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ABSTRACT OF THE DISSERTATION

Holographic Entanglement Entropy in the Presence of Defects

by

Chrysostomos Marasinou

Doctor of Philosophy in Physics

University of California, Los Angeles, 2018

Professor Michael Gutperle, Chair

A quantum observable which received renewed attention recently is entanglement entropy.

It’s application ranges over several fields in physics, from condensed matter physics to general

relativity. In this dissertation we study entanglement entropy for quantum field theories in

the presence of defects and singularities.

We study entanglement entropy using the framework of AdS/CFT correspondence. We

focus on entangling surfaces across ball-shaped regions for systems outside their ground

state. Quantum field theories in the presence of defects are considered first. These are the

six-dimensional (2, 0) theory in the presence of Wilson surfaces and the four-dimensional

N = 4 super-Yang-Mills theory in the presence of surface defects of the disordered type.

Their holographic entanglement entropy is calculated applying the Ryu-Takayanagi pre-

scripstion on their holographic duals, which are eleven-dimensional supergravity (M-theory)

solutions for the former and ten-dimensional type IIB supergravity solutions for the latter.

Other holographic observables are computed as well: the holographic stress tensor and the

expectation value of the defect (operator). For the disordered defects, an alternative ex-

pression for the additional entanglement entropy due to the defect (in terms of expectation

values) is derived, adapting the method of Lewkowycz and Maldacena for Wilson loops.

The two entanglement entropies agree up to an additional term, the origin of which may be

ii



attributed to the conformal anomaly of even dimensional defects as we discuss.

The holographic entanglement and free energy is computed for five-dimensional super

conformal field theories, starting from their holographic supergravity duals. Although the

supergravity solutions possess singularities, these do not obstruct our calculations. The

expected relation between the two observables is verified. This supports the supergravity

solutions as holographic duals and gives the first quantitative results for five-dimensional

superconformal field theories.
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Chapter 1

Introduction

1.1 The AdS/CFT correspondence

1.1.1 The importance of holography

The holographic principle was introduced in the context of string theories by Susskind [5]. In

semi-classical considerations of quantum gravity, in (d+ 1)-dimensions, it states that all the

information contained in a volume Vd+1 is encoded on the surface of it’s boundary ∂Vd+1. An

explicit realization of the holographic principle is the AdS/CFT correspondence 1 [6]. This

is a duality relating a quantum gravity theory on a certain spacetime to a non-gravitational

quantum theory on a spacetime of one dimension lower. The gravity theory is a string theory

on Anti-de Sitter (AdS) spacetime in (d + 1)-dimensions and the non-gravitational theory

is a conformal field theory (CFT) living on the d-dimensional boundary of AdSd+1. The

AdS/CFT correspondence is sometimes called gauge/gravity duality since it’s relating gauge

theories to theories with gravity. In fact, the argument was initially introduced by t’Hooft for

the case of the large N limit of gauge theories (or t’Hooft limit), where N is the dimension

of the gauge group [7]. In particular, he showed that the gauge theory Feynman diagrams at

N →∞ organize themselves with topology matching that of a dual string ending on quarks.

1We postpone the exact statement of the AdS/CFT correspondence until section 1.1.3
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The AdS/CFT correspondence extends this approach, to conjecture that the dynamics of a

gauge and a string theory are equivalent in general.

The correspondence has proven proven to be very useful. On one side, intractable field

theory calculations of strongly coupled quantum systems were worked out on the gravity

side. Some of the most important results involve correlators of 1/2 BPS operators in N = 4

SYM. Examples are the computation of three-point functions, check of non-renormalization

theorems for two- and three- point functions, study of four-point functions and extremal

correlators. Another important result is the computation of the conformal anomaly for

various CFTs, e.g. the holographic calculation of the conformal anomaly of 2d CFT, which

resulted to the anticipated Brown-Henneaux formula [8]. On the other side, known quantum

field theory quantities and properties gave a new approach in the interpretation of gravity.

A long standing open problem which is targeted is the black hole information paradox. A

CFT at finite temperature T corresponds to a dual black hole in AdS with T being the

Hawking temperature. The unitarity of the CFT suggests that the information of the initial

state of the black hole should be preserved. This means that during the evaporation of the

black hole, the emitted Hawking radiation should carry all the information [9]. Although

for the region outside the horizon encoding of the information on the dual CFT is well

understood, a similar encoding for the inner region remains subtle. An effort to explain it

was proposed by the introduction of the so-called “firewall” [10]. This is a region very close

to the horizon, where the local effective field theory breaks down. A resolution whether this

is a valid mechanism to explain the information paradox has not been achieved to this date.

More on tests and breakthroughs of the AdS/CFT correspondence, are being discussed in

the lectures by D’Hoker and Freedman [11].

The biggest unresolved problem in theoretical physics is finding a quantum theory of

gravity (usually called quantum gravity). The quantization of all other interactions is pos-

sible using the framework of quantum field theory (QFT). In fact, the electromagnetic and

nuclear interactions are described by the Standard Model of particle physics, many aspects
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of which have been studied and confirmed experimentally. However, gravity does not admit

such a description. Trying to consider gravity as a QFT we get a nonrenormalizable theory.

This means that infinite number of counterterms have to be added to the Lagrangian in

order to render observable quantities (calculated perturbatively) finite. The nonrenormal-

izability of gravity as a QFT can be understood from black hole considerations. At high

energies black holes are created. The Bekenstein-Hawking formula says that black hole en-

tropy is proportional to the area of the black hole horizon [12, 13], which scales in a certain

way with energy given the dimensionality, d. However, interpreting gravity as a QFT, in

the extremely high energy range, we would expect it to lie on a UV fixed point (CFT).

Following this expectation, one computes the entropy of the CFT in d-dimensions and how

it scales with the energy. It turns out that the entropy here scales differently compared to

the case of the black hole. This is a contradiction and therefore if we choose to trust the

Bekenstein-Hawking formula we have that gravity is non-renormalizable.

There are different approaches to quantum gravity. The main focus of this dissertation

is on one of them which is string theory. The fact that the gravity side of AdS/CFT consists

of a string theory makes it a promising tool in the efforts of trying to “solve” quantum

gravity. In particular, one avenue that is being explored a lot lately is the connection

between quantum entanglement and geometry. The connection is manifested in the proposal

for the holographic entanglement entropy [14,15], where a minimal surface in the bulk AdS

gives the entanglement entropy of the CFT. In the same direction, it was proposed that

entanglement actually creates geometry [16–18] and also that any EPR pair is associated

by an ’Einstein-Rosen bridge’ in spacetime, a claim known as “ER=EPR” [19]. Further

information, on recent developments on the interpretation of quantum information theory

quantities in the AdS/CFT framework, can be found in [20].

Although the motivation which led to AdS/CFT was the exploration of quantum grav-

ity, the duality contributed to the understanding of various topics in physics. In particu-

lar, guided by the main attribute of relating a strongly coupled theory to a dual weakly

3



coupled theory, various generalizations of the duality were launched. One of them is the

AdS/QCD program, which applies the same philosophy to geometrize quantum chromody-

namics (QCD), the theory of the strong interactions. The program led to synthesis of lattice

QCD and heavy ion phenomenology. It further aims to shed more light in the most im-

portant open problem of QCD, which is, understanding confinement. For a review on the

AdS/QCD program see e.g. [21]. Another program inspired by AdS/CFT is AdS/CMT. This

is the application of the duality in condensed matter physics systems. The program creates

the possibility for experimentally accessible systems. In fact, amongst others novel phases

of matter were explored, cold atom systems with specified properties were designed, a holo-

graphic model for superconductors was constructed [22]. Extensive lectures on holographic

methods for many-body systems can be found in [23].

1.1.2 The extra dimension

There are different approaches in motivating the presence of one extra dimension in the grav-

ity side of the AdS/CFT correspondence. One of them is the Kadanoff-Wilson renormal-

ization group (RG). To examine this approach, let us consider a non-gravitational quantum

system living on a lattice with spacing a. The system has the following Hamiltonian:

H =
∑
x,i

Ji(x, a)Oi(x) (1.1.1)

where x are the site locations, Oi are the different local operators of the system and Ji their

coupling constants. Notice that the coupling constants depend on the lattice size. In the RG

approach we coarsegrain the lattice. To apply this let us successively double the lattice site.

The resulting coupling constants are the averages of the neighboring Ji before doubling.

coarsegraining: Ji(x, a)→ Ji(x, 2a)→ Ji(x, 4a)→ · · ·

4



The form of the Hamiltonian stays the same as in (1.1.1) whereas the couplings change as

a function of the current lattice size. Thus, we can interpret the lattice size as a length scale

we can use to probe the system. Let us name this length scale u. The coupling constants

are now given by Ji(x, u), where u ≥ 0. The flow of the couplings when we allow u to run is

described by the so-called RG equations

u
∂

∂u
Ji(x, u) = βi(Jj(x, u)) (1.1.2)

which are local in the scale u. The functions βi are the so called beta-functions describing

the dependence of couplings Ji upon the energy scale in consideration. In the AdS/CFT

framework at strong coupling, we can interpret u as the extra dimension, i.e. the radial

dimension of AdS. Based on this argument, the sources Ji(x, u) are mapped to the bulk

fields φi(x, u):

Ji(x, u) = φi(x, u)

The dynamics of φi admit an action of a gravitational theory on AdS spacetime. This illus-

trates that the AdS/CFT correspondence is a concrete way to geometrize the RG. Moreover,

we see that the microscopic couplings in the UV are identified with the bulk fields at the

boundary of the AdS spacetime. Therefore, we could say that the quantum system lives on

the boundary of the gravity theory’s spacetime.

A different approach in motivating the duality is matching the degrees of freedom on the

two sides. Let us consider a d-dimensional QFT. A measure of it’s degrees of freedom is

entropy which is extensive in this case. This means that considering a spatial region Rd−1

in the QFT the associated entropy is proportional to it’s volume.

SQFT ∝ Vol(Rd−1)

On the other side, in a gravitational theory entropy is subextensive. In particular, there is

5



a maximum threshold on the value of entropy for a certain spatial region. The threshold

is defined by the entropy of a black hole, same in size as the region [24]. The black hole

entropy is given by the Bekenstein-Hawking (BH) formula [12,13]

SBH =
AH
4GN

(1.1.3)

where AH is the area of the black hole horizon and GN the Newton’s constant. Let us

consider a (d + 1)-dimensional gravity theory and a spatial region Rd which is bounded by

Rd−1. Then, employing the BH formula (1.1.3) we get that

SGR ∝ Area(Rd) ∝ Vol(Rd−1)

Therefore, assuming that the boundary of Rd matches the spatial region we considered for

the QFT, we have that the degrees of freedom in both cases scale identically. This is another

hint supporting the correspondence.

Investigating the statement of the AdS/CFT correspondence further, one can ask: “Why

don’t we study the connection of any QFT to a gravity theory?” The main reason is that

geometrizing any QFT is a difficult task. Instead the attention is being drawn to CFTs.

These are theories that lie at a fixed point of the RG flow and therefore enjoy conformal

invariance. The latter is the reason making the geometrization of CFTs more accessible

compare to the case of other more general QFTs.

To illustrate this, let us consider a CFT living in d spacetime dimensions (t, x1, x2, · · · ,

xd−1). We want to associate it with a (d + 1)-dimensional spacetime. The conformal group

consists of the Poincaré group, dilatations and special conformal transformations. We be-

gin by writing the most general (d + 1)-dimensional metric with Poincaré invariance in

d-dimensions:

ds2
d+1 = Ω2(z)

(
−dt2 + dxidxi + dz2

)
(1.1.4)

6



with z being the extra dimension, Ω(z) a metric factor to be determined and xi spatial

directions with i = 1, 2, · · · , d− 1.

We further assume that z is a length scale and require the metric to be invariant under

scalings. Including the d-dimensional dilatations we can write the overall scaling transfor-

mations as

z → λz, (t, xi)→ (λt, λxi) (1.1.5)

Requiring scale invariance the metric factor gets the form

Ω(z) = L/z (1.1.6)

where L is an arbitrary constant. Therefore, the final form of the (d+ 1)-dimensional metric

is given by

ds2
d+1 =

L2

z2

(
−dt2 + dxidxi + dz2

)
(1.1.7)

This is AdSd+1 spacetime in Poincaré coordinates, if we identify L with the AdS radius of

curvature.

Summarizing, we used the conformal symmetry SO(d, 2) and found the geometric analog.

The latter is the AdSd+1 spacetime and it has isometries same as the conformal group

SO(d, 2). This justifies the preference towards investigating CFTs rather than more general

QFTs and provides a heuristic argument supporting AdS/CFT.

1.1.3 The original AdS/CFT statement

The AdS/CFT correspondence was conjectured in 1998 by Maldacena [6]. The conjec-

ture takes the form AdSd+1/CFTd, identifying a string theory on AdSd+1 with a CFT in

d-dimensions. The most prominent example given in his paper is the AdS5/CFT4 correspon-

dence which states that “type IIB string theory with string length ls =
√
α′ and coupling

constant gs living on AdS5 × S5 with radius of curvature L and having N F(5) flux units
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on the S5 is equivalent to N = 4 d = 3 + 1 SU(N) super-Yang-Mills (SYM) with coupling

constant gYM”, when the parameters of the two theories are identified in the following way:

g2
YM = 2πgs and 2g2

YMN = L4/α′2 (1.1.8)

Next, we briefly introduce the two sides of the correspondence.

1.1.4 N = 4 Super-Yang-Mills

The Lagrangian of N = 4 d = 3 + 1 SU(N) super-Yang-Mills theory is given by [25]

LSYM = tr

{
− 1

2g2
YM

FµνF
µν +

θI
8π2

FµνF̃
µν −

∑
a

iλ̄aσ̄µDµλa −
∑
i

DµX
iDµX i

+
∑
a,b,i

gYMC
ab
i λa[X

i, λb] +
∑
a,b,i

gYMC̄iabλ̄
a[X i, λ̄b] +

g2
YM

2

∑
i,j

[X i, Xj]2
}

(1.1.9)

which contains the N = 4 multiplet, i.e. six real scalars X i, one real vector Aaµ with field

strength Fµν and four Weyl spinors λa, all of them transforming in the adjoint representation

of the gauge group SU(N). The theory is exactly invariant under the superconformal group

SU(2, 2|4) at the quantum level. The bosonic part of the group is given by the conformal sym-

metry in (3 + 1) spacetime dimensions, SO(4, 2), and the R-symmetry, SO(6)R ∼ SU(4)R.

In particular, under the SU(4)R the vector field Aaµ is a singlet whereas the scalars X i and

the spinors λa are a rank 2 anti-symmetric 6 and a 4 respectively. The fermionic part of

the symmetry is given by N = 4 conformal supersymmetry, which includes in total 32 real

supercharges. The supercharges are organized in terms of Weyl spinors which transform in

4 of SU(4)R.

1.1.5 Type IIB Supergravity

It is useful to introduce the low energy limit of type IIB string theory, the N = 2 (9 + 1)-

dimensional type IIB supergravity theory. The theory has the following field contents: the
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metric Gµν , the axion-dilaton complex field C + iΦ, a complex antisymmetric rank 2 tensor

B2µν + iA2µν , a real antisymmetric rank 4 tensor A4µνρσ with a self-dual field strength, two

Majorana-Weyl gravitinos ψIµα of the same chirality and two Majorana-Weyl dilatinos λIα of

the opposite chirality compare to the gravitinos.

Due to the self-dual nature of the five-form field strength we cannot write a satisfactory

action producing all field equations including self-duality. Instead, we can write a Lagrangian

which reproduces all field equations of type IIB supergravity and impose self-duality as a

separate equation. Doing this yields the following Lagrangian

SIIB = +
1

4κ2
10

∫ √
Ge−2Φ(2R + 8∂µΦ∂µΦ− |H3|2) (1.1.10)

− 1

4κ2
10

∫ [√
G(|F1|2 + |F̃3|2 +

1

2
|F̃5|2) + A4 ∧H3 ∧ F3

]
+ fermions

where the different field strengths are given by



F1 = dC

H3 = dB2

F3 = dA2

F5 = dA4


F̃3 = F3 − CH3

F̃5 = F5 − 1
2
A2 ∧H3 + 1

2
B2 ∧ F3

(1.1.11)

supplemented by the self duality condition F̃5 = ∗F̃5. The gravitational coupling in 10 di-

mensions is related to the string scale α′ and the string coupling gs of the type IIB superstring

theory by

κ2
10 = 8πG10 = 64π7g2

sα
′4 (1.1.12)

where G10 is the 10-dimensional Newton’s constant.
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1.1.6 AdS/CFT from branes

An argument supporting the AdS5/CFT4 correspondence comes from geometric realization

of gauge theories in superstring theory. Other than the fundamental strings, superstring

theory contains also higher dimensional objects called Dirichlet branes (D-branes). They

are denoted as Dp-branes and extend in (p + 1) spacetime dimensions. D-branes can be

described using two different viewpoints: the open string and closed string perspectives. In

the open string perspective, we consider small string coupling constant gs and the approach

is perturbative. D-branes here are described as hyperplanes where open strings can end.

In the closed string perspective, D-branes are viewed as non-perturbative massive charged

solitons sourcing the superstring theory fields.

To arrive at the desired argument for AdS5/CFT4 we need to apply the two perspectives

on a stack of N coincident D3-branes. The underlying theory is type IIB superstring theory

in R9,1 and the brane-configuration retains only half of the 32 supercharges of the theory.

The argument concerns the weak form of the correspondence at low energy, E � α′−1/2.

We start with the open string perspective where we consider our setup in the weak

coupling limit gsN � 1. In this perturbative limit, our background is described in terms

of open and closed string excitations. The former are modes of the (3 + 1)-dimensional

hypersurface, whereas the latter are modes propagating in the bulk (9 + 1)-dimensional

spacetime.

We apply the low energy limit to our setup in two steps. The first step is integrating out

the massive degrees of freedom. This gives an effective action containing only the massless

string modes,

S = Sclosed + Sopen + Sint (1.1.13)

with Sclosed (Sopen) containing the modes of closed (open) strings and Sint the interactions

between open and closed string modes. Sclosed is the ten-dimensional type IIB supergravity

action plus higher derivative terms. Sopen can be derived from the Dirac-Born-Infeld (DBI)
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action for D3-branes with the Wess-Zumino term added. The open massless modes give the

N = 4 SYM action with higher derivative corrections. Schematically, so far we have:

Sclosed =
1

2κ2
10

∫
d10x
√−ge−2φ(R + 4∂Mφ∂

Mφ)) + · · ·

≈ −1

2

∫
d10x ∂Mh∂

Mh+O(κ10)

SDBI + · · · = − 1

(2π)3α′2gs

∫
d4xe−φ

√
−det(P [g] + 2πα′F ) + · · ·

→ Sopen = − 1

2πgs

∫
d4x

(
1

4
FµνF

µν +
1

2
ηµν∂µX

i∂νX
i +O(α′)

)

where we represent the closed sector schematically with the graviton and dilaton only and

the open sector with the DBI term for one D3-brane. The metric is given by g = η + κh,

with h being the metric fluctuation (graviton) and 2κ2 = (2π)7α′4g2
s . In the open sector we

end up with a gauge field with field strength F and six real scalars φi. Generalizing to the

case of N coincident branes the open sector fields are in the adjoint representation of U(N).

Notice that we expand either in κ10 or α′.

The second step of taking the low energy limit is to ignore the stringy excitations. This

can be achieved by sending α′ → 0 keeping all dimensionless parameters fixed. Therefore,

we can take either limit α′ → 0 or κ10 → 0. Applying this limit, Sclosed becomes the type

IIB supergravity action in (9 + 1)-dimensional Minkowski spacetime. On the other side,

Sopen becomes the bosonic part of N = 4 d = 3 + 1 SU(N) SYM action (1.1.9). We should

mention that the U(1) ⊂ U(N) degrees of freedom decouple from the rest, leaving SU(N) as

the gauge group. Also, Sint vanishes and open and closed strings decouple. For this reason

the limit we just applied is called the “decoupling limit”, indicating the decoupling between

open and closed string sectors.

Next, we study the closed string perspective where we consider our setup in the strong

coupling limit gsN � 1. Since now the D3-branes are viewed as massive charged solitons

they source the superstring theory fields, deforming the spacetime and generating flux. There
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are only closed strings propagating in this background. We work in type IIB supergravity in

R9,1 since it is the low energy limit of type IIB superstring theory in R9,1. The supergravity

solution of N coincident D3-branes is given by

ds2 = H(r)−1/2ηµνdx
µdxν +H(r)1/2δijdx

idxj,

e2φ(r) = g2
s ,

A(4) = (1−H(r)−1)dx0 ∧ dx1 ∧ dx2 ∧ dx3 + · · ·

H(r) = 1 +

(
L

r

)4

where µ, ν = 0, 1, 2, 3 and i, j = 4, 5, · · · , 9. The D3-branes extend in the xµ directions, r

is the radial coordinate in the xi directions, the ellipses in A(4) ensure that F(5) = dA(4) is

self-dual and L is a constant which can be fixed by applying flux quantization. In particular,

we have N units of flux corresponding to the number of branes which gives

L4 = 4πgsNα
′2 (1.1.14)

We proceed with splitting spacetime into two regions: the large radial distance (r � L)

and the small radial distance (r � L). In the former limit, H(r) ≈ 1 and the metric reduces

to R9,1. In the latter limit, we have that H(r) ≈ L4/r4 which corresponds to the near-horizon

limit where the metric gets

ds2 =
r2

L2
ηµνdx

µdxν +
L2

r2
δijdx

idxj

=
L2

z2

(
ηµνdx

µdxν + dz2
)

+ L2ds2
S5

where we mapped xi to spherical coordinates and performed a coordinate transformation,

z = L2/r. This is AdS5 × S5 with the AdS factor in Poincaré coordinates and both factors
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having radius of curvature L.

To apply the low energy limit we should integrate out the massive degrees of freedom.

But, since the geometry is curved, the energies (or masses) are measured with a redshift

factor depending on our location. However, what matters in our case is measurements of an

observer at infinity, i.e. at r → ∞. For a string excitation at fixed location r the energy

observed at infinity is given by

E∞ = H(r)−1/4Er (1.1.15)

where Er is the energy measured at radial distance r. In the asymptotically flat region

r � L, E∞ ≈ Er which vanishes as we approach infinity. In the near-horizon region r � L,

E∞ ≈ (r/L)Er which vanishes as we go closer to r = 0. Hence, the massless closed string

modes exist only in these two regions which are spatially separated. Therefore, there are two

types of closed strings belonging to the two regions which decouple in the low energy limit.

The dynamics of the closed string massless fields in the two regions are different. The

backgrounds are: in the asymptotically flat region type IIB supergravity in R9,1 and in the

near-horizon region type IIB supergravity in AdS5 × S5.

A pictorial visualization of the open and closed string perspectives is given in figure 1.1.6.

Working in the low energy limit in both cases we find two decoupled effective theories one

of which is the type IIB supergravity in R9,1. It is then natural to identify the remaining

systems in the two sides. Then, N = 4 SYM theory in four dimensions is equivalent to type

IIB supergravity on AdS5 × S5. Relaxing the low energy limit we are led to the conjecture

that N = 4 SYM theory in four dimensions is equivalent to type IIB superstring theory on

AdS5 × S5 , which was conjectured by Maldacena in [6].

A first test of the correspondence is to check whether the dual theories possess the

same symmetries. As a maximally supersymmetric solution of 10-dimensional supergravity,

AdS5 × S5 has 32 Killing spinors. These correspond to the 32 supercharges of N = 4 SYM.

It’s isometry groups are SO(4, 2) and SO(6) for the AdS5 and the S5 factor respectively.

The former is the conformal group in 3 + 1 dimensions and the latter the R-symmetry of

13



AdS5 × S5

Closed Strings Open Strings

IIB Sugra        SYM

Bulk Hypersurface

IIB Sugra IIB Sugra
R9,1 R9,1

N = 4

gsN 1gsN 1

E
√
αE

√
α

R3,1

IIB Superstring theory

N D3

gsN, α = 0

       SYMN = 4

R3,1 AdS5 × S5
IIB Superstring Theory

gsN, α = 0

CFT4 ≡ AdS5

Figure 1.1: N D3-branes are inserted in type IIB superstring theory. The open string per-
spective (gsN � 1) is showed on the left branch. Here, the D3-branes are the hypersurfaces
where open strings end and the treatment is perturbative. In the low energy limit open and
closed strings decouple (decoupling limit) describing a bulk and a brane worldvolume theory.
The closed string perspective (gsN � 1) is showed on the right branch. Here, the D3-branes
are soliton-like objects, open strings are absent and the treatment is non-perturbative (back-
reacted supergravity solution). The bulk and brane closed strings decouple leading to two
bulk theories. Matching the two perspectives and lifting the low energy limit restriction, we
are led to the AdS5/CFT4 correspondence.

N = 4 SYM. Hence, there is symmetry matching between the two sides in AdS5/CFT4.

Following the geometric argument for the validity of AdS5/CFT4 above, we can predict

the existence of the correspondence in other dimensions. We begin by using M-theory in

the place of superstring theory and consider stacks of N coincident branes in the low energy

limit. The low energy effective action of M-theory is 11-dimensional supergravity, which

contains M2- and M5-branes. We consider both. In the near horizon limit we get the

geometries: AdS4×S7 with curvature radii 2RAdS4 = RS7 for the M2-branes and AdS7×S4
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with curvature radii RAdS7 = 2RS4 for the M5-branes. The corresponding worldvolume

theories at low energy are the 3-dimensional SCFT (or ABJM theory [26]) for the M2-branes

and 6-dimensional (2,0) SCFT for the M5-branes. Lifting the low-energy limit one arrives

to the conjectures for AdS4/CFT3 and AdS7/CFT6, which were also introduced in [6].

1.1.7 AdS/CFT made precise

The advantage of having AdS/CFT at our disposal is to be able to compute observables.

Usually, with observables in field theory, we refer to correlation functions of the form

〈O1(x1)O2(x2) · · · On(xn)〉, where the Os are local composite operators. Let us assume that

S is the action of a CFT in the Euclidean signature and we are interested to find correla-

tion functions of a single local composite operator O. Formally we can calculate correlation

functions setting up the corresponding generating functional. First, we add the associated

source term to the action

S ′ = S −
∫
ddxφ0(x)O(x) (1.1.16)

where φ0 is a field sourcing the operator O. Then, we compute the partition function Z[φ0]

for the new action S ′. Hence, the generating functional is given by

W [φ0] = − lnZ[φ0] (1.1.17)

where

Z[φ0] =

〈
exp

(∫
ddxφ0(x)O(x)

)〉
(1.1.18)

is the partition function. The correlation functions are obtained from functional derivatives

on the generating functional W [φ0] with respect to the source field φ0. The above arguments

generalize to the case of correlation functions between multiple operators. This is done by

adding extra source terms in S ′.

The AdS/CFT conjecture states that the CFT generating functional W [φ0] is identified
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with the on-shell supergravity action SSUGRA, with the corresponding solutions being subject

to boundary conditions on the AdS boundary. More precisely,

W [φ0] = SSUGRA[φ]
∣∣∣

lim
z→0

z∆−dφ(z,x)=φ0(x)
(1.1.19)

where ∆ is the conformal dimension of O and z the radial dimension of AdSd+1. This is the

precise mathematical formulation of AdS/CFT introduced in [27,28]. However, the on-shell

SSUGRA[φ] suffers from infrared divergences arising when integrating over the Anti-de Sitter

spacetime. Therefore the right-hand side appearing in (1.1.19) does not make sense. We

need to consider a renormalized version of it. To do this, we apply a systematic procedure

called holographic renormalization [29, 30] (a review can be found in [31]), which replaces

the on-shell supergravity action with a renormalized version, eliminating the IR divergences.

Looking at the duality, we can interpret these gravity IR divergences as analogs to the UV

divergences appearing in the field theory side before the usual QFT renormalization.

In the strong form of AdS/CFT, which as described above is found after relaxing the low

energy limit, the argument follows the above logic and we arrive to the identification

〈
exp

(∫
ddxφ0(x)O(x)

)〉
= Zstring

∣∣∣
lim
z→0

z∆−dφ(z,x)=φ0(x)
(1.1.20)

in the Euclidean signature. The right hand side is now the partition function of the dual

string theory with specific boundary conditions on the bulk fields φ on the boundary, whereas

the left hand side is the CFT generating functional at arbitrary energy level.

1.2 Holography in the presence of conformal defects

AdS/CFT can be generalized by introducing additional structure to both sides. Spatial

probes or defects may be introduced in CFTs, preserving a large subgroup of the conformal

symmetry. The most basic example is that of a conformal boundary condition [32, 33]. For
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a CFT in d-dimensions, the boundary condition fixes the location of the CFT boundary,

being invariant under a SO(d− 1, 2) subgroup of the SO(d, 2) conformal group. In general,

one can consider a n-dimensional conformal defect, wrapping a n-dimensional hyperplane

inside the CFT. In this case, the defect preserves a SO(n, 2) × SO(d − n) subgroup of the

SO(d, 2) conformal group, where scale invariance survives and some translations, rotations

and special conformal transformations of the ambient conformal group are lost.

When supersymmetric theories are concerned, the introduction of a conformal defect

breaks in general more symmetries, besides the conformal. In particular, the fermionic and

the R-symmetries may get reduced as well. Such defects are called superconformal and can

be classified as follows. First, we consider the superalgebra of the original superconformal

field theory (SCFT). Then, we find all it’s sub-superalgebras containing a bosonic factor

of the form SO(n, 2). All such subalgebras correspond to SCFTs in the presence of a n-

dimensional superconformal defect. A complete analysis for defects preserving 16 out of

the 32 original supercharges, in maximally supersymmetric theories, was performed in [34].

Also, a concrete example was examined in [35], where N = 4 SYM in 3 + 1 spacetime

dimensions was concerned. In particular the authors showed that the introduction of a

codimension one defect is reducing the number of supersymmetries from 32 down to 0, 4,

8 or 16 with a corresponding reduction of the R-symmetry to SO(6), SU(3), SU(2)× U(1)

and SO(3)× SO(3) respectively.

Conformal defects can be realized using holography. One can proceed using two different

approaches. The first one, is a geometric realization similar to the one described in section

1.1.6. In this approach, we consider intersecting brane configurations in superstring theory.

In addition to the case in section 1.1.6, here we have probe branes, i.e. branes that do not

backreact on the geometry (and all the other bulk fields). The configurations are chosen

such that the desired symmetries are preserved. Then, taking the open string perspective

(gsN � 1) we end up with a CFT in the presence of a conformal defect. The dynamics of

the defect arise from the modes of open strings spanning intersecting branes. These modes
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are interpreted in the field theory side as an interacting multiplet localized on the defect.

