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RESEARCH ARTICLE

Automated HER2 Scoring in Breast Cancer 
Images Using Deep Learning and  
Pyramid Sampling
Sahan Yoruc  Selcuk1,2,3, Xilin  Yang1,2,3, Bijie  Bai1,2,3, Yijie  Zhang1,2,3,  
Yuzhu  Li1,2,3, Musa  Aydin1,2,3, Aras Firat  Unal1,2,3, Aditya  Gomatam1,2,3, 
Zhen  Guo1,2,3, Darrow Morgan  Angus4, Goren  Kolodney5, Karine  Atlan6, 
Tal Keidar  Haran6, Nir  Pillar1,2,3, and Aydogan  Ozcan1,2,3,7*

1Electrical and Computer Engineering Department, University of California, Los Angeles, Los Angeles, CA, 

USA. 2Bioengineering Department, University of California, Los Angeles, Los Angeles, CA, USA. 3California 

NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA. 4Department of 

Pathology and Laboratory Medicine, University of California at Davis, Sacramento, CA, USA. 5Bnai-Zion 

Medical Center, Haifa, Israel. 6Hadassah Hebrew University Medical Center, Jerusalem, Israel. 7David 

Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA. 

*Address correspondence to: ozcan@g.ucla.edu

Objective and Impact Statement: Human epidermal growth factor receptor 2 (HER2) is a critical 
protein in cancer cell growth that signifies the aggressiveness of breast cancer (BC) and helps predict 
its prognosis. Here, we introduce a deep learning-based approach utilizing pyramid sampling for the 
automated classification of HER2 status in immunohistochemically (IHC) stained BC tissue images. 
Introduction: Accurate assessment of IHC-stained tissue slides for HER2 expression levels is essential 
for both treatment guidance and understanding of cancer mechanisms. Nevertheless, the traditional 
workflow of manual examination by board-certified pathologists encounters challenges, including inter- 
and intra-observer inconsistency and extended turnaround times. Methods: Our deep learning-based 
method analyzes morphological features at various spatial scales, efficiently managing the computational 
load and facilitating a detailed examination of cellular and larger-scale tissue-level details. Results: This 
approach addresses the tissue heterogeneity of HER2 expression by providing a comprehensive view, 
leading to a blind testing classification accuracy of 84.70%, on a dataset of 523 core images from tissue 
microarrays. Conclusion: This automated system, proving reliable as an adjunct pathology tool, has the 
potential to enhance diagnostic precision and evaluation speed, and might substantially impact cancer 
treatment planning.

Introduction

Breast cancer (BC) is one of the most common types of cancer 
globally, ranking as the most prevalent cancer among women 
(excluding nonmelanoma skin cancers) and the second-leading 
cause of cancer-related deaths among women after lung cancer 
[1,2]. The complex and varied nature of BC necessitates accu-
rate histological diagnostic procedures, such as determining 
the status of the human epidermal growth factor receptor 
2 (HER2) [3]. HER2 protein plays an important role in the 
growth of cancer cells and is a key indicator of BC aggressive-
ness. The level of HER2 protein expression has prognostic and 
predictive value in determining patient outcomes [4].

In clinical practice, the assessment of HER2 status is mostly 
conducted through immunohistochemical (IHC) staining [5], 
followed by manual inspection of tissue slides by certified pathol-
ogists, a process depicted in Fig. 1. The American Society of 

Clinical Oncology/College of American Pathologists (ASCO/
CAP) guidelines, published in 2018 [6] and affirmed in 2023 [7], 
outline specific scoring criteria for this assessment. A tumor is 
considered HER2 positive if it shows strong, complete, and 
intense membrane staining (3+) in more than 10% of tumor 
cells. If the staining is weak to moderate and complete in more 
than 10% of tumor cells, the case is scored as equivocal (2+). 
Cases with no staining or incomplete, barely perceptible mem-
brane staining in 10% of tumor cells or less are classified as HER2 
negative (0+ or 1+).

Although this traditional method is widely adopted, several 
challenges emerge in the manual evaluation of IHC slides. 
Reproducibility and concordance among pathologists are poor, 
and this may compromise diagnostic accuracy [8,9]. Additionally, 
this manual evaluation process is notably time-consuming and 
requires careful examination by pathologists. These challenges 
are further exacerbated in resource-constrained areas, where 
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the availability of expert breast pathologists may be limited, 
making HER2 assessment even more challenging [10,11].

