Lawrence Berkeley National Laboratory

LBL Publications

Title

Fully coupled hydro-mechanical numerical manifold modeling of porous rock with

dominant fractures

Permalink

|https://escholarship.orgc/item/1w15b6 gﬁ

Journal

Acta Geotechnica, 12(2)

ISSN
1861-1125

Authors

Hu, Mengsu
Wang, Yuan
Rutqvist, Jonny

Publication Date
2017-04-01

DOI
10.1007/s11440-016-0495-z

Peer reviewed

eScholarship.org Powered by the California Digital Library

University of California


https://escholarship.org/uc/item/1w15b6gt
https://escholarship.org
http://www.cdlib.org/

DOI 10.1007/s11440-016-0495-z

& Yuan Wang
wangvuanhbu@163.com;

RESEARCH PAPER

Fully coupled hydro-
mechanical numerical
manifold modeling of
porous rock with
dominant fractures

Mengsu Hu"? - Yuan Wang"? - Jonny Rutqvist®

Received: 9 February 2016 / Accepted: 6 September 2016 / Published
online: 5 October 2016

SpaceAbstract  Coupled  hydro-mechanical (HM)
processes are significant in geological engineering such as
oil and gas extraction, geothermal energy, nuclear waste
disposal and for the safety assessment of dam foundations
and rock slopes, where the geological media usually
consist of fractured rock masses. In this study, we
developed a model for the analysis of coupled hydro-
mechanical processes in porous rock containing dominant
fractures, by using the numerical manifold method
(NMM). In the current model, the fractures are regarded as
different material domains from surrounding rock, i.e.,
finite-thickness fracture zones as porous media. Compared
with the rock matrix, these fractured porous media are
characterized with nonlinear behavior of hydraulic and
mechanical properties, involving not only direct
(poroelastic) coupling but also indirect (property change)
coupling. By combining the potential energy associated
with mechanical responses, fluid flow and solid—fluid
interactions, a new formulation for direct HM coupling in
porous media is established. For indirect coupling
associated with fracture opening/closure, we developed a
new approach implicitly considering the nonlinear
properties by directly assembling the
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spacecorresponding  strain  energy. Compared with
traditional methods with approximation of the nonlinear
constitutive equations, this new formulation achieves a
more accurate representation of the nonlinear behavior. We
implemented the new model for coupled HM analysis in
NMM, which has fixed mathematical grid and accurate
integration, and developed a new computer code. We tested
the code for direct coupling on two classical poroelastic
problems with coarse mesh and compared the results with
the analytical solutions, achieving excellent agreement,
respectively. Finally, we tested for indirect coupling on
models with a single dominant fracture and obtained
reasonable results. The current poroelastic NNM model
with a continuous finite-thickness fracture zone will be
further developed considering thin fractures in a
discontinuous approach for a comprehensive model for
HM analysis in fractured porous rock masses.

Keywords Direct coupling - Finite-thickness
fracture zone - Fractured porous rock mass - Hydro-
mechanical processes - Indirect coupling - Numerical
manifold method

1 Introduction

Hydro-mechanical (HM) coupling refers to the interaction
between hydraulic and mechanical processes that may be
triggered by mechanical loading/unloading or fluid injec-
tion/extraction. This interaction is significant in geological
engineering, such as oil and gas extraction, geothermal
energy, nuclear waste disposal and for the safety assess-
ment of dam foundation and rock slopes where the geo-
logical media usually consist of fractured rock [26]. These
fractured rock masses may contain fractures with complex

space

spacegeometry and fillings and thus could be modeled as a
fractured porous media. Basically, the mechanisms of HM
coupling in fractured porous media may be categorized as
direct and indirect couplings [26]. Direct coupling is
associated with the instantaneous undrained (pore volume)
coupling between mechanical and hydraulic fields.
Specifically, the fluid pressure changes instantaneously
induce deformation, while the volume change instanta-
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pling refers to interaction between mechanical and
hydraulic fields indirectly, through changes in material
properties. Specifically, the effective stress changes,
affected by fluid pressure changes, would change the
stiffness of fractures, while the deformation of fractures
changes their hydraulic conductivities [26, 35].