The closed string perspective leads to gravity on AdS as before, but now in the presence

of a probe brane. The geometry of the probe brane is of the form AdS ×M with the AdS

factor having the same isometry as the unbroken part of the conformal group. An example

of such a defect, is the codimension one defect found by Karch and Randall [36]. The defect

is engineered in string theory by a certain D3-D5 brane configuration, which corresponds to

AdS5×S5 bisected by a AdS4×S2 brane [37,38]. The dual field theory is N = 4 SYM in R4

in the presence of a R3 defect. In particular, we have N D3-branes and a D5-brane spanning

the (9+1)-dimensional flat coordinates as in the following table:

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D5 x x x x x x o o o o

D3 x x x o o o x o o o

The longitudinal coordinates of each brane are denoted by “x” and the transeverse by “o”.

The branes sit on the origin of their transverse directions. Following Maldacena [6], in the

absence of the D5-brane we get AdS/CFT as visualized in figure 1.1.6. Turning on the D5

brane though, we further break supersymmetry down to 8 supercharges, reduce conformal

symmetry/AdS isometry to SO(3, 2) acting on the common directions x0, x1, x2 and also the

R-symmetry/five-sphere isometry to SO(3) × SO(3) which acts on x3, x4, x5 and x7, x8, x9

directions respectively.

In this dissertation, we study holographic conformal defects constructed using a second

approach, where the holographic duals are supergravity solutions. In this approach we

constraint the geometry (and all other supergravity fields) using an Ansatz. The form of the

Ansatz is dictated by the desired unbroken symmetries, i.e. the symmetries preserved by the

conformal defect, which are adopted as isometries of the geometry. Then, the appropriate

BPS equations are solved, after being reduced by the Ansatz, giving rise to local solutions.

Global solutions can be found by applying regularity and topology conditions. One simple

and concrete example is that of the 1/2 BPS Janus solutions [39, 40], which are dual to the
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maximally supersymmetric Yang-Mills interface theory [35]. In order to highlight this second

approach to constructing defects holographically, we present the above example in detail in

the next section.

1.2.1 Supersymmetric Janus solution

The dual field theory of the Janus Solutions exhibits an interface preserving in total the

OSp(2, 2|4) supergroup (subgroup of PSU(2, 2|4)) with the following bosonic subgroup:

SO(3, 2)× SO(3)× SO(3) (1.2.1)

Also, it contains six scalars in groups of three. The conformal factor SO(3, 2) requires

the appearance of AdS4 in our geometry, whereas the behavior of the scalars suggests an

additional S2 × S2 factor. Therefore, since we are working in type IIB supergravity, we

should have a geometry of this form

AdS4 × S2
1 × S2

2 × Σ (1.2.2)

with Σ being a Riemann surface over which the product AdS4 × S2
1 × S2

2 is warped. These

considerations constrain the supergravity solutions to the following form (used as Ansatz):

ds2 = f 2
4ds

2
AdS4

+ f 2
1ds

2
S2

1
+ f 2

2ds
2
S2

2
+ ds2

Σ

P = pae
a G(3) = gae

45a + ihae
67a

Q = qae
a F(5) = fa(−e0123a + εabe4567b)

where ds2 is the (9 + 1)-dimensional metric, P and Q represent the axion-dilaton field, G(3)

is the complex 3-form field strength and F(5) the 5-form field strength whereas the fermionic

fields are set to vanish. Also, ds2
AdS4

, ds2
S2

1
, ds2

S2
2

are the metrics of AdS4, S2
1 , S2

2 with unit

radii respectively and ds2
Σ a Riemannian metric on Σ. The frame eµ is set for µ = 0, 1, 2, 3
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on AdS4, µ = 4, 5 on S2
1 , µ = 6, 7 on S2

2 and µ = a = 8, 9 on Σ. The vectors fa, qa, pa, ha, ga

live on Σ and f1, f2, f4 are functions on Σ.

Solving the BPS equations the authors in [39] found all 1/2 BPS type IIB supergrav-

ity solutions, of the above form, in terms of two harmonic functions on Σ. The solutions

demonstrate a varying dilaton and non-vanishing 3-form field strengths whereas the 5-form

field strength vanishes. Some of the solutions were found to be regular, upon application

of the corresponding conditions. A subclass of the non-singular solutions was derived as

a simple deformation of the vacuum solution. These solutions are of the Janus type, i.e.

they have two asymptotic regions where the dilaton tends to different constant values φ±

approaching the boundary. In the dual field theory this is interpreted as a domain-wall type

defect or interface since the gauge coupling, represented by the dilaton in the gravity side,

jumps across it.

1.2.2 Surface Conformal Defects

In this section, we briefly present conformal defects we study in subsequent chapters. These

are two-dimensional 1/2 BPS defects with known holographic duals as bubbling solutions.

Disordered Surface Defects: As can be found in the classification of 1/2 BPS defects

in [34], within the PSU(2, 2|4) supergroup of N = 4 SYM theory there is a PSU(1, 1|2) ×

PSU(1, 1|2) × U(1) maximal subgroup. The corresponding bosonic subgroup is given by

SO(2, 2) × SO(4) × SO(2) and is associated to a two-dimensional conformal defect on a

plane R1,1. The SO(2, 2)× SO(2) factor is the preserved part of the conformal group, with

SO(2, 2) representing the conformal group on the plane and SO(2) rotations in the transverse

directions. The SO(2) factor represents also the remaining R-symmetry along with the

SO(4) factor. These defects are the so-called surface defects of the disorder type and were

first obtained in [41]. They are characterized by singularities of the gauge and scalar fields in

the original theory. Also, they include holonomies along cycles in the directions transverse
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to the defect. Their holographic duals are supergravity solutions with geometry of the form

AdS3 × S3 × S1 ×X3

where X3 is a 3-dimensional space with boundary. The solutions were found in [42] as a

double analytic continuation of the LLM bubbling solutions [43]. They have a non-trivial

metric and a non-vanishing five-form field strength. They are locally asymptotic to AdS5×S5.

Also, they are expressed in terms of a function on X3, satisfying a linear partial differential

equation in the presence of sources. A more extended review of these solutions is presented

in chapter 3 where we study them.

Wilson Surfaces: We are interested also in defects within the (5+1)-dimensional (2, 0)

SCFT associated to the OSp(8∗|4) supergroup. Referring to the classification in [34] we can

find that within OSp(8∗|4) there is a OSp(4∗|2)× OSp(4∗|2) maximal subgroup. This pos-

sesses a bosonic subgroup given by SO(2, 2)×SO(4)×SO(4) associated to a two-dimensional

conformal defect on a plane R1,1. The SO(2, 2) factor corresponds to the conformal group

associated with the surface, one of the SO(4) factors is the rotational symmetry in the di-

rections transverse to the surface and the other SO(4) factor is the remaining R-symmetry.

These defects are the so-called Wilson surfaces, first found in [44]. They are defects of the

ordered-type as they can be expressed as operator insertions in terms of the fundamental

fields of the theory. Their holographic duals are solutions to the eleven-dimensional super-

gravity with geometry of the form

AdS3 × S3 × S3 × Σ2

where Σ2 is a 2-dimensional Riemann surface with boundary. The solutions were found

in [45, 46]. They have a non-trivial metric and a non-trivial four-form field strength and

they are locally asymptotic to AdS7 × S4. Also, they are expressed in terms of a harmonic

function on Σ2, in addition to a complex function satisfying a first order differential equation
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on the Riemann surface. Further details about the solutions are presented in chapter 2 where

we study them.

The solutions in this section are studied in subsequent chapters from the point of view

of quantum entanglement. In the next section, we introduce entanglement entropy which is

the main measure of entanglement we investigate in this dissertation.

1.3 Entanglement Entropy

The distinction between classical systems and quantum systems can be realized using the

concept of entanglement. Entanglement is the non-local correlation between degrees of free-

dom in a quantum system. A measure of entanglement called entanglement entropy has

received a lot of attention recently, with applications in many areas of physics. The renewed

interest stems mainly from the holographic proposal for entanglement entropy given by Ryu

and Takayanagi [14, 15]. Some active areas where entanglement entropy is being studied

include: condensed matter physics, general relativity, quantum information theory and high

energy theory. For example, in condensed matter physics entanglement entropy is used to

characterize quantum phases of matter and phase transitions, identify quantum critical phe-

nomena and reveal the dynamics of strongly-correlated many body systems. Also, in general

relativity, entanglement entropy is considered central to the recent efforts to explore the

relation between quantum entanglement and geometry.

1.3.1 Definition

In this section, we define entanglement entropy. Let us consider a quantum system with

Hilbert spaceH in a state with density matrix ρtot. We divide the system into two subsystems

A and B = Ā, complementary to each other (for an example see figure 1.2). Also, let us

assume that H can be written in a direct product form

H = HA ⊗HB (1.3.1)
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A Ā

Figure 1.2: The entanglement entropy setup in a QFT constitutes a time slice of the space-
time divided into two regions (subsystems): The entangling region A colored in red and the
complementary region Ā in grey.

where the factors HA and HB correspond to Hilbert spaces of the subsystems. For an

observer with access only in subsystem A the state looks as follows

ρA = trB(ρtot) (1.3.2)

This is the reduced density matrix for subsystem A, found by tracing over all the degrees

of freedom in subsystem B. The reduced density matrix ρA has enough information for HA

to be able to reconstruct all correlation functions in subregion A. Then, the entanglement

entropy is defined simply as the Von Neumann entropy for the state ρA:

SA = − trA(ρA log ρA) (1.3.3)

When finite dimensional quantum systems are considered, entanglement entropy yields finite

results. Conversely, for infinite dimensional systems, such as QFTs, entanglement entropy is

divergent. The divergence arises mainly from the correlation of degrees of freedom close to

the boundary ∂A, also called entangling surface. Introducing a UV cutoff a (lattice spacing)

to regulate the divergence, it turns out that the leading divergent term is proportional to

the area of the entangling surface:

SA = γ
Area(∂A)

ad−1
+ subleading terms (1.3.4)
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with γ depending on the exact system. In this sense, we say that entanglement entropy

follows an area law.

In the case the total state of the system is separable, i.e. it can be written in product form

as |Ψ〉 = |ΨA〉 ⊗ |ΨB〉, the reduced density matrix (1.3.2) is pure and therefore SA vanishes.

In the case the total state is inseparable (or entangled) the resulting ρA corresponds to a

mixed state giving a non-vanishing SA. In this sense, entanglement entropy measures how

far a given state is from a separable state.

Entanglement entropy is not the only measure of quantum entanglement. There are

other measures with different defining properties and purpose. Relative entropy measures

the “distance” between two states of the system. Mutual information measures the corre-

lation between two subsystems in the same total state. Rènyi entropy, an one-parameter

generalization of entanglement entropy, provides more information on the spectrum of ρA

than the entanglement entropy. However, for the purpose of this dissertation we emphasize

only on entanglement entropy.

1.3.2 The replica method

A useful approach for performing analytical computations of entanglement entropy in QFTs

was introduced by Calabrese and Cardy in [47]. In this method we use an alternative

definition for the entanglement entropy

SA = − lim
n→1

log trA(ρnA)

n− 1
= − lim

n→1
∂n log trA(ρnA) (1.3.5)

where the expression inside the limit gives the Rényi entropies when n integer. Instead, n

is analytically continued and the limit n → 1 is taken. The total density matrix ρtot of the

QFT state |Ψ〉 is given by ρ = |Ψ〉 〈Ψ| /Z, where the state can be represented by a wave

functional as (〈φA| ⊗ 〈φB|) |Ψ〉. To get the reduced density matrix at the time slice t = 0,
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we integrate over all states φB(t = 0,x) supported only in x ∈ B:

(ρA)ab =
1

Z

∫ [
DφB(t = 0,x ∈ B)

] (
〈φAa | ⊗ 〈φB|

)
|Ψ〉 〈Ψ|

(
|φAb 〉 ⊗ |φB〉

)
(1.3.6)

Notice that ρA has two indices corresponding to two states φAa , φ
A
b in region A. Employing

the Euclidean path integral formulation the state is represented as

Ψ [φ0(x)] = 〈φ0 (x)|Ψ〉 =

∫ t=0,φ(t=0,x)=φ0(x)

t=−∞
[Dφ(t,x)] e−IE [φ] (1.3.7)

defined by the boundary condition on the field(s) φ at t = 0. Similarly, the conjugate is

given by

Ψ∗ [φ0(x)] = 〈Ψ|φ0(x)〉 =

∫ t=∞,φ(t=0,x)=φ0(x)

t=0

[Dφ(t,x)] e−IE [φ] (1.3.8)

Applying into the reduced density matrix we get

(ρA)ab =
1

Z

∫
[Dφ(t,x)] e−IE [φ]

∏
x∈A

δ(φ(0+,x)− φAb (x))δ(φ(0−,x)− φAa (x)) (1.3.9)

where the integral over φB(t = 0,x) was carried out. The result is a path integral on a

Euclidean space with a cut along region A. The cut is defined by the boundary conditions

at t = 0±. In our case, we are interested in obtaining the trace of the reduced density

matrix to the nth power, i.e. tr(ρnA) = (ρA)a1a2
(ρA)a2a3

· · · (ρA)ana1
. This is given by gluing n

replicas of the Euclidean space along the cut matching the edges of the cuts alternately. The

outcome is the partition function on the glued n-fold cover which we denote as Zn. Thus,

the entanglement entropy is given by

SA = − lim
n→1

∂n (logZn − n logZ) (1.3.10)

where Z is the partition function on the original space. The n-fold cover has a conical

singularity with a deficit angle 2π(1 − n) along the entangling surface ∂A. The singularity
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is absent in the limit of the entanglement entropy, n→ 1.

1.3.3 Holographic Entanglement Entropy

The problem posed using the replica method (computing the partition function Zn) is not

necessarily a simple task. An alternative way of computing entanglement entropy is through

the AdS/CFT correspondence when a gravity AdS dual exists. A prescription of how to

do so was initially proposed by Ryu and Takayanagi [14, 15]. Following their proposal, the

entanglement entropy of a region A on a spatial slice of a CFTd is given by the area of a

co-dimension two minimal surface γA in the bulk that is anchored on the AdS boundary at

∂A as

SA =
Area(γA)

4Gd+1
N

(1.3.11)

where Gd+1
N is the (d + 1)-dimensional bulk Newton’s constant. Further, γA needs to be

homologous to A and in case the area functional has multiple extrema the one with the least

area should be chosen. The setup is represented in figure 1.3.

The formula (1.3.11) applies for the case of holographic duals which are asymptotically

AdS (with time-reflection symmetry about time slice). It was originally used to calculate

the entanglement entropy for theories in their vacuum state, but was quickly generalized

to include more general settings, such as finite temperature and time-dependent states (see

e.g. [48,49] for reviews on the topic). It can be considered a generalization of the Bekenstein-

Hawking formula (1.1.3), since in an asymptotically AdS spacetime in the presence of an

event horizon the minimal surface tends to wrap the horizon. In fact, for spherical entangling

surfaces it was observed by Casini, Huerta and Myers (CHM) [50] that the holographic

entanglement entropy can be mapped to the thermal entropy of a hyperbolic black hole. In

the field theory, the corresponding entanglement entropy is mapped to the thermal entropy on

a hyperbolic space. Additionally, the proposal (1.3.11) follows the expected area law (1.3.4).

This is derived simply by regulating the AdS radial direction with a cutoff a and computing
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Ā

γAA

z

Figure 1.3: The holographic entanglement entropy setup. The AdS boundary, where the
CFT lives, is represented by the gray slice at z = 0 with z being the radial AdS coordinate.
There, the entangling region A colored in red and the complementary region Ā in grey. To
calculate entanglement entropy we need to find the minimal surface in the bulk which is
anchored at ∂A.

the leading divergence of the minimal area functional. The Ryu-Takayanagi proposal was

extended to a covariant version by Hubeny, Rangamani and Takayanagi in [51]. Although,

for the purpose of this dissertation we focus on the non-covariant formulation (1.3.11), since

the solutions we investigate possess time-reflection symmetry.

1.3.4 Entanglement entropy in the presence of defects

Another generalization, of the Ryu-Takayanagi proposal, (1.3.11) concerns entanglement en-

tropy in the presence of extended conformal defects (reviewed in section 1.2). A concrete

example, where the proposal was verified, is that of a Wilson loop in N = 4 SU(N) SYM.

The holographic description of a Wilson loop in SU(N) N = 4 SYM in the fundamental rep-

resentation is given by a fundamental string in AdS5×S5 [52,53], whereas higher dimensional

representations can be described by D3- (D5-) branes with AdS2 × S2(S4) worldvolume in

AdS5×S5 [54,55]. These representations reside in the probe brane approximation where the

backreaction is neglected. For spherical entangling surfaces, the probe brane entanglement
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entropy can be found applying the CHM method. The vacuum is promoted to a thermal

background (black brane) at arbitrary temperature on which the brane on-shell action is

computed. The on-shell action (multiplied by the temperature) corresponds to the defect

free energy of the corresponding CFT. It’s temperature derivative gives the thermal entropy,

which at zero temperature is the entanglement entropy. This is actually the additional en-

tanglement entropy due to the presence of the defect (see [56–58] for a discussion on this

topic).

When the dimension of the representation increases and becomes of order N2, the back-

reaction cannot be neglected and the probe is replaced by a new bubbling geometry with

flux. The bubbling holographic solutions corresponding to half-BPS Wilson loops in N = 4

SYM were found in [59–61]. In [62], Lewkowycz and Maldacena applied the CHM mapping

to the calculation of the entanglement entropy in the presence of Wilson loops in N = 4

SYM theory and ABJM theories [26]. They showed that the entanglement entropy can be

calculated from the expectation value of the Wilson loop operator as well as the one point

function of the stress tensor in the presence of the Wilson loop. For BPS Wilson loops these

quantities can be evaluated using localization and reduced to matrix models [63,64]. In [65]

the holographic entanglement entropy, (1.3.11), was calculated using the bubbling solution

dual to half-BPS Wilson loops. It was shown that the result agrees with [62] when the exact

map between matrix model quantities and the supergravity solution, found in [66, 67], is

applied.
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Chapter 2

Entanglement entropy of Wilson

surfaces

In this chapter we generalize the holographic calculation of the entanglement entropy to

the case of six-dimensional (2, 0) theory with half-BPS Wilson surfaces present. The (2, 0)

theory can be defined either by a low-energy limit of type IIB string theory on an AN−1

singularity [68] or by a decoupling limit of N coincident M5 branes [69]. While there exists

no simple Lagrangian description of this theory due to the presence of tensor fields B+ with

self-dual field strength, the holographic dual [6] is given by M-theory on AdS7 × S4. In

analogy with the Wilson loop (see section 1.3.4) one expects that the six-dimensional theory

has extended Wilson surface operators [44] of the form

WΓ ∼ tr exp

(∫
Γ

B+

)

In the probe approximation the Wilson surface operators can be described by embedding

M2-branes [70, 71] or M5-branes [72–74] on various submanifolds inside the AdS7 × S4. It

is an interesting open question whether the expectation value of Wilson surface operators

can be calculated by localization in the (2, 0) theory . As mentioned in the introduction,

bubbling solutions corresponding to half-BPS Wilson surfaces were found in [45,46] (see [75]

29



Figure 2.1: The spherical entangling surface ∂A is the boundary of a region A on a constant
time slice of the (2, 0) theory on R6. The Wilson surface Γ intersects this surface twice.

for earlier work in this direction). In this chapter we use these solutions of eleven-dimensional

supergravity to calculate the entanglement entropy as well as other holographic observables.

The solutions are locally asymptotic to AdS7 × S4 and the six-dimensional asymptotic

metric on the AdS7 boundary is naturally AdS3×S3. It is convenient to describe the Wilson

surface on this space by imposing boundary conditions at the boundary of AdS3 and choosing

Poincaré coordinates for the AdS3 factor describes a planar Wilson surface. However, as we

discuss in section 2.2.3, this metric on AdS3 × S3 can be related to the more familiar flat

metric on R6 by a conformal transformation. It is easier to visualize the geometry of our

setup on R6: the entangling surface at constant time is a four-sphere of radius R and the

Wilson surface is a line (also filling out the time direction) that intersects the four-sphere at

two points, as illustrated in figure 2.1.

The chapter is structured as follows: In section 2.1 we review the bubbling half-BPS

solutions of M-theory originally obtained in [45, 46] and work out the behavior of the solu-

tion near the asymptotic boundary. In particular, we determine the Fefferman-Graham map

for an asymptotic AdS3 × S3 boundary metric. In section 2.2 we calculate the entangle-

ment entropy for a spherical entangling surface following the Ryu-Takayanagi prescription

for the bubbling solution. In section 2.3 we use the methods of Kaluza-Klein holography

and holographic renormalization to calculate the one point function of the stress tensor for
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the bubbling solution. In section 2.4 we evaluate the on-shell action of eleven-dimensional

supergravity to determine the expectation value of the Wilson surface. We show that the

bulk part of the action is given by a total derivative and evaluate the integral as well as the

Gibbons-Hawking term.1

2.1 Review of bubbling M-theory solutions

In this section we will review the construction of half-BPS M-theory solutions found in [45]

that are locally asymptotic to AdS7×S4. These solutions generalize the construction of Janus

solutions [39, 76] in type IIB to M-theory. They correspond to the holographic description

of Wilson surface defects in the six-dimensional (2, 0) theory, where the Wilson surface is

‘heavy’ and the backreaction on the geometry is taken into account.

One demands that these solutions preserve an OSp(4∗|2)⊕OSp(4∗|2) sub-superalgebra of

the OSp(8∗|4) superalgebra of the AdS7×S4 vacuum. This form of the preserved superalge-

bra is uniquely determined by demanding that the solution has sixteen unbroken supersym-

metries and preserves so(2, 2|R) associated with conformal symmetry on the worldvolume of

the Wilson surface, so(4|R) corresponding to rotational symmetry in the space transverse to

the Wilson surface and an unbroken so(4|R) R-symmetry [34]. Note that a generalization

was recently analyzed in [77] in which the preserved superalgebra is D(2|1, γ) ⊕ D(2|1, γ),

but we will not discuss this case here.

It follows from these superalgebra considerations that the bubbling BPS solution has

an so(2, 2|R)⊕ so(4|R)⊕ so(4|R) algebra of isometries. Furthermore, the solution preserves

sixteen of the thirty-two supersymmetries. The BPS equations were solved in [45] and the

global regular solutions were found in [46]. The ansatz for the eleven-dimensional metric is

1Notation: To avoid conflict in notation, in this chapter we denote the Ryu-Takayanagi minimal surface
as M.
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given by an AdS3 × S3 × S3 fibration over a Riemann surface Σ with boundary:

ds2 = f 2
1 ds

2
AdS3

+ f 2
2 ds

2
S3 + f 2

3 ds
2
S̃3 + 4ρ2 |dv|2 (2.1.1)

where we denote the complex coordinate of the two-dimensional Riemann surface by v. In

addition, ds2
S3 and ds2

S̃3 are the metrics on the unit-radius three-spheres and the metric on

the unit-radius Euclidean AdS3 in Poincaré half-plane coordinates is given by

ds2
AdS3

=
dz2 + dt2 + dl2

z2
(2.1.2)

The Wilson surface on the boundary AdS3×S3 fills the t, l directions and is located at z = 0.

These solutions are parametrized by a harmonic function h and a complex functionG(v, v̄)

that satisfies a first order differential equation:

∂vG =
1

2

(
G+ Ḡ

)
∂v lnh (2.1.3)

It is useful to introduce the combinations2

W+ = |G− Ḡ|+ 2|G|2, W− = |G− Ḡ| − 2|G|2 (2.1.4)

in terms of which the metric functions in (2.1.1) are given by

f 6
1 = 4h2(1− |G|2)

W+

W 2
−
, f 6

2 = 4h2(1− |G|2)
W−
W 2

+

f 6
3 =

h2W+W−
16(1− |G|2)2

, ρ6 =
(∂vh∂v̄h)3

16h4
(1− |G|2)W+W− (2.1.5)

It was shown in [46] that for a solution to be regular the functions h and G must satisfy the

2Note that there is a typo in eq (2.5) of [46]: it should read W 2 = −4|G|2 − (G− Ḡ)2.
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Figure 2.2: AdS7 × S4 parameterized on the half strip.

following conditions on the Riemann surface Σ and its boundary:

h = 0, G = 0,+i, v ∈ ∂Σ

h > 0, |G|2 < 1 v ∈ Σ (2.1.6)

First we consider the simplest example: the AdS7×S4 vacuum solution. This can be obtained

by choosing Σ to be the half strip Σ = {v = p+ iq/2, p > 0, q ∈ [0, π]} with

h = −iL3 (cosh(2v)− cosh(2v̄)) , G = −i sinh(v − v̄)

sinh 2v̄
(2.1.7)

which produces

f1 = 2L cosh p, f2 = 2L sinh p, f3 = L sin q, ρ = L (2.1.8)

Hence the AdS7 × S4 metric is given by

ds2 = 4L2
(
dp2 + cosh2 p ds2

AdS3
+ sinh2 p ds2

S3

)
+ L2

(
dq2 + sin2 q ds2

S̃3

)
(2.1.9)

This geometry is represented in figure 2.2. More general bubbling solutions can be con-

structed once we realize that the AdS7 × S4 solution can be mapped from the half strip to
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Figure 2.3: (a) AdS7 × S4 on the upper half-plane. (b) General bubbling solution with n

four-cycles C̃(i)
4 , i = 1, . . . , n and n− 1 four-cycles C(i)

4 , i = 1, . . . , n− 1.

the upper half-plane via

w = cosh(2v) (2.1.10)

The functions h and G then take the form

h = −iL3(w − w̄), G =
i

2

(
w + 1√

(w + 1)(w̄ + 1)
− w − 1√

(w − 1)(w̄ − 1)

)
(2.1.11)

Note that the boundary of Σ is now located at the real line and that on the real line the

function G = +i when Rew ∈ [−1, 1] and G = 0 when Rew > 1 or Rew < −1.

A general bubbling solution is constructed by choosing a simple form for h and the

following linear superposition for G:

h = −iL3(w − w̄), G =
2n∑
i=1

(−1)ig(ξi), g(ξ) ≡ − i
2

w − ξ√
(w − ξ)(w̄ − ξ)

(2.1.12)

where w is now a general coordinate on the upper half-plane. The solution is completely

characterized by the choice of 2n real numbers ξi with i = 1, 2, . . . , 2n that are ordered

−∞ = ξ0 < ξ1 < ξ2 < · · · < ξ2n < ξ2n+1 = +∞ (2.1.13)

34



We have introduced ξ0 and ξ2n+1 to simplify the expression for the boundary condition that

the function G satisfies on the real line:

G|Imw=0 =

 0 Rew ∈ [ξ2k, ξ2k+1]

+i Rew ∈ [ξ2k+1, ξ2k+2]
,

k = 0, 1, 2, . . . , n

k = 0, 1, 2, . . . , n− 1
(2.1.14)

A general bubbling solution is characterized by the appearance of new nontrivial four-

cycles (see figure 2.3). The n four-cycles C̃(i)
4 are constructed by connecting two boundary

points on different intervals where the volume of the three-sphere S̃3 shrinks to zero. This

generalizes the construction of the four-sphere in the AdS7×S4 vacuum solution. In addition,

the geometry also has n − 1 four-cycles C(i)
4 that are constructed by connecting points on

different intervals where the three-sphere S3 shrinks to zero size. In the bubbling solution

these cycles carry nontrivial four-form flux and are the remnants of M5-branes wrapping

AdS3 × S3 and AdS3 × S̃3, respectively.

2.1.1 Asymptotic behaviour and regularization

In this section we study the asymptotic behaviour of a general bubbling solution. We will

see later that the area integral and the action integral both diverge, so we need to regulate

the integrals and map the regulator to the Fefferman-Graham (FG) UV cut-off.

It is convenient to choose the following coordinates on Σ: w = r eiθ. The boundary of

AdS7 × S4 is located at r → ∞. The expressions for G and Ḡ given in (2.1.12) can be

expanded at large r in terms of the generating function of the Legendre polynomials

1√
1− 2xt+ t2

=
∞∑
k=0

Pk(x) tk (2.1.15)

with the result

G =
i

2

∞∑
k=1

ak(θ)mk

rk
, Ḡ = − i

2

∞∑
k=1

āk(θ)mk

rk
(2.1.16)
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where the dependence on the angular coordinate θ is given by

ak(θ) ≡ Pk−1(cos θ)− eiθPk(cos θ)

āk(θ) ≡ Pk−1(cos θ)− e−iθPk(cos θ) (2.1.17)

The moments mk are defined via

mk ≡
2n∑
i=1

(−1)iξki (2.1.18)

To ensure that a general bubbling solution is asymptotic to AdS7 × S4 with radii

RS4 =
RAdS7

2
= L (2.1.19)

we must identify m1 ≡ 2. This provides a constraint on the ξi. Also, for the AdS7 × S4

solution (n = 1) we note here that all even moments vanish and all odd moments equal 2.

The metric functions take the following forms as power series in large r:

f 2
1

L2
= 2r +

4−m2 cos θ

2
+

3(8 +m2
2 − 2m3) + (8 + 3m2

2 − 10m3) cos 2θ

24 r
+O

(
1

r2

)
f 2

2

L2
= 2r − 4 +m2 cos θ

2
+

3(8 +m2
2 − 2m3) + (8 + 3m2

2 − 10m3) cos 2θ

24 r
+O

(
1

r2

)
f 2

3

L2 sin2 θ
= 1 +

m2 cos θ

2 r
− 3(m2

2 − 8m3) + (32 + 3m2
2 − 40m3) cos 2θ

96 r2
+O

(
1

r3

)
ρ2

L2
=

1

4 r2
+
m2 cos θ

8 r3
+
−3(16 +m2

2 − 8m3) + (16− 3m2
2 + 40m3) cos 2θ

384 r4
+O

(
1

r5

)
(2.1.20)

Next we present the mapping of the (r, θ) coordinates for large values of r to an FG coordinate

system (u, θ̃) for a general bubbling solution. We need this map to define the large r cut-off

function as well as to perform the Kaluza-Klein (KK) reduction in the calculation of the

expectation value of the stress tensor in section 2.3.
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It is natural to consider a Wilson surface living on AdS3×S3. This space is related to R6

by a Weyl rescaling. We can choose to adapt our FG chart to either space; here we choose

the former. The general FG metric that preserves the AdS3×S3×S3 isometry of a bubbling

solution is given by

ds2 = L2

[
4

u2

(
du2 + α1ds

2
AdS3

+ α2ds
2
S3

)
+ α3dθ̃

2 + α4ds
2
S̃3

]
(2.1.21)

Equating this metric with the bubbling metric (2.1.1) we find

f 2
1 =

4L2α1

u2
, f 2

2 =
4L2α2

u2
, f 2

3 = L2α4

4ρ2
(
dr2 + r2dθ2

)
=

4L2du2

u2
+ L2α3dθ̃

2 (2.1.22)

We regulate the spacetime at a small value of u and identify this with ε: the (dimensionless)

UV cut-off on AdS3×S3. The boundary conditions on the coordinate map and the functions

αi(u, θ̃) at small u must be chosen to ensure that the boundary metric is ds2
AdS3

+ ds2
S3 and

the transverse S4 is recovered. We find

r =
2

u2
+ . . . , θ = θ̃ + . . .

