (cis-LD) and trans-linkage disequilibrium (trans-

LD). Genetic variants A and B are in positive cis-LD if, when an individual inherits A from a

given parent, the individual is disproportionately likely to inherit B from that parent (Fig 1A).

A and B are in positive trans-LD if, when an individual inherits A from one parent, the individ-

ual is disproportionately likely to inherit B from the other parent (Fig 1B). These covariances

have also been called gametic and non-gametic LD, respectively (e.g., [45]). To quantify the

degrees of cis-LD and trans-LD, we denote by Dij and ~Dij the allelic covariances between focal

variants at loci i and j in cis and in trans, and we denote by rij and ~rij the analogous allelic cor-

relation coefficients. For some of our results, it will be important to distinguish the LD present

in the sample on which the association study is performed and the LD present among the

parents of the sample.

Cis-linkage disequilibrium

focal allele at 
association
study locus

Trans-linkage disequilibrium

Population-wide GWAS Within-family GWAS

trait-increasing
allele (+1)
trait-decreasing
allele (–1)

cis associations
between focal allele 
and + alleles

trans associations
between focal allele 
and + alleles

+’ve assoc. between      and trait value –2 0 0 +2
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+’ve assoc. between      and trait value 
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Fig 1. The influence of cis- and trans-LD on effect-size estimates in population-based and within-family association studies. (A) The focal allele at an

association study locus (solid red square) is in positive cis-LD with trait-increasing alleles at other loci (solid black squares) if it is disproportionately likely to be

found alongside them on an individual’s maternally or paternally inherited genome. (B) The focal allele at the study locus is in positive trans-LD with trait-

increasing alleles at other loci if it is disproportionately likely to be found across from them on the maternally and paternally inherited genomes. (C,D) In a

population association study, both positive cis- and trans-LD between the focal allele at the study locus and trait-increasing alleles anywhere else in the genome

—either on the same chromosome as the study locus or on different chromosomes—generate a spuriously high effect-size estimate at the study locus. (E,F) In a

sibling association study, a trait-increasing allele causes a spuriously increased effect-size estimate at the study locus if the parent is a coupling double

heterozygote for the focal and trait-increasing alleles, having inherited them from the same parent (E), but a spuriously decreased estimate if the parent is a

repulsion double heterozygote, having inherited them from different parents (F). These biases arise only if the trait-affecting locus is on the same chromosome

as the focal study locus. The net bias depends on the relative frequencies of coupling and repulsion double heterozygotes in the parents, which depends on the

difference in the degrees of cis- and trans-LD.

https://doi.org/10.1371/journal.pbio.3002511.g001
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Consider a trait Y influenced by genetic variants at a set of polymorphic loci L, each of

which segregates for 2 alleles. For ease of interpretation, and without loss of generality, we des-

ignate the “focal” allele at locus l2L to be the allele that directly increases the trait value, and

we denote by pl the frequency of this allele. Allelic effects are assumed to be additive within

and across loci, such that the trait value of an individual can be written

Y ¼ Y∗ þ
X

l2L

gla
d
l

|fflfflfflffl{zfflfflfflffl}
direct effects

þ
X

l2L

ðgml þ g fl Þa
i
l

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
indirect effects

þ�: ð1Þ

Here, gl, gml , and g fl are the numbers (0, 1, or 2) of focal alleles carried at locus l by the indi-

vidual, their mother, and their father, respectively, adl > 0 is the direct effect of the focal allele

at l, and ail is its indirect effect via the maternal and paternal genotypes. (For simplicity, we

assume that indirect effects via the maternal and paternal genotypes are equal; this assumption

is relaxed in S1 Text Section S1.) � is the environmental noise, with E½�� ¼ 0, and Y* is the

expected trait value of the offspring of parents who carry only trait-decreasing alleles.

2.1 Population-based association studies

The variants at a genotyped locus will usually not themselves have causal effects on the trait,

but will instead be in cis-LD with—and thus “tag”—causal variants at nearby loci. Thus, we

typically think of the association at a focal genotyped locus as reflecting the direct contribu-

tions of a relatively small number of tightly linked loci, Llocal, found within tens or perhaps

hundreds of kb from the focal locus [46]. For concreteness, we assume some fixed Llocal in our

analyses. Informally, we intend “local” to capture only those loci that are within a sufficiently

short recombination distance of the focal locus that the timescale of recombination between

these loci is longer than that by which other processes, such as population structure, assortative

mating, and selection, generate LD between more distant loci. We recognize that this defini-

tion is somewhat arbitrary, that in practice researchers seldom have a predefined number of

“local” SNPs in mind, and that others might prefer alternative definitions (such as the entire

chromosome of the focal locus) or to dispense with the idea of “local” altogether. However, we

believe our definition is close to what researchers implicitly have in mind when they think of a

genotyped locus as “tagging” causal loci. Moreover, many of the processes that we study below

generate long-range LD not just within chromosomes but also across different chromosomes;

to extend the definition of “tagging” to the entire chromosome of the focal locus, but not to the

entire genome, is then also an arbitrary choice.

Under the additive model, the standard interpretation is that a population association study

performed at a focal genotyped locus λ provides an estimate of the quantity

al ¼
1

plð1 � plÞ

X

l2Llocal

Dlla
d
l ; ð2Þ

where pλ is the frequency of the focal allele at λ, and Dλl is the degree of cis-LD between the

focal allele at λ and a causal allele at a nearby locus l2Llocal. It is reasonable to think of this

quantity as the “direct effect” tagged by the focal variant at the genotyped locus λ: in the

absence of confounding, it can be interpreted as the average phenotypic effect of randomly

choosing a non-focal allele in the population and swapping it for a focal allele, where in this

hypothetical swap, the causal alleles near the locus are included (though see ref. [44] for how

G×E and G×G interactions can complicate such causal interpretations).

We shall interpret systematic deviations of effect-size estimates from Eq (2) as “biased.”

This is because our focus is on the estimation of direct effects at individual loci rather than on
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other applications such as trait prediction. For the same reason, and following standard termi-

nology in statistics, we refer to the causes of these biases as “confounds,” since they are a form

of omitted variable bias in the marginal regression at the study locus λ. We recognize that

these definitions of “bias” and “confounding” might be less appropriate in some other settings.

Effect-size estimation in a population GWAS is complicated by the presence of environ-

mental and genetic stratification. Under the model in Eq (1), if we perform a standard popula-

tion association study at locus λ, the estimated effect of the focal allele on the trait Y is

â
pop
l ¼

2

Vl

 
X

l2Llocal

Dlla
d
l þ

X

l2LnLlocal

Dlla
d
l þ

X

l2L

~Dlla
d
l

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
genetic confounds; direct

þ
X

l2L

½D0
ll þ

~D
0

ll þ 2~Dll�a
i
l

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
genetic confounds; indirect

þ
1

2
Cov gl; �ð Þ
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

environmental

confound

!

; ð3Þ

where, of the cis- and trans-LD terms, Dλl and ~Dll are defined in the GWAS sample while D0
ll

and ~D 0
ll are defined in their parents (S1 Text Section S1.2). Vλ is the genotypic variance at λ,

equal to 2plð1 � plÞð1þ FlÞ, where Fλ is Wright’s coefficient of inbreeding at λ.

The environmental confound is Covðgl; �Þ=Vl; all non-local cis- and trans-LD terms in the

study sample (Dλl and ~Dll; l=2Llocal) are direct genetic confounds (Fig 1C and 1D), and all cis-

and trans-LD terms among parents of sampled individuals (D0
ll and ~D 0

ll), together with all

trans-LD terms in the study sample (~Dll), are indirect genetic confounds.

The direct genetic confounds arise because an allele carried by an offspring at λ is correlated

with the alleles that they carry at other loci l2L (via Dλl and ~Dll) that directly affect the trait

value. The indirect genetic confounds arise because an allele carried by the offspring at λ—say,

the maternal allele—is correlated with alleles carried by the offspring’s mother at other loci

(D0
ll and ~D0

ll) and alleles carried by their father (as reflected by the trans-LD in the offspring,

~Dll). These alleles in the parents can indirectly affect the offspring’s trait value.

Thus, as is now well appreciated, population-based GWASs potentially suffer from many

types of confounds [1,2]. In practice, they can be reduced by including principal components

—which capture genome-wide relatedness among GWAS participants—as regressors in a

GWAS, or by using relatedness matrices in mixed models [15,16]. However, it is often unclear

exactly what these methods control for in a given application [1,2], they can be sensitive to

sample size [47], and they have been shown to be inadequate in important cases (e.g., [20,21]).

When principal components (or other controls) fail to account fully for stratification, then Eq

(3) can be interpreted as a decomposition of the remaining, uncontrolled-for confounding in

the GWAS. (By the Frisch–Waugh–Lovell theorem ([48], pg. 36), Eq (3) is the estimate one

obtains by first regressing the focal-locus genotype on the PCs, collecting the residuals from

this regressions—which can be thought of as focal-locus genotype values stripped of whatever

signal the PCs captured—and regressing the trait value on these residuals.)

2.2 Within-family association studies

The 2 within-family association study designs that we consider are parent–offspring GWASs

and sibling GWASs. Other designs have been proposed to control for genetic and environ-

mental confounding in the estimation of aggregate quantities such as heritability (e.g., [49]),

but our primary focus is on the estimation of single-marker effect sizes. We do later turn to the

interpretation of polygenic score (PGS) regressions within families.

Estimates of direct genetic effects. Parent–offspring studies can be used to estimate trait

associations for parentally transmitted and untransmitted variants at a locus λ, â
ðTÞ
l ; and â

ðUÞ
l ,
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by regressing the trait value Y jointly on the transmitted and untransmitted genotypes, gT
l

and

gU
l

[27] (note that here and throughout, we use “transmitted genotype” and “untransmitted

genotype” as shorthand for the genotypes constructed from transmitted and untransmitted

alleles, respectively). The aim is often to estimate the direct effect of a variant, âd
l
, as the differ-

ence between these 2 regression coefficients:

â
d;T� U
l ¼ â

ðTÞ
l � â

ðUÞ
l : ð4Þ

A second aim is to treat â
ðUÞ
l as an estimate of the indirect, or family, effect of the variant.

We return to this second aim later.

In S1 Text Section S1.4, we show that, in the absence of interactions between parental and

offspring genotypes, the estimate of the direct effect of a variant at locus λ in a parent–offspring

study is

â
d;T� U
l ¼ â

ðTÞ
l � â

ðUÞ
l ¼

2

Hl

X

l2L

1 � 2cllð Þ D0
ll �

~D0
ll

� �
adl ð5Þ

�
2

Hl

 
X

l2Llocal

D0
lla

d
l þ

X

l2LnLlocal

ð1 � 2cllÞðD
0

ll �
~D 0
llÞa

d
l

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
genetic confounds; direct

!

; ð6Þ

where Hλ is the fraction of parents who are heterozygous at locus λ and cλl is the sex-averaged

recombination fraction between λ and l. The cis- and trans-LD terms D0
ll and ~D 0

ll are measured

in the parents.