Therefore, there is a growing need for automated tools that 
can assist pathologists in the evaluation of IHC images [12] to 
streamline the assessment of HER2 status, enhancing its effi-
ciency, consistency, and reliability [13,14]. Such tools need to 
reduce the time required for analysis, decrease false positives 
and negatives, and reduce variability in measurements and 
require rigorous test sets for evaluation [15]. However, due to 
the lack of high-quality large public datasets with rigorous 
established labels, most of the demonstrated approaches are 
only assessed on small, hand-picked image patches, which 
failed to capture the tissue heterogeneity and sample variations 
typically encountered in clinical settings. A notable contest [16] 
entailed 86 whole-slide images (WSIs) where only 28 were 
selected for testing. Strong discordance between experts and 
clinical reports was observed with most discrepancy falling 
between HER2 1+ and 2+. Nonetheless, automated HER2 scor-
ing systems have seen considerable advances through various 
computational methodologies. Early research in this domain 
utilized standard image processing techniques and machine 
learning methods. Further work investigated the use of local 
binary patterns (LBPs) and color features in conjunction with 
machine learning algorithms. Leveraging intensity and color 
features alongside uniform LBP, Singh and Mukundan [17] 
achieved a 91.1% accuracy using a neural network classifier on 
a filtered set of 371 image patches, specifically excluding outli-
ers and ensuring a minimum of 80% content of interest within 
each patch; successive research by the same group deployed 
characteristic curves and uniform LBP features with logistic 
regression and support vector machine (SVM) classifiers for 
HER2 score assessment while omitting image tiles with less 
than 40% of the region of interest (ROI) [18].

The adoption of deep neural networks (DNNs), especially 
convolutional neural networks (CNNs), marks a recent shift 
in computational pathology, which is largely driven by neural 
networks’ ability to analyze and interpret complex patterns in 
histopathology images [19]. For instance, CNNs processing 
128 × 128-pixel HER2 image patches for score classification 

achieved a 97.7% accuracy on 119 core regions from 81 WSIs 
by manually selecting small, reliable regions for classification 
[20]. Combining SVM, random forest, and a CNN for HER2 
scoring with color deconvolution and watershed segmentation 
resulted in an accuracy of 83% [21]. Additionally, fully con-
nected long short-term memory (LSTM) networks have been 
used for segmenting and labeling cell membranes and nuclei 
in HER2-stained tissue samples, reaching 98.33% accuracy on 
a set of 752 image patches from 79 WSIs, highlighting a selec-
tive analysis with data exclusion [22]. Other approaches, 
including deep reinforcement learning for ROI-based score 
prediction, and a modified U-Net architecture for WSI seg-
mentation and tissue classification, have demonstrated HER2 
classification accuracies of 79.4% and 87% over datasets of 
86 and 127 WSIs, respectively [23,24]. In addition to these, there 
has been increasing interest in exploring multiple instance 
learning (MIL) methods to enhance the analysis of histopatho-
logical images. MIL is a form of weakly supervised learning 
where training instances are arranged in sets, called bags, and 
a label is provided for the entire bag—usually on WSI level—
instead of individual instances/image patches [25]. Liu et al. 
[26] implemented a MIL-based weakly supervised learning 
framework, evaluated on a dataset of 251 slides and achieving 
a 55% accuracy in classifying HER2.

The preceding studies have delved into automating HER2 
scoring employing diverse techniques, ranging from image 
processing to advanced machine learning techniques, predomi-
nantly using patches from a single-resolution level, neglecting 
features observable at the broader tissue context, which is essen-
tial for precise HER2 evaluation. Additionally, investigations 
employing MIL necessitate an exhaustive analysis of every 
potential high-resolution patch within WSIs, resulting in a 
heavy computational load. Furthermore, most of the existing 
methods preselect small ROIs from WSIs or tissue cores in their 
training and testing. Such sampling strategies underrepresent 
tissue complexity and variability, potentially leading to overes-
timated performance metrics and a lack of generalizability.

In this work, we introduce an automated, deep learning (DL)-
based HER2 score classification framework, illustrated in Fig. 1. 

Fig. 1. Comparison of traditional HER2 scoring and the presented DL-based method. The traditional HER2 score evaluation depends on manual inspection of tissue slides by 
pathologists. Our presented methodology introduces automated HER2 scoring using pyramid sampling and a classification neural network.

https://doi.org/10.34133/bmef.0048


Selcuk et al. 2024 | https://doi.org/10.34133/bmef.0048 3

Contrasting the aforementioned approaches, our method is based 
on a pyramid sampling strategy and a HER2 score inference pro-
tocol (as shown in Fig. 2A and D), addressing the classification 
challenge of HER2 expression heterogeneity. By using a randomly 
selected subset of high-resolution patches rather than exhaus-
tively analyzing all possible ones, we greatly enhance computa-
tional efficiency without compromising HER2 score inference 
accuracy. Moving beyond conventional single-resolution-based 

image analyses, our pyramid sampling framework integrates 
detailed cellular features with broader tissue architecture, offering 
a comprehensive representation of HER2 expression patterns and 
a complete perspective on tissue heterogeneity. Our inference 
protocol analyzes morphological features at multiple spatial 
scales, efficiently balancing detailed cellular analysis with broader 
tissue examination. This approach, which captures and integrates 
patches of varying scales from high-resolution images into a 

Fig. 2. Overview of the automated HER2 score classification framework. (A) Formation of a PSS, detailing the extraction of multi-resolution patches from tissue images. 
(B) Instance of a PSS, showing 40 randomly selected patches from the original resolution, 10 randomly selected patches from the half-resolution case (2×-downsampled), 
and the entire core image resized to the patch resolution. (C) Training process of the presented methodology involving pyramid sampling and backpropagation through 
a deep network. (D) Presented inference protocol, entailing the formation of multiple PSSs and the final HER2 score prediction as the maximum HER2 score among the 
predictions with top-k confidence.

https://doi.org/10.34133/bmef.0048
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Pyramid-Sampling Set (PSS) for DL-based evaluation, not only 
tackles the issue of HER2 expression heterogeneity but also 
achieves an accuracy of 84.70% in blind testing across 523 tissue 
core images obtained from 300 patients. This automated approach 
can help standardize HER2 assessment, streamline pathologists’ 
workflow, and improve diagnostic accuracy.