α1 = 1 + . . . , α2 = 1 + . . . , α3 = 1 + . . . , α4 = sin2 θ̃ + . . . (2.1.23)

Whilst we have not been able to solve (2.1.22) in closed form, we can build the coordinate

map as an asymptotic expansion in u. The mapping is given by

r =
2

u2
+
m2 cos θ̃

4
+

3(−16−m2
2 + 8m3) + (16− 21m2

2 + 40m3) cos 2θ̃

768
u2

+
cos θ̃

18432

(
48m2 − 43m3

2 + 40m2m3 + 80m4

−
(
48m2 − 203m3

2 + 680m2m3 − 560m4

)
cos 2θ̃

)
u4 +O(u6) (2.1.24)
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and

θ = θ̃ − m2 sin θ̃

8
u2 − (16− 27m2

2 + 40m3) cos θ̃ sin θ̃

768
u4

+
sin θ̃

18432

(
296m2m3 − 48m2 − 98m3

2 − 200m4

+
(
48m2 − 139m3

2 + 400m2m3 − 280m4

)
cos 2θ̃

)
u6 +O(u8) (2.1.25)

The area integral and action integral both diverge at large r. It is useful to express the

coordinate map as a cut-off relation rc = rc(θ, ε). This is found by first inverting the relation

(2.1.25) in the small u limit and then eliminating θ̃ from (2.1.24). The result is

rc(θ, ε) =
2

ε2
+
m2 cos θ

4
+
−3(16 + 5m2

2 − 8m3) + (16− 9m2
2 + 40m3) cos 2θ

768
ε2

+
cos θ

9216

(
−48m2 + 55m3

2 − 160m2m3 + 40m4

+
(
48m2 + 25m3

2 − 160m2m3 + 280m4

)
cos 2θ

)
ε4 +O(ε6) (2.1.26)

2.2 Holographic entanglement entropy

The Ryu-Takayanagi prescription for the holographic entanglement entropy is given by

(1.3.11). Since we are dealing with static states of our CFT, it is applicable here. In

the following section we derive the minimal surface M for a general bubbling solution and

show that its restriction to the boundary maps to a four-sphere in R6. We then evaluate its

regulated area and compare with our expectations from R6.

2.2.1 Minimal surface geometry

A bubbling geometry is an AdS3 × S3 × S3 fibration over Σ. We consider a surface M at

constant t that fills the S3 × S3 and has profile z = z(w, w̄, l), where z is the AdS3 radial
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coordinate defined in (2.1.2). The area functional becomes

A(M) = 2 Vol(S3)2

∫
dl

∫
Σ

d2w
f1f

3
2 f

3
3ρ

2

z

√
1 +

f 2
1

z2ρ2

∂z

∂w

∂z

∂w̄
+

(
∂z

∂l

)2

(2.2.1)

The equations of motion derived from this functional are solved by

z(w, w̄, l)2 + l2 = R2 (2.2.2)

This semicircle is simply a co-dimension two minimal surface in AdS3. Following [57, 58] it

is straightforward to see that this is in fact the surface of minimal area (within this ansatz).

The surface (2.2.2) is independent of the AdS7 radial coordinate. Thus, the boundary

∂A of the entangling region on AdS3×S3 is given by the same formula. To understand this,

let us consider two coordinate charts on R6:

ds2
R6 = z2

(
dz2 + dt2 + dl2

z2
+ ds2

S3

)
= dt2 + dr̄2 + r̄2

(
dχ2 + sin2 χds2

S3

)
(2.2.3)

The map between these two charts is given by

z = r̄ sinχ, l = r̄ cosχ (2.2.4)

Thus, our ∂A on AdS3 × S3 can be written as a four-sphere of radius R on R6 (given by

r̄ = R) after a Weyl rescaling.

2.2.2 Evaluating the area integral

The combination of metric factors that appears in the area integral (2.2.1) can be written

f1f
3
2 f

3
3ρ

2 =
1

4
|∂wh|2 hW− (2.2.5)
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The entanglement entropy is proportional to the area evaluated on the surface (2.2.2):

SA =
Vol(S3)2

8G
(11)
N

∫
dl

R

R2 − l2 (J1 + J2) (2.2.6)

where we have defined

J1 ≡
∫

Σ

d2w |∂wh|2 h |G− Ḡ|

J2 ≡ −2

∫
Σ

d2w |∂wh|2 h |G|2 (2.2.7)

Substituting w = r eiθ into (2.1.12) we find for J1

J1 = −4L9

2n∑
i=1

(−1)i
∫ π

0

dθ sin θ

∫ rc(θ,ε)

0

dr
r2(r cos θ − ξi)√
r2 + ξ2

i − 2rξi cos θ
(2.2.8)

The overall minus sign follows from the fact that G − Ḡ < 0 on the upper half-plane. We

carefully evaluate this expression in appendix A.1.1. The final result is given in equation

(A.1.5) and takes the form

J1 = L9

[
64

3ε4
+
−24 + 3m2

2 − 8m3

15
+O

(
ε2
)]

(2.2.9)

Next we consider the second term

J2 = −2

∫
Σ

d2w |∂wh|2 h |G|2

= −2L9

∫ π

0

dθ sin θ

∫ rc(θ,ε)

0

dr r2

×

2n+ 2
∑
i<j

(−1)i+j
r2 − r cos θ (ξi + ξj) + ξiξj√

r2 − 2rξi cos θ + ξ2
i

√
r2 − 2rξj cos θ + ξ2

j

 (2.2.10)
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We carefully evaluate this integral in appendix A.1.2 and the final result is (A.1.22)

J2 = L9

[
− 64

3ε2
− 4

3

∑
i<j

(−1)i+j|ξi − ξj|3 +O
(
ε2
)]

(2.2.11)

Note that the second term cannot be expressed in terms of the moments mk.

Now we handle the integral over l. Recall that the minimal surface formula (2.2.2)

describes a semicircle for which z ∈ [0, R] and l ∈ [−R,R]. Note that J1,2 are independent of

l because the cut-off function is. The l integral diverges at both limits; rewriting via (2.2.2)

as an integral over z, we regulate with a cut-off at z = η:

∫ √R2−η2

−
√
R2−η2

dl
R

R2 − l2 = 2

∫ √R2−η2

0

dl
R

R2 − l2 = 2

∫ R

η

dz
R

z
√
R2 − z2

= 2 log

(
R +

√
R2 − η2

η

)
= 2 log

(
2R

η

)
− η2

2R2
+O(η4) (2.2.12)

Finally we put these pieces together to compute the divergent entanglement entropy

(2.2.6):

SA =
L9 Vol(S3)2

4G
(11)
N

[
64

3ε4
− 64

3ε2
+
−24 + 3m2

2 − 8m3

15

−4

3

∑
i<j

(−1)i+j|ξi − ξj|3 +O
(
ε2
)]

log

(
2R

η

)
(2.2.13)

Employing the definitions

L = (π N)1/3 `P , 8πG
(11)
N = 27π8`9

P , Vol(S3) = 2π2 (2.2.14)
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this becomes

SA =
4N3

3

[
1

ε4
− 1

ε2
+
−24 + 3m2

2 − 8m3

320

− 1

16

∑
i<j

(−1)i+j|ξi − ξj|3 +O
(
ε2
)]

log

(
2R

η

)
(2.2.15)

Evaluating this result on the vacuum we find

S
(0)
A =

4N3

3

[
1

ε4
− 1

ε2
+

3

8
+O

(
ε2
)]

log

(
2R

η

)
(2.2.16)

Subtracting this vacuum contribution from (2.2.15) we arrive at our final result for the change

in entanglement entropy due to the presence of the Wilson surface:

∆SA =
4N3

3

[
16 + 3m2

2 − 8m3

320
− 1

16

∑
i<j

(−1)i+j|ξi − ξj|3 −
1

2

]
log

(
2R

η

)
(2.2.17)

Note that the power divergences with respect to the FG cut-off ε are cancelled in this

subtraction and only a logarithmic divergence in η remains.

2.2.3 Physical interpretation

In this section we give a physical interpretation of our result for the entanglement entropy.

First, recall that during the calculation we introduced two separate regulators. The FG cut-

off ε can be viewed as a regular UV cut-off for a holographic theory with a six-dimensional

AdS3 × S3 boundary. In addition, when performing the integral over the AdS3 coordinate

l in (2.2.12) we introduced a cut-off η on the AdS3 radial coordinate z in Poincare slicing

(2.1.2). One might be tempted to view η as purely an IR cut-off that regulates the infinite

volume of the boundary theory. However, it also has an interpretation as a UV cut-off on

the minimal distance to the Wilson surface in the boundary theory.

This interpretation is most easily demonstrated by considering the vacuum spacetime.
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The map that relates AdS7 × S4 with AdS3 × S3 boundary in (2.1.9) to a metric with R6

boundary

ds2 =
4L2

ũ2

(
dũ2 + dt2 + dl2 + dr2 + r2ds2

S3

)
+ L2

(
dq2 + sin2 q ds2

S̃3

)
(2.2.18)

is given by

z = ũ cosh p r = ũ sinh p (2.2.19)

Setting ũ = ε̃ imposes a (dimensionful) holographic UV cut-off on the theory living on the R6

boundary. Since the minimal value of the coordinate p is zero, it follows from (2.2.19) that

the range of z is bounded by z > ε̃ and hence the AdS3 cut-off η is related to the uniform

UV cut-off ε̃.

At this point we do not have an analog of the map (2.2.19) for the bubbling solution

that is valid for all values of the coordinates. We can construct the map for the asymptotic

region defined by the FG expansion for the AdS3×S3 boundary theory (2.1.21), however this

expansion breaks down once the FG coordinate u is not small. As discussed in [58] one can

construct a map that is valid also near z = 0 by patching together the expansion near the

AdS3 boundary and the FG boundary. We will not pursue this construction here since we

focus all our calculations on the theory living on the AdS3×S3 boundary. However, since the

metric is asymptotically AdS, we expect that one should obtain only a small modification

to the identification of the UV cut-offs that, crucially, does not affect the logarithmically

divergent term in the entanglement entropy.

Physically, the interpretation of η as a UV cut-off and the form of the subtracted en-

tanglement entropy (2.2.17) is quite natural. Note that the dominant contributions to the

entanglement entropy come from UV degrees of freedom located near the entangling surface.

Since the Wilson surface (at fixed time) intersects the entangling surface at two points in our

geometry (see figure 2.1), the defect contribution to the entanglement entropy has essentially
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the same dimensionality as the entanglement entropy of a two-dimensional CFT. This is also

reflected in the AdS3 slicing we employ and the fact that the minimal surface we find in

the bulk (2.2.2) is familiar from AdS3/CFT2. Hence an argument along the lines of those

given in [58] shows that the extra divergent contribution of the Wilson surface should be

logarithmic, wherein the cut-off is associated with a minimal distance to the defect.

2.3 Holographic stress tensor

The goal of the present section is to calculate the one point function of the six-dimensional

stress tensor holographically for an asymptotically AdS7 × S4 bubbling solution. Since the

bubbling solutions are eleven-dimensional one has to utilize the machinery of KK holography

that was developed in [78]. Note that a similar calculation was performed in [67] for the

type IIB bubbling solution dual to half-BPS Wilson loop defects and we will largely adopt

their method to our case.

The KK reduction of eleven-dimensional supergravity on S4 produces a seven-dimensional

supergravity (with negative cosmological constant) with infinite towers of massive fields

[79, 80]. These can be classified by their seven-dimensional spin and representation of the

relevant SO(5) spherical harmonics (scalar and tensorial) on S4. One difficulty is the mixing

of modes coming from the eleven-dimensional supergravity as well as the fact that seven-

dimensional fields can be related by eleven-dimensional diffeomorphisms, leading to nonlinear

gauge symmetries. The resulting seven-dimensional action can be diagonalized and the

masses of all the fields were determined in [79–81].

Via the AdS/CFT correspondence the seven-dimensional supergravity fields are dual

to operators in the six-dimensional (2, 0)-theory. The precise dictionary can be found for

example in [82].

In [78] it was argued that in order to obtain a local seven-dimensional supergravity

action without higher derivatives one needs in general to perform a KK reduction map that
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is nonlinear and relates the eleven- and seven-dimensionall fields schematically as

Ψ7 = ψ11 +Kψ11ψ11 + . . . (2.3.1)

Here, K is a differential operator and the ellipsis denotes higher order terms with three or

more eleven-dimensional fields. This nonlinear mixing in general complicates holographic

calculations (see e.g. [67]). However, a simple rule was derived in [78] to determine when

and which nonlinear terms appear. For a supergravity field dual to a dimension ∆ operator

in the CFT, the only nonlinear terms that can appear are the ones for which the sum of

the dimensions of their respective dual operators is less than or equal to ∆. When this rule

is applied to the stress tensor, which has ∆ = 6, it is clear that there can be no nonlinear

mixing since the operators with lowest dimension have ∆ = 4.3

The starting point for the calculation of the holographic stress tensor is to decompose

the eleven-dimensional metric into a AdS7×S4 part and a perturbation, denoted as g(0) and

h respectively:

ds2 = gMN dx
MdxN =

(
g

(0)
MN + hMN

)
dxMdxN . (2.3.2)

We use the FG coordinate chart (2.1.21) where we can identify θ̃ as the polar angle on S4. The

Wilson surface preserves an SO(4) subgroup of the R-symmetry and so does the bubbling

geometry. Therefore, performing the harmonic decomposition on the eleven-dimensional

fields we obtain contributions only from spherical harmonics invariant under SO(4). These

depend only on the polar angle θ̃. The zero mode on S4 of an eleven-dimensional field that

only has nontrivial dependence on θ̃ can be expressed as

φ̄(x) =

∫ π
0
dθ̃ φ(x, θ̃) sin3 θ̃∫ π

0
dθ̃ sin3 θ̃

(2.3.3)

3There is a ‘doubleton’ field dual to an operator of dimension ∆ = 2, but such fields are free and decouple
from the dynamics.
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The reduced seven-dimensional metric, which satisfies the seven-dimensional linearized Ein-

stein equation, is given by the following combination4

ds2
7 =

[(
1 +

1

5
π̄

)
g(0)
µν + h̄µν

]
dxµdxν (2.3.4)

Here, g(0) is the AdS7 vacuum metric whereas h̄µν is the zero mode of the fluctuations in the

seven dimensions. The field π̄ is the zero mode of the trace of the fluctuations of the metric

along the S4 directions:

π(x, θ̃) ≡ hab g
(0)
ab (2.3.5)

The factor of 1
5

in (2.3.4) comes from a Weyl rescaling to bring the KK reduced metric to

the Einstein frame in seven dimensions.

The calculation of the one point function of the stress tensor from the seven-dimensional

metric (2.3.4) utilizes the standard method of holographic renormalization. In our case π̄

vanishes, and consequently the reduced metric is already in the FG form

ds2
7 =

4L2

u2

(
du2 + gijdx

idxj
)

(2.3.6)

where the large r limit corresponds to u → 0 and the metric gij can be expressed as a

power series in u. The holographic stress tensor can then be calculated immediately using

the formulae for d = 6 given in [30]. For the convenience of the reader and completeness

we present the details of these calculations in appendix A.2. We have also checked that the

counter-term approach developed in [83] gives the same result for the stress tensor. The

final result for the change in the expectation value of the stress tensor in the presence of the

4Our index conventions are: M,N, . . . are eleven-dimensional indices, µ, ν, . . . are AdS7 indices and a, b, . . .
are S4 indices.
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Wilson surface on AdS3 × S3 is

∆〈Tij〉 dxidxj =
N3

160π3

(
16 + 3m2

2 − 8m3

) (
ds2

AdS3
− ds2

S3

)
(2.3.7)

Note that the dependence of N3 is as expected from a back-reacted supergravity solution.

In addition, the expression depends only on the first two nontrivial moments m2,m3 of the

bubbling solution. The stress tensor contribution has a form that respects the so(2, 2|R) ⊕

so(4|R) of the Wilson surface and is traceless in line with the absence of a conformal anomaly

on AdS3×S3. The use of this result is two-fold. First, any nontrivial holographic observable

is useful to understand (2, 0) theory better. Second, the stress tensor expectation value is an

important ingredient in the calculation of the entanglement entropy using the replica trick.

2.4 Expectation value of the Wilson surface operator

The expectation value for the Wilson surface operator can be obtained from the following

formula:

〈WΓ〉 = exp
[
−(S11D − S(0)

11D)
]

(2.4.1)

where S11D is the eleven-dimensional supergravity action evaluated on a general bubbling

solution and S
(0)
11D is the action evaluated on the AdS7 × S4 vacuum. The action is given by

S11D =
1

8πG
(11)
N

[
1

2

∫
d11x
√
g

(
R− 1

48
FMNPQF

MNPQ

)
− 1

12

∫
C ∧ F ∧ F

+

∫
d10x
√
γ K

]
(2.4.2)

The final term is the Gibbons-Hawking boundary term, which is necessary to make the

variational principle well-defined for spacetimes with boundary. The metric functions for
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the bubbling solution are given in (2.1.5) and the four-form field strength is given by

F = (f1)3g1m ωAdS3 ∧ em + (f2)3g2m ωS3 ∧ em + (f3)3g3m ωS̃3 ∧ em (2.4.3)

where em are the vielbeins on the Riemann surface Σ, ωX denotes the volume form for a

unit-radius space X and the expressions for gIm with I = 1, 2, 3 can be found in appendix A.3.

2.4.1 Action as a total derivative

First we demonstrate the well-known fact that the on-shell action of eleven-dimensional

supergravity is a total derivative. Using the Einstein equation, the Ricci scalar can be

eliminated from the bulk term of the on-shell supergravity action (2.4.2):

S11D,bulk =
1

16πG
(11)
N

∫ (
− 1

3
F ∧ ∗F − 1

6
C ∧ F ∧ F

)
(2.4.4)

The equation of motion can be expressed as

d ∗ F +
1

2
F ∧ F = 0 (2.4.5)

The first term in the action can then be written as

F ∧ ∗F = dC ∧ ∗F

= d(C ∧ ∗F ) + C ∧ d ∗ F

= d(C ∧ ∗F )− 1

2
C ∧ F ∧ F (2.4.6)

Plugging this expression into (2.4.4) the C ∧ F ∧ F terms cancel and the on-shell value of

the action is indeed a total derivative:

S11D,bulk = − 1

48πG
(11)
N

∫
d(C ∧ ∗dC) (2.4.7)
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The duals of the three contributions to the field strength are given by

∗F(1) =
f 3

2 f
3
3

f 3
1

(
r∂rb1dθ −

1

r
∂θb1dr

)
∧ ωS3 ∧ ωS̃3

∗F(2) =
f 3

1 f
3
3

f 3
2

(
r∂rb2dθ −

1

r
∂θb2dr

)
∧ ωAdS3 ∧ ωS̃3

∗F(3) =
f 3

1 f
3
2

f 3
3

(
− r∂rb3dθ +

1

r
∂θb3dr

)
∧ ωAdS3 ∧ ωS3 (2.4.8)

Using the expression for the metric functions fi from (2.1.5), the ratios appearing in (2.4.8)

can be expressed as

(
f2f3

f1

)3

=
hW 2

−

4W+(1− |G|2)(
f1f3

f2

)3

=
hW 2

+

4W−(1− |G|2)(
f1f2

f3

)3

=
16h(1− |G|2)2

W+W−
(2.4.9)

Since the volume forms on the AdS3 and the three-spheres are all closed, the bulk action

(2.4.7) reduces to a total derivative over the two-dimensional Riemann surface Σ. In terms

of the polar coordinates r, θ, which were introduced in section 2.1.1 by setting w = reiθ, the

bulk part of the action can be written as follows:

S11D,bulk = − 1

48πG
(11)
N

∫
d(C ∧ ∗F )

= − 1

48πG
(11)
N

∫
(∂rar + ∂θaθ) dr ∧ dθ ∧ ωAdS3 ∧ ωS3 ∧ ωS̃3 (2.4.10)

where ar and aθ are given by

ar = −f
3
2 f

3
3

2f 3
1

r∂r(b
2
1) +

f 3
1 f

3
3

2f 3
2

r∂r(b
2
2) +

f 3
1 f

3
2

2f 3
3

r∂r(b
2
3)

aθ = −f
3
2 f

3
3

2f 3
1

1

r
∂θ(b

2
1) +

f 3
1 f

3
3

2f 3
2

1

r
∂θ(b

2
2) +

f 3
1 f

3
2

2f 3
3

1

r
∂θ(b

2
3) (2.4.11)
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Figure 2.4: The two boundary components: the cut-off surface (red) and the boundary along
x ≡ Rew (green).

We have shown that the on-shell action can be written as a boundary term: the bulk term

reduces to a total derivative and the Gibbons-Hawking term is also boundary term. The

boundary in the w plane has two pieces (see figure 2.4). First one has the cut-off surface

parametrized by rc(θ, ε), where ε is the FG cut-off. Second one has the real line, which

is parametrized in r, θ coordinates by r ∈ [0, rc(0, π, ε)] and θ = 0, π, respectively. In the

following we will evaluate the contribution from each piece in turn.

2.4.2 Gibbons-Hawking term

The Gibbons-Hawking term in (2.4.2) is the boundary term that has to be added to the

action in order to give a well-defined gravitational variational principle. A ten-dimensional

surface defined by a constraint

F
(
xM
)

= 0 (2.4.12)

can be parameterized by a set of coordinates σα. The induced metric is defined via

γαβ = eMα eNβ gMN , eMα =
∂xM

∂σα
(2.4.13)
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and its determinant is given by

√
γ =

1

z3
2ρf 3

1 f
3
2 f

3
3 ωS3 ωS̃3 (2.4.14)

The normal vector (which we assume to be always space-like) is defined via

n̂M =
1√

∂F
∂xN

∂F
∂xP

gNP

∂F

∂xM
(2.4.15)

The extrinsic curvature and its trace are defined via

Kαβ = (∇M n̂N) eMα eNβ , K = γαβKαβ (2.4.16)

As discussed above the boundary has two components, which we now study in turn.

Real line contribution

The real line is defined by F = y = 0, where w = x + i y, and the induced metric is simply

obtained by dropping the gyy component of the eleven-dimensional metric. The normal

vector is given by

n̂M =
1

2ρ
δMy (2.4.17)

Using the form of the metric it is straightforward to determine the trace of the extrinsic

curvature

K =
1

L3

(
3∂yf1

2ρf1

+
3∂yf2

2ρf2

+
3∂yf3

2ρf3

+
∂yρ

2ρ2

)
(2.4.18)

The Gibbons-Hawking term along the real line can be determined from the expansion of

the metric functions in the y → 0 limit given. This can be obtained from the formulae in

appendix A.4. We do not present the details of this calculation but just present the final
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result which is

∫
d10x
√
γ K = lim

y→0
Vol(S3)2 Vol(AdS3)L9

∫
dx
[
24y2 +O(y3)

]
= 0 (2.4.19)

which vanishes. This result was expected since at any point on the real line, one of the

three-spheres shrinks to zero size and the space closes off.

Large r contribution

In this section we determine the contribution of the Gibbons-Hawking term from the large

r cut-off surface defined by the equation

F (r, θ) = r − rc(θ, ε) = 0 (2.4.20)

for small ε, where rc(θ, ε) is given by (2.1.26). Hence the surface extends along AdS3 and

the two three-spheres and the induced metric in these directions is identical to the metric.

We choose to use θ to parametrize the cut-off surface and find the following nontrivial

components of the vielbein eMα :

eαβ = δαβ , erθ = ∂θ rc(θ, ε) (2.4.21)

Using the formulae (2.4.15) and (2.4.16) we can calculate
√
γ K and expand the result in a

power series in ε:

√
γ K = L9 sin3 θ

{192

ε6
+

96m2 cos θ

ε4

+
−3(16− 3m2

2 − 40m3) + 5 cos 2θ(16 + 3m2
2 + 40m3)

8ε2

1

4
cos θ

[
−8m2 +m3

2 − 6m2m3 + 10m4

+ cos 2θ(24m2 +m3
2 − 10m2m3 + 70m4)

] }
+O

(
ε2
)

(2.4.22)
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After performing the integral over θ we find that the Gibbons-Hawking term is determined

completely by the contribution at large r, namely

SGH ≡
1

8πG
(11)
N

∫
d10x
√
γ K =

L9

8πG
(11)
N

Vol(S3)2 Vol(AdS3)

[
256

ε6
− 16

ε2
+O

(
ε2
)]

(2.4.23)

2.4.3 Bulk supergravity action

The bulk part of the eleven-dimensional action integral (2.4.10) can be reduced to the fol-

lowing form:

S11D,bulk = − 1

48πG
(11)
N

Vol(S3)2 Vol(AdS3)

∫
dθ

∫
dr (∂rar + ∂θaθ)

= − 1

48πG
(11)
N

Vol(S3)2 Vol(AdS3)

∮
∂Σ(ε)

dτ (n̂rar + n̂θaθ) (2.4.24)

Here Vol(AdS3) is the (regularized) volume of AdS3 since we consider the field theory on

AdS3 × S3 and n̂i is the unit outward normal. If a boundary component is parametrized by

r(τ), θ(τ) then the unit outward normal vector is defined as

n̂r =
dθ

dτ
dτ, n̂θ = −dr

dτ
dτ (2.4.25)

There are three components to the boundary:

∂Σ1 : θ ∈ [0, π], r = rc(θ, ε)

∂Σ2 : θ = 0, r ∈ [0, rc(0, ε)]

∂Σ3 : θ = π, r ∈ [0, rc(π, ε)] (2.4.26)

The contribution of ∂Σ1 corresponds to the cut-off surface, which we parametrize by θ ∈ [0, π]

and r = rc(θ, ε) as in section 2.4.2. The θ dependence of r leads to an additional contribution
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to the normal vector

S(cut) = − 1

48πG
(11)
N

Vol(S3)2 Vol(AdS3)

∮
∂Σ1(ε)

dτ (n̂rar + n̂θaθ)

= − 1

48πG
(11)
N

Vol(S3)2 Vol(AdS3)

∫ π

0

dθ

(
ar −

∂rc
∂θ

aθ

)∣∣∣∣
r=rc(θ,ε)

(2.4.27)

The integrations over ∂Σ2 and ∂Σ3 combine to give the integration over the real line. Putting

the two together and going back to the half-plane coordinates we find

∮
∂Σ2(ε)+∂Σ3(ε)

dτ (n̂rar + n̂θaθ) = −
∫ rc(θ=0,ε)

0

dr
1

r
aθ

∣∣∣∣
θ=0

+

∫ rc(θ=π,ε)

0

dr
1

r
aθ

∣∣∣∣
θ=π

(2.4.28)

Using 1
r
∂θ|θ=0 = ∂y and 1

r
∂θ|θ=π = −∂y and the expressions for ar and aθ given in (2.4.11),

the contribution from the real line becomes

S(x) =
1

48πG
(11)
N

Vol(S3)2 Vol(AdS3)

∫ rc(θ=0,ε)

rc(θ=π,ε)

dx

(
−f

3
2 f

3
3

2f 3
1

∂y(b
2
1) +

f 3
1 f

3
3

2f 3
2

∂y(b
2
2) +

f 3
1 f

3
2

2f 3
3

∂y(b
2
3)

)
(2.4.29)

Large r contribution

Using the expansion of ar and aθ at large r one finds the integrand of (2.4.27) can be written

as

1

L9

(
ar −

∂rc
∂θ

aθ

)∣∣∣∣
r=rc(θ,ε)

=
5 sin θ cos2 θ(cos 2θ − 5)(16 + 3m2

2 − 8m3)

4ε2

+
sin 2θ

128

[
(2144m2 + 445m3

2 − 1760m2m3 − 860m4

+ 20 cos 2θ
(
64m2 + 15m3

2 − 80m2m3 − 60m4

)
+ cos 4θ

(
−96m2 − 25m3

2 + 160m2m3 + 140m4

)]
+O

(
ε2
)

(2.4.30)
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After performing the integration over θ the finite terms above drop out and and we are left

with

S(cut) = − L9

48πG
(11)
N

Vol(S3)2 Vol(AdS3)

[−64− 12m2
2 + 32m3

ε2
+O

(
ε2
)]

(2.4.31)

Real line contribution

The expression from the real line can be obtained from expanding the integrand of (2.4.29)

in the y → 0 limit. The behavior of the integrand in this limit depends on the interval x is

located in. We define

I0 = [−∞, ξ1] ∪ [ξ2, ξ3] ∪ · · · ∪ [ξ2n,+∞]

I+ = [ξ1, ξ2] ∪ [ξ3, ξ4] ∪ · · · ∪ [ξ2n−1, ξ2n] (2.4.32)

We present the details of the calculation in appendix A.4, with the final result given by

lim
y→0

(
−f

3
2 f

3
3

2f 3
1

∂y(b
2
1) +

f 3
1 f

3
3

2f 3
2

∂y(b
2
2) +

f 3
1 f

3
2

2f 3
3

∂y(b
2
3)

)
=


16L9(2g3

1+g3)φ0

(g2
1−g2)(g2

1+g2)
x ∈ I0

32L9(g3
1+3g1g2−g3)(φ0+2x)

(g2
1+g2)(g2

1+2g2)
x ∈ I+

(2.4.33)

where the gi and φ0 are functions of x and can be found in (A.4.3) and (A.4.5), respectively.

In this limit the integrand (2.4.33) is nonsingular for any finite x on the real line. However,

the integrand grows as x→ ±∞ and we can extract the divergent behavior coming from the

region near the cut-off. We determine the divergent contributions in (A.4.14) and we write

the result as

S(x) = +
L9

48πG
(11)
N

Vol(S3)2 Vol(AdS3)

[
−256

ε6
+

80− 12m2
2 + 32m3

ε2
+ F +O

(
ε2
)]

(2.4.34)
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The finite term F can in principle be determined by performing the x-integral for the full

integration region and subtracting the divergent contributions given above, i.e.

F ≡ lim
ε→0

∑
x∈I+

∫
dx

32(g3
1 + 3g1g2 − g3)(φ0 + 2x)

(g2
1 + g2)(g2

1 + 2g2)
+
∑
x∈I0

∫
dx

16(2g3
1 + g3)φ0

(g2
1 − g2)(g2

1 + g2)

−
(
−256

ε6
+

80− 12m2
2 + 32m3

ε2

)}
(2.4.35)

The last two terms remove the divergent contributions from the integral over I0 that is

regulated for large positive x by x < xc,+(ε) and for large negative x by x > xc,−(ε).

At this point we have not been able to find a closed expression for these integrals, but

they can be evaluated numerically. If a relation to a matrix model calculation exists these

integrals may be related to the resolvent. However, as no proposal for a matrix model exists

at present we have not pursued the evaluation further and leave this for future work.