Similarly, an estimate of the direct effect can be obtained from pairs of siblings by regressing

the differences in their phenotypes on the differences in their genotypes at the focal locus λ. In

the presence of genetic confounds, this procedure yields the same estimate as Eq (6), in expec-

tation (S1 Text Section S1.3):

â
d;sib
l �

2

Hl

 
X

l2Llocal

D0
lla

d
l þ

X

l2LnLlocal

ð1 � 2cllÞðD
0

ll �
~D0
llÞa

d
l

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
genetic confounds; direct

!

: ð7Þ

An assumption in sibling GWASs is that an offspring’s phenotype is not influenced by the

genotypes of their siblings—i.e., that there are no sibling indirect genetic effects. We consider

violations of this assumption later.

Both of the family-based estimates above implicitly make the further assumption that the

association study is conducted before any selection has occurred in the offspring generation,

so that the offspring genotypes reflect mendelian transmission from parents. This includes

both natural selection and selection in which families/offspring are included in the sample

(i.e., ascertainment).

In Eqs (6) and (7), there is no environmental confound, because family-based GWASs suc-

cessfully randomize the environments of family members with respect to within-family genetic

transmission; i.e., variation in offsprings’ genotypes around their parental or sibship means is

randomly assigned with respect to environment.

The derivations above further show that, while population association studies are biased by

sums of trans- and cis-LD between the focal locus and all causal loci (Eq (3)), within-family

association studies are instead biased by differences between trans- and cis-LD, and moreover,

that the biases in within-family studies are driven only by LD between the focal locus and
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causal loci on the same chromosome (cλl<1/2). To provide an intuition for this result, we

focus our discussion on a sibling association study performed at λ; the intuition is identical for

the analogous parent–offspring study.

Because the difference between 2 siblings in their maternally inherited genotypes is uncor-

related with the difference in their paternally inherited genotypes, we may consider maternal

and paternal transmissions separately in studying how a locus l2L can confound effect-size

estimation at λ in a sibling association study. We will phrase our discussion in terms of mater-

nal transmission.

For effect-size estimation at λ to be genetically confounded by maternal transmission at a

distant locus l, the mother must be heterozygous at both loci. For if she were homozygous at l,
then maternal transmission at l could not contribute to any trait differences between her off-

spring, while if she were homozygous at λ, maternal transmission would not result in genetic

variation among her offspring at λ with which trait variation could be associated. Therefore,

we restrict our focus to mothers who are heterozygous at both λ and l, or “double heterozy-

gotes.” Two kinds exist (Fig 1E and 1F): coupling double heterozygotes who carry the focal

alleles at λ and l on the same haploid genome (“in cis”) and repulsion double heterozygotes

who carry them on opposite haploid genomes (“in trans”).

We first consider the case where the recombination rate between λ and l is small (cλl�1/2).

In this case, if the mother is a coupling double heterozygote, then her offspring will tend to

inherit either both or neither of the focal alleles at λ and l (Fig 1E). Therefore, if one sibling

inherits the focal allele at λ and another does not, the first sibling will tend to inherit the focal

(trait-increasing, as we have defined it) allele at l and the second sibling will not, so that the

effect of locus l positively confounds the association between λ and the trait (Fig 1E). If the

mother is instead a repulsion double heterozygote, then her offspring will tend to inherit either

the focal allele at λ or the focal allele at l, but not both (Fig 1F). In this case, if one sibling inher-

its the focal allele at λ and another does not, the second sibling will tend to inherit the focal

(trait-increasing) allele at l and the first sibling will not, so that the effect of locus l negatively

confounds the association between λ and the trait (Fig 1F). When λ and l are linked, therefore,

the way in which l genetically confounds the effect-size estimate at λ depends, positively or

negatively, on whether the fraction of coupling double heterozygotes among parents is greater

or smaller, respectively, than the fraction of repulsion double heterozygotes.

In contrast, if λ and l are unlinked (cλl = 1/2), then transmissions from coupling and repul-

sion double heterozygote parents are equal, and so l cannot confound estimates at λ (Fig 1E

and 1F). Put differently, meiosis in double heterozygotes fully randomizes joint allelic trans-

missions at λ and l, with offspring equally likely to inherit any possible combination of alleles

at the 2 loci.

Therefore, only linked loci l can confound a family-based association study at λ, and they

do so in proportion to (i) how small the recombination rate between λ and l is; and (ii) the dif-

ference between the fractions of parents who are coupling and repulsion double heterozygotes

at λ and l. Accordingly, if we write these fractions of parents as Hcoup
ll and Hrep

ll , then

D0
ll �

~D 0
ll ¼ ðH

coup
ll � Hrep

ll Þ=2, and so Eq (7) (and Eq (6)) can be rewritten in terms of the rela-

tive frequencies of the 2 kinds of double-heterozygotes:

â
d;sib
l �

2

Hl

X

l2Llocal

D0
lla

d
l þ

X

l2LnLlocal

1

2
� cll

� �

Hcoup
ll � Hrep

llð Þadl

 !

:

In a species with many chromosomes, such as humans, for a given locus, there will be many

more unlinked loci than linked loci. Therefore, the set of loci that can confound a family-based

association study at a given locus will be much smaller than the set of loci that can confound a
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population association study at the locus. It will often be the case, therefore, that biases in the

estimation of direct genetic effects will be smaller in family-based studies than in population

studies, a point that we explore below when we consider sources of genetic confounding.

Estimates of indirect genetic effects. We now return to the coefficient on the untrans-

mitted genotype in the joint regression of trait on transmitted and untransmitted genotype in

parent–offspring GWASs, â
ðUÞ
l , which has sometimes been treated as an estimate of the indirect

effect â i
l
. Assuming equal indirect effects via maternal and paternal genotypes (an assumption

that we relax in S1 Text Section S1.4),

â i
l
¼ â

ðUÞ
l

¼
1

Hlð1þ 3FÞ

 

2
X

l2L

"

D0
ll

"

ð1þ 3FÞcll � 2F
#

þ ~D 0
ll

"

� ð1þ 3FÞcll þ 1þ F
#

þ ð1 � FÞ~Dll

#

adl

þ 2ð1 � FÞ
X

l2L

"

D0
ll þ

~D 0
ll þ 2~Dll

#

ail þ ð1þ FÞCovðgU
l
; �Þ � 2FCovðgl; �Þ

!

: ð8Þ

This expression is easiest to interpret when F = 0, in which case

â i
l
¼

2

Hl

 
X

l2Llocal

D0
lla

i
l

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
local indirect effect

þ
X

l2LnLlocal

ðD0
llcll þ ~D0

llð1 � cllÞ þ ~DllÞa
d
l

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
genetic confounds; direct

þ
X

l2LnLlocal

ðD0
ll þ

~D 0
ll þ 2~DllÞa

i
l
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� �

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

environmental

confound

!

:ð9Þ

(This simplification makes use of the fact that, by our definition of Llocal, setting F = 0 at

locus λ implies that ~Dll ¼
~D0
ll ¼ 0 for l2Llocal—see Eq S.29 in S1 Text Section S1.4.)

The direct genetic confound reflects associations of the untransmitted alleles at the focal

locus with alleles that are transmitted to the offspring at causal loci l2L and which directly

affect the offspring’s trait value (via adl ). These associations are due to covariances among

alleles in each parental genome (D0
ll and ~D 0

ll) and across the parental genomes (reflected as

trans-LD in the offspring, ~Dll). The indirect genetic confound reflects associations of the

untransmitted alleles to alleles at other loci in the parents, which can indirectly affect the off-

spring trait value (via ail). Finally, unlike in family-based estimates of direct genetic effects (Eqs

(6) and (7)), family-based estimates of indirect effects suffer from environmental confounding,

in the same way that population GWASs do (Eq (3)).

Therefore, using the coefficient on the untransmitted genotype in the joint regression of

phenotype on transmitted and untransmitted genotype as an estimate of the indirect effect is

highly susceptible to environmental confounding as well as both direct and indirect genetic

confounding, in a similar way to estimating the direct effect via a population-based association

study [50]. Adjustments for assortative mating in particular have been included in some PGS-

based analyses of indirect effects (e.g., [27,34]). However, it is not clear how robust these

adjustments are in the presence of multiple forms of confounding.

2.3 Polygenic scores and their phenotypic associations

A current drawback to family-based GWASs is that sample sizes are often small, limiting

power to estimate direct genetic effects. Because of this limitation, instead of estimating per-

locus effect sizes in family designs, investigators often measure the within-family phenotypic
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association of a combined linear predictor, a PGS, constructed using effect-size estimates

across many loci from a population GWAS. In the sibling-based version of this study design,

the difference in siblings’ population-based PGSs is regressed on their difference in phenotypes

(e.g., [30,31]). In parent–offspring designs, offsprings’ trait values are regressed on their popu-

lation-based PGSs, controlling for the midparent PGSs (e.g., [35]), or, equivalently, offsprings’

trait values are regressed jointly on their population-based PGSs constructed separately for

transmitted and untransmitted alleles, and the difference in the slopes in this joint regression

is taken (e.g., [27]).

When such PGS regressions are used within families for the same phenotype as the popula-

tion GWAS, a non-zero slope of the PGS is usually interpreted as reflecting the fact that the

PGS—despite having been calculated from a population GWAS and therefore subject to many

potential confounds—nevertheless does capture the direct genetic effects of alleles. When the

PGS for one phenotype is regressed within families on the value of another phenotype, non-

zero slopes are often interpreted as evidence that direct genetic effects on the 2 phenotypes are

causally related, for example, through pleiotropic effects of the alleles involved.

Suppose that we have performed a population GWAS for trait 1, generating effect-size esti-

mates âl at a set of genotyped loci λ2Λ. To construct a PGS for trait 1, these effect-size esti-

mates are used as weights in a linear sum across an individual’s genotype:

PGS1 ¼
X

l2L

glâ
pop
l : ð10Þ

In a sibling-based study (the results and intuition below will be the same for a parent–off-

spring study), the difference between siblings’ trait-1 PGSs, ΔPGS1, is regressed on the differ-

ence in their values for trait 2, ΔY2 (note that trait 2 could be the same as trait 1). If L is the set

of loci that causally underlie variation in trait 2, and βl are the true direct genetic effects of vari-

ants at these loci on trait 2, then the numerator of the slope in this regression can be written as

follows:

CovðDPGS1;DY2Þ ¼ 2
X

l2L

X

l2L

ð1 � 2cllÞðD
0

ll �
~D 0
llÞâ

pop
l bl ð11Þ

(see S1 Text Section S2). Note that, while the population-based effect-size estimates âl
depend on cis- and trans-LD, as detailed by Eq (3), the patterns of LD may differ from those in

the family study (the D0
ll �

~D0
ll term in Eq (11)) if the population- and family-based studies dif-

fer in relevant aspects of sample composition.

The intuition for Eq (11) is similar to that for the single-locus effect-size estimate in a sib-

ling GWAS (Eq (7)). The numerator of the difference in slopes of transmitted and untrans-

mitted PGSs in a parent–offspring design takes a similar form to Eq (11).