Results
Our study introduces a DL-based HER2 classification method 
utilizing PSSs to analyze BC tissue samples. The classification 
network was trained on a dataset of 1,462 core images from 
823 patients, with an additional set of 162 cores from 149 
patients used for validation. The efficacy of the model was 
blindly evaluated using a set of 523 core images from 300 
patients that were not previously seen by the model during the 
training or validation phases. We evaluated the performance 
of our model with both qualitative and quantitative analyses. 
While creating the ground truth of our dataset, we involved 5 
board-certified pathologists to independently score the cores. 
This approach mitigated the risk of relying on possibly inac-
curate patient records due to tissue heterogeneity, providing a 
robust methodology for dataset labeling that prioritizes preci-
sion in reflecting real-world diagnostic scenarios. We intro-
duced a voting protocol (detailed in the Methods section) to 
resolve interpathologist variability and to achieve consensus in 
core evaluations. Nondiagnostic cores were excluded to ensure 
the high quality and diagnostic relevance of the compiled data-
set. Overall, we compiled a comprehensive and accurately labeled 
dataset of 2,147 cores from 1,272 patients.

Our model’s training and testing protocols are detailed in 
Fig. 2C and D. During training, each core image is transformed 
into a PSS and fed into the DL model with its ground truth 
label. We compute a cross-entropy loss to optimize the model, 
which, upon convergence, enters the testing phase. In testing, 
for each core image, N independent PSSs are generated. We 
then conduct a forward process on these sets, selecting the 
top k predictions with the highest confidence, forming the 
k-Confident Selection Set (KCS). The final score is the highest 
score within the KCS, effectively addressing the heterogeneity 
of HER2 expression. Therefore, the 2 key hyperparameters in 
this process are N, the number of independent PSSs generated 
per tissue core, and k, the number of high-confidence predic-
tions used for final scoring. This method ensures a diverse rep-
resentation of HER2 status and focuses on the most confident 
predictions to enhance HER2 scoring accuracy. By prioritizing 
predictions with the highest confidence, our approach reduces 
the chance of inaccuracies due to lower-confidence inferences, 
ensuring that the final HER2 score is based on significant 
expressions. This methodology not only improves the reliability 
of HER2 scoring but also captures essential expressions critical 
for a comprehensive assessment of HER2 status in breast tissue 
sections.

We demonstrate the capability of our automated HER2 
scoring system with 12 examples in Fig. 3. This figure illus-
trates the distribution of the predicted HER2 scores coming 
from the most confident 5 predictions for a subset of the test 
samples, which were accurately classified into the 4 HER2 cat-
egories. Each sample underwent evaluation by generating 20 
independent PSS predictions, with the subsequent histograms 
depicting the score distributions from the 5 highest-confidence 
PSSs. These predictions were then grouped into color-coded 

categories corresponding to the consensus HER2 score: 0, 1+, 
2+, and 3+.

A key observation from Fig. 3 is the influence of HER2 
expression heterogeneity on the predictions of the PSSs with 
the highest confidence. For example, within the yellow-coded 
box highlighting HER2 3+ samples, there is a noticeable 
variation in the intensity of HER2 biomarker expression. The 
last core image within this grouping shows a pronounced 
level of HER2 positivity, which is consistently recognized 
across all 5 high-confidence PSS predictions as 3+. In con-
trast, the first core image of the same category exhibits a 
lower intensity of HER2 expression, leading to a slight vari-
ance where 2 of 5 high-confidence PSSs predict a 2+ score. 
Similarly, the green and blue boxes corresponding to HER2 
1+ and HER2 2+ categories, respectively, also demonstrate 
this trend. The model’s predictions reflect the level of HER2 
expression, with the majority of high-confidence PSSs align-
ing with the consensus category in most samples. However, 
some PSSs indicate adjacent categories, suggesting a border-
line expression level. The red box, delineating HER2 0 sam-
ples, is particularly noteworthy, as all high-confidence PSSs 
consistently predict a HER2 score of 0.