2.4.4 Final result

Combining all the contributions to the action, which can be found in (2.4.23), (2.4.31) and

(2.4.34), we obtain for the on-shell action

S11D =
L9

3πG
(11)
N

Vol(S3)2 Vol(AdS3)

[
80

ε6
+

3

ε2
+
F
16

+O
(
ε2
)]

=
N3

12π
Vol(AdS3)

(
80

ε6
+

3

ε2
+
F
16

+O
(
ε2
))

(2.4.36)

The finite contribution is given by (2.4.35). This can be evaluated exactly for the vacuum

and the result is

F(0) = −64 (2.4.37)
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Thus, using (2.4.1) we can express our final result for the expectation value of the Wilson

surface operator as

log 〈WΓ〉 = − N3

192π
Vol(AdS3) (F + 64) (2.4.38)

Note that the power divergences in ε are independent of the details of the bubbling geometry

and so cancel in the subtraction. However, the result is proportional to the infinite volume

of AdS3, which is regulated by the cut-off z = η introduced in the entanglement entropy

calculation in (2.2.12).

As is the case for the stress tensor contribution, the expectation value of the Wilson

surface operator constitutes a potentially useful holographic observable of the (2, 0) theory.

This holographic result may be compared to direct calculations in this theory as well as be

applied to the replica calculation of the entanglement entropy. It would be very interesting to

study localization and related methods to calculate the expectation value of Wilson surface

operators in the future.

2.5 Summary

In this chapter we have calculated the holographic entanglement entropy for the six-dimensional

(2, 0) theory in the presence of a Wilson surface. In particular, we found that the change of

the entanglement entropy due to the presence of the Wilson surface is given by

∆SA =
4N3

3

[
16 + 3m2

2 − 8m3

320
− 1

16

∑
i<j

(−1)i+j|ξi − ξj|3 −
1

2

]
log

(
2R

η

)
(2.5.1)

We also computed two other holographic observables. The results are the stress tensor in

the presence of the Wilson surface for the AdS3 × S3 boundary coordinates given by

∆〈Tij〉 dxidxj =
N3

160π3

(
16 + 3m2

2 − 8m3

) (
ds2

AdS3
− ds2

S3

)
(2.5.2)
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and the expectation value of the Wilson surface operator, found by evaluating the regularized

on-shell supergravity action:

log 〈WΓ〉 = − N3

192π
Vol(AdS3) (F + 64) (2.5.3)

The m2,3 are quantities that depend on the parameters ξi of a general bubbling solution. We

notice that the final term in the result for the entanglement entropy (2.2.17) cannot in general

be expressed in terms of the moments mk . The cut-off η is the distance from the Wilson

surface, as discussed in more detail in section 2.2.3. Also, F is a finite one-dimensional

integral that is defined in section 2.4.3. While it is possible to evaluate this finite part for

n = 1 and n = 2 in closed form, we have been unable to evaluate it in general. Some

numerical experiments however indicate that this integral does not have a simple expression

in terms of the moments mk or the final term in the entanglement entropy (2.2.17).

It would be interesting to see whether the calculation of the entanglement entropy in the

presence of a Wilson loop in SU(N) N = 4 SYM due to Lewkowycz and Maldacena [62]

generalizes to the Wilson surface in the (2, 0) theory. Recall that their calculation used the

replica trick and involved the expectation value of the Wilson loop and the stress tensor in the

presence of the Wilson loop on the space S1 ×H3. A generalization would most likely start

from the expectation value the Wilson surface and the stress tensor in the presence of the

Wilson surface on S1×H5. Since our holographic calculation gives these two quantities for the

AdS3×S3 boundary, if it is possible to map the results to S1×H5 then it should be possible to

compare the Lewkowycz and Maldacena calculation to the holographic entanglement entropy

calculation we have performed. One complication is that unlike a one-dimensional Wilson

loop, the two-dimensional Wilson surface has a conformal anomaly [84–86] and it is not

clear how to determine its contribution in our case. A simpler case in which to consider the

anomaly might be the case of an abelian Wilson surface, as studied in [86].
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Chapter 3

Surface Defects Entanglement

Entropy

In this chapter we focus on another kind of surface defects, which is the disorder-type. As

described in 1.2.2, these cannot be written as operator insertions written in terms of the

fundamental fields of the theory. Instead, they are characterized by the singular behavior

of the fundamental fields close to the defect. One example is the ’t Hooft loop in gauge

theories, which is mapped to the ordered-type Wilson loop under S-duality [87].

The case of interest here is the disorder-type surface defects in four-dimensional N = 4

U(N) SYM theory constructed in [41, 88]. Their dual description as bubbling geometries

of type IIB supergravity was identified in [42] using the solutions constructed in [43, 89].

For notational ease we will drop the qualifier ‘disorder-type’ and simply call these ‘surface

defects’.

The goal is to calculate the holographic entanglement entropy in the presence of the

surface defects for N = 4 SYM and compare them to the result obtained by mapping the

entanglement entropy to a thermal entropy as in [90].The geometric setup of the surface

defect is best visualized in R4. At fixed time the entangling region A is a three-dimensional

ball with a spherical boundary. The surface defect Σ extends in one spatial direction (and
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Σ

A

A

R4

Figure 3.1: Geometry of the entangling region and surface defect in R4. The entangling
region A is a three-dimensional ball with a two-sphere boundary. The surface defect extends
along a spatial line and bisects the two-sphere.

time). We depict the setup in figure 3.1, with one spatial and the time direction suppressed.

Notice that the entanglement setup is similar to the one used for the Wilson surface in figure

2.1. We also use different geometries, namely AdS3 × S1 and S1 ×H3, which are related to

R4 by a coordinate change and Weyl rescaling.

The rest of the chapter is outlined as follows: in section 3.1 we review the field theory

description of half-BPS surface defects in N = 4 SYM theory. In section 3.2 we review

the bubbling supergravity solutions dual to these defects. In section 3.3 we calculate the

entanglement entropy for a spherical entangling region that intersects the surface defect. In

section 3.4 we calculate the expectation value of the surface defect by evaluating the on-shell

supergravity action on the bubbling solution and review the result for the one-point function

of the stress energy tensor in the presence of a surface defect. In section 3.5 the expectation

values are used to calculate the entanglement entropy following the method of Lewkowycz

and Maldacena [90] which we then compare with our holographic result. 1

3.1 Review of surface defects in N = 4 SYM

In this section we review the construction of half-BPS surface defects in N = 4 SYM theories

first obtained in [41] and studied in detail holographically in [1, 42].

1Notation: To avoid conflict in notation, in this chapter we denote the Ryu-Takayanagi minimal surface
as M.
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The defects are supported on a two-dimensional surface Σ in R4. They are disorder-

type operators so, unlike Wilson line operators, cannot be written as an integral of the

fundamental gauge fields over Σ. Instead, they are characterized by singularities of the

gauge fields and/or scalar fields at the surface Σ as well as holonomies along cycles in the

space normal to the surface. Furthermore, we are interested in half-BPS defects that preserve

half the superconformal symmetry PSU(1, 1|2)× PSU(1, 1|2) inside PSU(2, 2|4). For such

superconformal defects it is possible to perform a Weyl transformation from R4 to AdS3×S1,

in which the surface Σ is mapped to the boundary of AdS3. This has two advantages: first,

the singularities of the fields along Σ are mapped to boundary behavior in AdS3 and second,

the AdS3 × S1 geometry appears naturally in the dual bubbling supergravity solutions that

we will review in section 3.2.

The half-BPS surface defect is characterized by the following data. The non-trivial

conditions on the gauge field and scalars break the U(N) gauge group to the Levi subgroup

L =
∏M

i=1 U(Ni) with M factors. Near the boundary of AdS3 the gauge field has a non-

vanishing component along the U(1) coordinate, which we denote by ψ:

Aψ = diag {α11N1 , α21N2 , . . . , αM1NM} with
M∑
i=1

Ni = N (3.1.1)

There are M theta angles for the M unbroken U(1) factors (see [1, 42] for details), which

can be parametrized by the matrix

η = diag {η11N1 , η21N2 , . . . , ηM1NM} (3.1.2)

A complex scalar, which we can choose as Φ = φ5 + iφ6, has non-trivial behavior along the

S1:

Φ =
e−iψ√

2
diag {(β1 + iγ1)1N1 , (β2 + iγ2)1N2 , . . . , (βM + iγM)1NM} (3.1.3)

To summarize, the surface defect is characterized by the set of M integers Ni and a set of
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4M real parameters (αi, ηi, βi, γi) with i = 1, 2, . . . ,M .

We also cite the results for the expectation value of the surface defect and the one-point

function of the stress tensor calculated in [1] in order to compare them with the results of

our holographic calculations. In the semiclassical approximation the expectation value of

the surface operator is determined by evaluating the classical N = 4 SYM action on the field

background. It was shown in [1] that this gives zero and hence

〈OΣ〉 = e−SYM |surface = 1 (3.1.4)

In addition, several one-point functions of local operators and Wilson line operators in the

presence of the surface defect were calculated in [1]. The only one relevant here is the

one-point function of the stress tensor, which takes the following form due to AdS3 × S1

symmetry and the fact that the stress tensor is traceless:

〈Tµν〉Σ dxµ dxν = hΣ

(
ds2

AdS3
− 3 dψ2

)
(3.1.5)

The semiclassical value for the scaling weight hΣ is found by evaluating the stress tensor of

N = 4 SYM on the field background:

hΣ = − 2

3g2
YM

M∑
i=1

Ni(β
2
i + γ2

i ) (3.1.6)

3.2 Review of bubbling supergravity solutions

In [1, 42] it was proposed that the solution found in [43, 89] is the holographic dual of the

surface defect operator. The solution is constructed as a AdS3 × S3 × U(1) fibration over a

three-dimensional space with boundary parametrized by the coordinates y, x1, x2, where the
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boundary is located at y = 0. The metric takes the form

ds2 = y

√
2f + 1

2f − 1
ds2

AdS3
+ y

√
2f − 1

2f + 1
ds2

S3 +
2y√

4f 2 − 1
(dχ+ V )2 +

√
4f 2 − 1

2y
ds2

X (3.2.1)

where the AdS3 metric is in Poincaré coordinates and the metric on the base is simply the

flat Euclidean metric:

ds2
AdS3

=
dt2 + dl2 + dz2

z2
, ds2

X = (dy2 + dx2
1 + dx2

2), (3.2.2)

The function f(y, x1, x2) satisfies a linear partial differential equation with M sources located

in the bulk of the base space X at y = yi, x = ~xi with i = 1, 2, . . . ,M :

∂2
1f + ∂2

2f + y∂y

(
∂yf

y

)
=

M∑
i=1

2πyi δ(y − yi) δ2(~x− ~xi) (3.2.3)

V is a one-form on X that can be obtained from f by solving

dV =
1

y
?3 df (3.2.4)

Note that (3.2.4) only fixes V up to an exact form and the freedom to redefine V → V+dω will

be important to obtain a manifestly asymptotically AdS metric as detailed in appendix B.1.1.

The only other non-trivial field is the self-dual five-form field strength, which takes the form

F5 =− 1

4

(
d
[
y2 2f + 1

2f − 1
(dχ+ V )

]
− y3 ?3 d

[f + 1/2

y2

])
∧ ωAdS3

− 1

4

(
d
[
y2 2f − 1

2f + 1
(dχ+ V )

]
− y3 ?3 d

[f − 1/2

y2

])
∧ ωS3 (3.2.5)

where ?3 denotes the Hodge dual2 in the-three dimensional base space X with metric given

by (3.2.2).

This solution was first constructed in [89] as a double analytic continuation of the LLM

2The sign of the Hodge dual is fixed by ?3dy = dx1 ∧ dx2 and cyclic permutations of dy, dx1 and dx2.
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solution [43]. Indeed (3.2.1) becomes the LLM metric by continuing the U(1) fiber coordinate

to a time like coordinate and continuing AdS3 to S3. Note however that the boundary

condition on the function f is different: the AdS3 volume can never shrink to zero size in

a smooth solution so we must have f → 1
2

as y approaches the boundary of X. Hence for

the bubbling surface solution the coloring of the boundary determined by the regions where

limy→0 f = ±1
2

in the LLM solution gets replaced by the bulk sources in (3.2.3).

The supergravity solutions depend on 3M parameters, which are the M sources on the

right hand side of (3.2.3), located in X at yi, ~xi with i = 1, 2, . . . ,M . There is an overall

translation symmetry along ~x; this allows us to choose ‘center-of-mass’ coordinates, which

sets

~x(0) ≡
M∑
i=1

y2
i ~xi = 0 (3.2.6)

This choice will make the expressions considerably more compact. The general solution of

(3.2.3) for the function f is then given by

f =
1

2
+

M∑
i=1

fi (3.2.7)

with

fi = −1

2
+

(~x− ~xi)2 + y2 + y2
i

2
√

[(~x− ~xi)2 + y2 + y2
i ]

2 − 4y2y2
i

(3.2.8)

For such an f the solution of the differential equation (3.2.4) for the one-form V is given by

VI dx
I = −

M∑
i=1

∑
I,J

εIJ
(xJ − xiJ)[(~x− ~xi)2 + y2 − y2

i ]

2(~x− ~xi)2
√

[(~x− ~xi)2 + y2 + y2
i ]

2 − 4y2y2
i

dxI (3.2.9)

where the indices I, J run over x1, x2.

In [1,42] the parameters of the supergravity solution were identified with the parameters
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of the gauge theory surface defect as follows:

1

2πl2s
(xi1 + ixi2) = βi + iγi,

y2
i

L4
=
Ni

N
(3.2.10)

where L denotes the radius of AdS5. The parameters αi and ηi are identified with periods

of the NSNS and RR two-form potentials on non-trivial two-cycles in the solutions. On the

supergravity side these periods carry only topological information since the three-form field

strengths of the two-form potentials vanish. As the calculations performed in section 3.3

and 3.4 depend only on the metric and the five-form, we conclude that all our calculations

will be independent of the periods and hence the parameters αi and ηi.

3.2.1 The vacuum solution

In order to develop intuition for the geometry it is useful to consider the AdS5×S5 vacuum

solution, which can be obtained by considering only one source, i.e. setting M = 1. Transla-

tion invariance allows one to set ~x1 = 0 and from (3.2.10) we can fix y1 = L since N1 = N .

To exhibit the AdS5 × S5 metric explicitly it is convenient to introduce new coordinates:

χ =
1

2
(ψ − φ)

y = L2
√
ρ2 + 1 cos θ

x1 = x
(0)
1 + L2ρ sin θ cos (ψ + φ)

x2 = x
(0)
2 + L2ρ sin θ sin (ψ + φ) (3.2.11)

where the range of the angular variables is given by θ ∈ [0, π/2], ψ ∈ [0, 2π], φ ∈ [0, 2π]. It

is straightforward to verify that for this choice the function f (3.2.7) and the one-form V

(3.2.9) for the vacuum solution take the following form

f =
1

2

ρ2 + cos2 θ + 1

ρ2 + sin2 θ
and V =

1

2

ρ2 − sin2 θ

ρ2 + sin2 θ
d(ψ + φ) (3.2.12)
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where the gauge transformation can be set to zero, i.e. ω = 0. Using the expressions given

in (3.2.1) the metric can be calculated and gives

ds2 = L2

[(
ρ2 + 1

)
ds2

AdS3
+

dρ2

ρ2 + 1
+ ρ2 dψ2 + dθ2 + sin2 θ dφ2 + cos2 θ ds2

S3

]
(3.2.13)

which is indeed AdS5×S5. Note that the metric is written in a form for which the conformal

boundary is AdS3 × S1. In the following we will set the AdS radius L = 1 and restore it by

dimensional analysis when needed.

3.2.2 Asymptotics and regularization of the bubbling solution

The integrals appearing later in the holographic entanglement entropy and the expectation

value calculations are divergent. Therefore, we need to regulate them introducing a cut-off.

In this section we map the general metric to a Fefferman-Graham (FG) form (3.2.19), we

find the FG coordinate map (B.1.6) and derive the cut-off surface (3.2.20) in terms of the

FG UV cut-off.

The fact that a general solution must be asymptotically AdS5× S5 implies the following

restriction on yi:
M∑
i=1

y2
i = 1 (3.2.14)

It is straightforward to see this considering the map to field theory parameters (3.2.10) and∑M
i=1 Ni = N .

We will work in the coordinate system introduced in (3.2.11) and expand the general

solution at large ρ. As mentioned above, the one-form V is defined up to an exact form.

Thus, we use a gauge transformation to remove the Vρ component of this vector. This brings

the metric into a manifestly asymptotic form and makes it as compact as possible which is

66



convenient for our calculations. Fixing the gauge, ω becomes:

ω = −M − 1

2
α + sin θ

∞∑
n=1

V
(n+1)

1 (θ, α) cosα + V
(n+1)

2 (θ, α) sinα

nρn
(3.2.15)

where the V
(n+1)
I are the coefficients in a large ρ expansion of the functions given in (3.2.9).

The detailed procedure and the explicit form of ω are given in the appendix B.1.1.

The next step is to write the metric in terms of the {ρ, ψ, θ, φ} coordinates. We write it

as a deviation of the vacuum (3.2.13):

ds2 =
1

(ρ2 + 1)
(1 + Fρ) dρ

2 +
(
ρ2 + 1

)
(1 + F1) ds2

AdS3
+ ρ2 (1 + F2) dψ2

+ cos2 θ (1 + F3) ds2
S3 + (1 + F4) dθ2 + sin2 θ (1 + F5) dφ2

+ F6 dθ dψ + F7 dψ dφ+ F8 dθ dφ (3.2.16)

with the Fa being functions of {ρ, θ, α ≡ ψ + φ} expanded at large ρ. Specifically, Fρ, Fm ∼

O (ρ−2) for m ∈ {1, 2, . . . , 7} and F8 ∼ O (ρ−4). Only certain coefficients in the Fρ expansion

emerge in our calculations and their expressions are given in the appendix B.1.2. These coef-

ficients are expressed in terms of dimensionless moments. We will mainly express quantities

in terms of these moments and therefore it is convenient to define them in advance:

mabc ≡
M∑
i=1

yai x
b
i1x

c
i2 (3.2.17)

Note that for the AdS5 × S5 vacuum only the following moments are non-zero:

m
(0)
k00 = 1 for k = 2, 4, 6, . . . (3.2.18)

A general bubbling solution, preserving the AdS3×S3×S1 isometry, can then be written

67



in the following Fefferman-Graham form:

ds2 =
1

u2

(
du2 + α1 ds

2
AdS3

+ α2 dψ̃
2
)

+ α3 ds
2
S3 + α4 dθ̃

2 + α5 dφ̃
2

+ α6 dθ̃ dψ̃ + α7 dψ̃ dφ̃+ α8 dθ̃ dφ̃ (3.2.19)

The condition that the metric must asymptote to AdS5 × S5 with AdS3 × S1 boundary

implies that the new coordinates u, ψ̃, θ̃, φ̃ and the αm (expressed as functions of ρ, ψ, θ, φ)

fall off as

u =
1

ρ
(1 + . . .) , ψ̃ = ψ + . . . , θ̃ = θ + . . . , φ̃ = φ+ . . .

α1 = 1 + . . . , α2 = 1 + . . . , α3 = cos2 θ (1 + . . .) , α4 = 1 + . . .

α5 = sin2 θ (1 + . . .) , α6 = . . . , α7 = . . . , α8 = . . .

The ellipses denote powers of ρ−1 whose coefficients are determined by equating (3.2.16) and

(3.2.19). The explicit coordinate map is given in (B.1.6).

The integrals in the entanglement entropy and expectation value calculations diverge at

large ρ. It is useful to express the coordinate map as a cut-off relation ρ = ρc(ε, ψ, θ, φ). This

is found by solving the first equation in (B.1.6) for ρ at the small u limit and identifying u

with the FG cut-off, u = ε. The outcome is:

ρc(ε, ψ, θ, φ) =
1

ε
+
F

(2)
ρ − 1

4
ε+

F
(3)
ρ

6
ε2 (3.2.20)

+
16
[
F

(4)
ρ − F (2)

ρ

(
F

(2)
ρ − 1

)]
−
(
∂θF

(2)
ρ

)2

−
(
∂φF

(2)
ρ

)2

csc2 θ

128
ε3 +O

(
ε4
)

Once we substitute for the coefficients of Fρ we find that this function can be written as

ρc(ε, θ, α) with α = ψ + φ.
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3.3 Holographic entanglement entropy

In the following section we apply the Ryu-Takayanagi prescription (1.3.11) to our solutions.

First, we derive the minimal surface M for a general bubbling solution and show that its

restriction to the boundary, which is a theory on AdS3 × S1, maps to a two-sphere in the

Weyl-related R4. We then evaluate its regulated area.

3.3.1 Minimal surface geometry

A bubbling geometry is a AdS3 × S3 × U(1) fibration over X. We consider a surface M at

constant t that fills the S3 and has profile z = z(l, χ, y, x1, x2), where z is the AdS3 radial

coordinate defined in section 3.2. The induced metric on M is

hαβ dx
α dxβ = y

√
2f + 1

2f − 1

1

z2

[
dl2 +

(
∂z

∂l
dl +

∂z

∂χ
dχ+

∂z

∂y
dy +

∂z

∂x1

dx1 +
∂z

∂x2

dx2

)2
]

+ y

√
2f − 1

2f + 1
ds2

S3 +
2y√

4f 2 − 1

[
dχ2 + 2VI dx

I dχ+
(
VI dx

I
)2
]

+

√
4f 2 − 1

2y

(
dy2 + dx2

1 + dx2
2

)
(3.3.1)

where α, β run over all coordinates except t and z. The area functional becomes

A(M) = Vol
(
S3
) ∫

dl dχ dy dx1 dx2

(
f − 1

2

)
y

z

{
1 +

(
∂z

∂l

)2

+
y2(

f − 1
2

)
z2

[(
∂z

∂y

)2

+

(
∂z

∂x1

− V1
∂z

∂χ

)2

+

(
∂z

∂x2

− V2
∂z

∂χ

)2

+

(
f + 1

2

) (
f − 1

2

)
y2

(
∂z

∂χ

)2
]} 1

2

(3.3.2)

The equation of motion that follows from this functional is very complicated, but can be

solved by

z(l, χ, y, x1, x2)2 + l2 = R2 (3.3.3)
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This semicircle is a co-dimension two minimal surface in AdS3. Following [57, 58] one can

show that within this ansatz this is in fact the surface of minimal area.

The surface (3.3.3) is independent of the AdS5 radial coordinate. Thus, the boundary

∂A of the entangling region on AdS3 × S1 satisfies the same formula. To understand this

better, let us consider two coordinate charts on R4:

ds2
R4 = z2

(
dz2 + dt2 + dl2

z2
+ dψ2

)
= dt2 + dx2 + x2

(
dϑ2 + sin2 ϑ dψ2

)
(3.3.4)

The map between these two charts is given by

z = x sinϑ, l = x cosϑ (3.3.5)

Thus, our entangling surface ∂A on the space AdS3 × S1 can be written as a two-sphere of

radius R on R4 (given by x = R) upon Weyl rescaling.

3.3.2 Evaluating the area integral

The minimal area can be written as follows:

Amin = Vol
(
S3
)

Vol
(
S1
) ∫

dl
R

R2 − l2 I (3.3.6)

where we have defined

I ≡
∫
X

dy dx1 dx2

(
f − 1

2

)
y (3.3.7)

with the function f given in (3.2.7). The area integral, and hence the entanglement entropy,

diverges. This is expected due to the infinite number of degrees of freedom localized near

the entangling surface and is present even in the vacuum. However, the intersection between

the entangling surface and the surface operator leads to an additional divergence. Our goal

is to extract the change in entanglement entropy in the presence of the surface operator,
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which requires a careful treatment of these divergences.

We introduce two independent cut-offs, which we now argue is consistent with our field

theory living on AdS3 × S1. Firstly, the integral over X diverges due to the infinite volume

of AdS5. We regulate this with our Fefferman-Graham cut-off ε, which is a UV cut-off on

AdS3 × S1. Secondly, after using (3.3.3) to rewrite the l integral as an integral over z, we

find a divergence at z = 0. This is the location of the surface operator and is at infinite

proper distance from other points in the AdS3. We therefore interpret this as an IR cut-off

and regulate at z = η.

It is instructive to focus first on the case with no surface operator present in order

to exhibit the divergence structure of these integrals most clearly. We begin by changing

coordinates via (3.2.11). Defining α ≡ ψ + φ and using the vacuum formula (3.2.12) for f

we find

I(0) =

∫ 2π

0

dα

∫ π/2

0

dθ cos3 θ sin θ

∫ ρ
(0)
c

0

dρ ρ (3.3.8)

We denote by ρ
(0)
c the Fefferman-Graham cut-off function (3.2.20) evaluated on the vacuum

moments (3.2.18). In this special case it truncates to just two terms and is in fact independent

of the angular coordinates: ρ
(0)
c = 1/ε − ε/4. Reinstating the overall factor of L8, the full

result for the integral over X is then

I(0) = L8

(
π

4ε2
− π

8
+
πε2

64

)
(3.3.9)

Next we handle the integral over l. Recall that the minimal surface formula (3.3.3) describes

a semicircle for which z ∈ [0, R] and l ∈ [−R,R]. The l integral diverges at both limits;

rewriting via (3.3.3) as an integral over z, we regulate with a cut-off at z = η:

∫ √R2−η2

−
√
R2−η2

dl
R

R2 − l2 = 2

∫ √R2−η2

0

dl
R

R2 − l2 = 2

∫ R

η

dz
R

z
√
R2 − z2

= 2 log

(
R +

√
R2 − η2

η

)
= 2 log

(
2R

η

)
− η2

2R2
+O

(
η4
)

(3.3.10)
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To compute the entanglement entropy (1.3.11) we need the following relations between grav-

ity and gauge theory quantities

4G
(10)
N = (2π)7(4π)−1g2

sα
′4, L4 = 4πgsNα

′2 (3.3.11)

as well as the volume Vol (S3) = 2π2. Our final result for the divergent terms of the entan-

glement entropy in the absence of the surface operator is

S
(0)
A = N2

[
1

ε2
− 1

2
+O

(
ε2
)]

log

(
2R

η

)
(3.3.12)

This result looks very different to that for a spherical entangling surface on R4 with a

single Poincaré-invariant UV cut-off (see [14], for example). The reason is that the AdS5

boundary in the slicing (3.2.13) can be reached in two ways: z → 0 at fixed ρ (the location

of the surface defect) or ρ→∞ at fixed z (some point away from the defect). We therefore

need two cut-offs in this chart.3 For a field theory on AdS3×S1, the cut-off η can be viewed

as an IR cut-off that regulates the infinite volume of AdS3. As we will discuss in some detail

in section 3.5, from the point of view, of the surface defect η should be viewed as a UV

cut-off.

Now let us evaluate the area integral in the presence of a surface operator. Our result

(3.3.10) for the integral over l is unchanged. Whilst it is possible to evaluate the integral for

I given in (3.3.7) for a general bubbling geometry after changing coordinates via (3.2.11), the

result is extremely lengthy and cumbersome to deal with. We found the following approach

to be much simpler.

For a general bubbling geometry, the integral (3.3.7) is actually a sum of integrals:

I =
M∑
i=1

Ii with Ii ≡
∫
X

dy dx1 dx2 yfi (3.3.13)

3This situation is also familiar from the S1 ×Hd−1 slicing of AdSd+1 — see figure 1 of [91], for example.
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where the fi are given in (3.2.8). We can perform a change of variables for each value of i

separately

x1 = yi x̄1 + xi1, x2 = yi x̄2 + xi2, y = yi ȳ (3.3.14)

after which the Ii integral becomes

Ii = y4
i

∫
X̄

dȳ dx̄1 dx̄2 ȳ fi with fi = −1

2
+

ȳ2 + x̄2
1 + x̄2

2 + 1

2
√

(ȳ2 + x̄2
1 + x̄2

2 + 1)
2 − 4ȳ2

(3.3.15)

Now fi takes the same form as for the vacuum configuration. With a further change of

variables the integral can be brought into the same form as (3.3.8):

Ii = y4
i

∫
dᾱ dθ̄ dρ̄ ρ̄ cos3 θ̄ sin θ̄ (3.3.16)

ȳ =
√
ρ̄2 + 1 cos θ̄, x̄1 = ρ̄ sin θ̄ cos ᾱ, x̄2 = ρ̄ sin θ̄ sin ᾱ (3.3.17)

All that remains is to impose the correct cut-off in the new variables ρ̄c(ε, θ̄, ᾱ) and then

sum up the results for each Ii.

As a side remark, it is interesting that we can express the general integral in the same

form as the vacuum. This is because the function f for the general solution is constructed

by superimposing terms that each have the same form as the vacuum solution. This simple

behavior is special to this system and we do not expect such a simplification to be possible

generically.

In order to find ρ̄c(ε, θ̄, ᾱ), our strategy is first to express the unbarred variables {ρ, θ, α}

in terms of the barred variables {ρ̄, θ̄, ᾱ} then to write the FG coordinate u as an asymptotic

series in large ρ̄. Solving this relation asymptotically for ρ̄ and setting u = ε we obtain the

73



following cut-off function:

ρ̄c(ε, θ̄, ᾱ) =
1

yi ε
− ri cos (ᾱ + βi) sin θ̄

yi
+

1

8yi

[
−1− 4r2

i − 2y2
i − 2(y2

i − 1) cos 2θ̄

− 2m220 − 2m202 +m400 + sin2 θ̄
(
3 + 2r2

i + 2r2
i cos (2ᾱ + 2βi)

+6m220 + 6m202 − 3m400 + 12m211 sin 2ᾱ + 6 (m220 −m202) cos 2ᾱ)] ε

+O
(
ε2
)

(3.3.18)

where we have defined xi1 = ri cos βi and xi2 = ri sin βi. The details on the derivation of

the cut-off function ρ̄c(ε, θ̄, ᾱ) are presented in appendix B.2. Since the coordinate change

(3.3.14) is simply a rescaling followed by a translation, we deduce the following ranges for

the integration variables in the Ii integral (3.3.16):

0 ≤ ρ̄ < ρ̄c(ε, θ̄, ᾱ), θ̄ ∈ [0, π/2], ᾱ ∈ [0, 2π] (3.3.19)

We are now ready to evaluate Ii. We perform the ρ̄ integral first due to its variable limit.

It turns out that the moments drop out in the integration over the angular coordinates.

However, they do appear in the final result for I once we sum over i:

I =
M∑
i=1

Ii =
πL8

4ε2
+
πL8

24
[1− 4 (m220 +m202 +m400)] +O (ε) (3.3.20)

where we restored the overall factor of L8. As a leading order check we do indeed recover the

vacuum result (3.3.9) when evaluated on the vacuum moments (3.2.18). The holographic

entanglement entropy in the presence of a surface operator (1.3.11) is evaluated using the

minimal area via (3.3.6) in terms of the two regulated integrals (3.3.10) and (3.3.20). At the

end, gravity expressions are translated to gauge theory ones using (3.3.11). Putting all this
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together, the result is

SA = N2

[
1

ε2
+

1− 4 (m220 +m202 +m400)

6
+O (ε)

]
log

(
2R

η

)
(3.3.21)

Subtracting the vacuum contribution from (3.3.21) and taking ε → 0 we arrive at our final

result for the change in entanglement entropy due to the presence of a surface operator:

∆SA =
2N2

3
(1−m220 −m202 −m400) log

(
2R

η

)
(3.3.22)

3.3.3 A 2D CFT interpretation

Let us make a few comments on the form of the result (3.3.22) for the change in the entangle-

ment entropy. Note immediately that it diverges as η → 0. This additional divergence was

anticipated due to the intersection between the entangling surface and the surface defect.