In the absence of confounding and under some simplifying assumptions, the sibling PGS

covariance measures the contribution of each locus included in the PGS to the additive genic

covariance between traits 1 and 2 that is tagged by the genotyped variants included in the PGS

(see Eq S.38 in S1 Text Section S2). Under these assumptions, the sibling PGS slope therefore

does provide a measure of the underlying pleiotropy between the traits.

Interpretation of the sibling PGS slopes is more complicated in the presence of genetic con-

founding (see Eq S.37 in S1 Text Section S2), which is absorbed into the effect-size estimates

â
pop
l (Eq (3)) so that the PGS applies a potentially strange set of weights to the genotyped loci it

includes. (A related problem occurs when indirect genetic effects absorbed by the population-

based PGS change the interpretation of within-family PGS slopes [51,52].) A non-zero sibling

PGS slope still establishes that the trait-1 PGS loci are in systematic signed intra-chromosomal
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LD with loci that causally affect trait 2. However, it no longer necessarily implies that traits 1

and 2 are causally related via pleiotropy, for 2 reasons. To understand these reasons, suppose

that the causal loci for traits 1 and 2 are distinct, i.e., that there is in fact no pleiotropy. First, a

SNP included in the trait-1 PGS could tag local variants that causally affect trait 1 but which

are also, via sources of confounding such as cross-trait assortative mating, in systematic long-

range LD with variants on the same chromosome that causally affect trait 2. Such SNPs will be

predictive of sibling differences in trait 2, even though they locally tag only trait-1 causal vari-

ants. Second, LD between variants on the same or distinct chromosomes that are causal for

trait 1 and trait 2 will cause some SNPs that locally tag trait-2 causal variants to be significantly

associated with trait 1 in a population GWAS, and therefore to be included in the trait-1 PGS.

These SNPs, since they tag trait-2 causal variants, will be predictive of sibling differences in

trait 2.

In summary, in the presence of confounding, non-zero sibling PGS slopes cannot be viewed

as de facto evidence for causal relationships between traits.

3 Sources of genetic confounding in association studies

As we have seen, genetic confounding of association studies depends, in ways that vary across

study designs, on levels of non-local cis- and trans-LD between the study locus and loci that

influence the study trait. Below, we consider various processes that give rise to non-local cis-

and trans-LD, and their likely impact on the different association study designs. We focus our

attention on the potential for these sources of LD to confound measurement of several key

metrics. First, the average deviation of the estimated effect size from its true value, E½âl � al�.
This metric indicates if effect sizes are systematically overestimated or underestimated because

of genetic confounding. Second, the average squared effect-size estimate, weighted by hetero-

zygosity: E½2plð1 � plÞâ2
l
�. The quantity 2plð1 � plÞâ2

l
is proportional to the χ2-statistic of the

association test at λ and determines whether the detected association is statistically significant.

Its expectation is related to important measures such as the genetic variance and SNP-based

heritability, and to LD-score regression [18] (we explore the connection of our results to LD-

score regression in S1 Text Section S4). It is also directly related to the variance of effect-size

estimates, and therefore captures the additional noise that genetic confounding creates in

effect-size estimation at a given locus. Third, if GWASs have been performed on more than

one trait, the covariance across loci of the effect-size estimates for 2 traits may be of interest.

This covariance is determined by the average heterozygosity-weighted product

E½2plð1 � plÞâlb̂l�, where âl and b̂l are the effect-size estimates at locus λ for traits 1 and 2.

In what follows, for simplicity, we ignore indirect effects and assume that there is no envi-

ronmental confounding (i.e., no correlation between genotypes and the environmental effects

�). For each of the sources of genetic confounding that we consider, we calculate the 3 mea-

sures listed above both analytically and in whole-genome simulations carried out in SLiM 4.0

[53]. In our simulations, we use 2 recombination maps: (i) for illustrative purposes, a simple

hypothetical map where the genome lies along a single chromosome of length 1 Morgan; and

(ii) the human linkage map generated by Kong and colleagues [54]. A more detailed descrip-

tion of the simulations can be found in the Methods, and code is available at https://doi.org/

10.5281/zenodo.10520811 and https://github.com/cveller/confoundedGWAS.

3.1 Assortative mating

Assortative mating is the tendency for mating pairs to be correlated for particular traits—either

the same trait (same-trait assortative mating) or distinct traits (cross-trait assortative mating).

For example, humans are known to exhibit same-trait assortative mating for height and cross-
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trait assortative mating for educational attainment and height (among many other examples,

reviewed in refs. [37,55]). Assortative mating generates both cis- and trans-LD: It generates

positive trans-LD among trait-increasing alleles because genetic correlations between mates

translate to genetic correlations between maternally and paternally inherited genomes, and it

generates positive cis-LD among trait-increasing alleles because, over generations, recombina-

tion converts trans-LD into cis-LD [9]. (In some cases, assortative mating can generate cis-LD

by mechanisms additional to recombination—see ref. [56].)

Constant-strength assortative mating. If the strength of assortative mating, measured by

the phenotypic correlation among mates ρ, is constant over time and there are no other

sources of genetic confounding such as population structure, then, for a given pair of loci l,
l02L, the positive cis-LD Dll0 will initially be smaller than the positive trans-LD ~Dll0 , but will

gradually grow towards an equilibrium value equal to the trans-LD (D∗
ll0 ¼

~D∗
ll0 ); in this equilib-

rium, assortative mating generates new cis-LD at the same rate as old cis-LD is destroyed by

recombination (S1 Text Section S3.1; [9]).

Therefore, in a population GWAS, effect-size estimates will initially be biased upwards

because of positive trans-LD, and the magnitude of the bias will grow over time as positive cis-

LD too is generated from this trans-LD (Eq (3); Fig 2). In contrast, in a family-based GWAS,

effect-size estimates will initially be biased downwards because the positive trans-LD exceeds

the positive cis-LD (Eqs (6) and (7); Fig 2). However, as the cis-LD grows over time towards

the value of the trans-LD, the magnitude of the downward bias will shrink, and, in equilib-

rium, the family-based GWAS will not be confounded by assortative mating (Fig 2).

Under certain simplifying assumptions, we can calculate the average bias that assortative

mating induces in a population GWAS in equilibrium, in the absence of other sources of

genetic confounding such as population structure (S1 Text Section S3.1). In the case of same-

trait assortative mating, effect-size estimates are inflated by an average factor of approximately
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Fig 2. Assortative mating systematically biases effect-size estimation in population and within-family GWASs, although the bias in within-family

GWASs is expected usually to be small. Here, cross-trait assortative mating between traits 1 and 2 occurs among parents for the first 19 generations, after

which mating is random. Assortative mating is sex-asymmetric, with strength ρ = 0.2. Distinct sets of loci underlie variation in trait 1 and 2, with effect sizes at

causal loci normalized to 1. Plotted are average estimated effects of the focal alleles at loci causal for trait 1 in population and within-family GWASs on trait 2,

for a hypothetical genome with 1 chromosome of length 1 Morgan (A) and for humans (B). Since the traits have distinct genetic bases, the true effects on trait 2

of the alleles at trait-1 loci are zero. The horizontal lines at 0.1 are a theoretical “first-order” approximation of the asymptotic bias in a population GWAS (S1

Text Section S3.1). Profiles are averages across 10,000 replicate simulation trials. Simulation details can be found in the Methods and the code can be found at

https://doi.org/10.5281/zenodo.10520811.

https://doi.org/10.1371/journal.pbio.3002511.g002
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1/(1−h2ρ), where ρ is the phenotypic correlation among mates and h2 is the trait heritability

(for similar calculations, see refs. [22,57]). As an example, the strength of assortative mating

for human height has been estimated as ρ~0.25 [58], which, together with a heritability of

h2~0.8, implies that effect-size estimates in a population-based GWAS would be inflated by a

factor of about 1/(1−h2ρ)~1.25, a 25% amplification.

In the case of cross-trait assortative mating, if assortative mating is directional/asymmetric

with respect to sex—i.e., the correlation ρ is between female trait 1 and male trait 2—then

assortative mating generates spurious associations between trait 1 and alleles that affect trait 2

(and vice versa). If the loci underlying the 2 traits are distinct, then, in equilibrium, the spuri-

ous effect-size estimate at non-causal loci is approximately h2ρ/2 times the effect at causal loci,

assuming the traits to have the same heritabilities and genetic architectures (horizontal dashed

line in Fig 2; see S1 Text Section S3.1 for relaxations of these assumptions). If cross-trait assor-

tative mating is bidirectional/symmetric with respect to sex, then, in equilibrium, the average

spurious effect-size estimate at non-causal loci is approximately h2ρ times the effect at causal

loci. Upward biases in effect-size estimates at causal loci are also expected under cross-trait

assortative mating, but these are second-order relative to the biases at non-causal loci (S1 Fig).

The systematic over- and underestimation of effect sizes that assortative mating induces in

population and family-based GWASs, respectively, will also affect our second measure of inter-

est, the heterozygosity-weighted average squared effect-size estimate E½2plð1 � plÞâ2
l
� (and

therefore, also downstream quantities such as SNP heritabilities). In a population GWAS, the

presence of trans-LD and the gradual creation of cis-LD under assortative mating will increase

the biases in effect-size estimates over time (Fig 2), which will concomitantly increase the aver-

age value of â2
l

(Fig 3; also see ref. [22]). Moreover, cross-trait assortative mating will generate

signals of genetic correlations among traits even in the absence of any pleiotropic effects of

underlying variants [37]. In a family-based GWAS, the temporary attenuation of effect-size
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Fig 3. The impact of assortative mating on the average squared effect-size estimate in population and within-family GWASs. Same-trait assortative

mating of strength ρ = 0.2 occurs among parents in generations 0–20; mating is random before and after this period. Under random mating, the average

squared effect-size estimates exceed the true average squared effect size (yellow line) because random drift generates chance local LD with causal alleles that

inflates the variance of effect-size estimation (e.g., [18]). The magnitude of this variance inflation depends on the GWAS design and sample size, and the effect

of assortative mating and its cessation should be judged in reference to it. To guide the eye in this judgment, the faint horizontal lines in (A) and (B) show the

average squared effect-size estimate in the last 20 generations of the initial burn-in period of random mating. The inset in (B) zooms in on the sibling GWAS

profile, omitting the population GWAS profile for clarity. Profiles are averages across 5,000 replicate simulation trials. Simulation details can be found in the

Methods and the code can be found at https://doi.org/10.5281/zenodo.10520811.

https://doi.org/10.1371/journal.pbio.3002511.g003
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estimates owing to a transient excess of trans-LD over cis-LD under assortative mating will

lead to a similar attenuation in the average squared effect-size estimate (Fig 3), although, like

the bias in effect-size estimates themselves, this attenuation is expected to be small in humans

(Fig 3B).

