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Bicubic Subdivision-Surface Wavelets for Large-Scale
Isosurface Representation and Visualization

Janine Bennett Karim Mahrous Bernd Hamann Kenneth I. Joy1

Abstract

We present a segmentation approach to scientific visualization that
combines the definition of higher-level data, the efficient extraction
of meaningful derived feature-like data from defined properties, and
the effective visual representation of the extracted data. Our frame-
work is aimed at multi-valued time-varying data sets, where, for
example, grid vertices might have a multitude of associated scalar,
vector and tensor quantities. This “segmentation” approach to mas-
sive data set exploration allows the user to focus upon regions, and
interactively explore these regions efficiently. The challenge is to
generate this segmented data from existing multi-valued data sets,
store this data in an efficient scheme, generate the boundaries of
each region, and display these boundaries to the user. We present
an integrated scheme that allows a common representation for seg-
mentation, allows it to be applied to a number of data types, and
allows derived representations to be calculated. We illustrate this
framework with examples from scalar-and vector-field visualiza-
tion.

1 Introduction

With the increase in computing power and our ability to gather
more and more data via increasingly powerful imaging and sensor
technology, the size of scientific data sets continues to grow. Data
sets that represent physical phenomena now contain billions of el-
ements representing multi-valued, multi-dimensional, time-varying
data, and we are no longer able to fully analyze them. One can con-
sider various paradigms when attempting to provide better tools for
the exploration of these data sets, but the need is to drive these tools
by the realization that the scientist rarely needs to examine an entire
data set. Typically, the interest is in particular regions where certain
properties hold. Tools must be developed that allow the scientist to
identify and specify these properties, and segment the data set to
determine the regions where these properties hold.

We firmly believe in the value of interactive data visualization as
a tool for massive data set exploration, and we realize that it is no
longer feasible to interactively explore a massive data set in its en-
tirety. The approach we propose combines the definition of higher-
level data, the efficient extraction of meaningful derived data from
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defined properties. Our framework is aimed at multi-valued time-
varying data sets, where, for example, grid vertices might have a
multitude of associated scalar, vector and tensor quantities. Our
goal is to devise new algorithms that support the numerically ro-
bust extraction of regions (or boundaries of these regions) that rep-
resent similar qualitative or topological behavior. We propose this
“segmentation” approach to massive data set exploration as we be-
lieve that it is possible to determine and interactively explore these
focussed regions efficiently, with respect to both storage and com-
putation requirements.

We are interested in multi-valued time-varying data sets that
are based upon three-dimensional grids. We believe that these
data sets present us with many fundamental unsolved problems
in data exploration. Many researchers have developed algorithms
for two-dimensional data (especially vector and tensor fields), but
these methods do not scale to the additional dimension(s). Two-
dimensional vector fields, for example, are easily characterized by
their critical points. Classification of these points, and segmentation
by separatrices, completely characterize these flow fields. However,
three-dimensional vector fields can be arbitrarily complex and often
do not contain any critical point (e.g., the NASA delta wing [10]).
Exploration techniques for these fields are still in their infancy.

This research is motivated by the segmentation algorithms de-
veloped by Bonnell et al.[3], where a data set is segmented by uti-
lizing “material fraction” information stored in each grid cell. In
multi-fluid hydrodynamics simulations, the numerical algorithms
produce percentages for each cell defining the relative amount of
a fluid present in the cell. Of major interest is the extraction and
visualization of interfaces between the various fluids, and how in-
terfaces change over time. Bonnell et al.use the fraction data to con-
struct the fluid interfaces. This approach is inherently a segmenta-
tion approach, where we segment the domain of the simulated data
set into regions of same material type.

The challenge is to generate this segmented data for more gen-
eral types of multi-valued data sets, store this data efficiently, gen-
erate the boundaries of each region, and display these boundaries.
The segmentation approach will give us a more generally applica-
ble scheme that supports a common representation for segmenta-
tion, that can be applied to a number of data types, and that enables
us to calculate derived representations. These representations can
be integrated with multiresolution techniques to reduce the sizes of
the data representations, to support fast region/segment generation
and visualization.