The intersection occurs at two points separated by an interval, so it seems natural for the

divergence to be logarithmic: our result takes the same form as the entanglement entropy

across an interval in the vacuum of a generic two dimensional CFT [47,92].

Note that the field theory description of the surface operators in section 3.1 did not

require any additional 2D degrees of freedom localized at the surface defect. However, in the

original paper [41] an alternative construction of the surface defects by coupling a nonlinear

sigma model on Σ to the SYM fields was described. Such a sigma model could describe the

2D CFT we are looking for in the infrared. This construction is based on an intersecting

D3-D3’ brane system that was first discussed in [93]. Alternatively the defect can be realized

by a probe D3-brane in AdS5 × S5 with an AdS3 × S1 worldvolume. Following Karch and

Randall [37] and letting holography ‘act twice’ makes it likely that a 2D CFT is described

by the modes on the probe brane.

Consequently it seems possible that the coefficient of the logarithmic divergence in the

subtracted entanglement entropy to be equal to (one third of) the central charge of this
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CFT [92]. We now provide evidence realizing this expectation. Recall that our metric (3.2.1)

takes the form

ds2 = L2
(
e2W ds2

AdS3
+ ds2

Z

)
(3.3.23)

We define an effective central charge via the Brown-Henneaux fomula [8]:

ceff =
3L

2G
(3)
N

(3.3.24)

where G
(3)
N is the three-dimensional Newton’s constant of the theory obtained by reducing

on the remaining directions in Z. To compute G
(3)
N we must take into account the non-trivial

warp factor in front of ds2
AdS3

:

1

16πG
(3)
N

=
1

16πG
(10)
N

∆

(∫
Z

d7x
√
gZ e

W

)
(3.3.25)

where in order to isolate the contribution from the surface operator we should subtract off

the vacuum answer. Substituting the metric (3.2.1) and reinstating the correct powers of L,

our result for the effective central charge via (3.3.24) is given by

ceff =
3

2G
(10)
N

Vol
(
S3
)

Vol
(
S1
)

∆I (3.3.26)

where I is the integral (3.3.7) appearing in the entanglement entropy. From the minimal

area prescription (1.3.11) and integral (3.3.6) we deduce that

∆SA =
ceff

3
log

(
2R

η

)
(3.3.27)

which is indeed the entanglement entropy across an interval of length 2R. Note that from

the point of view of the two dimensional CFT the cut-off η is a UV cut-off.
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Using (3.3.26) the central charge ceff can be expressed in terms of the moments

ceff = 2N2
(
1−m400 −m220 −m202

)
(3.3.28)

which shows that it scales like N2. This is to be contrasted with the sigma model or probe

brane construction mentioned above where one would expect that central charge to scale like

N0 or N1, respectively. This result makes sense since the holographic supergravity solution

is described by a fully back-reacted geometry in which the number of probe branes scales

like N , leading to a number of localized degrees of freedom of order N2. It is also instructive

to use the map (3.2.10) to express ceff in terms of field theory quantities:

ceff = 2

(
N2 −

M∑
i=1

N2
i

)
− 8π2

g2
YM

M∑
i=1

Ni

(
β2
i + γ2

i

)
(3.3.29)

It is intriguing that the first term agrees with the central charge for the sigma model for

an N = (4, 4) two dimensional quiver gauge theory which is related to a pure monodromy

defect (where the βi and γi vanish), discussed in [94]. It would be very interesting to explore

whether the discussion of [94] can be generalized for nonvanishing βi and γi.
4

3.4 Holographic expectation values

This section is devoted to holographic expectation values of different observables. Specif-

ically, we calculate the expectation value of the surface defect OΣ at strong coupling and

large N . Our result (3.4.18) is new and is expressed in terms of the moments we introduced

in (3.2.17). We also quote the result of [1] for the holographic one-point function of the stress

tensor in the presence of OΣ (3.4.21, 3.4.22). In section 3.5 we will make use of these two

expectation values in an attempt to relate them to the entanglement entropy computed in

section 3.3.

4We are grateful to Bruno Le Floch for pointing out reference [94] and useful discussions on the possible
relation to our results.

77



3.4.1 〈OΣ〉 calculation

A holographic calculation for the expectation value of the surface operator relies on evaluat-

ing the on-shell ten-dimensional type IIB supergravity action on the bubbling supergravity

solution presented in section 3.2. The obstacle here is well-known: it is difficult to reconcile

Poincaré invariance of the action with the self-duality condition of the five-form F5. Different

approaches to this problem have been introduced in the literature: Covariant Lagrangians

were constructed with the introduction of an infinite number of auxiliary fields [95–101], a

single auxiliary field in a non-polynomial way [102–105] and most recently a construction

with a free auxiliary four-form field [106]. Formalisms with non-manifest Lorentz symmetry

were also considered [107–109]. The solutions presented in section 3.2 follow from the stan-

dard IIB action where the the self-duality constraint (3.4.2) has to be imposed by hand and

not derived from varying the action.

In the holographic approach, the expectation value of the surface operator is given by

the on-shell action SIIB :

〈OΣ〉 = exp
[
−
(
SIIB − S(0)

IIB

)]
(3.4.1)

where we subtract off the vacuum contribution I(0). The total action is a sum of a bulk term

and the Gibbons-Hawking term:

SIIB = SIIB,bulk + SGH (3.4.2)

SIIB,bulk =
1

2κ2

[∫
d10x
√−g

(
R− 1

2

∂Mτ ∂
M τ̄

(Im τ)2

)
−
∫ (

1

2
MabH

a
3 ∧ ?Hb

3 + 4F5 ∧ ?F5 + εabC4 ∧Ha
3 ∧Hb

3

)]
(3.4.3)

SGH =
1

κ2

∫
d9x
√−γ K (3.4.4)

In our case the complex scalar τ field is constant and the three-forms Ha
3 vanish. The trace
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of the equation of motion for the metric implies R = 0 and thus the bulk term reduces to

SIIB, bulk = − 2

κ2

∫
F5 ∧ ?F5 (3.4.5)

To evaluate the bulk term we have to deal with the self-duality of F5 which when imposed

makes (3.4.5) vanish. In the following we employ a pragmatic method proposed in [110,111].

The prescription suggests to replace F5 by its electric part only and double the relevant term

in the action. The electric part of F5 is the component with a time-like leg. As argued

in [110,111] this approach is consistent with Kaluza-Klein reduction and T-duality. It would

be interesting to use some of the alternative approaches to deal with the self-dual five-form.

This would however imply redoing the derivation of the BPS supergravity solutions in the

respective formalism, which is a somewhat daunting task.

Thus, instead of (3.4.5) we need to evaluate

SIIB,bulk = − 4

κ2

∫
F el.

5 ∧ ?F el.
5 (3.4.6)

As the electric part F el.
5 is not self-dual , the integrand of (3.4.6) does not vanish in general.

In particular, since the time coordinate lies in the AdS3, the electric part of F5 in (3.2.5)

consists of the terms that have legs on AdS3. It follows from the self-duality of F5 that the

Hodge dual of F el.
5 is the magnetic piece of F5, which has legs in S3. Consequently we get

F el.
5 = −1

4

(
d
[
y2 2f + 1

2f − 1
(dχ+ V )

]
− y3 ?3 d

[f + 1/2

y2

])
∧ ωAdS3 (3.4.7)

?F el.
5 = −1

4

(
d
[
y2 2f − 1

2f + 1
(dχ+ V )

]
− y3 ?3 d

[f − 1/2

y2

])
∧ ωS3 (3.4.8)
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Using the equation (3.2.4) for the one-form V we can write the integrand in (3.4.6) as

F el.
5 ∧ ?F el.

5 =− yf

2(1− 4f 2)2

[
1− 8f 2 + 16f 4 +

2y

f
(1− 4f 2)∂yf (3.4.9)

+ 4y2
(
(∂1f)2 + (∂2f)2 + (∂yf)2

) ]
ωAdS3 ∧ ωS3 ∧ dχ ∧ dx1 ∧ dx2 ∧ dy (3.4.10)

which can be rewritten in the following way:

F el.
5 ∧ ?F el.

5 =

(
−1

2
yf + ∂IuI +

y3

4(1− 4f 2)

[
∂2

1f + ∂2
2f + y∂y

(
∂yf

y

)])
× ωAdS3 ∧ ωS3 ∧ dχ ∧ dx1 ∧ dx2 ∧ dy (3.4.11)

where I labels coordinates which run over the base space X, I = {x1, x2, y} and

uI ≡ −
y3

4(1− 4f 2)
∂If (3.4.12)

Using the equation (3.2.3) for f , we can eliminate the final term in (3.4.11) since its denom-

inator diverges. This is because f diverges at the location of the sources yi, ~xi. Thus, the

expression for the integrand is given by

F el.
5 ∧ ?F el.

5 =

(
−1

2
yf + ∂IuI(x1, x2, y)

)
ωAdS3 ∧ ωS3 ∧ dχ ∧ dx1 ∧ dx2 ∧ dy (3.4.13)

The first term appearing in (3.4.13) includes the holographic entanglement entropy integral

(3.3.7). The last term is a total derivative that can be integrated by applying Stoke’s theorem.

For the convenience of the reader and completeness we present the evaluation of the integrals

for the bulk term in the appendix B.5.1. The result found in (B.5.18) is as follows:5

SIIB,bulk =
π

2κ2
Vol (AdS3) Vol

(
S3
)

Vol
(
S1
) [ 1

ε4
+

1

ε2
+

3

8
−m400 −F

]
(3.4.14)

5F is identical to the expression 128∆Φ2,k∆Φ2,−k with k = −2, 0, 2 appearing in [1]. ∆Φ2,k are the
asymptotic coefficients in a spherical harmonic expansion. Details on this expansion and the relation of
∆Φ2,k to our moments can be found in appendix B.4.
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where ε is the FG cut-off appearing in (3.2.20). The final term in the finite piece takes the

following form in terms of the moments:

F ≡ 3

32

[
1 + 4m220 + 4m202 − 2m400 + 10

(
m2

220 +m2
202

)
+24m2

211 − 4 (m220 +m202)m400 +m2
400 − 4m220m202

]
(3.4.15)

The computation of the Gibbons-Hawking term is performed in the appendix B.5.2. The

outcome (B.5.24) is given by

SGH =
π

2κ2
Vol (AdS3) Vol

(
S3
)

Vol
(
S1
)( 4

ε4
+

1

ε2

)
(3.4.16)

We note that the Gibbons-Hawking term does not depend on the moments and is hence

independent of the details of the bubbling solution. It is notable that in the analogous

calculation of the expectation value for the Wilson surface operator in six-dimensional (2, 0)

theories [2] the Gibbons-Hawking term is also independent of the moments.

3.4.2 Result and comments

Now we are ready to put all the pieces together to build the total on-shell action (3.4.2).

Our result is

SIIB =
π

2κ2
Vol (AdS3) Vol

(
S3
)

Vol
(
S1
) [ 5

ε4
+

2

ε2
+

3

8
−m400 −F

]
(3.4.17)

Subtracting the vacuum contribution (which has m400 = 1), reinstating the overall factor

of L8 and converting to field theory quantities using (3.3.11) along with κ2 = 8πG
(10)
N , we

arrive at our final result for the expectation value:

log 〈OΣ〉 =
N2

(2π)2
(m400 − 1 + F) Vol (AdS3) Vol

(
S1
)

(3.4.18)
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We should compare our holographic result for the expectation value with the semi-

classical field theory calculation given in [42]. There, the SYM action was evaluated on

AdS3 × S1 with the surface defect boundary conditions (3.1.1) and (3.1.3) imposed and it

was found that log 〈OΣ〉 = 0. A field theory interpretation of the holographic result (3.4.18)

in the weak coupling limit is not direct. This is since our result is evaluated using holography

and it is valid at strong coupling and large N . Even though the surface operator preserves

supersymmetry it is not clear that the holographic results can be trusted at weak coupling.

For completeness, however, we make use of the identifications (3.2.10) and (3.3.11) to express

the moments appearing in (3.4.18) in terms of field theory quantities:

m400 =
M∑
i=1

N2
i

N2
(3.4.19)

and

F
6144

=

[
1

2
− 1

2N2

M∑
i=1

N2
i +

4π2

g2
YMN

2

M∑
i=1

Ni

(
β2
i + γ2

i

)]2

+
24π4

g4
YMN

4

M∑
i=1

Ni (βi + iγi)
2
M∑
j=1

Nj (βj − iγj)2 (3.4.20)

The interpretation of F in the field theory is not clear at this point. One would expect

that this term should be a higher order correction to the semi-classical calculation of [42]

and it would be interesting to calculate quantum corrections to surface defect operators

systematically.

3.4.3 〈Tµν〉Σ

Here we present the stress-energy tensor 〈Tµν〉Σ result, evaluated in [1], which we use in the

next section. Conformal symmetry constrains the stress-energy tensor form in the presence
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of the surface defect OΣ to (3.1.5):

〈Tµν〉Σ dxµdxν = hΣ

(
ds2

AdS3
− 3 dψ2

)
(3.4.21)

〈Tµν〉Σ is preserved and traceless, in line with the fact that Weyl anomaly vanishes for

AdS3 × S1.

The exact value of hΣ is calculated in [1] following the holographic renormalization

method performed in [112]. We give the dictionary of the result of [1] in terms of the

moments (3.2.17) in appendix B.4. The final result for hΣ then takes the following form

hΣ =
N2

2π2

[
1

16
− 1

3

(
m220 +m202 +

1−m400

2

)]
(3.4.22)

3.5 Comparing entanglement entropies

Our main result in this chapter is the subtracted entanglement entropy (3.3.22) calculated

in section 3.3. The geometric setup is easier to visualize in R4 where the spherical entangling

surface is a sphere. The setup on R4 is related to AdS3×S1 by a diffeomorphism and a Weyl

rescaling. We review the various coordinate systems and the geometry of the entangling

surface and surface defect in appendix B.3.

In fact, spherical entangling surfaces are special, since the corresponding modular Hamil-

tonian is (an integral of) a local operator. In [50], the authors used this fact to write the

entanglement entropy across a spherical entangling surface of radius R on R1,d−1 as a ther-

mal entropy on the hyperbolic spacetime R×Hd−1. The latter is conformally related to the

causal development of the entangling region on the original Minkowski spacetime.

In [62] this mapping of entanglement entropy to thermal entropy was applied to the

calculation of entanglement entropy in the presence of Wilson loops in N = 4 SYM theory

and ABJM theories. In particular, it was shown that the additional entanglement entropy

due to the presence of the Wilson loop can be calculated from the expectation value of the
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Wilson loop and the one-point function of the stress tensor. The formula for the additional

entanglement entropy due to the presence of a Wilson loop is given by6

∆S = log〈W 〉 −
∫

S1×Hd−1

ddx
√
g∆〈Tττ 〉W (3.5.1)

where ∆〈Tττ 〉W denotes the subtracted (by the one-point function without the Wilson loop

inserted) time component of the stress tensor. The two expectation values in (3.5.1) are

calculated on the hyperbolic space S1×Hd−1, where the coordinate of the thermal circle S1

is denoted by τ ∼ τ + β with periodicity β = 2πR.

The formula (3.5.1) is valid for arbitary representations of the Wilson surface. If the

representation becomes very large, i.e. the associated Young tableaux have N2 boxes, the

backreaction on the dual supergravity solution cannot be neglected. This case was examined

in [65] by two of the present authors. There, the holographic entanglement entropy was

calculated using the bubbling supergravity solutions dual to half-BPS Wilson loops [59].

The expectation values reduce by localization to matrix model integrals [63]. Once matrix

model and supergravity solution data are appropriately identified, following [66, 67], it was

found that the holographic entanglement entropy exactly agrees with (3.5.1).

We are also studying a setup with a spherical entangling surface in a CFT, so it is

interesting to see whether the same formula (3.5.1) can be applied to our system. (Of course,

the map to a thermal entropy [50] should still hold because the isometry in τ is unbroken.)

Here, the Wilson loop operator is replaced by a surface defect. To evaluate (3.5.1) we have to

calculate the values of 〈OΣ〉 and the stress tensor on S1 ×H3. In section 3.4 we determined

them on AdS3 × S1, so the first step is map these quantities to the hyperboloid.

Our setup admits a simple description in R4. The three spaces are conformally related

as follows:

ds2
AdS3×S1 = z−2 ds2

R4 = Ω2 ds2
S1×H3 (3.5.2)

6Note that we use the opposite sign convention for the stress tensor from the one used in [62]. Specifically,
our convention makes use of the definition Tµν = 2√

g
δS
δgµν .
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where the expressions for the 4D metrics (in the coordinate charts of interest) and the

conformal factor Ω are given in (B.3.1) and (B.3.3):

ds2
S1×H3 = dτ 2+R2

(
dρ2 + sinh2 ρ

(
dϑ2 + sin2 ϑ dψ2

))
and Ω2 =

1

R2 sinh2 ρ sin2 ϑ
(3.5.3)

For convenience of the reader, further details on the coordinate maps and the description of

our setup in these charts is given in appendix B.3.

It was shown in [84] that even-dimensional surface observables suffer from a conformal

anomaly. In particular, the infinitesimal change in the expectation value ofOΣ is proportional

to a linear combination of integrals of the intrinsic and extrinsic curvatures of the surface,

whose precise expression is given in equation (2.9) of [1]. The coefficients in this combination

depend on the surface operator and the theory and are generically non-zero. However, the

curvature integrals all vanish in our setup of a planar surface at ∂AdS3 ⊂ AdS3 × S1, so

we conclude that 〈OΣ〉 is invariant under this conformal transformation. (Of course, the 4D

trace anomaly also vanishes on this space, as noted in section 3.4.3.)

The one-point function of the stress tensor (3.4.21) transforms in the usual way under a

conformal transformation in four dimensions; for example

〈T̃ττ 〉Σ = Ω−2

[(
∂t

∂τ

)2

〈Ttt〉Σ +

(
∂l

∂τ

)2

〈Tll〉Σ +

(
∂z

∂τ

)2

〈Tzz〉Σ
]

=
hΣ

R4 sinh4 ρ sin4 ϑ
(3.5.4)

where we used the coordinate map from AdS3 × S1 to the hyperboloid in (B.3.4). The full

result is traceless as expected since the trace anomaly vanishes on S1 ×H3:

〈T̃µν〉Σ dx̃µ dx̃ν =
hΣ

R4 sinh4 ρ sin4 ϑ

[
dτ 2 +R2

(
dρ2 + sinh2 ρ

(
dϑ2 − 3 sin2 ϑ dψ2

))]
(3.5.5)

Note that in even dimensions there is also an inhomogeneous term that generalizes the

Schwarzian derivative for the two-dimensional stress tensor. As pointed out in [50,113] this
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term does not depend on the state of the theory. Hence it will drop out of the vacuum

subtracted stress tensor component ∆〈T̃ττ 〉Σ in (3.5.1).

For reasons that will become clear later we write the volume factors in the expression of

the expectation value, (3.4.18), in integral form and change variables. The new variables are

the coordinates on the hyperboloid, {τ, ρ, ϑ, ψ}, which have one-to-one map with AdS3×S1

coordinates, {t, l, z, ψ}. The volume is written as

Vol
(
AdS3 × S1

)
=

∫
AdS3×S1

d4x
√
g =

∫
S1×H3

d4x̃Ω−2
√
g̃

=
β Vol (S1)

R

∫
dϑ

sin3 ϑ

∫
dρ

sinh2 ρ
(3.5.6)

where the integration over ψ and the thermal cycle have been performed. We omit the limits

of the integrals over ϑ and ρ to treat them later. Substituting this relation into (3.4.18) we

write the expectation value as

log 〈OΣ〉 = N2 (m400 − 1 + F)

∫
dϑ

sin3 ϑ

∫
dρ

sinh2 ρ
(3.5.7)

The third ingredient in (3.5.1) is (dropping tildes)

∫
S1×H3

d4x
√
g∆〈Tττ 〉Σ = (2π)2 ∆hΣ

∫
dϑ

sin3 ϑ

∫
dρ

sinh2 ρ
(3.5.8)

where ∆hΣ is the vacuum subtracted value of (3.4.22).

We notice that both ingredients (3.5.7, 3.5.8) contain the same integrals. The integrals

diverge since the domain of integration is ϑ ∈ [0, π] and ρ ∈ [0,∞). To compute them we

introduce two independent cut-offs as follows:

∫ π−η/R

η/R

dϑ

sin3 ϑ

∫ ∞
a

dρ

sinh2 ρ
=

[
R2

η2
+ log

(
2R

η

)
− 1

6
+O

(
η2
)](1

a
− 1 +O(a)

)
(3.5.9)
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z = η
η/R η/R

-R R l

z

ϑ

x

Figure 3.2: Mapping the z = η cut-off to polar coordinates. The red semicircle is the
entangling surface while the location of OΣ is at z = 0. A uniform cut-off z = η close to
the location of OΣ is introduced. It is denoted with a dashed horizontal line. This limits
integration over ϑ between η/R and π − η/R.

The cut-off η is identified with the homonymous cut-off introduced in the holographic en-

tanglement entropy calculation. The divergence comes from degrees of freedom close to the

entangling surface x = R. Therefore, for small z = η the first map in (B.3.4) sets the cut-off

values of ϑ to η/R and π − η/R (see figure 3.2). Since we are interested in the universal

term of (3.5.9) where a is absent, no identification for this cut-off is needed.

We are now ready to combine all the ingredients in (3.5.1) (with the Wilson loop replaced

by the surface defect). The right hand side is

log 〈OΣ〉 −
∫

S1×H3

ddx
√
g∆〈Tττ 〉Σ =

2N2

3

(
1−m220 −m202 −m400 −

3

2
F
)

log

(
2R

η

)

= ∆SA −N2F log

(
2R

η

)
(3.5.10)

We immediately notice that there is a discrepancy compared to (3.5.1). The mismatch

amounts to the second term in (3.5.10), which is proportional to F . The minimal relation

(3.5.1), derived in [62] for Wilson loops, does not work here.

The two new elements in our setup compared to [62] were the conformal anomaly for

even-dimensional surface observables and the intersection between the entangling surface
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and the defect. So one possibility is that either element should contribute an extra term

to the thermal entropy in addition to those we considered. The same two elements are

present in our previous calculations (in chapter 2) for a Wilson surface in the six-dimensional

(2, 0) theory. Whilst we do not have a general closed-form expression for the expectation

value of the Wilson surface, a case-by-case check yields a similar mismatch. It would be very

interesting to pin this down in future work with a direct field theory replica trick calculation.

In order to compute the required thermal entropy, one must compute the free energy

in the presence of the defect, which involves taking a derivative with respect to the inverse

temperature β. This can be written as a derivative of the field theory Lagrangian with

respect to the metric, as utilized in [62]. It could be that we have missed a contribution

to the stress tensor localized at the defect. Whilst the origin of such a term is unclear, it

would contribute to the entanglement entropy, so its existence (or lack thereof) should be

clear from a replica trick calculation.

3.6 Summary

Let us summarize the results found in this chapter. We studied two-dimensional planar

surface defects in N = 4 SYM theory via their dual supergravity bubbling description. First

we computed the entanglement entropy across a ball-shaped region bisected by a surface

defect. The additional entropy due to the presence of the defect is given by

∆SA =
2N2

3

(
1−m400 −m220 −m202

)
log

(
2R

η

)
(3.6.1)

In addition we calculated two other holographic observables: the one-point function of the

stress tensor

〈Tµν〉Σ dxµdxν =
N2

2π2

[
1

16
− 1

3

(
m220 +m202 +

1−m400

2

)] (
ds2

AdS3
− 3 dψ2

)
(3.6.2)
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and the expectation value of the surface defect

log 〈OΣ〉 =
N2

(2π)2
(m400 − 1 + F) Vol (AdS3) Vol

(
S1
)

(3.6.3)

where F is given in (3.4.20) in terms of CFT parameters. The mijk are quantities that

depend on the parameters the locations of the charges (in the base space X) of a general

bubbling solution. The cut-off η is the distance from the surface defect, similarly to the case

of the Wilson surface.
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Chapter 4

Entanglement Entropy and Free

Energy in 5d SCFTs

The holographic entanglement entropy can be generalized for the case of CFTs with addi-

tional structure, other than the case of conformal defects. A particularly interesting case

is five-dimensional SCFTs. Their existence is predicted in the classification of [114], which

states that there is a unique superconformal algebra with 16 supercharges in five dimensions,

given by the superalgebra F (4) [115]. There is no known standard Lagrangian description for

the 5d SCFTs obtained as UV fixed points of the gauge theories. However, the theories can

be engineered using brane constructions in type IIA and IIB string theory [116–118]. There-

fore the AdS/CFT correspondence is the perfect tool for extracting valuable quantitative

information about them.

In this chapter, we study large classes of holographic duals for 5d SCFTs which have

been constructed in type IIB supergravity recently [119–121]. Their geometry takes the

form of AdS6×S2 warped over a two-dimensional Riemann surface Σ.1 The solutions are sin-

gular at isolated points and avoid a recent no-go theorem [127]. The appearing singularities

have a clear interpretation as remnants of the external 5-branes appearing in the brane-web

1 For earlier work on AdS6 type IIB solutions see [122–126].
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constructions.

The rest of the chapter is structured as follows: in sec. 4.1 we briefly review the structure

of the type IIB supergravity solutions [119–121] and introduce the quantities that will be

relevant for our computations. In sec. 4.2 we derive a general expression for the on-shell

action of the solutions and discuss as special cases the 3- and 4-pole solutions that were

spelled out in detail in [121]. This provides a holographic calculation of the free energy on

S5 for the dual SCFTs. In sec. 4.3 we similarly discuss the computation of codimension-2

minimal surfaces anchored on the boundary of AdS6 at a constant time, which compute the

entanglement entropy for the dual SCFTs. After deriving a general expression we discuss

the same special cases as previously for the free energy, and show that the finite part for a

spherical entangling region agrees with the free energy on S5.

4.1 Review of type IIB supergravity solutions

The type IIB supergravity solutions we consider have been derived and discussed in detail

in [119–121], and we will only give a brief review introducing the quantities that will be

relevant for the computation of free energy and entanglement entropy.

The relevant bosonic fields of type IIB supergravity are the metric, the complex axion-

dilaton scalar B and the complex 2-form C(2) [128, 129]. The real 4-form C(4) and the

fermionic fields vanish. The geometry of the solutions is AdS6×S2 warped over a Riemann

surface Σ, which for the solutions considered here will be the upper half plane. With a

complex coordinate w on Σ, the metric and the 2-form field are parametrized by scalar

functions f 2
2 , f 2

6 , ρ2 and C on Σ,

ds2 = f 2
6 ds

2
AdS6

+ f 2
2 ds

2
S2 + 4ρ2dwdw̄ , C(2) = C volS2 . (4.1.1)

The solutions are expressed in terms of two holomorphic functions A± on Σ, which are given
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by

A±(w) = A0
± +

L∑
`=1

Z`
± ln(w − p`) . (4.1.2)

The p` are restricted to be on the real line and are poles with residues Z`
± in ∂wA±. The

residues are related by complex conjugation Z`
± = −Z`

∓. The explicit form of the solutions

is conveniently expressed in terms of the composite quantities

κ2 = −|∂wA+|2 + |∂wA−|2 , ∂wB = A+∂wA− −A−∂wA+ , (4.1.3)

G = |A+|2 − |A−|2 + B + B̄ , R +
1

R
= 2 + 6

κ2 G
|∂wG|2

. (4.1.4)

Regularity of the solutions requires that κ2 and G are both positive in the interior of Σ and

vanish on the boundary. These regularity conditions are satisfied if the residues are given by

Z`
+ = σ

L−2∏
n=1

(p` − sn)
L∏
k 6=`

1

p` − pk
. (4.1.5)

and the sn are restricted to be in the upper half plane. Moreover, the p` and sn have to be

chosen such that they satisfy

A0Zk
− + Ā0Zk

+ +
∑
`6=k

Z [`k] ln |p` − pk| = 0 , (4.1.6)

where Z [`k] ≡ Z`
+Z

k
− − Zk

+Z
`
− and 2A0 ≡ A0

+ − Ā0
−. The explicit form of the functions

parametrizing the metric is then given by

f 2
6 =
√

6G
(

1 +R

1−R

)1/2

, f 2
2 =

1

9

√
6G
(

1−R
1 +R

)3/2

, ρ2 =
κ2

√
6G

(
1 +R

1−R

)1/2

, (4.1.7)

where we used the expressions of [121] with c2
6 = 1, which was shown there to be required
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for regularity. The function C parametrizing the 2-form field is given by

C =
4i

9

(
∂w̄Ā− ∂wG

κ2
− 2R

∂wG ∂w̄Ā− + ∂w̄G ∂wA+

(R + 1)2 κ2
− Ā− − 2A+

)
(4.1.8)

and the axion-dilaton scalar B is given by

B =
∂wA+ ∂w̄G −R∂w̄Ā−∂wG
R∂w̄Ā+∂wG − ∂wA−∂w̄G

. (4.1.9)

4.2 On-shell action and free energy on S5

We will now evaluate the on-shell action for the solutions reviewed in the previous section

explicitly. Formulating an action for type IIB supergravity is subtle due to the self-duality

constraint on the 4-form potential, but since C(4) = 0 in our solutions this is not an issue.

Moreover, the on-shell action can be expressed as a boundary term [66]. We relegate the

details of translating the result of [66] to our convention to appendix C.1, and start from the

result (C.1.7)

SE
IIB =

1

64πGN

∫
M
d

[
1

2
f 2(1 + |B|2) C̄2 ∧ ?dC2 − f 2B̄C2 ∧ ?dC2 + c.c.

]

=
1

64πGN

∫
∂M

f 2

[
1

2
(1 + |B|2)C̄2 − B̄C2

]
∧ ?dC2 + c.c. (4.2.1)

where f−2 = 1− |B|2. We now use that C2 = CvolS2 , where volS2 is the volume form on the

S2 of unit radius. This yields

?dC2 = f 6
6 f
−2
2 volAdS6 ∧ ?ΣdC , (4.2.2)
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where volAdS6 is the volume form on AdS6 of unit curvature radius and ?Σ is the Hodge dual

on Σ with metric gΣ = 4ρ2|dw|2. We then find

SE
IIB =

1

64πGN

∫
∂M

f 2f 6
6 f
−2
2

[
1

2
(1 + |B|2)C̄ − B̄C

]
volS2 ∧ volAdS6 ∧ ?ΣdC + c.c. (4.2.3)

The AdS6 volume can be regularized and renormalized in the usual way for an AdS6 with

unit radius of curvature and we will just use VolAdS6,ren to denote the renormalized volume.