As shown by Border and colleagues [22,37], the effects of assortative mating on estimates of

heritability and genetic correlations described above are not well controlled for by LD Score

regression [17,18]. The LD score of a variant proxies the amount of local causal variation the

SNP tags, but because assortative mating generates long-range signed LD among causal vari-

ants, it causes local causal variants to be in long-range signed LD with other causal variants

throughout the genome. Therefore, the slope of the LD score regression absorbs the effects of

assortative mating, causing its estimates of heritability and of the degree of pleiotropy to be

inflated (S1 Text Section S4). We note that the definition of heritability itself, and its measure-

ment using various study designs, can be complicated by processes such as assortative mating

(e.g., [59]).

Historical assortative mating. If, at some point in time, assortative mating for traits

ceases and mating becomes random with respect to those traits, the positive trans-LD that was

present under assortative mating will immediately disappear, leaving only the positive cis-LD

that had built up; this cis-LD will then be gradually eroded by recombination. If equilibrium

had been attained under assortative mating, the cis-LD would have grown to match the per-

generation trans-LD. Therefore, in the first generation after assortative mating ceases, the

upward bias in population-GWAS effect-size estimates would halve as the trans-LD disappears

(Eq (3)); the bias would then shrink gradually to zero as the cis-LD erodes (Fig 2). A similar

pattern will be observed for the heterozygosity-weighted average value of â2
l

in the population

GWAS, which eventually returns to its equilibrium level under random mating (Fig 3).

In contrast, with the disappearance of the positive trans-LD but the persistence of positive

cis-LD, the bias in family-based effect-size estimates will suddenly become positive once assor-

tative mating ceases (having temporarily been negative under assortative mating before equi-

librium was attained); this bias too will then gradually shrink to zero as recombination erodes

the remaining cis-LD (Fig 2). Concomitantly, the average squared effect-size estimate in the

family GWAS will suddenly increase when assortative mating ceases, after which it too will

gradually return to its equilibrium value under random mating (Fig 3).

Assortative mating between traits with different genetic architectures. An important

practical question is how genetic confounding affects the GWAS loci we prioritize for func-

tional follow-up and for use in the construction of PGSs. SNPs are usually prioritized on the

basis of their GWAS p-value, which is proportional to the estimated variance explained by a

SNP, 2plð1 � plÞâ2
l

(where pλ is the minor allele frequency). The results above assume, in the

case of cross-trait assortative mating, that the traits involved have similar genetic architectures

(distribution of pl and αl at causal loci, and the total number of causal loci). In that case, if

there is no pleiotropy between the traits, then while SNPs that tag trait-1 causal loci are predic-

tive of the value of trait 2 owing to LD between trait-1 and trait-2 causal loci, we nonetheless

expect the SNPs that tag trait-2 causal loci to be better predictors of trait 2, such that GWAS

investigators would primarily pick out SNPs tagging trait-2 causal loci for prioritization and

use in PGSs.

However, analysis of human GWASs suggests that quantitative traits can have widely differ-

ent genetic architectures, with, in particular, substantial differences in the effective numbers of

causal loci involved and in the distribution of minor allele frequencies ([60] and references

therein). If 2 traits with distinct genetic bases show cross-trait assortative mating, but trait 1

has a denser genetic architecture (fewer causal loci) than trait 2, then the genetic signal of

PLOS BIOLOGY Interpreting population- and family-based genome-wide association studies in the presence of confounding

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002511 April 11, 2024 14 / 35

https://doi.org/10.1371/journal.pbio.3002511


assortative mating—systematic LD between trait-1 and trait-2 causal loci—will be more heavily

loaded per-locus onto trait-1 loci than onto trait-2 loci. In a GWAS on trait 2, this will inflate

the magnitude of spurious effect-size estimates at SNPs that tag trait-1 loci relative to effect-

size estimates at SNPs that tag causal trait-2 loci. In S1 Text Section S3.1, we quantify this

effect, showing that, in a population GWAS for trait 2, the average magnitude of spurious

effect-size estimates at trait-1 loci is proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jL2j=jL1j

p
, where |L1| and |L2| are the

numbers of loci underlying variation in traits 1 and 2, respectively. Thus, when trait 1 has a

denser genetic architecture than trait 2 (|L2|/|L1| is large), the magnitudes of effect-size esti-

mates at non-causal trait-1 loci could substantially overlap with those at causal trait-2 loci (as

illustrated in Fig 4), potentially causing part of the apparent, mappable genetic architecture of

the trait-2 GWAS to actually tag trait-1 loci.

3.2 Population structure

When a population GWAS draws samples from individuals of dissimilar ancestries, differences

in the distribution of causal genotypes, and potentially of environmental exposures, can con-

found the association study [1,4]. Correcting for confounds due to population structure has

therefore been an important pursuit in the GWAS literature [14,23,61].

For concreteness, consider a simple model where 2 populations diverged recently, with no

subsequent gene flow between them. Genetic drift—and possibly selection—in the 2 popula-

tions will have led to allele frequency differences between them at individual loci. If allele fre-

quencies have diverged at both a genotyped study locus and at loci that causally influence the

de
ns

ity loci causal for trait 2 (GWAS trait)

loci causal for trait 1, under random 
mating  (               95th percentile)

loci causal for trait 1, after 20 gens
of assortative mating with trait 2

mean values

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

in GWAS on trait 2
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

in GWAS on trait 2

A. B.

Fig 4. Cross-trait assortative mating for traits with different genetic architectures can generate large spurious effect-size estimates in population GWASs.

Shown, for a population GWAS on trait 2, are estimated distributions of the magnitude of effect-size estimates at loci causal for trait 2 (gray) and at loci causal

for trait 1 (greens), under random mating (light green) and after 20 generations of cross-trait assortative mating (sex-asymmetric, of strength ρ = 0.2) for traits 1

and 2 (dark green). Although the true effects of trait-1 loci on trait 2 are zero in these simulations (no pleiotropy), there is sampling noise in effect-size

estimation at trait-1 loci under random mating (light green line), so that the mean magnitude of effect-size estimates is shifted away from zero (light green dot;

dashed line displays 95th percentile under random mating). In (A), the traits have equal heritability, but the number of loci contributing variation to trait 1 is

10-fold smaller than that for trait 2. Under assortative mating, the magnitudes of the spurious effect-size estimates at trait-1 loci shift significantly rightward

(dark green line), coming to overlap substantially with the distribution of effect-size estimate magnitudes at causal trait-2 loci (gray line; the distribution for

trait-2 loci does not appreciably differ under random and assortative mating). In (B), equal numbers of loci contribute variation to the 2 traits. In this case, the

rightward shift of the distribution of effect-size estimate magnitudes at trait-1 loci is not as pronounced as in (A). Densities are estimated from pooled effect-size

estimates from 1,000 replicate simulations. Simulation details in Methods and the code can be found at https://doi.org/10.5281/zenodo.10520811.

https://doi.org/10.1371/journal.pbio.3002511.g004
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study trait, these frequency differences will manifest as linkage disequilibria between the study

locus and the causal loci in a sample taken across both populations, even if the loci are not in

LD within either population. Specifically, if the frequencies of the focal allele at a given locus k
are pð1Þk and pð2Þk in populations 1 and 2, then the cis-LD between the focal alleles at the associa-

tion study locus λ and a causal locus l is

DðSÞll ¼
1

4
pð1Þl � pð2Þl
� �

pð1Þl � pð2Þl
� �

ð12Þ

in a sample that weights the 2 populations equally, with the superscript (S) denoting that this

LD is due to stratification. The trans-LD takes exactly the same form: ~DðSÞll ¼ DðSÞll . From Eq (3),

locus l therefore confounds estimation of the direct effect at λ in a population GWAS, by an

amount proportional to

2ðDðSÞll þ ~DðSÞll Þa
d
l ¼ ðp

ð1Þ

l � pð2Þl Þðp
ð1Þ

l � pð2Þl Þa
d
l : ð13Þ

These genetic confounds are in addition to environmental confounding that would arise if

the environments of the 2 populations alter their average trait values by different amounts.

In contrast, estimates of direct effects obtained from within-family association studies are

not genetically confounded, because cis- and trans-LD are equal (Eqs (6) and (7)). Another

way of seeing this is to consider that, by controlling for family, within-family GWASs control

for the population, and in the scenario considered, by construction, there are no within-popu-

lation LDs to confound effect-size estimation.

Allele frequency divergence due to drift. How do the confounds introduced by popula-

tion structure affect the first of our measures of interest, the average deviation of effect-size

estimates from their true values? The answer depends on the source of allele frequency differ-

ences between the 2 populations. If the differences are due to neutral genetic drift, they will be

independent of each other (assuming causal loci are sufficiently widely spaced) and indepen-

dent of the direction and size of effects at individual loci. Therefore, the LD induced by these

allele frequency differences will, on average, not bias effect-size estimates in a population

GWAS:

E½ðpð1Þl � pð2Þl Þðp
ð1Þ

l � pð2Þl Þa
d
l � ¼ E½p

ð1Þ

l � pð2Þl �E½p
ð1Þ

l � pð2Þl �E½adl � ¼ 0; ð14Þ

since E½pð1Þk � pð2Þk � ¼ 0 at any locus k.

However, the LD induced by population structure will inflate the average squared effect-

size estimate, and by extension the variance of effect-size estimates (Fig 5). In S1 Text Section

S3.2, we quantify this effect for the same simple case of 2 separate populations. We find that

the average squared effect-size estimate in a population GWAS is an increasing function of the

divergence between the 2 populations (as measured by FST), the number of loci contributing

variation to the study trait, and the true average squared effect size per locus (see also refs.

[38,62]).

In contrast, because effect-size estimates from within-family GWASs are not confounded in

this model of isolated populations, the average squared effect-size estimate will not differ sub-

stantially from its expectation in an unstructured population (Fig 5).

While we have focused on a simple model of 2 isolated populations, the result that within-

family association studies are not confounded holds for other kinds of population structure as

well. Specifically, we may be concerned that a population GWAS suffers from genetic con-

founding along some given axis of population stratification. However, the family-based esti-

mates will be unbiased by confounding along such an axis if the maternal and paternal

genotypes at each locus are exchangeable with respect to each other along this axis (S1 Text

PLOS BIOLOGY Interpreting population- and family-based genome-wide association studies in the presence of confounding

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002511 April 11, 2024 16 / 35

https://doi.org/10.1371/journal.pbio.3002511


Section S3.2). This requirement will be met in expectation under many models of local genetic

drift in discrete populations or along geographic gradients. However, as we will shortly argue,

migration and admixture introduce further complications.

Allele frequency divergence due to selection or phenotype-biased migration. Selection

and phenotype-biased migration can also generate allele frequency differences among popula-

tions (for a review of phenotype-biased migration, see ref. [63]). Unlike genetic drift, both of

these forces can lead to systematic directional associations between effect sizes and changes in

allele frequencies between populations. For example, if selection has favored alleles that

increase the trait in population 1 but not in population 2, then

E½ðpð1Þl � pð2Þl Þa
d
l � > 0 ð15Þ

as directional selection causes systematic changes in allele frequencies across the loci l underly-

ing variation in the trait under selection (e.g., [64]). Importantly, this form of selection can

occur even if the mean phenotype of the 2 populations does not change [65,66]. Similarly, phe-

notype-biased migration, where, say, individuals with a higher value of the phenotype tend to

migrate from population 2 to population 1, can also create a positive association between effect

sizes and allele frequency differences (Eq (15)).