This framework emphasizes the exploration of massive scien-
tific data through the computation of derived “higher-level data,”
data that will support interactive visual exploration considering re-
gions of similar behavior. Due to increasing data set sizes we are
convinced that such a framework is needed in order to create high-
level views of data and to “steer” interactive visualization. Prior
to providing a scientist with visual representations of original field
variables we can generate views that show the various regions in
domain space where a certain type of behavior are observed.

In Section 2 we discuss the motivation behind our framework,
how it relates to previous work in the field, and how to adapt cur-
rent algorithms to segment scalar fields. Section 3 and Section 4
discusses the segmentation of three-dimensional vector fields. Sec-



tion 5 discusses the implementation issues in vector field segmen-
tation and Section 6 shows the results of segmenting a complex
three-dimensional vector field.

2 Segmenting Scalar Fields

Suppose we are given a data set and an associated set of proper-
ties c1, c2, ..., cm. For each vertex v in the data set, we associate
an m-tuple (α1, α2, ..., αm), where αi is the fraction of ci present
(or “valid”) at v. We assume that 0 ≤ αi ≤ 1 for i = 1, ..., m,
and

∑m
i=1 αi = 1. We will call data sets of this kind segmented.

Thus, we consider a segmented data set to be one where each vertex
of the data set has an associated barycentric coordinate. The chal-
lenge is to generate this segmented data from given multi-valued
data sets, store this segmented data in an efficient scheme, gener-
ate the boundaries of each segment, and display these boundaries.
Many problems in data exploration can be formulated using seg-
mented data. These are a few examples:

• In a scalar field, an isosurface is determined by a single
scalar value s. Here, each vertex v can be assigned a 2-tuple
(α1, α2), where α1 = 0 if the scalar value associated with v
is less than s, and where α1 = 1 if the scalar value is greater
or equal to s, and α2 = 1 − α1. The isosurface is then the
boundary of the region where α1 = 1

2
.

• In a scalar field, the region between two isosurfaces can be
isolated. Given two scalar values s1 < s2, each vertex vis
assigned a 3-tuple (α1, α2, α3), where α1 = 1 if the scalar
value s associated with v is less than s1, where α2 = 1 if
s1 ≤ s ≤ s2, and α3 = 1 if s > s2. Points on the two
boundaries of the region are characterized by α1 = α2 = 1

2

and α2 = α3 = 1
2
.

• Considering vector fields, a streamsurface can be determined
in a similar way. Here, each vertex v can be assigned a 2-
tuple (α1, α2), where αi = 0 or 1 depending on whether a
streamline emantating from v is on the “left” or “right” side
of the streamsurface.

• Using slicing techniques, researchers have developed data
sets that consist of a number of high-resolution slices, where
each vertex v is assigned a set of probabilities that determine
whether certain properties hold at the vertex. In this case, each
data point is assigned an m-tuple (α1, α2, ..., αm), where αi

represents the probability that property i is satisfied at the ver-
tex. We can use segmentation techniques to determine the
boundary of regions that have certain probabilities, and there-
fore satisfy certain property characteristics.

Those problems where the values are real numbers are the most
interesting and have the greatest application in data exploration.
Generated surfaces will be smoother, and they will more accurately
represent the segment boundary. We will extensively investigate the
cases where the values are real.

Müller [12] and Nielson and Franke [13] have defined methods
to find the separating surface in an unstructured tetrahedral data set
when each vertex is associated with a particular “type” (i.e., exactly
one of the αi = 1 for each vertex). Their methods follow the prin-
ciple of the marching-cubes algorithm of Lorensen and Cline [11],
generating a separating surface for each tetrahedron in the data set.

Bonnell et al.[3] have solved a more general problem for a spe-
cific case: In multi-fluid Eulerian hydrodynamics calculations, geo-
metric approximations of fluid interfaces are used to form the equa-
tions of motion to advance these interfaces correctly over time. In
this application, grid cells of the data set contain fractional volu-
metric information for each of the fluids. Thus, each cell C of a
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Figure 1: Given a triangle (shaded) in a two-dimensional grid,
where each vertex vi of the triangle contains a barycentric coor-
dinate αi, these barycentric coordinates are mapped to a triangle
contained in a 2-simplex in barycentric space. The intersections
(dark lines) are calculated in barycentric space, and mapped back
to the original triangle.