Since the early 1980s, a number of numerical models

have been developed for modeling coupled hydro-me-
chanical processes in fractured rock. In 1982, Noorishad
et al. [21] presented a finite element model for the coupled
HM processes in deformable fractured rock masses. In that
model, the constitutive relationships for the nonlinear
deformable fractures were formulated, which was compa-
rable to Biot’s equations [3] for porous media. After that,
increasing engineering demand has inspired development
of many computer codes capable of modeling HM
behavior of fractured rock at various levels of
sophistication [29], including ROCMAS [22]; THAMES
[23, 24], MOTIF [9],
FRACON [19, 20], FEMH [4] applied in analysis of
nuclear waste disposal; FRIP [25], FRACture [15] and
GEOCRACK [33] applied in analysis of geothermal
energy; and models applied for HM analysis of slopes and
dam foundations (Wang et al. [34, 36, 37]). Most of the
aforementioned models were developed based on the finite
element method. With the development of discontinuous
methods, fractures could be explicitly represented as a
displacement discontinuity as they are modeled as inter-
faces of individual blocks. This includes both codes based
on the models based on the distinct element method,
including the commercially available UDEC [11] and
3DEC [12] codes, and models based on discontinuous
deformation analysis (DDA), which may include coupled
fluid flow and deformations in discrete fractures, but with
the blocks between fractures assumed impermeable
[13, 14]. Later, models based on the enriched finite
element method were developed, such as a model in
literature [32], in which simplified jump terms were
constructed to realize the mechanical displacement
discontinuity and hydraulic pressure continuity associated
with fractures, whereas indirect coupling was not
considered.

In order to realize the fully coupled HM processes in
fractured porous media and to consider both direct and
indirect couplings involving high nonlinearity and discon-
tinuity, we explore and develop a model within the

spaceframework of the numerical manifold method
(NMM). NMM is a numerical method based on the theory
of mathematical manifolds invented by Shi [30, 31] and
has been successfully applied to both continuous and
discon- tinuous media in rock mechanics [5, 17]. The
numerical meshes of NMM consist of two types of finite
covers: mathematical covers and physical covers.
Mathematical covers consist of finite overlapping covers
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approximation pre- cision. Conventional meshes such as
regular finite differ- ence grids, finite elements or
convergence regions of series can be used as mathematical
covers, whereas physical covers are divided by boundaries
or joints from mathe- matical covers and define the
integration domain. The global function of an element is
the weighted average of the function on each physical
cover overlapping an ele- ment. Thus, the NMM is flexible
and general enough to include and combine well-
developed analytical methods, the widely used FEM and
block-oriented DDA, all in a unified form. Based on above
definition, fluid flow models using NMM were developed,
such as for analysis of free- surface flow [38] and flow in
heterogeneous media [10]. For coupled HM problems in
fractured rock, the following features of the NMM can be
highlighted: (1) For large deformation, the NMM based on
finite covers can model large deformation using fixed
mathematical meshes [17, 30]; (2) for local small-scale
fractures, the global approximation field can be easily
enhanced by increasing the order of the physical cover
functions from spatially constant (as in the finite element
method) to linear or even defined by arbitrary user-defined
functions [5]; (3) for complex fracture geometries or
compositions, the simplex integration used in NMM [31]
achieves exact analytical solutions in polygons with
complex shapes. NMM mod- eling of coupled HM
problems such as consolidation [16] or consolidation under
dynamic loading [40] in porous media was developed,
involving direct coupling.

In this study, we first provide a mathematical statement
of the problem in Sect. 2. Based on the energy-work model
for coupling mechanical and analysis, and considering
finite- thickness fractures as continuous porous media, we
develop a new formulation for considering both direct and
indirect couplings in fractured porous rock, in Sect. 3. With
the new formulation, we then establish a new model based
on NMM in Sect. 4. In Sect. 5, we demonstrate our model
for both direct and indirect couplings with several
examples.