Unlike the case of neutral genetic drift in the 2 populations, where the sign of the LD

between 2 alleles is independent of their effect sizes, the effect-size-correlated associations

driven by selection or phenotype-biased migration can add up across loci, and thus lead to

substantial, systematic biases in estimates of allelic effect sizes. This systematic genetic con-

founding would also substantially inflate the average squared effect-size estimate and thus

measures of the genetic variance tagged by SNPs.
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Fig 5. The impact of population structure and admixture on the average squared effect-size estimate in population and within-family GWASs. Here, 2

populations are isolated until generation 0, at which point they mix in equal proportions. Initial allele frequencies are chosen independently for the 2

populations, such that allele frequency differences between the populations resemble those that would accumulate over time via random drift. As in Fig 3, the

equilibrium value of the mean squared effect-size estimate under random mating is greater than the true mean squared effect size, in both the population and

within-family GWAS, owing to linkage disequilibria among causal alleles that arise due to drift. This explains why, in the insets, the blue (population) and red

(within-family) profiles do not shrink all the way down to the yellow (true) line after admixture, when mating is random. Note too the difference in scale of the

y-axes in the insets: the return to equilibrium is much more rapid under the human genetic map (B) than for a hypothetical genome of one chromosome of

length 1 Morgan (A), since, with more recombination, the ancestry-based linkage disequilibria are broken down more rapidly. Profiles are averages across

10,000 replicate simulation trials. Simulation details can be found in the Methods and the code can be found at https://doi.org/10.5281/zenodo.10520811.

https://doi.org/10.1371/journal.pbio.3002511.g005
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In addition, these systematic sources of genetic confounding can generate genetic correla-

tions between traits with no overlap in their sets of causal loci—i.e., with no pleiotropic rela-

tionship. This will occur if 2 traits have both experienced selection or biased migration along

the same axis. To take a concrete example, if people tend to migrate to cities in part based on

traits 1 and 2, then these traits will become genetically correlated. If this axis is explicitly

included as a covariate in the GWAS, then its influence on estimates of heritability and genetic

correlations will be removed. However, its influence will not be removed by inclusion of

genetic principal components or the relatedness matrix, if this axis (here, city versus non-city)

is not a major determinant of genome-wide relatedness at non-causal loci [1]. Nor will LD

score regression control for this influence, as the selection- or migration-driven differentiation

of a variant along the axis will be correlated with the extent to which it tags long-range causal

variants involved in either trait. This effect on LD score regression is similar to that discussed

above for assortative mating [22,37]. Thus, like assortative mating, selection and phenotype-

biased migration along unaccounted-for axes of population stratification can generate genetic

correlations between traits. These selection- and migration-driven correlations should not

necessarily be viewed as spurious, since genetic correlations should include those that arise

from systematic long-range LD, but they complicate the interpretation of population-level

genetic correlations as evidence for pleiotropy.

Again, these issues largely vanish in family-based studies, although phenotype-biased

migration can cause transient differences in cis- and trans-LD that lead to biases in family-

based estimates of direct effects (Eqs (6) and (7)).

3.3 Admixture

When populations that have previously been separated come into contact, alleles from the

same ancestral population remain associated with each other in the admixed population until

they are dissociated by recombination. If allele frequencies had diverged between the ancestral

populations, this “ancestry disequilibrium” can translate to cis-LD between loci affecting a

trait [67], potentially confounding GWASs performed in the admixed population. More gener-

ally, long-range LD will be an issue when there is genetic stratification and ongoing migration

between somewhat genetically distinct groups.

For concreteness, we again consider a simple model where 2 populations have been sepa-

rated for some time, allowing allele frequencies to diverge between them. The populations

then come into contact and admix in the proportions A and 1−A. We assume that mating is

random with respect to ancestry in the admixed population.

Suppose that, just before admixture, the frequencies of the focal allele at a given locus k
were pð1Þk and pð2Þk in the 2 populations. Then, the initial degree of cis-LD between loci λ and l in

the admixed population is given by Eq (12), weighted by the proportions in which the popula-

tions admix:

DðAÞll;0 ¼ Að1 � AÞðpð1Þl � pð2Þl Þðp
ð1Þ

l � pð2Þl Þ; ð16Þ

see, e.g., ref. [68]. This cis-LD subsequently decays at a rate cλl per generation, so that, t genera-

tions after admixture,

DðAÞll;t ¼ DðAÞll;0ð1 � cllÞ
t
¼ Að1 � AÞðpð1Þl � pð2Þl Þðp

ð1Þ

l � pð2Þl Þð1 � cllÞ
t
: ð17Þ

Because we assume that mating is random in the admixed population, the trans-LD is zero

in every generation after admixture: ~DðAÞll;t ¼ 0. Note that the decay of cis-LD in an admixed

population will be slowed if individuals mate assortatively by ancestry, because the trans-LD
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generated by assortative mating is continually converted by recombination to new cis-LD (as

in our assortative mating model above; see ref. [69] for more discussion of this point in the

context of population admixture).

Allele frequency divergence due to drift. How do these patterns of LD affect a population

GWAS? If allele frequency differences between populations arose from neutral drift, they will

be independent of effect sizes at causal loci and across loci, and therefore will not contribute,

on average, a systematic directional bias to effect-size estimates. However, they will inflate the

average squared effect-size estimate, by a smaller amount than for a population GWAS per-

formed when the populations were still separated (because of the elimination of trans-LD

under random mating in the admixed population). Moreover, this amount will decline in the

generations after admixture as the remaining cis-LD is eroded by recombination (Eq (17);

Fig 5). We quantify these effects in S1 Text Section S3.3 (see also refs. [38,68,70,71]).

Although within-family GWASs were not genetically confounded when the populations

were separate (because cis- and trans-LDs were equal, as discussed above), they become geneti-

cally confounded in the admixed population, as all trans-LD is eliminated by random mating

in the admixed population, leaving an excess of cis-LD relative to trans-LD that biases effect-

size estimates (Eqs (6) and (7)). As in the case of the population GWAS, these biases will be

zero on average if allele frequency differences between the ancestral populations were due to

drift. However, after admixture, they will still inflate the average squared effect-size estimate

(and thus the variance of effect-size estimates), which will thereafter decline in subsequent gen-

erations as the cis-LD is gradually broken down by recombination (Eq (17); Fig 5).

In comparing the average squared effect-size estimate in a population and a family-based

GWAS, we observe that the value in the population GWAS rapidly declines to approximately

the same level as the value in the within-family GWAS, despite the former having started at a

much higher level in the initial admixed population (Fig 5). The explanation is that LD

between unlinked loci confounds effect-size estimation in the population GWAS but not the

within-family GWAS, such that (i) the average squared effect-size estimate from the popula-

tion GWAS is initially much higher than that from a within-family GWAS, because it is

inflated by LD between many more pairs of loci; and (ii) the average squared effect-size esti-

mate from the population GWAS declines more rapidly, because LD between unlinked loci is

broken down more rapidly than LD between linked loci.

Allele frequency divergence due to selection or phenotype-biased migration. In addi-

tion to drift, and as discussed above, selection and phenotype-biased migration can generate

systematic, signed (effect-size correlated) LD, which would lead to systematic cis-LD in the

descendent admixed population. These would lead to larger inflations of genetic variance and

genetic correlations than would be expected had allele frequency divergence between the

ancestral populations been due to drift alone, and would complicate interpretations of genetic

correlations as being due to pleiotropy. Moreoever, if the admixed population is more than a

few generations old such that LD between unlinked loci but not linked loci has largely been

broken down, then population- and family-based estimates of these quantities might be

similar.

Spurious genetic correlations due to confounding in population-based PGSs. Factors

other than selection and phenotype-biased migration can also generate non-pleiotropic

genetic correlation signals in family-based studies of admixed populations. In fact, the use of

confounded population GWAS effect sizes can be sufficient. As an example of the confounding

of genetic correlations in admixed populations due to a confounded GWAS for one trait, con-

sider the GIANT-GWAS height PGS. Owing to confounding within Europe [20,21], the height

PGS showed large differences between Northern Europeans and sets of individuals sampled in

other locations, such as the African 1,000 genomes samples [72]. This confounding generated
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a spurious, systematic correlation between height effect sizes and allele frequency differences

across populations, with height-increasing alleles that are more common among Northern

Europeans being assigned larger effects [20]. As a result, in a PGS constructed from these

effect-size estimates, larger PGS values are predictive of greater North European ancestry.

Now imagine a sibling-based study performed in a sample with recently admixed “European”

and “non-European” ancestry—African Americans, for example. An individual with a larger

value than their sibling for the GIANT height PGS will, on average, carry more “European”

ancestry. In African Americans, there will also be a systematic association of lighter skin pig-

mentation with recent “European” ancestry, and selection on skin pigmentation will have

driven a signed difference in allele frequencies between European and West African ancestors.

Putting these observations together, the GIANT height PGS, being predictive of the degree of

European ancestry, may well be predictive of skin pigmentation differences between African

American sibling pairs (Eq (11)), leading to the naive and incorrect conclusion that height and

skin color are causally linked. In reality, this result would reflect the fact that alleles predicted

to increase height and alleles that affect skin color are in systematic effect-signed admixture

LD, as in Eq (16), as a consequence of stratification-biased effect-size estimates from the

GIANT European GWAS.

3.4 Stabilizing selection

Stabilizing selection—selection against deviations from an optimal phenotypic value—is

thought to be common [73], and has recently been argued to be consistent with the genetic

architectures of many human traits [60]. By disfavoring individuals with too many or too few

trait-increasing alleles, stabilizing selection generates negative LD among alleles with the same

directional effect on the trait [10]. Thus, stabilizing selection will attenuate GWAS effect-size

estimates at genotyped loci that tag these causal loci.

To quantify these biases, we consider the model of Bulmer [10,11], in which a large number

of loci contribute to variation in a trait under stabilizing selection, with the population having

adapted such that the mean trait value is equal to the optimum. Under this model, stabilizing

selection rapidly reduces variance in the trait by generating, within each generation, negative

cis- and trans-LD among trait-increasing alleles; this negative LD is then partially transmitted

(because of recombination) to the next generation in the form of cis-LD.

If we make the simplifying assumption that all loci have equal effect sizes, then the equilib-

rium reduction in trait variance in a given generation, −d* (where d*<0), measured before the

action of selection in that generation, can be calculated as a function of the genic variance Vg,

the environmental noise VE, the strength of stabilizing selection VS/VP (scaled according to the

phenotypic variance VP), and the harmonic mean recombination rate, �ch, among loci underly-

ing variation in the trait ([11]; S1 Text Section S3.4). Selection within the same generation will

reduce the trait variance further, to a degree that can also be calculated as a function of Vg, VE,

VS/VP, and �ch (S1 Text Section S3.4; [11]).