Monte Carlo simulations were also leveraged to reveal the 
effects of varying the number of independent PSSs. For each 
sample, we employed our converged model and tested samples 
with varying N and k values, as well as different sets of PSSs, to 
validate the stability and consistency of our model; refer to the 
Methods section for details. Classification accuracy was mark-
edly improved as the number of PSSs increased up to a certain 
point, with a fixed confidence threshold parameter of k = 5 as 
shown in Fig. 4. A notable peak in accuracy is observed when 
N is set to 20, where the maximum classification accuracy 
reaches 87.76%. As we continued to increase N to 200, the accu-
racy gain became marginal. Confusion matrices corresponding 
to the minimum, median, and maximum accuracy bench-
marks, achieved with N = 20 and k = 5, provide a quantitative 
view of the system’s performance as shown in Fig. 4. Specifically, 
the minimum accuracy recorded is 82.52%, the median accu-
racy stands at 84.70%, and the maximum accuracy reaches 
87.76%. Initially, at lower values of N, there is a wider spread 
between these accuracy measures, indicating variability in the 
model’s performance. This implies that to decrease the variation 
in predictions caused by random sampling, employing a larger 
N is effective at the cost of testing speed. In doing so, the per-
formance is expected to align with the median value observed 
under the default configuration (N = 20, k = 5).

Next, we focused on the precision of classification accuracy 
across varying confidence threshold parameters, denoted by the 
parameter k, while holding the number (N) of independent PSSs 
used in the inference protocol constant at 200, shown in Fig. 5. 
This figure highlights the delicate balance between the confi-
dence in prediction and the precision of the final score, and it 
illustrates the performance metrics at different accuracy levels 
using confusion matrices. The accuracy trends depicted in the 
graph provide an illustration of the model’s classification per-
formance against varying k values. Notably, when the confidence 
threshold parameter (k) value exceeded 20, there was a pro-
nounced decrement in the model’s accuracy. This was consis-
tently observed across the minimum, median, and maximum 
accuracy rates. This trend suggests that a k value within the range 
of 1 to 20 maintains optimal classification performance, whereas 
higher k values lead to a marked reduction in accuracy.

https://doi.org/10.34133/bmef.0048
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Fig. 3. Distribution of the predicted HER2 scores for 12 randomly selected test samples, as determined by the PSS approach. For each sample, N = 20 independent PSS 
predictions are generated, and the histograms display the HER2 score distributions from the k = 5 PSSs with the highest confidence levels. The final HER2 score prediction 
for each sample is generated by the maximum score from these top 5 confidence PSSs. Samples are grouped and color-coded according to their consensus HER2 score 
categories: 0, 1+, 2+, and 3+.

https://doi.org/10.34133/bmef.0048
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Fig. 4. Relationship between the number of independent PSSs and HER2 scoring accuracy. The top plot displays how accuracy changes as a function of N used during inference, 
with a fixed confidence threshold parameter (k = 5). The accompanying confusion matrices exemplify the accuracy at distinct performance benchmarks—minimum, median, 
and maximum—achieved with N = 20 PSSs. These benchmarks were established through a Monte Carlo simulation designed to evaluate the influence of PSS selection 
randomness on the overall accuracy of the HER2 score classification system. Blind testing set includes 523 core images from 300 patients that were not previously seen by 
the model during the training or validation.

https://doi.org/10.34133/bmef.0048
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Fig. 5. Analysis of HER2 scoring precision as a function of k with a fixed number of independent PSSs (N = 200). The graph traces accuracy variations across different k values, 
while the confusion matrices document the system’s performance at minimum, median, and maximum accuracy values for k = 5. These analyses examine the impact of the 
confidence threshold parameter (k) on the overall accuracy of HER2 score predictions. Blind testing set includes 523 core images from 300 patients that were not previously 
seen by the model during the training or validation.

https://doi.org/10.34133/bmef.0048
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We also evaluated the class-based specificity to understand 
the model’s ability to correctly identify negatives for each class. 
The specificity values for each class were calculated as follows: 
HER2 0: 96.43%, HER2 1+: 92.09%, HER2 2+: 94.46%, and 
HER2 3+: 93.56%. Notably, the model achieved the highest 
specificity for class 0, suggesting a strong ability to correctly 
identify non-HER2-positive cases. The slightly lower specificity 
for class 1 indicates a minor increase in false positives, which 
may be due to the overlap in features between adjacent HER2 
scores. Nevertheless, the high specificity values across all the 
classes demonstrate the model’s robust performance in distin-
guishing among different HER2 scores.

Additionally, we analyzed the receiver operating character-
istic (ROC) curves and area under the curve (AUC) for the 3 
binary classification tasks to further assess the model’s perfor-
mance. The AUC values for these tasks were as follows: HER2 
0 versus HER2 1+, 2+, and 3+: 0.9848, HER2 0 and 1+ versus 
HER2+ and 3+: 0.9645, and HER2 0, 1+, and 2+ versus class 
3+: 0.8555. The high AUC value for HER2 0 versus HER2 1+, 
2+, and 3+ further highlights the model’s discriminative ability 
in identifying non-HER2-positive cases. The AUC value for 
HER2 0 and 1+ versus HER2+ and 3+ indicates strong per-
formance, with the model effectively distinguishing between 
lower and higher HER2 scores. The comparatively lower AUC 
for HER2 0, 1+, and 2+ versus class 3+ reflects the challenge 
of differentiating between HER2 2+ and 3+ scores, which is a 
known issue in HER2 classification due to the subtle differences 
in staining intensity. The ROC curves for these tasks are also 
presented in Fig. S1.