2 Mathematical statement of the problem
To describe the coupled HM behavior in porous deform-

able media, Biot established a general theory of 3D con-
solidation in 1941 [3], expressed as:

space
spacel = T b fv% 0 olb
oe, c oh
r- ¥ 0 a2p
vb aot b M ot '

where r is total stress tensor, f is body force vector, v is the
fluid velocity vector, a is the Biot—Willis coefficient
(usually ranges between 0 and 1), e, is the volumetric strain



of the porous media, M is Biot’s modulus, c is the unit
weight of the fluid, and h is the fluid hydraulic head, as the
sum of fluid pressure head p and the head associated with
elevation. Equation (1) represents the static mechanical
equilibrium, and Eq. (2) represents the mass balance for
fluid flow. These two equations are coupled through fluid
pressure head p and volumetric strain e,. The Biot—Willis
coeffOient as a 1ctor multiplied to fluid pressure in Eq. (1)
signi: 's a moc ication and generalization of Terzaghi’s
effec ‘e stress w to:

r% B-macp C a3p

wher s the € ective stress tensor, m” =[1, 1, 1,0, 0, 0]
for 3 analysic >r m® = [1, 1, 0] for 2D analysis. This
theory for describing coupled HM responses in porous
media was then widely used in its original form or in
extension formulations for the modeling of porous
deformable media, with linear or nonlinear properties.
For mechanical analysis of linear elastic porous media,

we have:

% Ee d4b

where E is the elastic constitutive tensor and e is the strain
tensor, which could be expressed in terms of displacements
for small-deformation analysis as follows:

eV Au a5b

where A is the strain—displacement matrix
spacea constant to represent the zero-stress state of the
fracture [2]. Here following Rutqvist et al. [27, 28], we
use a reformulation of Bandis’ [2] equation in terms of a
mechanical aperture b, which then is inversely
proportional to the effective normal stress r.!, according
to (Fig. 1):
uE 0
rsw pr asp
where o is related to a Bandis’ parameter, which is user-
defined, and n is a constant defined as:

nYbw r'y—ry a9p

where r,! and b are the effective normal stress and
mechanical aperture at the initial or a reference state.
Moreover, in Fig. 1, by, is a residual mechanical aperture
that can remain open (incompletely closed) even at very
high effective normal stress [27].

The relationship between shear displacement and shear
stress for a rock fracture as have been observed in shear
tests conducted under constant normal stress can
according to Goodman’s classical model [8] be
characterized by elastic, peak and plastic regions as
depicted in Fig. 2a. The peak shear stress r, is equivalent
to the peak shear strength, while the minimum post-peak
shear stress ry is the residual strength. In the elastic
region, the shear stiff- ness is constant and independent of

the normal stress, but both ry, and ry increase with
increasing normal stress, as shown in Fig. 2b. The linear

shear stress—displacement relationship is expressed as:
Dr', Y4 k.Dus a10p

In order to be consistent with the relationship for normal
closure behavior in Eq. (8), we introduce the following

o
space. 0

o

A 0

< 1o
> lo

spaced6p

spaceand u is the displacement vector. For fluid flow in
porous media, we assume that the fluid flow satisfies
Darcy’s law:

v % —Kgraddhp a7p

where K is the tensor of permeability coefficient.

For rock fractures, linear elasticity according to Eq. (4) is
not sufficient to describe the mechanical behavior, because
it may be nonlinear elastic depending on effective stress.
Goodman [7] described the normal closure (closing defor-
mation normal to the fracture) as being inversely propor-
tional to the effective normal stress. Then Bandis introduced

space

0
n bm n
Fig. 1 M(( )stitutive model: relationship between normal
effective arture (Bandis et al. [2], Rutqvist et al. [28])
space
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Fig. 2 Mechanical constitutive model: a relationship between shear
stress and shear displacement. b Effect of normal stress r on the
relationship between shear stress and shear displacement (Goodman

1))

spacerelationship to describe the behavior of fracture shear
displacement under shear stress:

spacer - n% —t onC, 015p

as given traction boundary condition,
space Dug
s r Ya
spacedl11p
spacep Y4 p-
spaceon C

spaced16P
spacel p wDu;
p

spacewhere f and W are constants. Equation (11) was
originally used to describe the nonlinear stress—strain
behavior of soil [6]. Examining Eq. (11) we find that when
W = 0, the linear behavior is also included. We shall
implement this equation for fracture shear behavior in our
code for being consistent with the model for fracture
normal mechanical behavior.