Under the assumption of equal effect sizes across loci, we calculate in S1 Text Section S3.4

the average per-locus attenuation bias in effect-size estimates induced by stabilizing selection,

ðal � â lÞ=al. In a population GWAS performed before selection has acted in the sampled indi-

viduals’ generation, the attenuation bias is approximately

al � â
pop
l

al
¼ �

d∗

Vg
;

while in a population GWAS performed after selection has acted in the sampled individuals’
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generation, the attenuation bias is approximately

al � â
pop
l

al
¼ �

d∗ð1þ 2�chÞ
Vg

;

that is, a factor 1þ 2�ch greater than in the pre-selection population GWAS.

In a within-family GWAS, the average proportionate bias in effect-size estimation is

approximately

al � â
fam
l

al
¼ �

d∗ð1 � 2�chÞ
Vg

;

irrespective of whether the GWAS is performed before or after selection has acted (or is ongo-

ing) in the generation from which the sample is drawn. The attenuation bias in a family-based

GWAS is therefore smaller than that in a pre-selection population GWAS by a factor of

1 � 2�ch, and smaller than that in a post-selection population GWAS by a factor of

ð1 � 2�chÞ=ð1þ 2�chÞ.
Thus, the bias in effect-size estimation can be calculated given estimates of the phenotypic

variance and heritability of the trait, the harmonic mean recombination rate, and the strength

of stabilizing selection (S1 Text Section S3.4). In the Methods, making some simplifying

assumptions about the genetic architecture of the trait in question, we calculate an approxi-

mate value �ch � 0:464 for humans. Using this value, Fig 6 shows the average proportionate

reduction in GWAS effect-size estimates for various strengths of stabilizing selection and heri-

tabilities of the trait. The range of selection strengths was chosen to match that inferred for

human traits by Sanjak and colleagues [74].

Attenuation of effect-size estimates is larger if stabilizing selection is stronger or if the trait

is more heritable. Taking height as an example, heritability is ~0.8, VP�7cm2, and Sanjak and

colleagues [74] estimate a sex-averaged strength of stabilizing selection of VS/VP�30. From

these values, we calculate that a pre-selection population GWAS would systematically underes-

timate effect sizes at loci that causally influence height by about 2.7% on average, in the absence

of other sources of LD (Fig 6A), while a post-selection population GWAS would systematically

underestimate effect sizes by about 5.2%, on average (Fig 6B). More generally, within the range

of reasonable strengths of stabilizing selection inferred by Sanjak and colleagues [74], we calcu-

late average attenutations of pre-selection population-based effect-size estimates of up to 5%
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Fig 6. Stabilizing selection attenutates GWAS effect-size estimates. The calculations displayed here assume that genetic variation in the trait is contributed by

1,000 loci of equal effect spaced evenly along the human genome. Stabilizing selection is stronger if the width of the selection function scaled by the phenotypic

variance, VS/VP, is smaller. The placement of the point for human height assumes a heritability of 0.8 and a strength of stabilizing selection of VS/VP = 30, as

estimated in ref. [74]. Details of these calculations can be found in S1 Text Section S3.4. Note the different scales of the y-axes in (A), (B), and (C).

https://doi.org/10.1371/journal.pbio.3002511.g006
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for highly heritable traits (h2�1) under strong stabilizing selection (VS/VP�20), down to

0.25% for less heritable traits (h2�0.4) under weak stabilizing selection (VS/VP�170) (Fig 6A);

the analogous range is 0.5% to 10% for post-selection population-based effect-size estimates

(Fig 6B).

Given the estimate �ch � 0:464, the proportionate bias that stabilizing selection induces in

within-family GWASs is expected to be a fraction 1 � 2�ch � 7:2% that in pre-selection popu-

lation GWASs and ð1 � 2�chÞ=ð1þ 2�chÞ � 3:7% that in post-selection population GWASs.

Thus, for height, a within-family GWAS would underestimate effect sizes by only about 0.2%

on average (Fig 6C).

The quantitative importance of these biases will vary by application. In situations where the

goal is gene discovery, for example, 5% to 10% reductions in effect-size estimates are unlikely

to flip the statistical significance of variants with large effects on a trait. However, the attenua-

tions in effect-size estimates caused by stabilizing selection are systematic across loci, and

therefore could substantially affect aggregate quantities based on these estimates. For example,

the range of average reductions in population effect-size estimates calculated above for human

traits would translate to reductions in naive estimates of SNP-based heritabilities of between

0.5% and 20% (approximately 5.4% in the case of height using effect-size estimates from a pre-

selection population GWAS; approximately 10% using estimates from a post-selection popula-

tion GWAS). If effect sizes are estimated by within-family GWAS, on the other hand, the

reductions in these SNP-based heritability estimates would be much smaller.

As a further example, by generating negative LD between alleles with the same directional

effect on the trait, the impact of stabilizing selection opposes, and therefore masks, the genetic

impact of assortative mating [75]. A practical consequence is that stabilizing selection will tend

to attenuate estimates of the strength of assortative mating based on GWAS effect sizes, which

often use cross-chromosome correlations of PGSs (e.g., [57,76]). In humans, the phenotypic

correlation among mates for height has been measured at about approximately 0.25 [58]. In

S1 Text Section S3.4, we calculate that estimates of this correlation based on cross-chromo-

some correlations in PGSs will be biased downwards by about 20% (to approximately 0.20)

because of stabilizing selection on height, if selection has not yet acted in the measured genera-

tion, and by about 40% (to 0.15) if selection has acted in the measured generation. Were assor-

tative mating weaker, or stabilizing selection stronger, the genetic impact of assortative mating

would be masked to an even greater extent (S1 Text Section S3.4).

As in our analysis of assortative mating above, if stabilizing selection ceases in some genera-

tion, the negative LD that built up during the period of stabilizing selection will decay over

subsequent generations, rapidly for pairs of loci on different chromosomes and more slowly

for linked pairs of loci. Patterns of selection on human traits have changed over time—for

example, the strength of stabilizing selection on birth weight has relaxed [77]. In general, there-

fore, patterns of confounding reflect a composite of contemporary and historic processes.

3.5 Sibling indirect effects

Indirect effects of siblings’ genotypes on each other’s phenotypes are known to be a potential

source of bias in sibling-based GWASs [34,52], and can be measured and corrected for only if,

in addition to sibling genotypes, parental genotypes are also available, either directly or via

imputation [27,34]. To generate intuition for their impact on GWASs, we consider a simple

model of indirect sibling effects in the absence of G×E interactions and other confounding

effects, focusing on a single-locus model for simplicity. We suppose that the indirect effect of

an individual’s phenotype on their sibling’s (same) phenotype is β, so that the phenotypes of 2
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siblings i and j can be written as follows:

Yi ¼ Y∗ þ agi þ bYj þ �i;

Yj ¼ Y∗ þ agj þ bYi þ �j: ð18Þ

Taking their difference and rearranging, we find that

DY ¼
a

1þ b
Dg þ

1

1þ b
D�: ð19Þ

Therefore, in the absence of genetic confounding and G×E interactions, a sibling-based

association study would return an effect-size estimate of

âsib ¼
a

1þ b
ð20Þ

in expectation. Thus, if sibling indirect effects are synergistic (β>0), they lead to underestima-

tion of the direct genetic effect at the locus. In contrast, if sibling indirect effects are antagonis-

tic (β<0), they lead to overestimation of the direct genetic effect.

How would a population GWAS be affected by the same sibling indirect effects? Sibling i’s
phenotype can be written as follows:

Yi ¼ Y∗ þ agi þ bYj þ �i

¼ Y∗ þ agi þ bðY
∗ þ agj þ bYi þ �jÞ þ �i

) Yi ¼
1

1 � b
2
Y∗∗ þ agi þ abgj þ �i þ b�j
� �

; ð21Þ

where Y** = (1+β)Y*. Therefore, if we were to randomly choose 1 sibling from each sibship

and estimate the effect size at the locus using a population association study across families, we

would obtain

âpop ¼
Covðgi;YiÞ

VarðgiÞ
¼

1

1 � b
2
aþ abrsibsg

� �
; ð22Þ

where rsibsg ¼ Covðgi; gjÞ=VarðgiÞ is the genotypic correlation between sibs at the locus. Sibling

indirect effects alter the effect-size estimate in a population GWAS via 2 channels. The first is

through the factor 1/(1−β2) in Eq (22), which reflects second-order feedbacks of an individual’s

phenotype on itself, via the sibling (see also ref. [78]). Since 1/(1−β2)>1, these feedbacks act to

exacerbate the effects of causal alleles. For example, if sibling indirect effects are antagonistic

(β<0), then a sibling with a large trait value will tend to indirectly reduce the trait value of

their sibling, which in turn will indirectly further increase the trait value of the focal individual.

This channel therefore pushes population GWASs towards overestimating the magnitude of

direct genetic effects.

The other channel by which sibling indirect effects can influence a population GWAS is

driven by the genotypic correlation among siblings, and is easiest to understand if we assume

that sibling indirect effects are weak (β2�1). In this case, âpop � aþ abrsibsg . Since the geno-

typic correlation rsibsg > 0, this channel of sibling indirect effects has the opposite effect to the

one it has on a sibling GWAS: if sibling indirect effects are synergistic (β>0), the population

GWAS overestimates the direct genetic effect at the locus, while if sibling indirect effects are
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antagonistic (β<0), the population GWAS underestimates the direct genetic effect. The reason

for this difference is that a sibling GWAS is based on siblings whose genotypes differ at the

focal locus, and whose genotypic values are therefore anticorrelated. If sibling indirect effects

are synergistic (β>0), they will tend to attenuate the phenotypic differences between such sib-

lings, and therefore attenuate effect-size estimates. In contrast, because siblings’ genotypes are

positively correlated across the entire population, synergistic sibling indirect effects (β>0) will

tend to exacerbate phenotypic differences across families, leading a population GWAS to over-

estimate effect sizes.

4 Discussion

It has long been recognized that population GWASs in humans can be biased by environmen-

tal and genetic confounding [1,4]. Currently, population GWASs attempt to control for these

confounds by focusing on sets of individuals that are genetically more similar and by control-

ling for population stratification. However, these controls are imperfect and are not always

well defined. For example, controlling for genome-wide patterns of population stratification

based on common alleles does not control for the genetic and environmental confounding of

rare variants [79]. Work on genetic confounding has uncovered increasing evidence that

assortative mating may be leading to large biases in estimates of direct genetic effects and to

large genetic correlations for a number of traits [22,37,57]; moreover, it can often be unclear

whether genetic signals of assortative mating are due to trait-based mate choice or some other

more general form of genetic confounding (e.g., [80]). Additionally, while we have focused pri-

marily on genetic confounding, for a number of traits there are also signals of residual environ-

mental confounding in GWAS signals [31,32,35,81]. Thus, subtle and often interwoven forms

of genetic and environmental confounding remain a major issue in many GWASs [34],

compromising the interpretation of GWAS effect-size estimates and downstream quantities

such as SNP heritabilities and genetic correlations.