Figure 2: A brain segmentation obtained with Bonnell’s algorithm

grid S has an associated m-tuple (α1, α2, ..., αm) that represents
the portions of each of m fluids in the cell. By considering a “dual
grid,” Bonnell et al. associate the m-tuples with vertices of the dual
grid and develop a method that finds a (crack-free) piecewise two-
manifold separating surface approximating the boundary surfaces
between the various fluids. Figure 2 illustrates the basic mapping
used in the two-dimensional case when three materials are consid-
ered (m = 3). Given a triangle, where each vertex has an associated
barycentric coordinate, this triangle is mapped into a 2-simplex in
3D barycentric space. This barycentric-space simplex has the val-
ues (1, 0, 0), (0, 1, 0), and (0, 0, 1) at the vertices. Given a Voronoi
decomposition of the 2-simplex, using the points (1, 0, 0), (0, 1, 0),
and (0, 0, 1) as the centers of the Voronoi cells, we can map the
barycentric coordinates of the vertices of the triangle into this sim-
plex. Calculating the intersection of this mapped triangle with the
Voronoi cells yields the corresponding segmentation of the triangle.

Bonnell’s algorithm generalizes the work of a number of re-
searchers [6, 16, 17, 28] who developed two-dimensional non-C0

methods for calculating fluid interfaces. This method calculates a
C0, potentially non-manifold surface for a finite number of mate-
rials over a three-dimensional tetrahedral grid. Given m fluids, the
method can potentially calculate m−1 separating surfaces for each
cell. Figure 2 illustrates a brain data set. Here, each cell of the data
set contains a 3-tuple, where the respective components of the tuple
indicate the presence of gray matter, white matter, and other matter.

2.1 The General Case

In the case of four materials, it is sufficient to assume that each
vertex of T has an associated barycentric coordinate tuple α =
(α1, α2, α3, α4), where α1 + α2 + α3 + α4 = 1, and αi ≥ 0 By
considering the 3-simplex having vertices (1, 0, 0, 0), (0, 1, 0, 0),
(0, 0, 1, 0), and (0, 0, 0, 1) in material space, a partition of this sim-
plex into Voronoi cells can be defined. The boundaries of these cells
are bounded by the faces of the 3-simplex and six hyperplanes, de-



fined by the set of α such that (i) α1 = α2, (ii) α1 = α3, (iii)
α1 = α4,(iv) α2 = α3, (v) α2 = α4, and (vi) α3 = α4. The
resulting Voronoi partition is shown in Figure 3. If T is a triangle
in a two-dimensional unstructured grid, the barycentric coordinate
tuples associated with the vertices of T are mapped into a triangle
Tα in the material space 3-simplex. A clipping algorithm is applied
to Tα to generate intersections with the boundaries of the Voronoi
cells, by clipping against each of the six hyperplanes defining the
Voronoi-cell boundaries.

Intersections can be found by a simple procedure. Suppose that
an edge of Tα with endpoints α(1) and α(2) crosses the hyperplane
defined by α1 = α2. If α is the intersection point, we can compute
r such that

α = (1 − r)α(1) + rα(2).

If the first two coordinates of α are equal, then

(1 − r)α(1) + rα(2) = (1 − r)α(1) + rα(2),

which allows us to calculate r directly. (See Hanson [7] for similar
methods.) Once the intersections are determined by the clipping
algorithm, the polygons in Tα are used to determine polygons in the
Euclidean coordinates of T , which represent the material boundary.

In the k-material case, a tetrahedron (triangle) T has an associ-
ated k-simplex Tα in material space. The k-simplex is partitioned
into Voronoi cells whose boundaries consist of the faces of the k-
simplex and the (

k

2

)

hyperplanes defined by the equations αi = αj , where 1 ≤ i < j ≤
k. The intersections of Tα with the boundaries of the Voronoi cells
are calculated by performing clipping. The polygons of Tα, deter-
mined by the clipping algorithm, are then used to determine poly-
gons in the Euclidean coordinates of T in physical space, which
represent the material boundary in T .