For fluid flow in fractures, the hydraulic conductivity k
of a fracture depends on the size of interconnected voids
between the two fracture surfaces and is related to a
hydraulic fracture aperture by that can be defined according
to Witherspoon et al. [39]:

b’qig

spaceas given pressure head boundary condition,

v-n¥%qg- onC, 017p
as given specific discharge condition and

udx;0b¥4 udxpb in X

018p

rox;0b % ry0xP in X 019p

Acta Geotechnica (2017) 12:231-252

pOX;0P% p,0xP in X 020p

as initial conditions of displacement, stress and fluid
pressure head, respectively.

3 Development of a new model for coupled HM

spacek; ¥4
spacen

121
spaced12p

spaceanalysis in fractured porous media

spacewhere g¢ and I; are the fluid density and dynamic
viscosity, and g is the gravitational acceleration,
respectively. As the hydraulic and mechanical apertures
could be very different [27], in Eq. (12), the hydraulic
aperture by is assumed to be:

bh lA‘ bhr p fbm

where by is the residual hydraulic aperture when the
fracture is mechanically closed and f is a factor that com-
pensates for the deviation of flow in a natural rough frac-
ture from the ideal parallel smooth fracture surfaces.

The boundary and initial conditions for the fractured
porous rock masses are:

a13p

space

In this section, using an energy-work model for coupled
HM analysis, we first derive the equilibrium equations for
coupled behavior in porous media (Sect. 3.1). For fractured
porous media (e.g., fractured rock masses), where indirect
coupling is more significant, we then derive a new for-
mulation for considering the fracture stiffness change in an
accurate, implicit approach (Sect. 3.2).

3.1 An energy-work model for coupled HM analysis
in porous media

In Ref. [30], Shi established the total potential energy
spaceu ¥ u-
spaceon C,

spaced14p
spaceassociated with
ynamic/static

mechanical processes, under point/surface/body loadings,
spaceas given displacement boundary condition,
possibly involving discontinuous and large deformation.

each component of

space

spaceln Ref. [38] for fluid flow analysis, Wang et al. devel-
oped an energy-work seepage model for fluid flow analysis,
considering all the work done by fluid flow in porous
media. Later in order to better model Dirichlet boundary
conditions and material interfaces for fluid flow
problems, Hu et al. [10] developed a Lagrange multiplier
method. Herein, the energy-work seepage model [38] is
extended to conduct coupled HM analysis, linked by



“work.” By combining the work associated with
mechanical responses, the work associated with fluid
flow and the work associated with solid—fluid interactions,
a new formulation for direct HM coupling in porous
media is established.

3.1.1 The work associated with mechanical responses

The work associated with mechanical responses in terms of
strain energy, initial stress, point loading, surface loading,
body loading and given displacement boundary condition
was derived by Shi [30]. They are as follows:

1. The strain energy G. for elastic rock is expressed as:

spacetreazed as porous media with nonlinear features
under st idy mechanical states. Therefore, the work
associatec. with strong discontinuities and dynamic
processes is deactivated.

3.1.2 The work associated with fluid flow

Based on an energy-work seepage model [38] for fluid
flow analysis, the work associated with fluid flow in
porous media, including domain flow, fluid gravity, was
derived. Combined with a Lagrange multiplier method
[10], the Dirichlet and Neumann boundary conditions can
be imposed with unconstructed mesh and the associated
work was also derived. Therefore, we can represent all the
components of work associated with fluid flow in terms of
the domain flow, fluid gravity and boundary conditions as
follows.