Effect-size estimates from within-family GWASs are less affected by these various con-

founds. They are not subject to environmental confounding across families, because the envi-

ronments of family members are effectively randomized with respect to within-family genetic

transmission. As we have shown, family-based estimates should also suffer substantially less

from genetic confounding, because genetic transmission at unlinked loci (but not linked loci)

is randomized by independent assortment of chromosomes in meiosis. Nonetheless, family-

based GWASs can suffer from residual genetic confounding as well as sibling indirect effects

(in sibling-based designs), and causal interpretations of the estimates they produce are compli-

cated by G×E and G×G interactions [44]; they also raise a number of further conceptual prob-

lems that we discuss below.

Sources of genetic confounding

Genetic confounding is caused by long-range LD between loci that affect the trait or traits

under study. To illustrate the potential for genetic confounds to bias GWAS effect-size esti-

mates, we have considered several sources of long-range LD. Some of these—assortative mat-

ing, selection on GWAS traits, and phenotype-biased migration—can cause systematic

directional biases in GWAS effect-size estimates. Others, such as neutral population structure,

cause random biases that influence the variance of effect-size estimates and related quantities.

Assortative mating and neutral population structure have received considerable theoretical

attention in the GWAS literature (e.g., [22,37,38,57]). Here, we have further outlined how both

selection and phenotyped-biased migration can drive systematic genetic confounding that
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may not be well accounted for by current methods of controlling for stratification (see also ref.

[81]).

We wish to emphasize stabilizing selection in particular as a potential source of systematic

confounding in GWASs. Stabilizing selection has been well studied in the quantitative genetics

literature but less so in the context of GWASs, despite its expected ubiquity. By selecting for

compensating combinations of trait-increasing and trait-decreasing alleles, stabilizing selec-

tion generates negative LD between alleles with the same directional effect on the trait [10,11],

and can therefore bias GWAS effect-size estimates downwards. While the potential for stabiliz-

ing selection to confound effect-size estimation has been noted (e.g., [66,75,82]), the resulting

biases have not, to our knowledge, been quantified. Our calculations suggest that these down-

ward biases could, for some human traits, be as large as 5% to 10% systematically across all

causal loci in population GWASs. While biases of this magnitude are unlikely to compromise

some goals of GWASs, such as gene discovery, they could be quantitatively problematic for

other GWAS aims, such as estimation of SNP heritabilities and the strength of assortative mat-

ing. Moreover, while our results pertain to (a particular model of) stabilizing selection, many

kinds of selection generate LD between genetically distant loci—in fact, only multiplicative

selection among loci does not ([83], pgs. 50 and 177). Therefore, the general result that selec-

tion can generate genetic confounding will hold more broadly. Even in the absence of natural

and sexual selection, the ascertainment of samples for a population- or family-based GWAS is

a form of selection. When participation in a GWAS sample is based partly on a genetically

influenced phenotype [84], this sample-selection bias will generate LD between loci underlying

participation. In family studies, this participation bias can violate the assumption of random

assignment of genotypes, and thus potentially undermine the interpretation of these studies’

results.

For a given genotyped locus in a GWAS, there is no bright line between local “tagged” LD

and long-range confounding LD, and one reasonable objection to the approach taken here is

that that we have used an arbitrary definition of the causal loci that are locally tagged by a gen-

otyped locus (Llocal in Eq (2)). All of the sources of genetic confounding that we have consid-

ered generate LD among causal loci both within and across chromosomes. Under these

models, the within-chromosome LD that is generated is, in a sense, a continuation of the LD

generated across chromsomes (moving from a recombination rate = 0.5 to� 0.5). Thus, while

investigators may prefer some looser definition of “local” when thinking about genotyped

GWAS loci as tag SNPs, to extend that definition to include all loci on the same chromosome

as the SNP would, by reasonable interpretation, be to include confounding into the desired

estimator.

The extent to which the absorption of genetic confounding in estimated effect sizes is a

problem depends on the application. In the case of polygenic prediction, the absorption of

environmental effects, indirect effects, and the effects of untyped loci throughout the genome

can help to improve prediction accuracy, although this does come at a cost to interpretability

(and potentially also to portability across contexts). For GWAS applications focused on under-

standing genetic causes and mechanisms, the biases in effect-size estimates and spurious sig-

nals of pleiotropy among traits generated by genetic confounding will be more problematic.

Indirect genetic effects

Family GWASs are often interpreted as providing the opportunity to ask to what extent paren-

tal genotypes (or other family genotypes) causally affect a child’s phenotype (“genetic nurture”

[27]). Viewed in this way, the association between untransmitted parental alleles and the

child’s phenotype would seem, at first, a natural estimate of indirect genetic effects.
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In practice, however, if the population GWAS suffers from genetic and environmental con-

founds, then the estimated effects of untransmitted alleles will absorb that confounding in

much the same way that estimates of direct genetic effects from a population GWAS do (Eqs

(8) and (9)) [50]. For example, in the case of assortative mating, a given untransmitted allele is

correlated with alleles that were transmitted both by this parent and by their mate, and these

transmitted alleles can directly affect the offspring’s phenotype. Thus, while family-based esti-

mates of direct genetic effects benefit from the randomization of meiosis and from controlling

for the environment, family-based estimates of indirect genetic effects lack both of these fea-

tures and should be interpreted with caution. Indeed, recent work using parental siblings to

control for grandparental genotypes has shown that little of the estimated “indirect genetic

effect” may be causally situated in parents [36]. With empirical estimates of indirect genetic

effects potentially absorbing a broad set of confounds [34,85], and few current studies of indi-

rect effects having designs that allow such confounding to be disentangled, it is premature—

and potentially invalid—to interpret associations of untransmitted alleles causally in terms of

indirect genetic effects [3]. Rather, they should be treated agnostically in terms of “non-direct”

effects.

Direct genetic effects

Mendelian segregation provides a natural randomization experiment within families [86], and

so crosses in experimental organisms and family designs have long been an indispensable tool

to geneticists in exploring genetic effects and causation. Growing concerns about GWAS con-

founding and the increasing availability of genotyped family members have led to a return of

family-based studies to the association study toolkit [2]. Family-based estimates of direct

genetic effects are often interpreted as being unbiased and discussed in terms of the counter-

factual effect of experimentally substituting one allele for another [34,87,88].

As we have shown, family-based GWASs are indeed less subject to confounding than popu-

lation-based GWASs: in the presence of genetic and environmental confounding, the family-

based estimate of the effect size at a given locus provides a much closer approximation to the

true effects of tightly linked causal loci than a population-based estimate does. The family-

based estimate is not biased by environmental variation across families and avoids the corre-

lated effects of the many causal loci that lie on other chromosomes. Still, the family-based esti-

mate does absorb the effects of non-local causal loci on the same chromosome, and so cannot

truly be said to be free of genetic confounding. Rather than considering a single allele being

substituted between individuals, a better experimental analogy for the effect-size estimate

would be to say that we are measuring the mean effect of transmission of a large chunk of chro-

mosome surrounding the focal locus, potentially carrying many causal loci.

In addition, while within-family GWASs offer these advantages, in other ways, they move

us further away from the questions about the sources and causes of variation among unrelated

individuals that motivate population GWASs in the first place. Indeed, the presence of con-

founding and of G×E/G×G interactions introduces a number of conceptual issues in moving

from within-family GWAS to the interpretation of differences among individuals from differ-

ent families [44,89,90]. For example, in the presence of genetic confounding, the estimated

effect of a causal allele of interest will depend on a set of weights: its LD to many other causal

alleles. Family-based approaches weight these LD terms differently to population-based

approaches, which, we argue, can complicate the interpretation of these estimates. For exam-

ple, when previously isolated populations admix, same-ancestry alleles will be held together in

long genomic blocks until these are broken up by recombination, which will happen very

quickly for alleles on different chromosomes but more slowly for alleles on the same
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chromosome. A few generations after admixture, therefore, cross-chromosome ancestry LD

will largely have dissipated, but contiguous ancestry tracts will still span substantial portions of

chromosome lengths. Since both population and within-family GWASs are similarly con-

founded by the same-chromosome LD, their mean squared effect sizes will be similar in this

case (Fig 5). Bearing in mind that the LD resulting from admixture is not present in the source

populations, it becomes unclear which weighting of ancestry LD is appropriate if we want to

interpret the resulting effect-size estimates as direct effects. As this example illustrates, while

family-based GWASs are a useful device for dealing with confounding, it is not always obvious

how to interpret the quantities that they measure.

A number of additional complications arise when, to compensate for the small effect sizes of

individual loci, researchers combine many SNPs into a PGS and study the effects of PGSs within

families (or use them as instruments in mendelian randomization analyses). For one, SNPs are

usually chosen for inclusion in the PGS on the basis of their statistical significance in a popula-

tion GWAS. This approach prioritizes SNPs whose effect-size estimates are amplified (or even

wholly generated) by confounding (for an example of how this leads to residual environmental

confounding in applications of sibling-based effect-size estimates, see ref. [79]). Second, the

weights given to SNPs that are included in the PGS absorb the effects of confounding, and this

confounding is heterogeneous across SNPs. Thus, when we study the correlates of trait-A PGS

differences between siblings in the presence of GWAS confounding, we are not observing the

average phenotypic outcomes of varying the genetic component of trait A between siblings.

Rather, we are varying a potentially strangely weighted set of genetic correlates of trait A.

An observation that a population-GWAS PGS is predictive of phenotypic differences

among siblings demonstrates that the PGS SNPs tag nearby causal loci, but beyond that, inter-

pretation is difficult. Notably, if there is cross-trait assortative mating for traits A and B, but no

pleiotropic link between the traits, then some of the SNPs identified as significant in a GWAS

on trait A may be tightly linked to loci that causally affect trait B but not trait A. If these loci

are included in the trait-A PGS, then when we study the effect of variation in the trait-A PGS

on sibling differences, we are accidentally absorbing some components of the variation in trait

B across siblings. Thus, we might observe a correlation between the trait-A PGS and differ-

ences in trait B between siblings, and this correlation may be lower than is observed at the pop-

ulation level, without there existing any pleiotropic (or causal) link between A and B. These

effects can be exacerbated if the 2 traits have different genetic architectures (Fig 4). Instead of

using a set of SNPs and weights from a population GWAS, genetic correlations between traits

due to pleiotropy could be estimated from the correlation of effect sizes estimated within fami-

lies [33]. Given current sample size constraints in family-based studies, the confidence inter-

vals on these estimates are large. Moreover, significant family-based correlations need not

reflect pure pleiotropy, since, as we have shown, they are not completely free of genetic con-

founding due to intra-chromosomal LD.

Also complicating the interpretation of family-based effect-size estimates are various types

of interactions. Indirect effects between siblings can bias family estimates of direct genetic

effects (Eq (20); [2,34,52]) in ways that are conceptually different from the biases they intro-

duce to population-based estimates (Eq (22)). These sibling effects can potentially be addressed

with fuller family information (e.g., parental genotypes in addition to sibling genotypes

[27,34]).