3 Vector Field Segmentation

Segmentation of the domains of trivariate vector fields is equally
important and even more challenging than scalar field segmenta-
tion. Classical approaches used for bivariate vector field segmenta-
tion are based on constructing the separatrix structure of a field –
a set of curves in the plane – defining regions that behave qualita-
tively similarly [8, 14, 21]. For example, all points in the domain of
a bivariate vector field that, when used as seeds for the computation
of streamlines, end at the same attracting focus define a region of
same topological behavior. Separatrices are classically generated
by computing the critical points in the domain of the vector field,
determining the types of these critical points, and using numerical
methods to trace streamlines originating from so-called “origina-
tors” [8]. Due to the need to use numerical methods [2, 15] for
streamline/separatrix approximation, results are usually subject to
error, or are even wrong.

However, more interesting problems arise with three-
dimensional vector fields. Two-dimensional vector fields, for
example, are easily characterized by their critical points. Classifi-
cation of these points, and segmentation by separatrices completely
characterizes the flow of these fields. However, three-dimensional
vector fields can be arbitrarily complex and might not contain any
critical points.

Current three-dimensional vector field visualization techniques
are based mainly upon streamline and stream-surface generation
[8, 14]. These techniques use the definition of the vector field to
trace massless particles through the field, tracking their progress
by linking them in lines (streamlines) or surfaces (streamsurfaces).

Figure 3: Voronoi cell decomposition for the four-material case.
The figure illustrates a three-dimensional projection of the 3-
simplex. The 3-simplex is segmented in four Voronoi cells and
illustrates a 3-simplex mapped from a tetrahedron T .

Level sets have been used [25] to enhance streamline generation.
However, the most important segmentation method for vector fields
is the generation of separatrices. Separatrices are streamsurfaces
that separate the flow. Scheuermann et al. and others [22, 26, 24,
21] have done research for separatrices in two dimensional fields,
but little has been done for three-dimensional fields [20].

Three-dimensional vector fields are tremendously complex.
They frequently have no critical points, and the characteristic fea-
tures of these fields (vortices, sheer walls, etc.) are difficult to
detect [9]. Extracting meaningful structural information for three-
dimensional vector fields is the important problem, and we are a
long way from solving it.

Classical approaches for bivariate vector field segmentation are
based on constructing the separatrix structure of a field – a set of
curves in the plane – defining regions that behave qualitatively sim-
ilarly [8, 14, 21]. Separatrices are usually generated by computing
the critical points in the domain of the vector field, determining the
types of these critical points, and using numerical methods to trace
streamlines originating from so-called “originators” in the field, see
[8]. These streamlines form separatrices that segment the field into
regions of similar topological behavior.

Unfortunately, similar techniques have not been developed for
three-dimensional vector fields. Most visualization techniques for
three-dimensional flow fields concentrate on streamline and stream-
surface representations, however these techniques do not give a
clear illustration of the field’s topological behavior. More sophis-
ticated techniques use streamline analysis to extract features of the
field , such as attachment and separation lines on a boundary sur-
face. However, separatrix methods have been unavailable for the
analysis of three-dimensional fields. Two basic problems have pre-
vented these studies: First, there are few critical points in three-
dimensional fields, and second, the numerical marching methods
to trace characteristic stream surfaces are difficult to implement
and can create substantial numerical errors. In general, visualiza-
tion and classification of three-dimensional fields continues to be
an open problem.

The method presented in this paper is similar to those that gener-
ate separatrix structures in two-dimensional vector-fields: focusing
on segmentation of the data set based on topological structure. The
algorithm is a two-step process that partitions a vector field into re-
gions of topologically similar flow. First, we sample the vector field
using streamlines, and replace the original data by a “segmented”



data set. Second, a segmentation algorithm generates separating
surfaces in the field. We utilize a “local separatrix” concept intro-
duced by Scheuermann et al. [22], which augments the separatrices
generated from critical points with “local separatrices” originating
from the boundary region of the data set. By segmenting the bound-
ary region into “inflow” and “outflow” regions, a local separatrix is
the streamline generated from a point on the boundary where the
flow is tangential. In this way, the algorithm generates a complete
separation of the field into regions of similar flow. For visualiza-
tion of massive data sets, this algorithm can be used to determine
similar flow regions within a small region, avoiding the problem of
analyzing the complete data set.