1. The work associated with domain flow in porous
media is expressed as:

W.Y%acZ virhdXp2cZ = r-vdXdi—cZ hdvdX

W%  u FudX
x X

spaceP, Y4 7.

X spacee

821p
X X &7p

spacededX
space

where h is a choice vector (0, 1) denoting the gravity
2. spaceThe work W, associated with initial stress is

ggg:pressed

spgﬂdﬂﬂf“m"*‘gn. Substituting Eq. (2) into Eq. (27), we have:

2
spaceW, va Z
space

e'r’ dX 0 g22p

spaceW, ¥ —c Z

spacerp’KrpdX — 2¢ Z

X
XZ
£ __ X
spacehK rpdX
Z
space

X
3. The work done by point loading W, is:
W, Y4 u'F
- space2c

a23p

a p
spaceot ot Mot
spacedXdt - ¢

spacehdvdX
X

space
028pk

4. spaceThe work done by surface loading W, is:

W% Z u'FdC, d24b

spaceReggrdles[s of the effect of solid deformation, for work
associated with fluid flow in porous media, we have:

W% —cZ rTKrpdX — 2cZ hKrpdX

Z Z
5. spaceT e work done by bocly loading W, is:

spacex
- 2c
spaceop 1 op h
- spacex
0

d{ZX.G"l;h_e véork done by fluid gravity is:

spacehdvdX 029p
spaceZ
x ot M ot
T
X
space
X

6. The work associated with given displacement
boundary condition W, is expressed as

spaceW, v c Z
space
hdvdX x

spacew

930p

1 —
1 T
g 0u — u-b du — u-b 826p

3. spaceThe work associated with Dirichlet boundary
condition 0 2xpro sed {l op



paceusing
stiffness go
of the penalty spring.

For discontinuous analysis of fractures as strong dis-
continuities, Shi [30] developed the algorithms for contact
dest ot " iteration and contact enforcement

anu uertveu uie wurk associated with contact between
spaceWp ¥4 —c Z

nTK( rp'p hT)ép — p-PdCp a31p
Co

using the Lagrange multiplier method developed in [10].

4. The work associated with Neumann boundary condi-
tion is:

spacediscontinuities. For dynamic analysis, the work

associated with inertia is also considered. In this study,

fractures are

spaceWy ¢
Cx

spaceq-Tdp p ybPdCy a32p

space
3.1.3 spaceThe work associated with the fluid—solid
interactions in porous media

Now we extend the energy-work seepage model [38] for
coupled HM analysis by deriving the work associated with
solid—fluid interactions. They are derived and explained as
follows.

1. The work done by the fluid flow on solid deformation
is obtained directly from the excess fluid pressure
compared to the initial fluid pressure:

3.2 spaceA new approach to consider the
indirgzt couplig in fractured porous

media

In fractured rock masses, the main flow feature is seldom
a simple plane single fracture, but may be a complex
geological feature, consisting of multiple branching
fractures intermin- gled with mineral-filled sections and
damaged host rocks adjacent to fracture surfaces (Fig. 3a).
The basic property of such a flow feature is its ability to
conduct water along open and connected fracture parts,
with a very sensitive relation-

space
Wfs

space¥a c Z

spaceadp — p b mTedX 033p

spaceship between fracture aperture and hydraulic
conductivity as in Eq. (12). Another related key property
is the nonlinear relationship between stress and fracture

aperture as illustrated
2. spaceThe work done by solid deformation on fluid
flow is
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ODlained DYy onsidering now tne Olld derormation
influences the mass balance of fluid flow. From Eq.
(27) we can see that the work associated with solid

deformation on fluid flow could be expressed as:

0
W Y% —-2cZ _pa

ey

dxdt 034b

b'e
Examining the expressions in this section, we see that all

the components of “work” together are consistent with
Biot’s equations and corresponding boundary and initial
conditions. The energy-work model provides a unique way
to transform differential equations to integral equations with
“work” as a bridge to link mechanical to fluid flow
analysis.

spacgi; ¥ig. 1. Moreover, such a flow feature is also

asso 1 with a mechanical weakness that may allow for

in-e] shear slip along its plane. One pragmatic

apptuacu to model such a flow feature is to simplify it as a

finite-thickness equivalent porous deformable medium,

which has strongly nonlinear properties reflecting inherent

fracture flow and nonlinear fracture opening and/or shear

behavior, with con- sideration of effects of fracture filling.