Discussion
In this study, we introduced a DL-based method that utilizes 
pyramid sampling to automate the classification of HER2 status 
in IHC-stained tissue images. By leveraging a hierarchical 
approach that intricately analyzes features across multiple spatial 
scales, our method addresses the challenge of HER2 expression 
heterogeneity, without ROI selection prior to model training. 
The success of our approach is substantiated through quantita-
tive analysis involving 523 core images from 300 patients never 
seen before in the training or validation, achieving a classifica-
tion accuracy of 84.70% compared to the consensus scores 
obtained from 5 board-certified pathologists. This robust per-
formance underscores not only the method’s precision in cap-
tured details but also its potential to mitigate the challenges 
currently faced in clinical and research settings, such as observer 
inconsistency and protracted diagnostic timelines.

The pyramid sampling strategy and inference protocol intro-
duced in our study represent a major advancement in the auto-
mated classification of HER2 status, marking, to our knowledge, 
the first instance of utilizing multi-scale feature analysis for 
automated HER2 scoring in IHC-stained tissue images. Our 
pyramid sampling strategy marks a notable departure from 
previously described methods, focusing on the detailed analysis 
of both membranous features at the cellular level and broader 
tissue regions. While most of the previous HER2 classification 
tools in the literature rely solely on localized patches from a 
single-scale WSI image [16–18,20–22], we combined high-
resolution image patches with their lower-resolution counter-
parts, ensuring that both the microenvironment of cellular 
features and the macro-context of tissue architecture are cap-
tured and analyzed through our digital framework. This results 

in a balanced presentation of both the high spatial frequency 
details and a comprehensive sample field of view in the input 
of our classification network, which is important to mitigate 
the HER2 expression heterogeneity observed in tissue samples. 
This ability of our approach to mitigate the heterogeneity of 
HER2 expression is also exemplified in Figs. 6 and 7. These 
figures collectively emphasize the importance of employing 
multiple PSSs covering different spatial scales to navigate the 
complexities of HER2 scoring, showcasing the system’s adept-
ness at identifying subtle differences in HER2 biomarker 
expression levels within the same score category. Furthermore, 
our method employs a random patch selection mechanism, 
choosing a specific number of patches at each iteration. This 
strategy greatly reduces the computational load, enhancing the 
efficiency of our method without sacrificing the quality and 
accuracy of tissue characterization.

Beyond the model’s overall accuracy, it is informative to 
examine its performance in distinguishing between adjacent 
HER2 classes. The accuracy figures calculated for distinguish-
ing between adjacent HER2 categories demonstrate the mod-
el’s effectiveness and are suggestive of its practical utility in a 
clinical setting. For example, our model achieves an accuracy 
of 89.62% for differentiating between 0 and 1+ HER2 scores. 
This is clinically significant because a score of 0 will follow a 
treatment regimen without using HER2-targeted therapies, 
while a score of 1+ might prompt further analysis according 
to recent ASCO/CAP data [7]. A high accuracy in this range 
minimizes the risk of patients being incorrectly excluded from 
receiving HER2-targeted treatments if they might benefit from 
them. For the 1+ versus 2+ categories, the model shows an 
accuracy of 84.68%. HER2 2+ cases often require additional 
confirmatory tests such as fluorescence in situ hybridization 
(FISH) to make a final treatment decision [27,28]. A high 
accuracy in discriminating HER2 1+ and 2+ helps ensure 
that patients are appropriately triaged for FISH testing while 
avoiding unnecessary procedures for others. Finally, the 
model’s accuracy in distinguishing between 2+ and 3+ 
scores is 87.26%, ensuring that patients with strong HER2 
positivity are promptly identified for appropriate therapeutic 
intervention.

The practical implications of our DL-based approach for HER2 
status classification touch upon 2 pressing issues in pathological 
assessment: the consistency of manual evaluations and the effi-
ciency of the diagnostic process. Manual evaluation of HER2 IHC 
status is susceptible to a degree of subjectivity inherent in patholo-
gist judgment. Assessment of data from the CAP surveys demon-
strated poor agreement in the evaluation of 0 and 1+ cases (26% 
concordance) and 58% concordance between 2+ and 3+ [29]. 
Such vast differences in HER2 quantification can have profound 
implications on treatment decisions and ultimately patient out-
comes. By algorithmically standardizing the scoring process, our 
method introduces a level of consistency unattainable through 
manual inspection. This consistency allows our presented model 
to serve as a valuable enhancement tool for pathologists, offering 
a consistent second opinion free from human fatigue, level of 
experience, or bias. This is especially critical in low volume pathol-
ogy departments that may lack specialized breast pathology 
experts. In such settings, our automated method can function as 
a stand-in consultant, providing assessments that can be trusted 
to align with what a specialist might determine.