We utilize this concept to define a segmentation of a three-
dimensional vector field into regions bounded by local separatrices.
By manipulation of a “boundary box” in the field, we can create
separating surfaces that define regions of similar flow depending on
inflow/outflow regions on the boundary of the box. This allows us
to place a box in the field and generate separatrices throughout the
field, which can be visualized to determine characteristic features
of the field.

Given a three-dimensional vector field and a rectangular bound-
ary box B, we define a local separatrix as a stream surface within B
that is tangent to the boundary of B. The algorithm generates these
local separatrices by creating a derived “segmented” data set by
sampling the original vector field with streamlines. These stream-
lines terminate either on the boundary or at a critical point. The
general idea is to assign a different characteristic marker (or prop-
erty) to each critical point in the field, and to each contiguous inflow
or outflow region of the boundary of B – i.e., regions bounded by
lines where the flow is tangential on the boundary of B. Streamlines
are initiated at points throughout the data set and traced until they
either reach the boundary of B or come arbitrarily close to a critical
point. Each of the streamlines is then marked appropriately. We ap-
ply the marker information to a vertex of the data set by considering
streamlines that lie close to the vertex and assigning markers from
these streamlines to the vertex. For example, given a point p on
streamline S that has marker k, if p lies in tetrahedron T , then we
can examine the vertices of the tetrahedron to see which is closest
to p. If the closest vertex contains an m-tuple (m1, m2, ..., mm),
then we increment mk. Most vertices will have only one non-zero
marker incremented, as most of them will not have local separatri-
ces passing near them. However, some will have multiple markers
present.

The m-tuple of markers for each grid vertex is “normalized”
to generate a m-dimensional barycentric coordinate tuple at each
vertex. This resulting field where each point is associated with a
barycentric coordinate tuple is called a segmented data set. We
utilize “material interface” methods to calculate the boundaries be-
tween the regions, using a clipping procedure in barycentric space.
The result is a set of local separatrices in the field, separating the
flow field according to the inflow and outflow regions of the bound-
ary.

The separating surfaces generated by this method are local sepa-
ratrices of the field defined by the critical points and the field bound-
ary (much like those drawn by Dallmann [4]). The user can use a
slicing tool (or other technique) to browse through the separatrices,
locating vortices and other features.

4 Segmenting Vector Fields

Given a vector field defined over a three-dimensional simplicial
grid, we use streamlines to sample the vector field to create a seg-
mentation of the field. The segment boundaries of this field will
be approximations of the local separatrices. We first mark all crit-
ical points with a unique value (property), and identify and mark
all connected inflow regions of the boundary. These marks are the

Figure 4: The inflow/outflow areas of the boundary box in a tornado
data set. The terminating tetrahedra with inflow faces are colored
red, and the ones with outflow faces are colored blue. The termi-
nating tetrahedra that have regions of tangential flow are colored
green. Note the circles on the top and bottom of the box boundary.
These outline the center vortex of the tornado on the boundary of
the box.

property values of the field. We then sample the field using stream-
lines, tracing each streamline backward (see [25]) until it reaches
either a critical point, or a boundary. Each streamline is associated
with a unique marker considering its origin. Next, we transfer the
marker information to the vertices, creating barycentric coordinate
tuples at the vertices. By applying the segmentation algorithm pre-
sented previously, we generate the local separatrices of the field.

4.1 Marking Boundary Cells

Streamlines terminate at the boundary of the data set, or at a critical
point. Tetrahedra lying on the boundary or tetrahedra that contain
critical points are called terminating tetrahedra. When streamlines
encounter a terminating tetrahedron, a marker is assigned to the
streamline. Two types of terminating tetrahedra exist: internal and
external. Internal terminating tetrahedra contain critical points [22].
External terminating tetrahedra have one or more triangular faces
on the domain boundary. There exist three classifications of bound-
ary triangles on an external terminating tetrahedron: A boundary
triangle is either an inflow triangle, an outflow triangle, or it has
a area of tangential flow. A boundary triangle is an inflow trian-
gle if each vector �v1, �v2, and �v3 associated with the vertices of the
triangle satisfy

�vi · �n > 0

where �n is the inward face normal of the boundary triangle. Simi-
larly, a boundary triangle is an outflow triangle if

�vi · �n < 0.