As we discuss in appendix C.2, there are no finite contributions to the on-shell action from

the boundary introduced when regularizing the AdS6 volume. The explicit expression for

the renormalized volume of global AdS6 with a renormalization scheme preserving the S5

isometries of the sphere slices is also derived in appendix C.2 and given by

VolAdS6,ren = − 8

15
VolS5 . (4.2.4)

Note that we denote by e.g. VolS5 the actual volume, i.e. VolS5 =
∫

S5 volS5 . The only

(remaining) boundary then is the boundary of Σ. We note that ∂Σ is not an actual boundary

of the ten-dimensional geometry, so in particular there are no extra boundary terms to be

added, but for the evaluation of the on-shell action as a total derivative we have to take it

into account. We thus find

SE
IIB =

1

64πGN

VolAdS6,renVolS2

∫
∂Σ

f 2f 6
6 f
−2
2

[
1

2
(1 + |B|2)C̄ − B̄C

]
?Σ dC + c.c. (4.2.5)

The task at hand is to evaluate the various ingredients in this expression more explicitly. To

evaluate the metric factors more explicitly we use the expressions in (4.1.7), which yields

f 6
6 f
−2
2 = 54G

(
1 +R

1−R

)3

. (4.2.6)
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The pullback of ?ΣdC to ∂Σ does not involve ρ2, and to evaluate it explicitly we note that

∂Σ = R. It will be convenient for the explicit expansions to introduce real coordinates,

w = x+ iy, which yields

?ΣdC = −(∂yC)dx . (4.2.7)

Using eq. (4.2.6) and (4.2.7), the regularized on-shell action (4.2.5) becomes

SE
IIB = − 1

64πGN

54VolAdS6,renVolS2

∫
R

dx f 2G
(

1 +R

1−R

)3

(∂yC)
(

1

2
(1 + |B|2)C̄ − B̄C

)
+ c.c. ,

(4.2.8)

where the integrand is evaluated at y = 0. Close to the boundary we have κ2,G → 0 and

R = 1−
√

6κ2G
|∂wG|2

+ . . . . (4.2.9)

As discussed in sec. 5.5 of [119], G/(1 − R) remains finite at the boundary and the same

applies for f 2. We can thus simplify the on-shell action to

SE
IIB =

1

8πGN

VolAdS6,renVolS2I0 , (4.2.10a)

I0 = 54

∫
R

dx
G

1−R ×
∂yC

(1−R)2
×
(
B̄f 2C − 2f 2 − 1

2
C̄
)

+ c.c. , (4.2.10b)

where each factor in the integrand is finite separately on the real line.

4.2.1 Explicit expansions

To further evaluate the on-shell action in (4.2.10), we explicitly expand the composite quan-

tities κ2, G as well as the actual supergravity fields around the real line, and it turns out

that the subleading orders in the expansion play a crucial role. For the explicit expansions
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it is convenient to introduce

f± = A0
± +

L∑
`=1

Z`
± ln |x− p`| , D± = iπ

L∑
`=1

Z`
±Θ(p` − x) , (4.2.11)

such that the holomorphic functions A± and their differentials can be written as

A± = D± +
∞∑
n=0

1

n!
(iy)nf

(n)
± , ∂wA± =

∞∑
n=0

1

n!
(iy)nf

(n+1)
± , (4.2.12)

where f
(n)
± = (∂x)

nf±. The composite quantity κ2 can be evaluated straightforwardly. For G

we use ∂yG = i(∂wG − ∂w̄G) along with the fact that G = 0 on the boundary. This allows us

to simply integrate the explicit expression for ∂yG, which can be obtained straightforwardly

from (4.1.3), to obtain an explicit expression for the expansion of G in y. We then find

κ2 = yκ2
0 +

1

6
y3κ2

3 +O(y5) , (4.2.13)

G = yG0 +
1

6
y3G3 +O(y5) , (4.2.14)

where

κ2
0 = 2i(f ′−f

′′
+ − f ′′−f ′+) , κ2

3 = −(κ2
0)′′ + 8i

(
f ′′′+ f

′′
− − f ′′′− f ′′+

)
, (4.2.15)

G0 = 4i
(
f+f

′
− − f−f ′+

)
, G3 = −(G0)′′ − 4κ2

0 . (4.2.16)

The expansion coefficients are real by construction and, by the regularity conditions, κ2
0 > 0

and G0 > 0. Since G is constant along each piece of the boundary without poles, we also

have |∂wG|2 = 1
4
|∂yG|2 = 1

4
G2

0 (noting that ∂w = 1
2
(∂x− i∂y)). Using these expansions to find

C yields

C = −4

3
iD+ +

4

9
y3

[
f ′+G3

G0

+ f ′′′+ +
6κ2

0

G2
0

(
3f ′+G0 − f+(G0)′

)]
. (4.2.17)
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This shows that the factors in (4.2.10) are indeed all finite as y → 0. The last ingredient we

need is the limit of B at the real axis, for which we find

B =
2f+κ0 − if ′+

√
6G0

if ′−
√

6G0 − 2f−κ0

, (4.2.18)

and we note that this is not a pure phase. Finally, for f 2 this yields

f 2 =
1

2
− 4f+f−κ

2
0 + 6f ′+f

′
−G0√

6G3
0κ

2
0

. (4.2.19)

With the explicit expansions in hand, we now return to evaluating the integral I0 in

(4.2.10). For the factors in the integrand we find

G
1−R ×

∂yC
(1−R)2

=

√
G3

0

24κ2
0

× 1

18κ2
0

[
f ′+G3 + G0f

′′′
+ + 6κ2

0

(
3f ′+ − f+(lnG0)′

)]
, (4.2.20)

B̄f 2C − 2f 2 − 1

2
C̄ = −4

3

i√
6G3

0κ
2
0

[
6G0f

′
−
(
D+f

′
− −D−f ′+

)
+ 4κ2

0f− (D+f− −D−f+)
]
,

(4.2.21)

where we used B̄f 2 = (6G0(f ′−)2 + 4κ2
0f

2
−)/
√

6G3
0κ

2
0 for the last expression. The full integral

then becomes

I0 = − i
3

∫
R

dx
1

κ4
0

[
f ′+G3 + G0f

′′′
+ + 6κ2

0

(
3f ′+ − f+(lnG0)′

)]
×[

6G0f
′
−
(
D+f

′
− −D−f ′+

)
+ 4κ2

0f− (D+f− −D−f+)
]

+ c.c.

(4.2.22)

Adding the complex conjugate explicitly yields

I0 =

∫
R

dxG0

[
16

3
(D+f− −D−f+)− G0(κ2

0)′ − 3(G0)′κ2
0

κ4
0

(D+f
′
− −D−f ′+)

]
. (4.2.23)

Via (4.2.10), this translates to an explicit expression for the on-shell action.
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4.2.2 Integrability of the poles

We will now show that the integrand in (4.2.23) is well-behaved at the poles, x = p`, such

that the integral can be evaluated straightforwardly. To this end, we first evaluate G0 and

κ2
0 more explicitly. For G0 we find, by straightforward evaluation,

G0 = 4i
L∑
k=1

A0
+Z

k
− −A0

−Z
k
+

x− pk
+ 4i

∑
`6=k

Z [`k] ln |x− p`|
x− pk

. (4.2.24)

The integration constants A0
± are constrained by the regularity conditions (4.1.6), which,

with A0
+ = −Ā0

−, read

A0
+Z

k
− −A0

−Z
k
+ +

∑
`6=k

Z [`k] ln |p` − pk| = 0 . (4.2.25)

We therefore find that for generic solutions satisfying the regularity conditions

G0 = 4i
L∑
k=1

∑
`6=k

Z [`k]

x− pk
ln

∣∣∣∣ x− p`p` − pk

∣∣∣∣ . (4.2.26)

The evaluation of κ2
0 is straightforward and yields

κ2
0 = 2i

L∑
k=1

∑
`6=k

Z [`k]

(x− p`)(x− pk)2
. (4.2.27)

Moreover, due to the antisymmetry of Z [`k] the derivatives of G0 and κ2
0 take a simple form

and are given by

(G0)′ = −4i
L∑
k=1

∑
6̀=k

Z [`k]

(x− pk)2
ln

∣∣∣∣ x− p`p` − pk

∣∣∣∣ , (κ2
0)′ = −4i

L∑
k=1

∑
` 6=k

Z [`k]

(x− p`)(x− pk)3
.

(4.2.28)

With these expressions in hand, we can now analyze the behavior of the integrand in
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(4.2.23). We set x = pm + ε, where ε is real and |ε| small compared to 1 and to all |pk − p`|,

and find

G0 = 4iηm ln |ε|+O(1) , κ2
0 = −2i

ηm
ε2

+O(ε−1) , ηm =
∑
k 6=m

Z [mk]

pm − pk
, (4.2.29)

(G0)′ = O(ε−1) , (κ2
0)′ = 4i

ηm
ε3

+O(ε−1) . (4.2.30)

Note that the behavior of G0 and (G0)′ would be different if the parameters were not con-

strained by the regularity conditions in (4.1.6). The near-pole expansions consequently would

be qualitatively different. For regular solutions, however, it is now straightforward to verify,

with the explicit expansions of the composite quantities around the pole, that the integrand

in (4.2.23) is O
(
(ln |ε|)2

)
and thus integrable across the pole.

4.2.3 The on-shell action

The integral I0 in (4.2.23) can be further simplified as follows. We isolate the second term

in the square brackets and rewrite the sum in the numerator as a total derivative,

I0 = I1 +
16

3

∫
R

dxG0(D+f− −D−f+) , I1 =

∫
R

dx

(G3
0

κ2
0

)′ D+f
′
− −D−f ′+
G0

. (4.2.31)

Using integration by parts we can further evaluate I1. This yields

I1 =
G2

0

κ2
0

(D+f
′
− −D−f ′+)

∣∣∣∣x=∞

x=−∞
−
∫
R

dx
G3

0

κ2
0

(
D+f

′
− −D−f ′+
G0

)′
. (4.2.32)

The first term vanishes, since D± = 0 if either x > p` or x < p` for all `, thanks to
∑

` Z
`
± = 0.

The D± given in (4.2.11) depend on x only through Θ-functions, and we have to take into

99



account their non-trivial distributional derivatives. The second term then evaluates to

I1 = −
∫
R

dx

[
G2

0

κ2
0

(D+f
′′
− −D−f ′′+) +

G2
0

κ2
0

(D′+f
′
− −D′−f ′+)− G

′
0G0

κ2
0

(D+f
′
− −D−f ′+)

]
.

(4.2.33)

Since D′± = −iπ∑L
`=1 Z

`
±δ(p`−x) and, by the analysis of the previous subsection, G2

0f
′
±/κ

2
0 =

O(ε(ln |ε|)2) close to the poles, the second term vanishes. The first and last term can be

combined thanks to the following identity, which follows from the expressions for κ2
0 and G0

in terms of f±,

2f±κ
2
0 = G0f

′′
± − G ′0f ′± . (4.2.34)

The result is

I1 = −2

∫
R

dxG0(D+f− −D−f+) . (4.2.35)

This reproduces exactly the structure of the remaining term in I0 in (4.2.31) and we simply

find

I0 =
10

3

∫
R

dxG0(D+f− −D−f+) . (4.2.36)

Evaluating D+f− −D−f+ more explicitly, using the regularity condition (4.2.25), yields

D+f− −D−f+ = iπ
L∑
k=1

∑
`6=k

Θ(p` − x)Z [`k] ln

∣∣∣∣ x− pkp` − pk

∣∣∣∣ . (4.2.37)
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Together with (4.2.26) this shows that I0 explicitly depends on the residues only through

the combinations Z [`k]. With (4.2.10), we finally find the on-shell action as

SE
IIB = − 5

3GN

VolAdS6,renVolS2

L∑
`,k,m,n=1
` 6=k,m6=n

Z [`k]Z [mn]

∫ p`

−∞
dx ln

∣∣∣∣ x− pkp` − pk

∣∣∣∣ ln

∣∣∣∣ x− pmpm − pn

∣∣∣∣ 1

x− pn
.

(4.2.38)

We note that the lower bound in the integral can be moved from −∞ to min`(p`) due to∑
` Z

`
+ = 0. The integral can be solved explicitly and involves polylogarithms. While the

result for generic configurations does not seem particularly illuminating, this allows us to

get analytic results for particular solutions, as we will discuss in sec. 4.2.5. Note also that

the Z [`k] are imaginary, so the expression (4.2.38) is manifestly real.

4.2.4 Scaling of the free energy

As shown in [121], the residues Z`
± of the differentials ∂wA± at the poles p` correspond to the

charges of external 5-branes in brane-web constructions for 5d SCFTs. The details of the

SCFT depend on the precise charge assignments, and the same applies for the free energy

and, correspondingly, the gravitational on-shell action. Before coming to those details, we

can address a more general question: how does the free energy scale under overall rescalings

of the 5-brane charges?

To address this question we can assume to start with a generic solution to the regularity

conditions in (4.1.6). Namely,

A0Zk
− + Ā0Zk

+ +
∑
`6=k

Z [`k] ln |p` − pk| = 0 . (4.2.39)

We note that the equation is invariant under the following scaling

Z`
+ → γZ`

+ , Z`
− → γ̄Z`

− , A0 → γA0 , p` → p` , (4.2.40)
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where we have allowed for γ ∈ C. For the residues this simply amounts to a change of

the overall complex normalization parametrized by σ in (4.1.2). So starting with a solution

(Z`
±,A0, p`) to the regularity conditions, a rescaling of this form produces another solution,

and this precisely allows us to isolate the overall scale of the charges Z`
+. From (4.2.38) we

immediately see that the on-shell action scales as

SE
IIB → |γ|4SE

IIB . (4.2.41)

For a real overall scaling by N , we thus obtain a free energy scaling as N4. This is

different from the N2 scaling one would expect for the ’t Hooft limit of a four dimensional

Yang-Mills theory, and as exhibited by N = 4 SYM and its AdS5×S5 dual. But this is

certainly not surprising, given the more exotic nature of the field theories described by 5-

brane web constructions. It is also different from the N5/2 scaling exhibited by the UV

fixed points of 5d USp(N) gauge theories and their gravity duals [130]. As a curious aside,

however, we note that the free energy for the orbifold quivers obtained from the USp(N)

theories, which scales as N5/2k3/2, shows the same scaling if one näıvely sets k = N . As

discussed in [121], there actually are classes of brane intersections described by the solutions

discussed here which would naturally correspond to long quiver gauge theories with gauge

groups of large rank, and we will discuss these examples in more detail in the next section.

4.2.5 Solutions with 3, 4 and 5 poles

We now evaluate the general expression for the free energy in (4.2.38) for classes of solutions

with 3 up to 5 poles. It will be convenient to separate off the general overall factors as in

(4.2.10a), and focus on the solution-specific part I0.
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3-pole solutions

We start with the 3-pole case. As discussed in sec. 4.1 of [121], the SL(2,R) automorphisms

of the upper half plane can be used to fix the position of all poles, which we once again

choose as

p1 = 1 , p2 = 0 , p3 = −1 . (4.2.42)

The regularity conditions are solved by A0 = ω0λ0s ln 2. The free parameters of the solutions

are given by the residues, corresponding to the charges of the external 5-branes, subject to

charge conservation. The integral I0 in (4.2.36) for a generic choice of residues evaluates to

I0 = −80πζ(3)(Z [12])2 . (4.2.43)

The on-shell action therefore is a simple function that is quartic in the residues, and mani-

festly invariant under the SU(1, 1) duality symmetry of type IIB supergravity since the Z [`k]

are.2 Note also that Z [`k] is imaginary, and I0 positive. For the particular case of the “N -

junction” [131], discussed in sec. 4.3 of [121] and realized by the charge assignment Z1
+ = N ,

Z2
+ = iN , we have Z [12] = 2iN2 and thus find the free energy quartic in N .

4-pole solutions

For solutions with four poles we can once again fix the position of three poles by SL(2,R), but

the position of one pole remains a genuine parameter. It is fixed by the regularity conditions

in (4.1.6) and thus becomes an in general non-trivial function of the residues. We therefore

expect in general more interesting dependence on the charges compared to the 3-pole case.

2The transformations spelled out in sec. 5.1 of [119] can be realized by transforming the residues as
Z`+ → uZ`+ − vZ`− and Z`− → ūZ`− − v̄Z`+.
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However, for the special class of 4-pole solutions discussed in sec. 4.2 of [121], where

Z3
+ = −Z1

+ , Z4
+ = −Z2

+ , (4.2.44)

the position of the fourth pole is independent of the residues. In that case the regularity

conditions are solved by

p1 = 1 , p2 =
2

3
, p3 =

1

2
, p4 = 0 , (4.2.45)

along with A0 = Z2
+ ln 3 − Z1

+ ln 2. The position of all poles is therefore fixed regardless of

the choice of charges, and we may again expect the on-shell action to be a simple quartic

function of the residues. Indeed, the result for the integral is

I0 = −280πζ(3)(Z [12])2 , (4.2.46)

and of the same general form as the 3-pole result. We also note the factor ζ(3) appearing

again. For the solutions discussed in sec. 4.2 of [121], with −Z1
+ = Z3

+ = (1 + i)N and

Z2
+ = −Z4

+ = (1 − i)M , we have Z [12] = 4iMN . In particular, for M = N the free energy

again scales like N4, a feature which we will come back to in the discussion.

We will now discuss a different configuration with 4 poles, for which the position of the

fourth pole actually depends on the choice of charges. To this end, it is convenient to move

the position of one pole off to infinity, which we will discuss here for a generic L-pole solution.

To move the L-th pole pL to infinity, we perform the following replacements and limit

pL → −∞ , A0
± → Ã0

± = A0
± − ZL

± ln |pL| . (4.2.47)

Note that the conjugation relation between the original integration constants, Ā0
± = −A0

±,

holds in the same form for Ã0
±. In terms of the redefined integration constants, the expres-
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sions for the holomorphic functions then become

A± = Ã0
± +

L−1∑
`=1

Z`
± ln(w − p`) . (4.2.48)

Note that this expression explicitly involves only L − 1 poles and L − 1 residues. These

residues, however, are not constrained to sum to zero and the number of independent pa-

rameters is therefore unchanged. The conditions for G = 0 on the boundary become

Ã0
+Z

k
− − Ã0

−Z
k
+ +

L−1∑
`=1
6̀=k

Z [`k] ln |p` − pk| = 0 , k = 1, .., L− 1 . (4.2.49)

These are only L− 1 conditions, as compared to L conditions previously. However, the sum

does not manifestly vanish and the number of independent conditions therefore is also not

modified. The class of 4-pole solutions with (4.2.44) can now be realized as

p1 = 1 , p2 = 0 , p3 = −1 , Ã0
± = 0 , (4.2.50)

and computing the on-shell action reproduces (4.2.46).

The class of 4-pole solutions we wish to discuss next is parametrized by an overall scale

n of the residues and an angle θ, and obtained by fixing

Z1
+ = n , Z2

+ = in Z3
+ = neiθ , Z4

+ = −(1 + i+ eiθ)n . (4.2.51)

The position of three of the poles can once again be fixed arbitrarily, and we choose

p1 = 1 , p2 = 0 , p4 → −∞ . (4.2.52)

This leaves the position of the third pole, p3, along with the (complex) constant A0 to

be determined from the conditions in (4.1.6). The resulting equation determining p3 after
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solving for A0 is

Z [1,3]Z [2,4] ln(1− p3)2 = Z [1,4]Z [2,3] ln p2
3 . (4.2.53)

Note that n drops out of this equation and p3 therefore depends on θ only. We take the

position of the pole as parameter and solve for θ, which can be done in closed form and

yields four branches of solutions. The criterion for the choice of branch is that θ should be

real and the zeros sn in the upper half plane. The explicit expressions are bulky and not

very illuminating, and we show a plot of θ as function of p3 in fig. 4.1(a) instead.
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Since p3 is independent of n, the on-shell action depends on n only through an overall

factor n4, as expected from the scaling analysis in sec. 4.2.4. The dependence on θ, however,

is non-trivial and we show the result in fig. 4.1(b). We note the presence of three minima,

which all correspond to the 4-pole solution degenerating to a 3-pole solution: for θ → 0 we

have Z3
+ → Z1

+ and p3 → p1, for θ → π/2 we have Z3
+ → Z2

+ and p3 → p2, and for θ → 5π/4

we have Z3
+ → (1+

√
2)Z4

+ and p3 → p4. That means in all these cases two poles coalesce and

their residues add. The free energy coincides with that of the resulting 3-pole configuration.

The 3-pole configurations resulting from θ → 0 and θ → π/2 have two charges with the same

moduli and the same relative phase up to a sign. Since the formula in (4.2.43) is insensitive

to these differences, this explains the coincident free energies. It is intriguing to observe that

the value of the free energy assumes a local minimum for all the cases where the solution
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reduces to a 3-pole configuration. The sphere free energy in odd dimension can be used as

a measure for the number of degrees of freedom, and one may speculate that splitting one

pole into two, or equivalently one external 5-brane into two, will generically increase that

number. While certainly true for this specific example, it is an interesting open question

whether this behavior holds more generally.

5-pole solutions

As a final example we will consider a class of solutions with five poles. In general we now

have two positions of the poles depending on the choice of residues, but we will focus on a

class of solutions which are parametrized by only two real numbers, with residues given by

Z1
+ = −Z3

+ = M , Z2
+ = 2iN , −Z4

+ = iZ5
+ = (1 + i)N . (4.2.54)

The corresponding 5-brane intersection is shown in fig. 4.1(c).
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Figure 4.1: The left hand side shows a 5-brane intersection corresponding to the charges
in (4.2.54). On the right hand side is a log-log plot of I0 for the 5-pole solution with
residues given in (4.2.54). Via (4.2.10) this corresponds to the on-shell action, as function
of M/N . The constant dot-dashed line shows 80πζ(3) · 16N4, which, via (4.2.43), is the
value of I0 for the 3-pole solution resulting from (4.2.54) for M = 0. The dashed line shows
280πζ(3) · 16M2N2, which, via (4.2.46), is I0 for a 4-pole solution with −Z1

+ = Z3
+ = 2iN

and Z2
+ = −Z4

+ = M .

As before three poles can be fixed by SL(2,R) and we resort to the choice in (4.2.42).

107



The regularity conditions in (4.1.6) are solved by

p5 = −p4 , A0 = iN log |p2
4 − 1| , (4.2.55)

where p4 is determined by the equation

(M −N) log(p4 − 1)2 − (M +N) log(p4 + 1)2 +N log 16 = 0 . (4.2.56)

The choice of residues can be realized via (4.1.5), by fixing σ = −2iNp2
4/(s1s2s3) and the

zeros s1, s2, s3 as the three solutions to the cubic equation

isM(s2 − p2
4) + p4N(s2 − 1)(p4 − is) = 0 . (4.2.57)

To solve (4.2.56) it is once again convenient to fix p4 and determine the resulting ratio M/N .

We choose p4 ≤ −
√

5, which produces zeros in the upper half plane and positive M/N .

The on-shell action divided by N4, as function of the ratio M/N , is shown in fig. 4.1(d).

We clearly see that the dependence on M/N is not simply quadratic, which we would have

expected if the position of the poles had not depended on M/N . Instead, I0/N
4 interpolates

between approaching a constant for small M/N and quadratic dependence for large M/N .

N

N

M

M

2N

Figure 4.2: Global deformation (in the classification of [116,117]) of the brane intersection
shown in fig. 4.1(c), corresponding to a relevant deformation of the dual SCFT.

The asymptotic behavior for M/N → 0 and M/N →∞ can be understood in more detail
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as follows. For M → 0, we expect the solution to reduce to a 3-pole configuration, since two

of the residues in (4.2.54) vanish. Indeed, in that limit two of the zeros sn approach the real

line and annihilate the poles p1, p3. With one zero remaining in the interior of the upper

half plane and three poles on the real line, we indeed find a regular 3-pole configuration.

Correspondingly, the on-shell action as shown in fig. 4.1(d) for M/N = 0 agrees with (4.2.43)

evaluated with the remaining residues. For large M/N , the behavior is not quite as imme-

diately clear from the form of the residues. But we can gain some intuition from looking

at deformations of the web. The solutions we are considering here describe the conformal

phase of the dual SCFTs, where in the brane construction all external branes intersect at one

point. Deformations of the web where the external branes are moved correspond to relevant

deformations of the dual SCFT [116,117], and a particular example is shown in fig. 4.2. We

may view it as gluing an intersection of M NS5-branes and 2N D5-branes with an SL(2,R)

rotated version of the “N-junction”. For large M , it suggests that the structure of the web is

dominated by the intersection of M NS5-branes and 2N D5-branes. The number of degrees

of freedom provided by the “extra vertex” compared to the 4-brane intersection of NS5 and

D5-branes does not appear to scale with M , and we therefore expect the free energy of the

5-pole solution at large M/N to approach the free energy of a 4-pole solution with charges

corresponding to M NS5 and 2N D5-branes. As shown in fig. 4.1(d), this is indeed the case.

4.3 Entanglement entropy

In this section we use the Ryu-Takayanagi prescription [14] to compute holographic entangle-

ment entropies for the 5d SCFTs dual to the supergravity solutions. The main parts of the

derivation will hold for a generic choice of the region for which we compute the entanglement

entropy, as we will explain shortly, but our main interest is in regions of spherical shape.

The entanglement entropy is given by the area of a codimension-2 surface, anchored at

a fixed time on the boundary of AdS6 such that it coincides with the entangling surface.

For a generic choice of entangling surface, we thus have to compute the area of an eight-
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dimensional surface γ8 wrapping S2 and Σ, and which is of codimension-2 in AdS6. The

resulting expression for the entanglement entropy reads

SEE =
Area(γ8)

4GN

=
1

4GN

∫
γ8

volγ8 . (4.3.1)

The volume form reduces to

volγ8 = f 4
6 f

2
2 volγ4 ∧ volS2 ∧ volΣ , (4.3.2)

where γ4 is the codimension-2 minimal surface in a unit radius AdS6 which is anchored at

the conformal boundary and ends there on the entangling surface. The computation of SEE

as a result simplifies to

SEE =
1

4GN

VolS2 ·I · Area(γ4) , (4.3.3)

where Area(γ4) is the area of the four-dimensional minimal surface in AdS6 and with gΣ =

4ρ2|dw|2 we have

I = 4

∫
Σ

d2wf 4
6 f

2
2ρ

2 . (4.3.4)

The factor 4 is a result of the ansatz (4.1.1) and we have d2w = dxdy. With the expressions

for the metric functions in (4.1.7), we can further evaluate the integrand to find

I =
8

3

∫
Σ

d2w κ2G . (4.3.5)

We note in particular that, due to the factorization in (4.3.3), once I is known the compu-

tation of entanglement entropies reduces to the analogous computation in AdS6.
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4.3.1 Integrability near the poles

We now show that even though the supergravity solution is singular at the poles x = p` on

the boundary of Σ, the entanglement entropy is finite and does not receive contributions

from the poles. To this end we use equation (4.3.5) together with the explicit expressions

for κ and G close to a pole derived in [121]. Namely, for w = pm + reiθ we have

G = 2κ2
mr| ln r| sin θ +O(r2 ln r) , ∂wG = iκ2

m ln r +O(r ln r) , (4.3.6a)

and

κ2 = κ2
m

sin θ

r
+O(r0) , (4.3.6b)

where

κ2
m = 2i

∑
` 6=m

Z [`m]

pm − p`
. (4.3.7)

This implies that the integrand of I close to the pole behaves as O(r| ln r|), which is inte-

grable. Moreover, we see that, like in the direct computation of the free energy in sec. 4.2,

we can introduce a cut-off around the poles and evaluate the integrals, and removing the

cut-off does not yield localized contributions from the poles.

4.3.2 Explicit evaluation

We now turn to a more explicit evaluation of the integral I given in (4.3.5). We can use the

fact that

κ2 = −∂w∂w̄G , (4.3.8)
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to integrate by parts. Namely, using κ2G = −∂w(G∂w̄G) + (∂w̄G)∂wG. From the near-pole

expansions in eq. (4.3.6), we see that G∂w̄G goes to zero not only at generic points of the

boundary, but also at the poles. The boundary contribution therefore vanishes and we find

I =
8

3

∫
Σ

d2w(∂w̄G)∂wG . (4.3.9)

The generic form of ∂wG can be obtained straightforwardly from (4.1.3) and yields

∂wG = (Ā+ −A−)∂wA+ + (A+ − Ā−)∂wA− . (4.3.10)

Evaluating this explicitly using the regularity conditions (4.1.6) yields

∂wG =
L∑

`,k=1
6̀=k

Z [`k] ln

∣∣∣∣w − p`pk − p`

∣∣∣∣2 1

w − pk
. (4.3.11)

This relation allows us to write I explicitly as

I = −8

3

L∑
`,k,m,n=1
6̀=k,m6=n

Z [`k]Z [mn]

∫
Σ

d2w ln

∣∣∣∣w − p`pk − p`

∣∣∣∣2 ln

∣∣∣∣ w − pmpm − pn

∣∣∣∣2 1

w̄ − pn
1

w − pk
. (4.3.12)

This expression becomes manifestly real upon symmetrizing the integrand under the ex-

change of the index pairs (`, k) and (m,n), which are independently summed over. In

addition, using charge conservation, one can show that the combination dw∂wG is invariant

under SL(2,R) transformations

w → aw + b

cw + d
, pk →

apk + b

cpk + d
, (4.3.13)

with ad− bc = 1. The expression for I in (4.3.9) is therefore SL(2,R) invariant, as expected,

and we can again fix the location of three poles at arbitrary positions.
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4.3.3 Spherical regions

For the specific case of a spherical entangling surface of radius r0 at a fixed t = t0, we just

have to evaluate the area of the corresponding minimal surface in an AdS6 of unit radius.

we choose coordinates in AdS6 such that

ds2
AdS6

=
dz2 − dt2 + dr2 + r2dΩ2

S3

z2
. (4.3.14)

The minimal surface can be parametrized by r = r(z) and its area is given by

Area(γ4) = VolS3

∫
dz
r(z)3

√
1 + r′(z)2

z4
. (4.3.15)

Extremizing this functional yields the usual solution

r(z) =
√
r2

0 − z2 . (4.3.16)

The z integral is divergent at z = 0, and the choice of cut-off follows the same logic as

outlined for the free energy in appendix C.2. With a bulk IR/field theory UV cutoff at

z = ε, the integral becomes

∫ r0

ε

dz
r(z)3

z4

√
1 + r′(z)2 =

r3
0

3ε3
− r0

ε
+

2

3
+O(ε) . (4.3.17)

Although holographic renormalization for submanifolds is well understood [84], the diver-

gences in the entanglement entropy are usually kept, as a reflection of the short-distance

behavior of QFTs. The universal part in odd dimensions, however, is the finite contribution

and for the surfaces considered here given by

Arearen(γ4) =
2

3
VolS3 . (4.3.18)
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In summary, the entanglement entropy for a spherical region is given by the expression in

(4.3.3), with the universal part of the area of the minimal surface in (4.3.18) and I given in

(4.3.12). We note that this expression manifestly exhibits the same scaling with the residues

Z`
+, corresponding to the charges of the external 5-branes, as the expression for the on-shell

action in (4.2.38).