The second substantial advantage of our system lies in its 
potential to markedly shorten the diagnostic turnaround time. 

https://doi.org/10.34133/bmef.0048
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Fig. 6. Microscopic examination of HER2 scoring regions in tissue samples. Color-coded boxes display core images from HER2 0 and HER2 1+ tissue sample categories with 2 
magnified patches to showcase the specific histological details. Accompanying histograms indicate the predicted score distribution for the highest confidence PSSs, offering 
insights into our automated HER2 assessment.

https://doi.org/10.34133/bmef.0048
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Fig. 7. Same as Fig. 6, except for higher HER2 score categories. Color-coded boxes correspond to samples within the HER2 2+ and HER2 3+ tissue sample categories. Two 
detailed patches are extracted from each core image, emphasizing the staining intensity and cellular patterns critical for determining the respective HER2 scores. Histograms 
adjacent to each sample reflect the predicted score distribution from the most confident PSSs.

https://doi.org/10.34133/bmef.0048
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Delays in diagnosis can have detrimental effects on patient 
care, inducing patient dissatisfaction [30], anxiety, and stress 
[31]. Our approach radically shortens the assessment time to 
seconds per case, a reduction that can have far-reaching impli-
cations in the clinical setting, especially in diagnostically chal-
lenging cases. Moreover, in busy pathology departments where 
the volume of cases can be overwhelming, the efficiency of our 
method could prevent bottlenecks and reduce interpatholo-
gists’ consultations. By allowing for quicker throughput of 
cases, pathologists can allocate more time to complex cases 
where human expertise is indispensable.

To provide further insights into the model’s decision-making 
process, we analyzed the most confident PSSs that contributed 
to the final HER2 score predictions of challenging samples, par-
ticularly those near the classification boundary. Figures S2 to 
S11 illustrate these PSSs for 2 sample cores, showing the top 5 
most confident PSSs for each. In these figures, we observe that 
the classifier is occasionally “tricked” by certain PSSs, resulting 
in misclassifications. For instance, in the first sample, misclas-
sifications occurred twice (Figs. S2 and S3), and in the second 
sample, it occurred once (Fig. S7). One key observation from 
our analysis is the importance of capturing HER2 expression 
within our PSSs. Due to the random nature of the patch sam-
pling, there are areas on the core that our model may not be 
exposed to. We found that when more patches in the pyramid 
capture HER2 expression, the model’s predictions improve. This 
highlights the importance of comprehensive sampling to cover 
heterogeneous HER2 expression within the tissue. In cases 
where the patches fail to adequately capture HER2 expression, 
the likelihood of misclassification increases.

Monte Carlo simulations were essential for addressing the 
statistical variability introduced by our pyramid sampling strat-
egy and optimizing the parameters N and k, enabling us to sys-
tematically assess and mitigate the effects of randomness on the 
model’s performance, ensuring a balanced representation of 
HER2 expression across tissue samples. By identifying an opti-
mal N, we made sure that the model could consistently predict 
HER2 scores despite the variability in tissue representations. 
Similarly, optimizing k allowed us to focus on the most reliable 
predictions, enhancing the accuracy and reliability of the final 
HER2 score. The optimal balance for our model’s operational 
efficiency occurred at N = 20, as demonstrated in Fig. 4, high-
lighting the importance of balancing the number of PSSs and 
model performance to avoid unnecessary computational costs, 
crucial for clinical use. Beyond N = 20, adding more PSSs to the 
inference protocol did not significantly improve accuracy but 
maintained prediction consistency. Figure 5 shows how the 
HER2 scoring accuracy decreased when the inference hyperpa-
rameter k exceeded 20, emphasizing the need to keep k within a 
certain range for optimal classification. This result indicated the 
delicate balance required between the number of high-confidence 
predictions and their quality, with a higher k value increasing 
the risk of including less accurate predictions and potentially 
leading to more false positives.

In the data augmentation process, we did not include color 
enhancement methods such as color normalization since our 
entire dataset was acquired using the same slide scanner with 
limited color variations. On the other hand, we carefully 
cleaned our dataset before training for better convergence by 
taking the staining quality, tissue quality, and clinical signifi-
cance into consideration. Note that during testing, our proto-
col is inherently robust to staining/imaging quality issues as 

predictions from problematic areas will receive lower confi-
dence and be excluded for the final prediction. It is also impor-
tant to note that when applying our scoring framework to 
images that exhibit stronger variations, such as those acquired 
from different scanners or under different staining conditions 
or stained at different laboratories, additional transfer learning 
may be required for optimal performance. Future work could 
explore the incorporation of color normalization and other 
enhancement techniques to improve the model’s robustness 
and generalizability to external datasets. This would benefit 
the application of our model to a wider range of clinical set-
tings, ensuring consistent performance across diverse imaging 
and staining conditions.

In conclusion, our study represents a robust, efficient solu-
tion to the challenges of HER2 classification in BC diagnostics. 
By effectively leveraging pyramid sampling to address the het-
erogeneity of HER2 expression and demonstrating the potential 
to streamline diagnostic processes, our approach enhances the 
accuracy and reliability of HER2 score classification. This 
research paves the way for more nuanced, faster, and more 
accessible diagnostics, ultimately contributing to the advance-
ment of personalized medicine and improving patient care in 
oncology.