The thickness of this equivalent porous media flow feature

in the model may far exceed the real fracture width

including open fracture parts and filling. It can include part

of the host rock on each side of the flow feature, still

retaining the key features of potential fracture flow and

nonlinear deformation behavior. The model for such a flow

feature is depicted in Fig. 3b. It is a porous medium of

thickness I; which includes both a dominant fracture flow

path and other materials such as fracture filling

space
(@

(b)

Surrounding rock

il

Fig. 3 Schematic of the simplified porous fractured rock model
space

spaceﬁnd part of the host rock. For the dominant fracture flow
pat

spacesiip n



spacewe consider its aperture for calculating the hydraulic
con-

spacex a e, p h

spaceuii-1»

i
spacey  sii-1p
spaced38pP

space

spacenonlinear behavior of the fracture described in Eq.
(8) as well as by the solid fracture fillings and adjacent
host rock described to have,sii-1mr elastic properties. As the
fracture zones are modeled as porous media with different
nonlinear

spaceDetailed derivation of the above equations can be
found in “Appendix.”” The strain energy in the porous
medium representing a fracture zone is expressed as:
spaceproperties from the surrounding rock, the boundaries
of the fracture zones are regarded as material interfaces.
The dis- placement continuity across these material
interfaces are

spacePem ¥4 7
nspacen X
Wiib 3.,3iib
r,de”"dX d39p
spdberealized by penalty method [30], and the

continuity of

Combined with Eq. (37), Eq. (39) becomes:
spacehydraulic head as well as the normal flux is realized
by the

Lagrange multiplier method developed by the authors in
[10].

h
Spacez 7 g rOéu—le r[)
er X 2
space\ b xi
space
Oii dii—1p
b

a fracture zone. In this approach, we use an equivalent

concept to represent this material behavior as follows:
spaceZ Z rhfﬁ?ﬂfﬁgﬁfﬂ(fﬂ?ﬂfﬁr?ﬂfﬂfﬁofﬁéfﬁi?ﬂﬂﬂ—fﬂfﬂ1fﬁfﬁbfﬂ?ﬂfﬂ—
mﬁfﬂ?ﬂrﬁfﬁmofﬁﬁfﬂ?ﬂ\fﬁfﬁﬁfﬁbfﬁfﬁmﬂxﬁmifﬁfﬁfﬁzfﬁfﬁ—fﬁfﬂfﬁ4ﬁfﬁﬁfﬁﬁﬁfﬂnﬁfﬁfﬁmfﬁgﬁ"ﬂ

dxdX

2g
space

Bii—1b y o0
bg r'""pr n n

Q0iP 1/, gdroan‘p b by = brn

535D spacex
spacen n Iaii—lb
Combining Eq. (8), Eq. (35) becomes:
space
040p

By integration with Taylor expansion, and projected into
a local Cartesian fracture—zr(lt)ne Coor%inate system, Eq. (40)

space .
P 1S EXpI‘ESSEd as:
00iip 0dii—1p
r, iip T‘O r, ii _ T‘O
rnO - Id
r
n n

space ,aiib NAih n)
12 Y gdrKaii tﬂaﬁ

P pxﬁiibeéiib dsdn
. spaced36b
space C \
efn 11 ’ 2 n 1 n
2 2
space d
efn
2
Z o 2 2
De n
n n0
P % .

spacewhere g represents the compliance of fillings and
adjacent

spacewhere the X% and X% are:

spacehost rock within the fracture zone. Note that the
nonlinear behavior of the fracture could be very strong (see
Fig. 1) so that we use an incremental algorithm to express
and solved

spaderdisplacement and stress.