In summary, family-based studies are a clear step forward towards quantifying genetic

effects, with large-scale family studies carrying the potential to resolve long-standing issues in

human genetics. However, these designs come with their own sets of caveats, which will be

important to understand and acknowledge as family-based genetic studies become a key tool

in the exploration of causal effects across disparate fields of study.
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5 Methods

All simulations were carried out in SLiM 4.0 [53]. Code is available at https://doi.org/10.

5281/zenodo.10520811.

For the purpose of carrying out sibling association studies in our simulations, we assumed a

simple, monogamous mating structure: each generation, each female, and each male is

involved in a single mating pair, and each mating pair produces exactly 2 offspring (who are

therefore full siblings). To maintain the precisely even sex ratio required by this scheme, we

assumed that a quarter of mating pairs produce 2 daughters, a quarter produce 2 sons, and half

produce a son and a daughter. Population sizes were chosen to ensure that these numbers of

mating pairs were whole numbers, and mating pairs were permuted randomly each generation

before assigning brood sex ratios (to ensure that no artifact was introduced by SLiM’s indexing

of individuals).

Each generation, per-locus effect size estimates were calculated for both population-wide

and sibling GWASs. The former were calculated as the regression of trait values on per-locus

genotypes, while the latter were calculated as the regression of sibling differences in trait values

on sibling differences in per-locus genotypes.

In all simulations, the total population size was N = 40,000.

Assortative mating

For our general cross-trait assortative mating setup, traits 1 and 2 are influenced by variation

at sets of bi-allelic loci L1 and L2, respectively. The effect sizes of the reference allele at locus l
on traits 1 and 2 are αl and βl, respectively. An individual’s PGS is then P1 ¼

P
l2L1

glal for trait

1 and P2 ¼
P

l2L2
glbl for trait 2. In all the scenarios we simulated, traits had heritability 1, so

that individuals’ trait values are the same as their PGSs.

Our aim is to simulate a scenario where assortative mating is based on females’ values for

trait 1 and males’ values for trait 2, such that, across mating pairs, the correlation of the moth-

er’s PGS for trait 1, Pm
1

, and the father’s PGS for trait 2, Pf
2, is a constant value ρ (in all of our

simulations, ρ = 0.2). To achieve this, we use an algorithm suggested by Zaitlen and colleagues

[69]: At the outset, we choose an accuracy tolerance ε such that, if by some assignment of

mates the correlation of their PGSs falls within ε of the target value ρ, we accept that assigment.

Each generation in which assortative mating occurs, we rank females in order of their PGSs

for trait 1, and males in order of their PGSs for trait 2. We then calculate the PGS correlation

across mating pairs, ρ0, if females and males were matched according to this ranking. If this

(maximal) correlation is smaller than the upper bound of our target window (ρ0<ρ+ε, which

very seldom occurred in our simulations), then females and males mate precisely according to

their PGS rankings and we move on to the next generation. If, instead, ρ0 exceeds ρ+ε, then we

follow the following iterative procedure until we have found a mating structure under which

the correlation of PGSs falls within ε of the target value ρ.

First, we choose initial “perturbation sizes” ξ0 and ξ1 = 2ξ0. Suppose that, in iteration k of

the procedure, the perturbation size is ξk and the chosen mating structure leads to a correlation

among mates of ρk. If |ρk−ρ|<ε, we accept the mating structure and move on to the next gener-

ation. Otherwise, we choose a new perturbation size ξk+1: (i) if ρk−1, ρk>ρ, then ξk+1 = 2ξk; (ii) if

ρk−1>ρ>ρk or ρk−1<ρ<ρk, then ξk+1 = (ξk−1+ξk)/2; (iii) if ρk−1, ρk<ρ, then ξk+1 = ξk/2. Once we

have chosen ξk+1, for each individual we perturb their PGS (trait 1 for females; trait 2 for

males) by a value chosen from a normal distribution with mean 0 and standard deviation ξk+1,

independently across individuals. We then rank females and males according to their per-

turbed PGSs, and calculate the correlation ρk+1 of their true PGSs if they mate according to
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this ranking. (Since, in our experience, there can be substantial variance in the ρk+1 values that

result from this procedure, we repeat it 5 times and choose the mating structure that produces

the value of ρk+1 closest to the target value ρ.) We then decide if another iteration—i.e., another

perturbation size ξk+2—is required.

Fig 2. Cross-trait assortative mating for traits with the same genetic

architecture

In the simulations displayed in Fig 2, ρ = 0.2, and traits 1 and 2 have identical but non-overlap-

ping genetic architectures: L1 and L2 are distinct sets of 500 loci each, with αl = 1 and βl = 0 for

l2L1, and αl = 0 and βl = 1 for l2L2. Loci in L1 and L2 alternate in an even spacing along the

physical (bp) genome. Fig 2A shows results for the “single chromosome” case where the

recombination fraction between adjacent loci is c = 1/999 in both sexes (such that the single-

chromosome genome receives, on average, one crossover per transmission). Fig 2B shows

results for the case where recombination fractions between loci are calculated from the human

female and male linkage maps generated by Kong and colleagues [54]. In both cases, we

assumed no crossover interference.

At each locus, the initial frequency of the reference allele was 1/2, with reference alleles

assigned randomly across diploid individuals and independently across loci such that, in

expectation, Hardy–Weinberg and linkage equilibrium initially prevail. The assortative mating

algorithm above was run for 19 generations, with a target correlation ρ = 0.2, a tolerance

parameter ε = ρ/100, and an initial perturbation size

x0 ¼ 4½maxðffPm
1
g; fPf

2ggÞ � minðffPm
1
g; fPf

2ggÞ�. Thereafter, assortative mating was

switched off, with mating pairs (still monogamous) being chosen randomly.

Fig 3. Same-trait assortative mating

The algorithm we followed to ensure assortative mating of a given strength was the same as

that for Fig 2 above, but here traits 1 and 2 are identical, and 1,000 loci underlie variation in

the trait, and are evenly spread along the physical genome. The effect size of the reference allele

at each locus was drawn from a normal distribution with mean 0 and standard deviation 1,

independently across loci. The initial frequency of the reference allele at each locus was drawn,

independently across loci, from a uniform distribution on [MAF, 1−MAF]; in our simulations,

we chose a minimum minor allele frequency of MAF = 0.1. Since here we are interested in

quantifying the mean squared effect size estimate, which is directionally affected by drift-based

local LD that may not be present in our initial configuration, we allowed 150 generations of

random mating before switching on assortative mating (only the final 20 generations of this

random mating burn-in are displayed in Fig 3). Assortative mating occurred for 20 genera-

tions, after which random mating occurred for a further 20 generations.

Fig 4. Cross-trait assortative mating for traits with different architectures

For Fig 4A, we again followed a similar procedure to that for Fig 2 above, but now, while traits

1 and 2 have distinct genetic bases, the numbers of loci contributing variation to traits 1 and 2

are |L1| = 100 and |L2| = 1,000. Trait-1 loci are placed evenly along the physical genome, with

trait-2 loci then evenly spaced among the trait-1 loci; we used the human linkage map for these

simulations. At both trait-1 and trait-2 loci, the initial frequency of the focal allele was drawn

from a uniform distribution on [MAF, 1−MAF], with MAF = 0.1. At trait-2 loci, true effect

sizes were randomly drawn from a normal distribution with mean zero and standard deviation

1; at trait-1 loci, true effect sizes were randomly drawn from a normal distribution with mean
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zero and standard deviation
ffiffiffiffiffi
10
p

, so that traits 1 and 2 have equal genic variances. After a

burn-in of 150 generation of random mating, assortative mating was switched on. We per-

formed a population GWAS at the end of the period of random mating and after 20 genera-

tions of assortative mating. These GWASs were performed across 1,000 replicate trials, with

the effect size estimates then pooled across trials. From these, we estimated the densities of the

absolute values of effect size estimates using Matlab’s kernel density estimator ksdensity, speci-

fying that the support of the distributions be positive. For Fig 4B, as a control, we also carried

out the same simulations with |L1| = |L2| = 1,000, drawing effect sizes from a standard normal

distribution.

Fig 5. Population structure and admixture

We wished first to simulate a situation where 2 populations of size N/2 have been separated for

a length of time such that the value of FST between them is some predefined level (in our case,

a mean FST per locus of 0.1). To do so without having to run the full population dynamics of 2

allopatric populations for a prohibitively large number of generations, we simply assigned

allele frequencies to achieve the desired level of FST. We assumed 1,000 loci spread evenly over

the physical genome. At each locus l, we chose an “ancestral” frequency pal for the reference

allele independently from a uniform distribution on [MAF, 1−MAF], with MAF = 0.2. We

then perturbed this allele frequency in populations 1 and 2 by independent draws from a nor-

mal distribution with mean 0 and variance 2pal ð1 � pal ÞFST ; if a perturbed allele frequency fell

below 0 or above 1, we set it to 0 or 1, respectively. The population dynamics described above,

with monogamous mating pairs chosen randomly, were then run for 50 generations.

In generation 50, the 2 populations merge, forming an admixed population of size N. The

same population dynamics, with monogamous mating pairs chosen randomly, were then run

for a further 50 generations.

Fig 6. Stabilizing selection

To calculate the bias in GWAS effect size estimation caused by stabilizing selection, we must

first calculate the harmonic mean recombination rate. We focus on humans and consider only

the autosomal genome. The set of loci underlying variation in the trait is L, which we appor-

tion among the 22 autosomes according to their physical (bp) lengths (as reported in GRCh38.

p11 of the human reference genome; https://www.ncbi.nlm.nih.gov/grc/human/data?asm=

GRCh38.p11). For each chromosome, we spread its allotment of loci evenly over its sex-aver-

aged genetic (cM) length, using the male and female linkage maps produced by Kong and col-

leagues [54]. (We use genetic lengths instead of physical lengths because, were we to spread

loci evenly over the physical lengths of the chromosomes, some pairs of adjacent loci on some

chromosomes might have a sex-averaged recombination fraction of 0, in which case the har-

monic mean recombination rate would be undefined.) For each pair of linked loci, the recom-

bination rate between them was estimated separately from the male and female genetic

distance between them using Kosambi’s map function [91]. Pairs of loci on separate chromo-

somes have a recombination fraction of 1/2. With the sex-averaged recombination fraction cll0
thus calculated for every pair of loci (l,l0), the harmonic mean recombination fraction was cal-

culated as �ch ¼
jLj

2

 !

=
P

l;l0
1

cll0

� �
, where

jLj

2

 !

¼ jLjðjLj � 1Þ=2 is the number of pairs of

distinct loci in L.
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Performing this calculation with |L| = 1,000 loci, we obtain an estimate of �ch � 0:464 for

human autosomes. Substituting this estimate into S1 Text Eqs (S.106), (S.107), and (S.108)

then defines the curves plotted in Figs 6A, 6B and 6C, respectively.

Supporting information

S1 Text. Supplementary information.

(PDF)

S1 Fig. Cross-trait assortative mating influences effect-size estimates at loci that affect the

study trait, although this influence is second-order relative to that on effect-size estimates

at loci that do not affect the study trait but do affect the other trait involved in assortative

mating (cf. Fig 2; note the scales of the y-axes). Simulations are the same as in Fig 2; the code
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