Methods

Sample preparation, data acquisition, and  
dataset creation
Fifteen unlabeled breast tissue microarray slides, each contain-
ing about 100 to 200 cores, were acquired from TissueArray 
[32]. These samples underwent HER2 IHC staining at the UCLA 
Translational Pathology Core Laboratory. We captured bright-
field images using a slide scanner microscope (AxioScan Z1, 
Zeiss) with a ×20/0.8 NA objective lens (Plan-Apo). WSIs were 
processed to identify and extract each core, utilizing a custom-
ized algorithm based on Hough transform techniques [33]. 
High-resolution bright-field images of the cores were uploaded 
to Google Photos for pathologist evaluations. To ensure accurate 
dataset labeling, we employed a voting protocol among 5 board-
certified pathologists, where a core’s evaluation needed agree-
ment between at least 2 pathologists. For discordant assessments, 
an additional pathologist was consulted for a decisive score, 
leading to the core’s inclusion or exclusion from the dataset. 
Cores of nondiagnostic quality or those deemed nonscorable 
were removed. We compiled 2,147 cores with finalized labels, 
which were allocated into 1,462 for the training set (242 HER2 
0, 526 HER2 1+, 314 HER2 2+, 380 HER2 3+), 162 for valida-
tion (24 HER2 0, 56 HER2 1+, 35 HER2 2+, 47 HER2 3+), and 
523 for blind testing (131 HER2 0, 131 HER2 1+, 126 HER2 2+, 
135 HER2 3+).

Pyramid sampling strategy
We devised a pyramid sampling strategy to capture the multi-
scale nature of tissue morphology and HER2 expression pat-
terns. This approach involved systematically extracting small 
patches from original high-resolution tissue images, approxi-
mately ~10,000 × 10,000 pixels in size. We selected forty 512 × 
512 pixel patches directly from the original high-resolution 
image and 10 patches from a 2×-downsampled image, along-
side a single patch representing the entire tissue core resized to 
512 × 512 pixels. Cropped patches were combined along the 
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channel dimension to create a PSS, serving as the input for our 
DL framework. Figures S2 to S6 present the 5 PSSs used in 
deriving the 5 highest-confidence predictions indicated in the 
histogram for the topmost tissue core within the green box 
(HER2 1+) in Fig. 3. Similarly, Figs. S7 to S11 demonstrate the 
PSSs that generated the predictions for the uppermost tissue 
core within the yellow box (HER2 3+) in the same figure.

The final PSS configuration (40 original-resolution patches, 
10 2×-downsampled image patches, and 1 resized patch) was 
selected by hyperparameter tuning on the validation set. As an 
additional comparative analysis, we optimized the model with 
3 other configurations and tested their accuracies on the test set: 
(a) Obtaining a single patch at the original resolution resulted 
in a classification accuracy of 73.23%; (b) obtaining 20 patches 
from the original resolution, 6 from the 2×-downsampled 
image, and 1 resized core image achieved 79.16% accuracy; and 
(c) obtaining 20 patches from the original resolution, 6 from the 
2×-downsampled image, 2 from the 4×-downsampled image, 
and 1 resized patch yielded 80.3% accuracy. Our final configura-
tion of 40 original-resolution patches, 10 2×-downsampled 
image patches, and 1 resized patch provided the best perfor-
mance. This finding aligns intuitively with the expectation that 
more patches capture more information, thus enhancing the 
model’s performance. Additionally, we observed diminishing 
returns with the addition of another resolution (4×-downsampled 
image) patches, indicating that further increases in patch num-
bers and resolution levels do not significantly improve perform
ance while increasing the computational burden. The confusion 
matrices for these unused hyperparameter cases are included as 
Fig. S12, which validated the superiority of our selected configu-
ration (see Fig. 5).

HER2 score classification network architecture and 
training scheme
We selected DenseNet-201 [34] for our study, a 201-layer 
densely connected convolutional network, due to its effi-
ciency in image classification. The architecture features 
dense blocks linked in a feed-forward manner, where each 
layer receives inputs from all preceding layers and forwards 
its feature maps to subsequent layers, enhancing feature 
propagation and reuse.

The network begins with an initial convolutional layer with 
a kernel size of 7 × 7 × Din (Din here represents the number of 
input channels), followed by batch normalization, a rectified 
linear unit (ReLU) activation function, and a 3 × 3 max pooling 
layer with a stride of 2. This is followed by 4 dense blocks [34], 
each containing a varying number of layers: 6 layers in the first 
block, 12 layers in the second block, 48 layers in the third block, 
and 32 layers in the fourth block. Within each dense block, every 
layer is connected to every other layer. Transition layers between 
dense blocks include a 1 × 1 convolutional layer followed by a 
2 × 2 average pooling layer to manage feature map dimensions. 
The classification layer was customized to the 4 HER2 score 
categories (0, 1+, 2+, 3+), employing a softmax activation func-
tion to provide the class probability distribution.