XBiiD %
—— space1
vaii—lb
;ulli—lb
space2 n no i

\
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space

fon digrbacaiBN ARAHRREDt, in this model, we develop a
new formulation accounting for the nonlinear behavior of
the

Jfifff - i i o fii-
u ( \

ffi A, i i i

spacev’

n0

..mechanical behavior of the fracture zone intrinsically
influ-

ences the strain energy that could be stored in the material
aii
b

>

space (
pace_ g

\

space

0ii—1p 0
r -r
véii—lb

spaceunder deformation. Therefore, we directly introduce
those

spRoakneay @b@%ﬁémﬂ%mﬁmmmm\mmed in the
ff

I _ n

4a
space

fonewinganaslationsbin: oueRpBY IR AS digestRatbin the

3.2.1 An implicit approach to consider the normal
stiffness change with effective stress

Spacen
. n
Van—lb 1,
n0
Spaceno dii=1p
d
Spacesii-i»
d
space
042b

spaceThe normal constitutive model expressed in Eq. (36)
could be rewritten as:

spaceAccording to coordinate transformation from
global x-y
to local s—n coordinate system, we have:
space
rﬁnﬁiib 1,

space

08ii—1p 0
P g I'n, br
space\ p xi

b _
Aa
S;Paceeaiib 1, Teﬁiip 643p
space2a
A dii-1p 037p
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t I
€0S OB, .. wo voroorcin oo son o
W‘nﬁemhmﬁﬁﬁﬁﬁm#@Wﬁﬁmmm%mﬁ%WMgmm
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1
dsdn Ya spaceox
Spageg: ; ‘
il o ddxdly oo o 344b
Zg Spacesii-1»
spac"leo_n
0X
Spalcew
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spacewhere ii represents the iith time step; n denotes the
local normal direction and

spacewhere C' = (sin’h, cos®h, —sinhcosh). Then we
finally obtain:

space
ggggg 77,
1
SBASG
spacel  sip T T

spacewhere C'" = (—sinhcosh, sinhcosh, cos?h,
—sin*h) and

T
spacePefn% 2 Xl C eb 2X2 e CCe JdXdy
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d45p
spaceQ QO

A%
Ot approach to consider the fracture

00ii—1 0
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3.2.2 sp0,, i
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r
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1

space. Then we finally obtain
space

space
Thq sheélr constitutive model expressed by Eg. (11) could

be further expressed as: 1
spaceP 7
bi=".127. uB"C"C'B'uJdxdy 854b
space

be further expressed as:
el Vi



space aiip
- e
i —th————

spaced46b
3.2.3 spaceFluid flow in deformable porous fracture
zones
spacel

where e
spacebnp we;

— Du(ii) b(ii_l).
spaceThe tensor of permeability coefficient H of the
deformable porous fracture zones in local 2D coordinate

system is
Spacess m

Similar to the approach for fracture normal mechanical

space— 2c

plop

spaceZ © dXdt - cZ

spacehdvdX

spaced56P
spacexo 1
b we

spacey ot M ot X

spaceby,

spaceBy integration, Eq. (48) becomes:
After transforming from the local fracture-zone coordinate
spaceZ 2

e X w
space, - i1
spacesystem to global Cartesian

behavior, we directly express the associated strain 31ergy \ coordinate system, we have:
as: o
s Wi¥% —c  rp F HFrpJdxdy — hHF rpJdxd
spaceexpressed as: 20 v
% 1
kf 0 Sp P j%‘ 4 eallp _
H 0 kfn
space spp o X
355b s In1
Spacez Z i SpaCebéii—lb p Weaiib
Pegs Va X 0 space®dX
spaceZ Z
s;;gge m rp F HErpJdxdy — hHF rpJdxd
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spacewhere ki, denotes the hydraulic conductivity in
the normal e 7 oplop dxdvd 7 hdvdx
direction. The work done by domain flow in the fractures Space- ¢ Jdxdydt - ¢ v
is spaceBy Taylor expansion, we have:
space r, de, dX ( - O '