4.3.4 Matching to free energy

In this section we show that for all the examples discussed in sec. 4.2.5 the finite part of the

holographic entanglement entropy for a spherical region is equal to minus the finite part of

the free energy on S5. To accomplish this we will reduce part of the two-dimensional integral

over Σ appearing in equation (4.3.5) to a one-dimensional integral over the real line which

has the same form as the one-dimensional integral appearing in the on-shell action (4.2.38),

and show that the remaining part vanishes.

Using κ2 = −∂w∂w̄G and the definition of G in (4.1.4), the integral I given in (4.3.5) can

be rewritten as

I = −8

3

∫
Σ

d2w ∂w∂w̄G
(
|A+|2 − |A−|2 + B + B̄

)
. (4.3.19)

We split I into two terms:

I = I1 + I2 , (4.3.20a)

I1 = −4

3

∫
Σ

d2w ∂w∂w̄G
(
B + B̄

)
, (4.3.20b)

I2 = −8

3

∫
Σ

d2w ∂w∂w̄G
(
|A+|2 − |A−|2 +

1

2

(
B + B̄

))
. (4.3.20c)

First we evaluate I1 and will argue below that the second integral I2 vanishes. Since B is
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holomorphic, we can write the integrand of I1 as a sum of total derivatives

∂w∂w̄G
(
B + B̄

)
= ∂w̄

(
∂wG(B + B̄)

)
− ∂w

(
G∂w̄B̄

)
. (4.3.21)

The boundary term resulting from the second term vanishes since G = 0 on ∂Σ. Switching

to real coordinates we therefore find

I1 =
2i

3

∫ ∞
−∞

dx ∂wG
(
B + B̄

) ∣∣∣∣
y=0

. (4.3.22)

To evaluate the integrand we use that G = 0 on the real line and hence B + B̄ = −|A+|2 +

|A−|2. This yields

∂wG
∣∣∣
y=0

= 2
L∑

m,n=1
m6=n

Z [mn]

x− pn
ln

∣∣∣∣ x− pmpm − pn

∣∣∣∣ , (4.3.23)

B + B̄
∣∣∣
y=0

= 2πi
L∑

`,k=1
k 6=`

Z [`k] ln

∣∣∣∣ x− pkpk − p`

∣∣∣∣Θ (p` − x) . (4.3.24)

Thus we get

I1 = −8π

3

L∑
`,k,m,n=1
6̀=k,m6=n

∫ ∞
−∞

dx
Z [`k]Z [mn]

x− pn
ln

∣∣∣∣ x− pmpm − pn

∣∣∣∣ ln ∣∣∣∣ x− pkpk − p`

∣∣∣∣Θ (p` − x) . (4.3.25)

Plugging this result into (4.3.3) gives the following contribution to the entanglement entropy

SEE1 = − 4π

9GN

VolS2VolS3

L∑
`,k,m,n=1
6̀=k,m6=n

Z [`k]Z [mn]

∫ p`

−∞
dx ln

∣∣∣∣ x− pmpm − pn

∣∣∣∣ ln ∣∣∣∣ x− pkpk − p`

∣∣∣∣ 1

x− pn
.

(4.3.26)

We can compare this result with the value of the finite part of the on-shell action derived in
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section 4.2.3:

(SE
IIB)finite =

8

9GN

VolS5VolS2

L∑
`,k,m,n=1
` 6=k,m6=n

Z [`k]Z [mn]

∫ p`

−∞
dx ln

∣∣∣∣ x− pkp` − pk

∣∣∣∣ ln

∣∣∣∣ x− pmpm − pn

∣∣∣∣ 1

x− pn
.

(4.3.27)

Inserting the expressions for the volumes of the 2-, 3- and 5-sphere given by

VolS2 = 4π , VolS3 = 2π2 , VolS5 = π3 , (4.3.28)

confirms the equality of the finite parts of the entanglement entropy and the on-shell action

(SEE1)finite = −(SE
IIB)finite . (4.3.29)

What remains to be shown is that the integral I2 vanishes and hence SEE1 given in (4.3.26)

is the complete expression for the finite part of the entanglement entropy. The integral I2

given in (4.3.20c) can be rearranged as follows

I2 = −4

3

∫
Σ

d2w (G + |A+|2 − |A−|2)∂w∂w̄G (4.3.30)

= −4

3

∫
Σ

d2w
(
−∂wG∂w̄G + ∂w∂w̄G(|A+|2 − |A−|2)

)
. (4.3.31)

Using the explicit expressions of A+ and A− we get:

I2 = −4

3

L∑
`,k,m,n=1
6̀=k,m6=n

Z [mn]Z [`k]

∫
Σ

d2w
1

w̄ − pm

(
ln

∣∣∣∣w − p`pk − p`

∣∣∣∣2 ln

∣∣∣∣ w − pnpm − pn

∣∣∣∣2 1

w − pk

+ ln
w − p`
|pk − p`|

ln
w̄ − pk
|pk − p`|

1

w − pn

)
.

(4.3.32)

For the three-pole solutions we have shown analytically that this term vanishes, and for the

four and five pole solutions discussed in sec. 4.2.5 we have verified this numerically. For all
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these cases we therefore find that the finite parts of the entanglement entropy and the on-

shell action are related as expected on general grounds [50]. Although we do not currently

have an analytic proof, this certainly suggests that the relation between free energy and

entanglement entropy holds for all the solutions reviewed in sec. 4.1.

4.4 Summary

In this chapter we have studied the free energy and entanglement entropy of the field the-

ories described by the supergravity solutions constructed in [120, 121]. The free energy is

proportional to the on-shell action given by

SE
IIB = − 5

3GN

VolAdS6,renVolS2

L∑
`,k,m,n=1
6̀=k,m6=n

Z [`k]Z [mn]

∫ p`

−∞
dx ln

∣∣∣∣ x− pkp` − pk

∣∣∣∣ ln

∣∣∣∣ x− pmpm − pn

∣∣∣∣ 1

x− pn

(4.4.1)

The entanglement entropy is given by

SEE = − 4

9GN

VolS2 VolS3

L∑
`,k,m,n=1
` 6=k,m6=n

Z [`k]Z [mn]

∫
Σ

d2w ln

∣∣∣∣w − p`pk − p`

∣∣∣∣2 ln

∣∣∣∣ w − pmpm − pn

∣∣∣∣2 1

w̄ − pn
1

w − pk

(4.4.2)

The finite parts were verified to match, for the case of three-, four-, and five-pole solutions

following CHM in [50] as expected. The same matching is expected to hold for all the super-

gravity solutions, although this would correspond to non-trivial integral identities between

the integrals appearing in the results. Additionally, these results support the interpretation

of the solutions as holographic duals to the five-dimensional superconformal field theories

engineered in type IIB string theory via 5-brane webs, and give first quantitative indications

on the nature of the dual field theories.
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Chapter 5

Conclusion

This dissertation is based on [2–4] in which we study superconformal field theories in excited

states. We employ the AdS/CFT correspondence to compute observables using the corre-

sponding holographic duals, which are given as bubbling solutions in 10- and 11-dimensional

supergravity.

In [2] and [3] we obtain the holographic entanglement entropy of a spherical entangling

surface corresponding to the 6-dimensional (2,0) theory in the presence of Wilson surfaces

and the 4-dimensional N = 4 SU(N) SYM theory in the presence of surface defects. Addi-

tionally, we compute two other holographic observables in each case: the stress tensor and

the expectation value of the surface operator. Our results are summarized in sections 2.5

and 3.6. In [4] we holographically compute the free energy and the entanglement entropy

across a ball-shaped region for 5-dimensional SCFTs. We also verify that the finite parts of

the two results match, as expected. A summary of these results is presented in 4.4.

Our calculations provide results that could be compared to field theory or localization

calculations. In particular, in the Wilson surface case the possibility of a matrix model is

encouraged by the existence of such a model after compactifying the theory on a circle, to get

5-dimensional SYM theory in the presence of a Wilson loop. In the 5-dimensional SCFTs the

overall factor ζ(3) appearing in our results may originate from the eigenvalue distribution
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of a matrix model (e.g. the matrix model action derived in [132] involves explicit factors of

ζ(3)).

One avenue to be explored is the probe brane approximation, in which most of the systems

we investigate have a clear construction [1,74]. This will be a check of validity of our results

in the limit where backreaction is neglected or treated perturbatively. At the same time,

probe brane results may reveal extra components entering the results, e.g. additional surface

conformal anomaly contributions localized on the defects. This would be really interesting

since, based on our calculations, traditional holography in the full-backreacted limit does

not seem to be able to probe such components.
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Appendix A

Wilson surface calculations

A.1 Contributions to the entanglement entropy

In this appendix we carefully discuss the contribution to the area integrals that are needed

in section 2.2.2.

A.1.1 J1

First we consider J1, given in (2.2.8). The radial integral can be performed directly, but

it is useful to rewrite it in terms of Legendre polynomials using (2.1.15). We divide the

integration range into two regions: 0 ≤ r ≤ |ξi| and |ξi| ≤ r ≤ rc (θ, ε). For each region we

choose the Legendre representation that converges, yielding

J1 = −4L9

2n∑
i=1

(−1)i
∫ π

0

dθ sin θ

{∫ rc(θ,ε)

|ξi|
dr
r2(r cos θ − ξi)

r

∞∑
`=0

P` (cos θ)

(
ξi
r

)`
+

∫ |ξi|
0

dr
r2(r cos θ − ξi)

|ξi|
∞∑
`=0

P` (cos θ)

(
r

ξi

)`}
(A.1.1)
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Performing the two radial integrals directly we find

J1 = −4L9

2n∑
i=1

(−1)i
∫ π

0

dθ sin θ

{[
cos θ P0

r3

3
+ (cos θ P1 − P0) ξi

r2

2
+ (cos θ P2 − P1) ξ2

i r

+(cos θ P3 − P2) ξ3
i log r −

∞∑
`=1

(cos θP`+3 − P`+2)

`

ξ`+3
i

r`

]rc(θ,ε)
|ξi|

+
1

|ξi|

[
−P0 ξi

r3

3
+
∞∑
`=4

(cos θP`−4 − P`−3)

`

r`

ξ`−4
i

]|ξi|
0

 (A.1.2)

Orthogonality of the Legendre polynomials can be expressed via

∫ π

0

dθ sin θP` (cos θ)Pk (cos θ) =
2

2`+ 1
δ`k (A.1.3)

We use this to simplify the above expression dramatically:

J1 = −4L9

2n∑
i=1

(−1)i
{∫ π

0

dθ sin θ

[
cos θ P0

r3
c

3
+ (cos θ P1 − P0) ξi

r2
c

2
+ (cos θ P2 − P1) ξ2

i rc

+(cos θ P3 − P2) ξ3
i log rc −

∞∑
`=1

(cos θP`+3 − P`+2)

`

ξ`+3
i

r`c

]
+

2

15
ξ3
i

}
(A.1.4)

Note that the final term is a sum of contributions at r = |ξi|. Substituting for the cut-

off function rc(θ, ε) given in (2.1.26), we then expand in ε up to and including O (ε0) and

perform the remaining integrals over θ. We find the final result

J1 = L9

[
64

3ε4
+
−24 + 3m2

2 − 8m3

15
+O

(
ε2
)]

(A.1.5)
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A.1.2 J2

Next we calculate J2, which we reproduce from (2.2.10):

J2 = −2L9

∫ π

0

dθ sin θ

∫ rc(θ,ε)

0

dr r2

×

2n+ 2
∑
i<j

(−1)i+j
r2 − r cos θ (ξi + ξj) + ξiξj√

r2 − 2rξi cos θ + ξ2
i

√
r2 − 2rξj cos θ + ξ2

j

 (A.1.6)

We can split the integral into two terms coming from the sum in the last line of (A.1.6).

The first term is simply

J2,a ≡ −
4

3
nL9

∫ π

0

dθ sin θ rc (θ, ε)3

= L9

[
−64n

3ε6
+
n(40 + 3m2

2 − 8m3)

18ε2
+O

(
ε2
)]

(A.1.7)

The evaluation of the second term, denoted J2,b ≡ J2 − J2,a, is more involved than that

of J1. Our strategy is to divide up the radial integration range and replace the square root

factors with the appropriate convergent series of Legendre polynomials in each interval. The

fraction in the summand is symmetric under (i ↔ j) so we can choose |ξi| < |ξj| without

loss of generality and write:

J2,b = −4L9
∑
i<j

(−1)i+j
∫ π

0

dθ sin θ

×
{∫ rc(θ,ε)

|ξj |
dr
r2(r2 − r cos θ (ξi + ξj) + ξiξj)

r2

∞∑
`=0

P`

(
ξi
r

)` ∞∑
k=0

Pk

(
ξj
r

)k
+

∫ |ξj |
|ξi|

dr
r2(r2 − r cos θ (ξi + ξj) + ξiξj)

r|ξj|
∞∑
`=0

P`

(
ξi
r

)` ∞∑
k=0

Pk

(
r

ξj

)k
+

∫ |ξi|
0

dr
r2(r2 − r cos θ (ξi + ξj) + ξiξj)

|ξi||ξj|
∞∑
`=0

P`

(
r

ξi

)` ∞∑
k=0

Pk

(
r

ξj

)k}

≡ K1 +K2 +K3 (A.1.8)
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where the Legendre polynomials are all functions of cos θ, as before. First let us consider

K1:

K1 ≡ −4L9
∑
i<j

(−1)i+j
∫ π

0

dθ sin θ

×
∞∑

`,k=0

P`Pk ξ
`
i ξ
k
j

∫ rc(θ,ε)

|ξj |
dr
(
r2 − r cos θ (ξi + ξj) + ξiξj

)
r−`−k (A.1.9)

We must perform the radial integral first because its upper limit depends on θ. This results

in several sums over powers of r and a logarithm:

K1 = −4L9
∑
i<j

(−1)i+j
∫ π

0

dθ sin θ


∞∑

`,k=0
`+k 6=3

P`Pk ξ
`
i ξ
k
j r

3−`−k

3− `− k

− cos θ(ξi + ξj)
∞∑

`,k=0
`+k 6=2

P`Pk ξ
`
i ξ
k
j r

2−`−k

2− `− k + ξiξj

∞∑
`,k=0
`+k 6=1

P`Pk ξ
`
i ξ
k
j r

1−`−k

1− `− k

+

 3∑
`,k=0
`+k=3

P`Pk ξ
`
i ξ
k
j − cos θ(ξi + ξj)

2∑
`,k=0
`+k=2

P`Pk ξ
`
i ξ
k
j + ξiξj

1∑
`,k=0
`+k=1

P`Pk ξ
`
i ξ
k
j

 log r


rc(θ,ε)

|ξj |

(A.1.10)

We only require the entanglement entropy up to and including O (ε0). Recall that the cut-

off function rc (θ, ε) given (2.1.26) leads with O (ε−2), and therefore only the logarithm and

non-negative powers of r contribute to the upper limit. Specifically, we can terminate the

infinite sums in the first and second lines at 3, 2 and 1, respectively. Integrating over θ we

find

Kupper
1 = L9

[
64n

3ε6
− n(40 + 3m2

2 − 8m3)

18ε2
− 64

3ε2
+O

(
ε2
)]

(A.1.11)
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where we have made use of the following results:

∑
i<j

(−1)i+j = −n,
∑
i<j

(−1)i+j(ξi − ξj)2 = −4 (A.1.12)

Next let us consider the lower limit and perform the integral over θ. The terms with no

explicit cos θ factor vanish unless ` = k by orthogonality (A.1.3). To deal with the terms

that do have an explicit cos θ factor, let us define

X`k ≡
∫ π

0

dθ sin θ cos θP` (cos θ)Pk (cos θ) = 2

 1 ` k

0 0 0


2

(A.1.13)

=
2(`− k)2(1 + `+ k)

(`+ k)(2 + `+ k)(1 + `− k)!(1− `+ k)!

These terms are only non-zero when X`k is too, which occurs when |` − k| = 1. These two

observations imply that the coefficient of the logarithm vanishes and that the conditions on

the sums in the first two lines of (A.1.10) have no effect for the lower limit. All that remains

is

K lower
1 = +4L9

∑
i<j

(−1)i+j
∞∑

`,k=0

ξ`i ξ
k
j

[
2

2`+ 1
δ`k

( |ξj|3−`−k
3− `− k +

|ξj|1−`−k
1− `− k ξiξj

)
− |ξj|

2−`−k

2− `− k (ξi + ξj)X`k

]
(A.1.14)

Performing the sum over k and using the definition (A.1.13) we find

K lower
1 = +4L9

∑
i<j

(−1)i+j
∞∑
`=0

2

2`+ 1
ξ`i ξ

`
j

[ |ξj|3−2`

3− 2`
+
|ξj|1−2`

1− 2`
ξiξj

− (`+ 1) |ξj|1−2`

(2`+ 3)(1− 2`)
(ξi + ξj)

2

]
(A.1.15)

The limits on the radial integrals in K2,3 are independent of θ so we are free to reverse the
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order of integration. Let us begin with K2:

K2 ≡ −4L9
∑
i<j

(−1)i+j

|ξj|

∫ |ξj |
|ξi|

dr

∞∑
`,k=0

rk−`
ξ`i
ξkj

×
∫ π

0

dθ sin θP`Pk
(
r3 − r2 cos θ (ξi + ξj) + rξiξj

)
= −4L9

∑
i<j

(−1)i+j

|ξj|

∫ |ξj |
|ξi|

dr

∞∑
`,k=0

rk−`
ξ`i
ξkj

[
2

2`+ 1
δ`k (r3 + rξiξj)− r2(ξi + ξj)X`k

]
(A.1.16)

where again we have used (A.1.3) and (A.1.13). Performing the sum over k then integrating

over r we find

K2 = −4L9
∑
i<j

(−1)i+j

|ξj|
∞∑
`=0

2

2`+ 1

ξ`i
ξ`j

[
1− `+ 1

2`+ 3

(
1 +

ξi
ξj

)]
×
( |ξj|4 − |ξi|4

4
+
|ξj|2 − |ξi|2

2
ξiξj

)
(A.1.17)

We can compute K3 using the same method:

K3 ≡ −4L9
∑
i<j

(−1)i+j

|ξi||ξj|

∫ |ξi|
0

dr
∞∑

`,k=0

r`+k

ξ`i ξ
k
j

×
∫ π

0

dθ sin θP`Pk
(
r4 − r3 cos θ (ξi + ξj) + r2ξiξj

)
= −4L9

∑
i<j

(−1)i+j

|ξi||ξj|

∫ |ξi|
0

dr
∞∑

`,k=0

r`+k

ξ`i ξ
k
j

[
2

2`+ 1
δ`k (r4 + r2ξiξj)− r3(ξi + ξj)X`k

]

= −4L9
∑
i<j

(−1)i+j

|ξi||ξj|
∞∑
`=0

2

2`+ 1

1

ξ`i ξ
`
j

{[
1− `+ 1

2`+ 3
(ξi + ξj)

(
1

ξi
+

1

ξj

)] |ξi|5+2`

5− 2`

+
|ξi|3+3`

3 + 2`
ξiξj

}
(A.1.18)

Now we combine the finite contributions to J2,b. The infinite sums can be evaluated and
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the following remarkably simple result is obtained:

K lower
1 +K2 +K3 =

4L9

3

∑
i<j

(−1)i+j sgn ξj (ξi − ξj)3 (A.1.19)

Recall that we have assumed |ξi| < |ξj|. The ordering of the ξi in (2.1.13) implies that sgn ξj

evaluates to +1 and since the sum is ordered we can write the finite contribution to J2,b as

−4L9

3

∑
i<j

(−1)i+j|ξi − ξj|3 (A.1.20)

Note that this term cannot be expressed in terms of the moments mk. Thus, our final result

for J2,b is:

J2,b = L9

[
64n

3ε6
− n(40 + 3m2

2 − 8m3)

18ε2
− 64

3ε2
− 4

3

∑
i<j

(−1)i+j|ξi − ξj|3 +O
(
ε2
)]

(A.1.21)

Summing (A.1.7) and (A.1.21) we find

J2 = L9

[
− 64

3ε2
− 4

3

∑
i<j

(−1)i+j|ξi − ξj|3 +O
(
ε2
)]

(A.1.22)

A.2 Calculation of the holographic stress tensor

In this appendix we present some details of the KK reduction calculation as well as the cal-

culation of the stress tensor using holographic renormalization. As mentioned in section 2.3,

first one has to decompose the metric into the vacuum AdS7 × S4 part and fluctuations, as

in (2.3.2). In FG coordinates the vacuum metric is given by

g
(0)
MN dx

MdxN = L2

[
4

u2

(
du2 +

(
1 +

u2

2
+
u4

16

)
ds2

AdS3
+

(
1− u2

2
+
u4

16

)
ds2

S3

)
+dθ̃2 + sin2 θ̃ds2

S̃3

]
. (A.2.1)
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The metric fluctuations in terms of the functions αi(u, θ̃) appearing in (2.1.21) are

hMN dx
MdxN = L2

[
4

u2

{(
α1 − 1− u2

2
− u4

16

)
ds2

AdS3
+

(
α2 − 1 +

u2

2
− u4

16

)
ds2

S3

}
+ (α3 − 1) dθ̃2 +

(
α4 − sin2 θ̃

)
ds2

S̃3

]
. (A.2.2)

Using these expressions, we calculate the seven-dimensional reduced metric (2.3.4) and the

outcome is

ds2
7 =

4L2

u2

[
du2 +

(
1 +

u2

2
+
u4

16
+

1

320
(16 + 3m2

2 − 8m3)u6

)
ds2

AdS3

+

(
1− u2

2
+
u4

16
− 1

320
(16 + 3m2

2 − 8m3)u6

)
ds2

S3

]
(A.2.3)

Notice that substituting the vacuum moments in (A.2.3) one can retrieve the AdS7 entries

in (A.2.1). This is because the trace shift does not contribute to the reduced metric, i.e. π̄

vanishes. Furthermore, a further FG map of (A.2.3) is not necessary since it is already in

FG form:

ds2
7 =

4L2

u2

(
du2 + gij dx

idxj
)

(A.2.4)

where the six-dimensional metric gij is given by a power series in u:

g = g(0) + g(2) u
2 + g(4) u

4 + g(6) u
6 + h(6) u

6 log u2 + . . . (A.2.5)

To compute the holographic stress tensor, we simply read off the asymptotic metric

coefficients g(0), g(2), g(4) and g(6) from (A.2.3) and substitute them into the d = 6 formula

given in [30]. For completeness we present this fomula here:

〈Tij〉 =
3 (2L)5

8πG
(7)
N

(
g(6)ij − A(6)ij +

1

24
Sij

)
(A.2.6)
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where the second and third terms are defined via

A(6)ij =
1

3

[
2(g(2)g(4))ij + (g(4)g(2))ij − (g3

(3))ij +
1

8
g(2)ij

(
tr g2

(2) − (tr g(2))
2
)

− tr g(2)

(
g(4)ij −

1

2
(g2

(2))ij

)
− g(0)ij

(
1

8
tr g2

(2) tr g(2) −
1

24
(tr g(2))

3

−1

6
tr g3

(2) +
1

2
tr(g(2)g(4))

)]
(A.2.7)

Sij = ∇2Cij − 2Rk l
i jCkl + 4

(
(g(2)g(4))− (g(4)g(2))

)
ij

+
1

10

(
∇i∇jB − g(0)ij∇2B

)
+

2

5
g(2)ijB + g(0)ij

(
−2

3
tr g3

(2) −
4

15
(tr g(2))

3 +
3

5
tr g(2) tr g2

(2)

)
(A.2.8)

with the quantities Cij and B defined by

Cij = g(4)ij −
1

2
(g2

(2))ij +
1

4
g(2)ij tr g(2) +

1

8
g(0)ijB

B = tr g2
(2) − (tr g(2))

2 (A.2.9)

Note that the contraction of indices is performed with the inverse of g(0)ij. A general formula

for the trace of the stress tensor follows from these definitions:

〈T ii〉 =
3 (2L)5

8πG
(7)
N

(
− 1

24
(tr g(2))

3 +
1

8
tr g(2) tr g2

(2) −
1

6
tr g3

(2) +
1

3
tr g(2)g(4)

)
(A.2.10)

Evaluating these formulae we find

〈Tij〉 dxidxj =
24L5

8πG
(7)
N

20 + 9m2
2 − 24m3

160

(
ds2

AdS3
− ds2

S3

)
(A.2.11)

Notice that the stress tensor is traceless, which reflects the fact there is no Weyl anomaly

for AdS3 × S3. After observing

1

8πG
(7)
N

=
Vol(S4

L)

8πG
(11)
N

, Vol(S4
L) =

8π2

3
L4 (A.2.12)
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and using the definitions (2.2.14), we then subtract off the contribution from the vacuum to

obtain our final result:

∆〈Tij〉 dxidxj =
N3

160π3

(
16 + 3m2

2 − 8m3

) (
ds2

AdS3
− ds2

S3

)
(A.2.13)

A.3 Four-form field strength

In this appendix we present the formula for the four-form field strength

F = (f1)3g1m ωAdS3 ∧ em + (f2)3g2m ωS3 ∧ em + (f3)3g3m ωS̃3 ∧ em (A.3.1)

where ωX denotes the volume form for a unit-radius space X. The gIm are related to

derivatives of potentials bI via

(f1)3g1w = −∂wb1/L
3 = 2(j+

w + j−w )

(f2)3g2w = −∂wb2/L
3 = −2(j+

w − j−w )

(f3)3g3w = −∂wb3/L
3 =

1

8
j3
w (A.3.2)

Since the four-form field strength is related to the three-form potentials by F(I) = dC(I), it

follows from (A.3.2) that the potentials take the following form:

C(1) = b1
1

z3
dz ∧ dt ∧ dl

C(2) = b2 sin2 θ1 sin θ2 dθ1 ∧ θ2 ∧ dθ3

C(3) = b3 sin2 ψ1 sinψ2 dψ1 ∧ dψ2 ∧ dψ3 (A.3.3)

Next we review the the expressions for the fields j in (A.3.2) found in [77]. The currents
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can be expressed in a compact way by defining

Jw =
h

L3(G+ Ḡ)

[
Ḡ
(
G− 3Ḡ+ 4GḠ2

)
∂wG+G

(
G+ Ḡ

)
∂wḠ

]
(A.3.4)

and are given by

j+
w = 2i Jw

(
(G− Ḡ)2 − 4G3Ḡ

)
W−4

j−w = 2GJw
(
−2GḠ+ 3Ḡ2 −G2 + 4G2Ḡ2

)
W−4

j3
w = 3∂wh

W 2

G(1−GḠ)
− 2Jw

(1 +G2)

G(1−GḠ)2
(A.3.5)

It is then straightforward to verify that the potentials are given by

b1 =
2(G+ Ḡ)h

2GḠ+ i(G− Ḡ)
+ 2h̃− 2Φ

b2 = − 2(G+ Ḡ)h

2GḠ− i(G− Ḡ)
+ 2h̃+ 2Φ

b3 = − (G+ Ḡ)h

4(GḠ− 1)
− Φ (A.3.6)

Here, h̃ is the dual harmonic function to h and satisfies

i∂wh = ∂wh̃ (A.3.7)

With h = −iL3(w − w̄) as in (2.1.11), one obtains

h̃ = L3(w + w̄) (A.3.8)

Also, Φ is defined via

Ḡ∂wh = ∂wΦ (A.3.9)
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Using ∂wh = −iL3 and G given by (2.1.12) we solve (A.3.9) to find

Φ = L3
∑
j

(−1)j
√

(w − ξj)(w̄ − ξj) (A.3.10)

Note that Φ is real, hence the only thing that could be added is a constant, corresponding

to an ambiguity in the definition of the bI .

A.4 Calculation of the real line contribution to the on-shell action

In this appendix we present details on the calculation of the contribution from the real line to

the on-shell action. To do this we have to expand the metric factors and bI in a power series

in y around y = 0. The important point is that the expansion of G, Ḡ differs in different

intervals. Let us define

I0 = [−∞, ξ1] ∪ [ξ2, ξ3] ∪ · · · ∪ [ξ2n,+∞]

I+ = [ξ1, ξ2] ∪ [ξ3, ξ4] ∪ · · · ∪ [ξ2n−1, ξ2n] (A.4.1)

For the Taylor series expansion of G we have

G =

 0 + g1(x)y + ig2(x)y2 + g3(x)y3 + . . . x ∈ I0

i+ g1(x)y + ig2(x)y2 + g3(x)y3 + . . . x ∈ I+

(A.4.2)

where

g1(x) =
∑
j

(−1)j
1

2

1

|x− ξj|

g2(x) =
∑
j

(−1)j
1

4

sign(x− ξj)
|x− ξj|2

g3(x) =
∑
j

(−1)j+1 1

4

1

|x− ξj|3
(A.4.3)
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For the calculation of bI we also need the Taylor series expansion of Φ defined in (A.3.10):

Φ = L3
(
φ0(x) + φ2(x)y2 + φ4(x)y4 + . . .

)
(A.4.4)

where

φ0(x) =
∑
j

(−1)j|x− ξj|

φ2(x) =
∑
j

(−1)j
1

2

1

|x− ξj|

φ4(x) =
∑
j

(−1)j+1 1

8

1

|x− ξj|3
(A.4.5)

Note that g1 = φ2 and g3 = 2φ4 which will be important in the expansion of the action. The

combinations of metric functions appearing in (2.4.9) can be expanded as follows:

(
f2f3

f1

)3

=


L3(g2

1−g2)2

g2
1+g2

y3 +O(y5) x ∈ I0

−L3(g2
1+g2)2

2(g2
1+2g2)

y3 +O(y5) x ∈ I+

(A.4.6)

and

(
f1f3

f2

)3

=


−L3(g2

1+g2)2

g2
1−g2

y3 +O(y5) x ∈ I0

4L3

g4
1+3g2

1g2+2g2
2

1
y3 +O( 1

y
) x ∈ I+

(A.4.7)

and

(
f1f2

f3

)3

=


− 8L3

(g4
1−g2

2)
1
y3 +O( 1

y
) x ∈ I0

−4L3(g2
1+2g2)2

g2
1+g2

y3 +O(y5) x ∈ I+

(A.4.8)
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The expansion of bI with I = 1, 2, 3 works the same way, but there are some cancellations

due to the relations of the expansion coefficients for G and Φ mentioned above. We find

b1 =


L3
(

4g1

g2
1−g2
− 2φ0 + 4x+O(y2)

)
x ∈ I0

L3
(

4g1

g2
1+g2
− 2φ0 + 4x+O(y2)

)
x ∈ I+

(A.4.9)

Since the subleading term is of order y2 as y → 0 we find that ∂y(b
2
1) is of order y. Also note

that the metric factor (A.4.6) is of order y3 as y → 0. Thus we find that the contribution to

the action coming from b1 vanishes at y = 0 and hence does not contribute.