If neither property holds, then the face contains points that have
tangential flow.

Terminating tetrahedra are marked using two methods: Internal
terminating tetrahedra are detected and marked individually while
boundary external terminating tetrahedra are marked using an area-
growing approach. An unmarked boundary terminating tetrahedron
T is identified and its type is determined. A unique mark is then
generated and assigned to T . The boundary neighbors of T are
identified and inherit the same mark if they have the same boundary
flow characteristic as T . The algorithm progresses with the neigh-
bor boundary tetrahedra until all boundary tetrahedra have been
marked. Figure 3 illustrates the marking process for terminating
tetrahedra on a tornado data set.
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Figure 5: Streamline and Triangle. The points s1 and s2 cause the
markers associated with p1 and p2 respectively, to be incremented.
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Figure 6: Separatrix and Triangle. Points on streamlines on both
sides of the separatrix contribute to the barycentric coordinate tuple
at a vertex. The streamline with marker 1and the streamline with
marker 2both contribute to α2,as the points s1 and s2 both lie closer
to p2.

4.2 Segmentation

We sample the flow field using streamlines. As streamlines en-
counter a terminating tetrahedron T , they are assigned the marker
kT associated with T . We then retrace the points that generate the
streamline, and for each point s increment the mkT property stored
at the grid vertex nearest the point s. This is illustrated in Figure
4.1. Given a streamline point s in tetrahedron T , we calculate the
barycentric coordinate β of s in T , and increment the mkT property
in the vertex of T that corresponds to the largest component of β.

After sampling all streamlines, we normalize the property values
at the vertices of the grid, creating the required barycentric coordi-
nate tuples. The result is a segmented data set.

5 Implementation

The algorithm is straightforward to implement and is based upon
streamline generation and interface construction.

Due to the fact that a large number of inflow/outflow boundary
regions may occur on the boundary, the barycentric coordinates tu-
ples may contain a large number of components. However, most of
the data points will be associated with only one marker. Several of
the data points may be associated with two markers near the local
separatrices, and the case where three or more markers are present
will be rare. Thus we never store the full barycentric coordinate, but
only those components of each coordinate that are non-zero. This
enables the algorithm to work with a large number of “properties.”

Many three-dimensional vector fields have orbits, i.e., closed
streamlines, that never enter a terminating cell, see [26]. In this
case, a separate “property marker”; must be used for each orbit. We
have tested several heuristic algorithms to detect orbits and have im-
plemented one that correctly identifies orbits when two-tetrahedron

patterns are repeated along a streamline. This strategy seems to
work well in practice and is illustrated in the results below.

6 Results

The segmentation of a three-dimensional vector field is illustrated
by a computational simulation of a spherical argon bubble that is hit
by a 1.25 Mach shock in the air. The bubble is deformed through
interaction with the vorticity generated as the shock passes over the
bubble. This data set was generated at the Center for Computational
Sciences and Engineering at Lawrence Berkeley National Labora-
tory and has been used in a variety of adaptive mesh refinement
methods (see Berger and Colella [1]). The data set is 128x128x256
and we illustrate the field at time step 500. Here the argon bubble
has deformed into a shape with a characteristic “smoke ring.” The
following figures show the result of the segmentation algorithm on
this data set. The separatrices shown separate the flow between out-
flow regions on the boundary box, and also correctly identifies the
ring with the vortices due to the turbulence. The ring is generated
by identifying orbits in the streamlines.

Figure 8 and Figure 8 give a front view of the argon bubble flow
field and the results of the segmentation algorithm.

Figure 8 and Figure 8 show close-up views of the ring identified
by the segmentation algorithm.

7 Conclusions and Future Work

We have presented a new segmentation approach for scientific visu-
alization. This approach defines a derived data set from higher-level
data that allows the generation of boundaries defining regions of in-
terest in the data set. The algorithm is simple to implement and
can be used on both scalar and vector quantities. This “segmenta-
tion” approach to massive data set exploration allows the user to fo-
cus upon regions, and interactively explore these regions efficiently.
The future challenge is to generate this segmented data from multi-
valued, time-varying data sets containing scalar, vector and tensor
quantities.
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