To address the class imbalance present in our training set, 
we implemented a balanced-class weighted cross-entropy loss 
function. The loss for each class was weighted inversely pro-
portional to its frequency in the training data. This weighting 
scheme allows the model to focus equally on all classes during 
the learning process, preventing the dominance of any single 

class due to its higher occurrence in the dataset. Specifically, 
for the entire training set, the loss (L) for a batch of size (m) is 
given by:

where C is the number of classes (4 in our case), wc represents 
the class weight, yi, c is a binary indicator of whether class label 
c is the correct classification for observation i, and pi, c is the 
predicted probability of observation i for class c. Weights wc help 
to amplify the signal from underrepresented classes, driving the 
model to pay more attention to these classes during training. 
Furthermore, we applied data augmentation techniques, includ-
ing horizontal and vertical flips and rotations of 90 degrees, 
to each image in the training set to mitigate overfitting and 
enhance generalizability of the trained model. The training pro-
cess of our presented methodology is illustrated in Fig. 2C.

HER2 score prediction (inference) protocol
Following the generation of N distinct predictions for each tis-
sue core, our protocol selects a subset of k predictions, KCS, 
based on their confidence levels. This process involves analyz-
ing softmax class probabilities to identify predictions with a 
clear preference for one HER2 category, indicative of high con-
fidence. The selection criterion focuses on the disparity in 
HER2 class probabilities within each prediction’s softmax out-
put. The final HER2 score for a tissue core is determined by 
aggregating the scores within the KCS, specifically by taking 
the maximum score observed across this set. Mathematically, 
the final HER2 score is given by the maximum score observed 
across the KCS, denoted:

where ŷ  represents the individual HER2 score predictions gen-
erated by independent PSSs.

Apart from the overall classification accuracy, we also inves-
tigated specificity and ROC curves to evaluate the performance 
of our models. Since this is a 4-class classification, we calculated 
class-based specificity values. Specificity for each class i was 
derived using the formula:

where TNi represents the number of instances correctly identi-
fied as not belonging to class i and FPi represents the number 
of instances incorrectly identified as belonging to class i. For 
the ROC curves, we analyzed 3 binary classification tasks: 
(a) HER2 0 versus HER2 1+, 2+, and 3+, (b) HER2 0 and 1+ 
versus classes 2+ and 3+, and (c) HER2 0, 1+, and 2+ versus 
HER2 3+. For each binary task, we binarized the true labels 
accordingly. Using the softmax probability output by our infer-
ence model, we calculated the false positive rates and true posi-
tive rates at various threshold settings to plot the ROC curves. 
The AUC values were computed for each ROC curve, provid-
ing a single scalar value to summarize the model’s performance 
for each binary classification task. For these calculations, we 
kept N = 20 and k = 5, averaging the top 5 most confident class 
probabilities in our calculations.

L = −
1

m

m
∑

i=1

C=4
∑

c=1

wc yi,c log
(

pi,c
)

Final HER2 Score = max
ŷ∈KCS

ŷ

Specificityi =
TNi

TNi + FPi
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Statistical analysis and Monte Carlo simulations
Monte Carlo simulations were utilized to analyze our HER2 
score prediction model, focusing on optimizing the number of 
PSSs used in inference (N) and refining the selection criteria 
based on confidence (k). These simulations aimed to find an 
optimal balance that improves accuracy, reliability, and compu-
tational efficiency. To evaluate the impact of the inherent vari-
ability from our pyramid sampling strategy, 300 independent 
PSSs were generated for each sample in our testing set, providing 
diverse views of each tissue’s HER2 expression. A range of values 
for N, from 1 to 200 PSSs per tissue sample, with k fixed at 5, 
were explored to identify an optimal N that enhances the model’s 
consistency and robustness. Additionally, we investigated the 
optimal threshold for k by varying its values from 1 to 20, and 
selected higher values [30, 50, 100], with N set to a high value 
of 200, to refine the selection of high-confidence predictions for 
the final HER2 score determination and to ensure that we could 
investigate the effects of a wide range of k values. These simula-
tions were conducted 10,000 times for each configuration of N 
and k to provide a statistically robust analysis.

Implementation details
The classification network’s training was optimized using the 
AdamW optimizer [35], an advanced variant of the Adam opti-
mizer designed to incorporate weight decay, thereby mitigating 
the risk of overfitting. Training commenced with an initial learn-
ing rate set at 10−5, which was dynamically adjusted in response 
to changes in the validation loss, with a batch size maintained at 
12. This setup allowed the network to reach convergence after 
approximately 60 h of dedicated training. For a core image resolu-
tion of 10,000 × 10,000 pixels, the typical inference time was 
reduced to less than 15 s, achieved when the inference hyperpa-
rameter N was set at 20. The training and testing were conducted 
on a desktop computer equipped with a GeForce RTX 3090 Ti 
graphics processing unit, 128 GB of random-access memory, and 
an AMD Ryzen 9 5900X central processing unit. The classification 
network was implemented using Python version 3.12.0 and 
PyTorch version 1.9.0, alongside CUDA toolkit version 11.8.
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