The Taylor expansion of b2 is given by

b2 =


L3
(
− 4g1

g2
1+g2

+ 2φ0 + 4x+O(y2)
)

x ∈ I0

L3 ((2φ0 + 4x) + (g3
1 + 3g1g2 − g3)y4 +O(y6)) x ∈ I+

(A.4.10)

It is important to note that for x ∈ I+ we find that ∂y(b2)2 will behave as y3 as y → 0 and

together with the behavior of the metric factor (A.4.7) produces a finite contribution to the

action.

Similarly the Taylor expansion for b3 is given by

b3 =


L3
(
−φ0 +

(
g3

1 + g3

2

)
y4 +O(y5)

)
x ∈ I0

L3
(
− g1

g2
1+2g2

− φ0 +O(y2)
)

x ∈ I+

(A.4.11)

In a similar manner as for b2 we note that for x ∈ I0 the ∂y(b3)2 term will be of order y3 which

together with the behavior of the metric factor (A.4.8) will produce a finite contribution to

the action at y = 0.
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Summarizing we find that

lim
y→0

f 3
2 f

2
3

2f 3
1

∂y(b
2
1) = 0, x ∈ R

lim
y→0

f 3
1 f

3
3

2f 3
2

∂y(b
2
2) =


0 x ∈ I0

32L9(g3
1+3g1g2−g3)(φ0+2x)

(g2
1+g2)(g2

1+2g2)
x ∈ I+

lim
y→0

f 3
1 f

3
2

2f 3
3

∂y(b
2
3) =


16L9(2g3

1+g3)φ0

(g2
1−g2)(g2

1+g2)
x ∈ I0

0 x ∈ I+

(A.4.12)

The integration region I0 is cut off by the large rc cutoff and includes the intervals [−rc, ξ1]

and [ξ2n, rc] that are responsible for rc divergent terms. Using the large |x| expansion one can

show using the Taylor series expansions of (A.4.12) for large arguments that the contribution

from the integral is given from the large integration limits xc,+ and xc,− by

∫ xc,+

ξ2n

dx
f 3

1 f
3
2

2f 3
3

∂y(b
2
3)|y=0 = L9

[
−16x3

c,+ + 12m2x
2
c,+ + (16− 9m2

2 + 16m3)xc,+
]

+ finite∫ ξ1

xc,−

dx
f 3

1 f
3
2

2f 3
3

∂y(b
2
3)|y=0 = L9

[
−16|xc,−|3 − 12m2|xc,−|2 + (16− 9m2

2 + 16m3)|xc,−|
]

+ finite

(A.4.13)

Using the fact that xc,+ = rc(0, ε) and xc,− = rc(π, ε) together with the relation of the radial

cut-off to the FG cut-off parameter ε given in (2.1.26), one can extract the contributions of

the x-integral that are divergent with respect to the cut-off ε as follows:

Sdiv
(x) = +

L9

48πG
(11)
N

Vol(S3)2 Vol(AdS3)

(
−256

ε6
+

80− 12m2
2 + 32m3

ε2

)
(A.4.14)
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Appendix B

Surface defect Calculations

B.1 Fefferman-Graham coordinates

This section complements the discussion of the FG mapping procedure in section 3.2. We

describe the gauge choice for the one-form V and give the results of the FG coordinate map.

B.1.1 Gauge choice

As mentioned in section 3.2 we are interested to choose ω such that Vρ = 0. In particular,

we first need to expand the function

ω =
∞∑
n=0

ω(n)(θ, α)

ρn
(B.1.1)

where α = ψ + φ and demand that Vρ = 0 at each order in the ρ−1 expansion. This is a

gauge choice that kills all dρ dY cross terms with Y ∈ {ψ, θ, φ} in the asymptotic expansion

of the metric1.Then we fix ω(0) by demanding that the dθ dψ and dψ dφ cross terms vanish

1Note that ds2X defined in (3.2.2) has no dρ dY cross terms.
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at zeroth order for all M . Considering the expansion of the one-form (3.2.9) at large ρ:

VI =
∞∑
n=1

V
(n)
I (θ, α)

ρn
(B.1.2)

The result for ω is given in terms of V
(n)
I coefficients in (3.2.15). Substituting the explicit

expressions for the coefficients it can be written as

ω = −M − 1

2
α +

1

2 sin θ ρ

M∑
i=1

(xi2 cosα− xi1 sinα)

− 1

4 sin2 θ ρ2

M∑
i=1

[(
x2
i1 − x2

i2

)
sin 2α− 2xi1xi2 cos 2α

]
− 1

6 sin3 θ ρ3

M∑
i=1

[(
x3
i1 − 3xi1x

2
i2

)
sin 3α +

(
x3
i2 − 3x2

i1xi2
)

cos 3α
]

+
1

8ρ4

{
1

sin4 θ

M∑
i=1

[
4
(
x3
i1xi2 − xi1x3

i2

)
cos 4α−

(
x4
i1 − 6x2

i1x
2
i2 + x4

i2

)
sin 4α

]
+ sin2 θ

M∑
i=1

[
−8y2

i xi1xi2 cos 2α + 4
(
y2
i x

2
i1 − y2

i x
2
i2

)
sin 2α

]}
+O

(
ρ−5
)

(B.1.3)

This is the gauge choice which eliminates the Vρ component and brings the metric in a

manifestly asymptotically AdS5 × S5 form.

B.1.2 The coordinate map

In this subsection we give the results of the FG mapping. We express them in terms of the

expansion coefficients of the functions Fa appearing in (3.2.16). The coefficients relevant to

our calculation come from the expansion of Fρ:

Fρ =
∞∑
n=1

F
(n)
ρ (θ, α)

ρn
(B.1.4)
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In what follows we express the relevant coefficients in terms of the moments:

4F (2)
ρ = (1− 3 cos 2θ) [1 + 2 (m220 +m202)−m400]

+ 12 [cos 2α (m220 −m202) + 2m211 sin 2α] sin2 θ

F (3)
ρ = 3 (sin θ − sin 3θ) [(m212 +m230 −m410) cosα + (m221 +m203 −m401) sinα]

+ 4 sin3 θ [(−3m212 +m230) cos 3α− (−3m221 +m203) sin 3α]

32F (4)
ρ = −4 cos4 θ + (5− 12 cos 2θ + 15 cos 4θ) (2m202 + 2m220 −m400)

− 16 (1 + 5 cos 2θ) sin2 θ sin 2α [3m211 + 8 (m213 +m231)− 12m411]

− 8 (1 + 5 cos 2θ) sin2 θ cos 2α [3 (m220 −m202) + 8 (m240 −m204)]

− 8 (1 + 5 cos 2θ) sin2 θ cos 2α [12 (m402 −m420)]

− 640 sin 4α sin4 θ (m213 −m231)

+ 24
(
3− 4 cos 2θ + 5 cos 4θ − 40 cos 4α sin4 θ

)
m222

+ 4
(
9− 12 cos 2θ + 15 cos 4θ + 40 cos 4α sin4 θ

)
(m204 +m240)

− 4 (3− 4 cos 2θ + 5 cos 4θ) [6 (m402 +m420)−m600]

−
(

12 sin2 θ [cos 2α (m202 −m220)− 2 sin 2α m211]

− (1− 3 cos 2θ) (2m202 + 2m220 −m400)
)2

(B.1.5)

The FG mapping, as described in section 3.2, gives the following results for the FG
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coordinates:

u =
1

ρ

[
1 +

F
(2)
ρ − 1

4ρ2
+
F

(3)
ρ

6ρ3
+

16(F
(4)
ρ − F (2)

ρ + 1)− (∂θF
(2)
ρ )2 − (∂φF

(2)
ρ )2 csc2 θ

128ρ4
+O

(
ρ−5
)]

ψ̃ = ψ − ∂ψF
(2)
ρ

16ρ4
− ∂ψF

(3)
ρ

30ρ5
+O

(
ρ−6
)

θ̃ = θ − ∂θF
(2)
ρ

8ρ2
− ∂θF

(3)
ρ

18ρ3
+

1

256ρ4

[
−8∂θF

(4)
ρ + 3∂φF

(2)
ρ ∂θ∂φF

(2)
ρ csc2 θ

−(∂φF
(2)
ρ )2 cot θ csc2 θ + ∂θF

(2)
ρ

(
12− 4F (2)

ρ + 16F
(2)
4 + 3∂2

θF
(2)
ρ

)]
+O

(
ρ−5
)

φ̃ = φ− ∂φF
(2)
ρ

8 sin2 θ ρ2
− ∂φF

(3)
ρ

18 sin2 θ ρ3
+

1

256 sin2 θ ρ4

[
−8∂φF

(4)
ρ + 3∂θF

(2)
ρ ∂θ∂φF

(2)
ρ

+∂φF
(2)
ρ

(
12− 4F (2)

ρ + 16F
(2)
5 + 3∂2

φF
(2)
ρ csc2 θ − 4∂θF

(2)
ρ cot θ

)]
+O

(
ρ−5
)

(B.1.6)

B.2 Holographic entanglement entropy

In this section we present some details of the holographic entanglement entropy calculation

performed in section 3.3. To compute the integrals (3.3.13) involved in the area functional

we performed a change of variables (3.3.14) which brought the integrals to a form matching

the vacuum integrals (3.3.16). To set the limits of integration over ρ̄ we need to express the

FG cut-off in the new coordinates as ρ̄c(θ̄, ᾱ, ε).

The first step is to express {ρ, θ, α} coordinates in terms of {ρ̄, θ̄, ᾱ}. Combining (3.2.11,

3.3.14, 3.3.17) we can write the change of variables as

√
ρ2 + 1 cos θ = yi

√
ρ̄2 + 1 cos θ̄

ρ sin θ cos(α) = yiρ̄ sin θ̄ cos ᾱ + r2
i cos2 βi

ρ sin θ sin(α) = yiρ̄ sin θ̄ sin ᾱ + r2
i sin2 βi (B.2.1)

where we have defined xi1 = ri cos βi and xi2 = ri sin βi. We begin with solving the first

equation in terms of ρ. Then, we combine the last two equations to eliminate α and we
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substitute ρ. This gives an equation for sin θ in terms of the barred variables:

sin4 θ + A sin2 θ +B = 0 (B.2.2)

with

A = −1 + r2
i + 2ρ̄ ri yi cos (ᾱ− βi) sin θ̄ +

y2
i

(
1 + cos 2θ̄ + 2ρ̄2

)
2

B = −r2
i − 2ρ̄ ri yi cos (ᾱ− βi) sin θ̄ +

ρ̄2 y2
i

(
cos 2θ̄ − 1

)
2

(B.2.3)

Since θ ∈ [0, π/2] we choose the solution for which sin θ is real and positive. We get the rest

by plugging this solution into the equations (B.2.1) . Specifically, ρ is found by plugging

sin θ into the first equation while sin ᾱ and cos ᾱ are found using the other two equations.

Since we only need the asymptotic behavior we give the results expanded at large ρ̄:

ρ2 = y2
i ρ̄

2 + 2riyi cos(ᾱ + βi) sin θ̄ρ̄+
1

2

(
y2
i + 2r2

i − 1 + (y2
i − 1) cos 2θ̄

)
+O

(
1

ρ̄

)
sin2 θ = sin2 θ̄ +

2ri cos(ᾱ + βi) cos2 θ̄ sin θ̄

yiρ̄

+
cos2 θ̄

(
1− y2

i + (y2
i + 2r2

i − 1) cos 2θ̄ − 4r2
i cos(2ᾱ + 2βi) sin2 θ̄

)
2y2

i ρ̄
2

+O

(
1

ρ̄3

)
sinα = sin ᾱ +

ri csc θ̄(cos βi − cos(ᾱ + βi) sin ᾱ)

yiρ̄

+
r2
i csc2 θ̄ (−4 cos βi cos(ᾱ + βi) + sin ᾱ + 3 cos(2ᾱ + 2βi) sin ᾱ)

4y2
i ρ̄

2
+O

(
1

ρ̄3

)
cosα = cos ᾱ− ri csc θ̄(cos βi + cos(2ᾱ + βi)− 2 sin βi)

2yiρ̄

+
r2
i csc2 θ̄ (−4 sin βi cos(ᾱ + βi) + cos ᾱ + 3 cos(2ᾱ + 2βi) cos ᾱ)

4y2
i ρ̄

2
+O

(
1

ρ̄3

)
(B.2.4)

To find the cut-off ρ̄c(θ̄, ᾱ, ε) we substitute (B.2.4) in the expression for the FG coordinate
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u, which can be found in (B.1.6), to get u in terms of the barred coordinates.

u =
1

yiρ̄
− ri cos(ᾱ + βi) sin θ̄

y2
i ρ̄

2
− 1

8y3
i ρ̄

3

[
1 + 4r2

i + 2y2
i + 2(y2

i − 1) cos 2θ̄

+ 2m220 + 2m202 −m400 − 3 sin2 θ̄
(
1 + 2r2

i + 2r2
i cos(2ᾱ + 2βi)

+2m220 + 2m202 −m400 + 4 sin 2ᾱm211 + 2 cos 2ᾱ(m220 −m202))
]

+O

(
1

ρ̄4

)
(B.2.5)

Solving this asymptotically for ρ̄ and setting u = ε we find the cut-off surface in barred

coordinates.

ρ̄c(ε, θ̄, ᾱ) =
1

yiε
− ri cos(ᾱ + βi) sin θ̄

yi
+

1

8yi

[
− 1− 4r2

i − 2y2
i − 2(y2

i − 1) cos 2θ̄

− 2m220 − 2m202 +m400 + sin2 θ̄
(
3 + 2r2

i + 2r2
i cos(2ᾱ + 2βi)

+6m220 + 6m202 − 3m400 + 12 sin 2ᾱm211 + 6 cos 2ᾱ(m220 −m202))
]
ε+O

(
ε2
)

(B.2.6)

B.3 Coordinate systems and maps

In this section we collect useful formulae for the various coordinate systems and their maps

along with information about our setup in these systems. In particular we relate AdS3 × S1

to S1×H3 with an intermediate transformation to R4. In the latter space the picture of our

setup becomes more clear (see figure 3.1).

The metrics on the 4D Euclidean spaces we consider are the following:

AdS3 × S1 ds2
AdS3×S1 =

dt2 + dl2 + dz2

z2
+ dψ2

spherical ds2
R4 = dt2 + dx2 + x2

(
dϑ2 + sin2 ϑ dψ2

)
hyperboloid ds2

S1×H3 = dτ 2 +R2
(
dρ2 + sinh2 ρ

(
dϑ2 + sin2 ϑ dψ2

))
(B.3.1)
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They are conformally related to each other as follows:

ds2
AdS3×S1 = z−2 ds2

R4 , ds2
R4 = Ω̄2 ds2

S1×H3 , ds2
AdS3×S1 = Ω2 ds2

S1×H3 (B.3.2)

where

Ω̄ = (cosh ρ+ cos(τ/R))−1 , Ω = (R sinh ρ sinϑ)−1 (B.3.3)

The coordinate maps corresponding to these three transformations are given by

AdS3 × S1 to spherical: l = x cosϑ, z = x sinϑ

spherical to hyperboloid: t = R Ω̄ sin(τ/R), x = R Ω̄ sinh ρ

AdS3 × S1 to hyperboloid: t = R Ω̄ sin(τ/R), l = R Ω̄ sinh ρ cosϑ, z = R Ω̄ sinh ρ sinϑ

(B.3.4)

where the last transformation comes from combining the first two.

For easy reference we quote the location Σ of the surface defect and the location ∂A of

the entangling surface in the various coordinate charts:

Σ ∂A

AdS3 × S1 fills t, fills l, z = 0 t = 0, l2 + z2 = R2

spherical fills t, fills x, ϑ = 0, π t = 0, x = R

hyperboloid fills τ, fills ρ, ϑ = 0, π ρ→∞

It can be seen, in all coordinate charts, that the surface defect intersects the entangling

surface exactly at two points.
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B.4 Asymptotic expansion comparison with [1]

For calculating holographic observables one has to expand the supergravity solution in an

asymptotic form. In this section we quote the way the asymptotic expansion was performed

in [1] and compare with ours.

Defining Φ = f/y the equation for f , (3.2.3), can be written as the six-dimensional

Laplace equation for Φ with SO(4) invariant sources. In [1] the authors write Φ as the

vacuum part and a deviation:

Φ = Φ(0) + ∆Φ (B.4.1)

Then, they expand the deviation ∆Φ in SO(4)-invariant spherical harmonics. The coeffi-

cients of this expansion are denoted by ∆Φ∆,k, where ∆, k are eigenvalues characterizing the

spherical harmonics (for more details on the spherical harmonics see appendix A in [1]).

As an example, we quote their result for the one-point function of the stress tensor which

was found using holography:

〈Tµν〉Σ dxµdxν =
N2

2π2

(
1

16
− 1

12
√

3
∆Φ2,0

)(
ds2

AdS3
− 3 dψ2

)
(B.4.2)

One can see that this matches (3.4.21, 3.4.22), when a definition for ∆Φ2,0 is given in terms

of the moments. For completeness we give all the coefficients corresponding to spherical

harmonics with eigenvalue ∆ = 2 in terms of the moments:

∆Φ2,0 = 4
√

3

(
m220 +m202 +

1−m400

2

)
∆Φ2,±2 = 6e∓2iψ (m220 −m202 ± 2im211) (B.4.3)
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B.5 Holographic expectation value

In this appendix we compute the integrals involved in the expectation value of the surface

defect (3.4.1). Specifically, these are the bulk contribution given in (3.4.6) and the Gibbons-

Hawking term in (3.4.4).

B.5.1 Bulk term

Let us start with the evaluation of the bulk term. The method described in [110,111] led us

to (3.4.11) the integrand of which we expressed as (3.4.13). We begin with carrying out the

integration over AdS3, S3 and S1, which is trivial. Then, the bulk term can be expressed in

terms of two integrals over the base space X:

SIIB,bulk = − 4

κ2
Vol (AdS3) Vol

(
S3
)

Vol
(
S1
) [
−1

2
J1 + J2

]
(B.5.1)

where we have defined:

J1 =

∫
X

dx1 dx2 dy fy (B.5.2)

J2 =

∫
X

dx1 dx2 dy ∂IuI (B.5.3)

Making use of the integral (3.3.7) appearing in the entanglement entropy calculation we

can write

J1 =

∫
X

dx1 dx2 dy

[(
f − 1

2

)
y +

1

2
y

]
(B.5.4)

=
π

4ε2
+

π

24
[1− 4 (m220 +m202 +m400)] +

1

2

∫
X

dx1 dx2 dy y (B.5.5)

where we have dropped terms that vanish as ε → 0. The integral in the second line can be
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x1

x2

y

∂X2

∂X1 

Figure B.1: The base space X boundary components: the blue wiggled dome noted as ∂X2

is the large ρ cut-off and the lowest flat surface noted as ∂X1 is the boundary at the x1, x2

plane.

evaluated directly by changing to {ρ, θ, α} coordinates (the relevant map is given in (3.2.11)):

∫
X

dx1 dx2 dy y =

∫
dρ dθ dα ρ

(
ρ2 + sin2 θ

)
cos θ sin θ

=

∫ π/2

0

dθ

∫ 2π

0

dα
1

4
ρ2
(
ρ2 + 2 sin2 θ

)
cos θ sin θ

∣∣∣∣ρc(ε,θ,α)

0

=
π

4ε4
+

π

16ε2
(1 + 2m220 + 2m202 −m400) + Y1 (B.5.6)

where the term Y1 reads:

Y1 ≡
π

768
[−7 + 12m220 + 12m202 − 6m400

− 288
(
m2

220 +m2
202

)
+ 144m220m202 − 720m2

211 + 108 (m220 +m202)m400 − 27m2
400

+48 (m240 +m204) + 96 (m222 −m402 −m420) + 16m600] (B.5.7)

Next we evaluate J2 by turning it into an integral over the boundary of X. Switching to
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covariant notation in which gIJ is a metric on X we have

J2 =

∫
X

d3x
√
g∇I u

I (B.5.8)

=

∫
∂X

d2x
√
γ nI u

I (B.5.9)

where n is the outward-pointing unit normal vector and γ the induced metric on ∂X. This

surface consists of two components (see figure B.1):

∂X1 =
{

(x1, x2, y)| y = 0, x2
1 + x2

2 ≤ ρc(ε, π/2, α)2
}

(B.5.10)

∂X2 = {(ρ, θ, α)| ρ = ρc(ε, θ, α), θ ∈ [0, π/2], α ∈ [0, 2π]} (B.5.11)

The contribution to J2 from ∂X1 vanishes. This can be easily seen by expanding (3.4.12)

for small y and take the y → 0 limit. For the remaining contribution we work in {ρ, θ, α}

coordinates. The metric on X is

ds2
X =

ρ2 + sin2 θ

ρ2 + 1
dρ2 +

(
ρ2 + sin2 θ

)
dθ2 + ρ2 sin2 θ dα2 (B.5.12)

The unit vector normal to the surface ρ − ρc(ε, θ, α) = 0 has the following components in

this chart:

nρ =
1

D , nθ = −∂θρc(ε, θ, α)

D , nα = −∂αρc(ε, θ, α)

D (B.5.13)

D ≡
√

[∂αρc(ε, θ, α)]2

ρ2 sin2 θ
+
ρ2 + 1 + [∂θρc(ε, θ, α)]2

ρ2 + sin2 θ
(B.5.14)

The induced metric and pullback components are given by

γab = gIJ e
I
a e

J
b with eIa =


∂θρc(ε, θ, α) ∂αρc(ε, θ, α)

1 0

0 1

 (B.5.15)
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where a ∈ {θ, α}. We are now ready to evaluate J2:

J2 =

∫ π/2

0

dθ

∫ 2π

0

dα
√
γ

y3

4 (4f 2 − 1)
gIJ nI ∂Jf

= − π

16ε4
+

π

64ε2
(1 + 2m220 + 2m202 −m400) + Y2 (B.5.16)

where

Y2 ≡
π

3072
[−51− 100m220 − 100m202 + 50m400

+ 72
(
m2

220 +m2
202

)
+ 144m2

211 − 36 (m220 +m202)m400 + 9m2
400

+48 (m240 +m204) + 96 (m222 −m402 −m420) + 16m600] (B.5.17)

Putting everything together we get

SIIB,bulk =
π

2κ2
Vol (AdS3) Vol

(
S3
)

Vol
(
S1
) [ 1

ε4
+

1

ε2
+

3

8
−m400 +

2

π
(Y1 − 4Y2)

]
(B.5.18)

Plugging in the explicit expressions for Y1 and Y2 we notice that the moments of weight six

drop out. The result is given in (3.4.14, 3.4.15).

B.5.2 Gibbons-Hawking term

To compute the Gibbons-Hawking term (3.4.4) we use a similar method to that used in

the previous subsection for the total derivative on X, but now in the full ten-dimensional

spacetime. The unit vector normal to the surface ρ − ρc(ε, θ, α) = 0 has the following

non-trivial components

nρ =
1

D
√

2y√
4f2−1

, nθ = −∂θρc(ε, θ, α)

D
√

2y√
4f2−1

, nα = −∂αρc(ε, θ, α)

D
√

2y√
4f2−1

(B.5.19)
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where D is defined in (B.5.14). The induced metric and non-trivial pullback components are

given by

γab = gMN e
M
a eNb (B.5.20)

eρθ = ∂θρc(ε, θ, α), eρα = ∂αρc(ε, θ, α), eab = δab (B.5.21)

where now a runs over all coordinates except ρ. The extrinsic curvature can be computed

from the Lie derivative along n:

Kab =
1

2
(Ln g)MN e

M
a eNb (B.5.22)

=
1

2

(
nP ∂PgMN + gPN ∂Mn

P + gMP ∂Nn
P
)
eMa eNb (B.5.23)

and its trace is simply K ≡ γabKab (whose small ε expansion leads with order 4). The result

is

SGH =
π

2κ2
Vol (AdS3) Vol

(
S3
)

Vol
(
S1
)( 4

ε4
+

1

ε2

)
(B.5.24)

The moments appearing in the boundary integrand drop out when the integration over the

angles {θ, α} is performed.

Note that there is in principle a contribution from the other component of the boundary

at y = 0, but again this vanishes. Specifically, expanding the Gibbons-Hawking integrand

for small y we get
√
γ K = O (y2) which vanishes in the y → 0 limit.
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Appendix C

5d SCFTs Calculations

C.1 Type IIB on-shell action as boundary term

To recall how the type IIB supergravity action can be written as a boundary term on-shell,

we start from the action in the form [133]

SIIB =
1

2κ2

∫
d10x
√−g

(
R− ∂µτ̄ ∂

µτ

2 (Imτ)2 −
Mij

2
F i

3 · F j
3 −

1

4
|F̃5|2

)
− εij

8κ2

∫
C4 ∧ F i

3 ∧ F j
3 ,

(C.1.1)

where the dot product is defined as Qp · Fp = 1
p!
gµ1ν1 ...gµpνpQµ1...µpFν1...νp and κ2 = 8πGN

with Newton’s constant GN. In the main part we will not use the short hand κ2 to avoid

confusion with the composite quantity defined in (4.1.3). The field strengths are defined as

F i
3 = dCi

2 , F5 = dC4 , F̃5 = F5 −
1

2
C2

2 ∧ F 1
3 +

1

2
C1

2 ∧ F 2
3 , (C.1.2)
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with i = 1, 2 where i = 1 and i = 2 correspond to the NS-NS and R-R 2-forms, respectively.

The 2× 2 matrix M is given by

Mij =
1

Imτ

 |τ |2 −Reτ

−Reτ 1

 . (C.1.3)

As shown in [66], on-shell this action reduces to a boundary term. For C4 = 0, which applies

for all configurations considered here, this boundary term reduces to

SIIB =
1

2κ2

∫
d

(
−1

4
MijC

i
2 ∧ ?F j

3

)
. (C.1.4)

To translate this expression to our conventions for the supergravity fields, we combine the

two real 2-forms Ci
2 into one complex 2-form, C2 = C1

2 + iC2
2 , with field strength F3 = dC2,

and redefine the fields as follows,

B =
1 + iτ

1− iτ , f 2 =
(
1− |B|2

)−1
. (C.1.5)

In terms of f , B and C2, and eliminating κ2 in favor of GN, the boundary term (C.1.4)

becomes

SIIB = − 1

64πGN

∫
d

(
1

2
f 2(1 + |B|2)

(
C̄2 ∧ ?dC2 + C2 ∧ ?dC̄2

)
− f 2B̄C2 ∧ ?dC2 − f 2BC̄2 ∧ ?dC̄2

)
. (C.1.6)

For the configurations we are interested in, there is no non-trivial dependence on the AdS6

coordinates. We can therefore Wick rotate between Lorentzian and Euclidean signature

purely within the AdS6 part, which only enters through the volume form and at most accounts

for a sign in the on-shell action. That sign can be fixed directly in Euclidean signature,

where we want Z =
∫
Dg exp(−S) with S positive semi-definite, such that F = − lnZ
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is non-negative. For AdS there are the usual subtleties with divergences and holographic

renormalization, and we will discuss this in more detail in app. C.2. We will demand the

leading divergent term in the regularized free energy to be positive, and this corresponds to

SE
IIB =

1

64πGN

∫
d

(
1

2
f 2(1 + |B|2) C̄2 ∧ ?dC2 − f 2B̄C2 ∧ ?dC2 + c.c.

)
. (C.1.7)

C.2 Holographic renormalization

Holographic renormalization of the gravity theory on an asymptotically-AdS space becomes

considerably more involved if the geometry does not reduce to a simple product form in the

near-boundary limit. In general, the entire ten-dimensional geometry has to be considered

with a nine-dimensional cut-off surface limiting the range of the radial coordinate in the

asymptotic part of the geometry. There is a substantial amount of freedom in choosing this

cut-off surface, which by the usual AdS/CFT lore corresponds to the freedom to choose a

regularization scheme on the field theory side. In many cases one can restrict the choice

of the cut-off surface by symmetry requirements. E.g., for AdS5×S5, one would require the

cut-off surface to respect the S5 isometries, which essentially reduces the problem of finding

counterterms to the AdS5 factor. For our geometries the analogous symmetry argument

restricts the location of the cut-off on the AdS6 radial coordinate to be independent of the

location on S2. The dependence on the location on Σ, however, is not restricted by that

requirement.

For definiteness, we will choose global coordinates on Euclidean AdS6 such that the metric

takes the form

gAdS6 = du2 + sinhu2gS5 , (C.2.1)

with u ∈ [0,∞). The cut-off surface should provide an upper bound on the range of u. The

perhaps most natural choice is to pick a small ε ∈ R+ and require u < arcsinh(1/ε). The cut-

off surface is then the nine-dimensional surface defined by u = arcsinh(1/ε). This regulator
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is invariant under the isometries of the S5 inside AdS6 and under the isometries of S2,

corresponding to spacetime isometries and R-symmetry in the dual field theory, respectively.

However, any cut-off surface of the form u = arcsinh(1/ε(w)), with ε(w) small throughout

Σ, satisfies these requirements as well, and we are indeed free to choose any of them.

The value of the regularized on-shell action will certainly depend on the choice of regula-

tor, as it usually does. The freedom in choosing a cut-off surface is enhanced here compared

to the simpler cases with highly symmetric bulk geometries (where the freedom essentially

boils down to rescalings of the cut-off), but the fact that there is ambiguity is by no means

a new feature of the solutions considered here. More importantly, after proper holographic

renormalization the universal parts of any physical quantity considered still have to be in-

dependent of the choice of regulator. We can therefore pick the simplest one, where ε is

constant over Σ, as long as we only ask for physically meaningful (universal) quantities.

Moreover, since we have an even-dimensional AdS space with odd-dimensional field the-

ory, there are no finite counterterms from the metric sector: the volume form on AdS6 scales

like ε−5, and all other covariant quantities constructed from the induced metric on the cut-off

surface (including the GHY term) have an expansion in even powers of ε. That means the

covariant boundary terms scale as odd powers of ε and do not produce finite contributions.

We have not explicitly verified that this holds for the other fields as well, but since they

are related by supersymmetry we expect the corresponding covariant counterterms to scale

with odd powers of ε as well. There is therefore no ambiguity in choosing a renormalization

scheme, and we can read off the universal part directly, e.g. as the finite part of the free

energy, without going through the proper procedure of holographic renormalization.

With the cut-off u < arcsinh(1/ε), the holographic renormalization indeed reduces to a

pure AdS6 problem, with the regularized volume of AdS6 given by

VolAdS6 = VolS5

∫ arcsinh 1
ε

0

sinh5 udu = VolS5

(
1

5ε5
− 1

6ε3
+

3

8ε
− 8

15
+O (ε)

)
. (C.2.2)
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As argued above, the universal part can be extracted immediately and is given by

VolAdS6,ren = − 8

15
VolS5 . (C.2.3)
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