X 0
spaccCombined with Eq. (46), Eq. (47) becomes:

space
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The other terms of work could be expressed in the
same
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transformation

space from fractures-zone local coordinates to the global Carte-

sceSUbstituting Egs. (50)—(49), and projecting into the local
Cartesian fracture-zone coordinate system, we have:

spacesian coordinate system.

i/
Spe?sceﬁ) 4 1 béii—lb 1
space(e\2dsdn 351p

space4 Coupled HM NMM analysis of fractured
porous

space Tock masses

spaceAccording to coordinate from global x—y to local s—n
coordinate system, we have:

A .
eSuD 1 CUTBOU611D

space
4.1 Fundamentals of NMM

d52p

Here we briefly describe the fundamentals of NMM for
both

1
A
11y 3b
I
spact_.
Y dxdy  Jdxdy 53
on 1 u 1

oy

spacen[;echanical and fluid flow analysis, including
mathematical covers, physical covers, elements, cover
functions and weight functions. In this study, we use
triangles to form mathematical covers, because of their
proven good numerical performance

space

Fig. 4 Mathematical covers, physical covers and elements defined in
NMM with uniform triangles as mathematical mesh

space[1]. As shown in Fig. 4, all the triangles sharing a
certain node (or ‘star’) form a mathematical cover (i.e., a

P

colors). The
corresponding physical covers (P' and P?, P' and P? and P!

spacestandard finite element analysis with constant cover
functions (called nodal values in FEM), f and s are the
vectors (1)T and the number of DOFs m associated with a

hysical cover is 3
EZ for displacements and 1 for pressure head). For

Spacei1r 2 2 3
spaceand P?) are divided from the mathematical covers by
boundaries, including material interfaces if they are
regarded as discontinuities. The overlapping areas of

physical covers
aré defined as elements (such as elements P'P'P!and

spaceapproximation of displacement, f could be written as
(1, x, y)' and the associated DOFs of a physical cover in
the mechanical field become 6. Substituting Egs. (61) and

62
bacL to Egs. (58) and (59), the contribution of each physical

i lpltiwle]

2

s aceP2P2P2 dlSt

tterns
gcecovef o a P r)m
spacei23

spaceln NMM, the approximations of field variables (in-
cluding displacements for mechanical analysis and pres-
sure head for fluid flow analysis) within an element are the
weighted average of functions on all physical covers
overlapping this element. They are expressed as:

Pagished in Fig. 4 by different fill pau

u Ya whupe 058P

p ¥4 W'Dy 859p

where u and p are the variables on a certain element, u,. and

pPpc are the vectors of physical cover functions of

displacement and pressure head, and w, and w, are the

vectors of weight functions of physical cover functions up.

and pj. on this element. For an individual physical cover i,
e have

wox;yp L 0;wdx;yp [ 006x;yb2 U,

spaceglobal approxithation over the entire domain.

In this paper, we use linear weight functions and
constant physical cover functions for both mechanical and
fluid flow analysis with a triangular mesh. Note that even
though Zienkiewicz et al. [41] indicated that T3/C3
elements failed in a patch test, we should note that Eq. (2)
in [41] and the boundary conditions in the test are very
different from the coupled HM problem in this work.
Besides, the work pre- sented in [42] showed that the
correct assembling of the equilibrium equations for this
problem could successfully overcome the restrictions of a
mixed formulation.



4.2 NMM global equilibrium equations for coupled
HM analysis

spacew' Ox; yb ¥4 0; w' dx; yb ¥4 0 6x; yb U
spaced60p

spaceAccording to the energy-work theorem,

spacewhere U; is the geometric range of physical cover i.
The cover functions u,. and pj. can be a series of any
order:

Upe ¥4 f'D 861p

Ppc Y4 'P 862p

where f and s are the vectors of the coefficients of the
degrees of freedom (DOFs) D and P to be solved in
mechanical and

spaceW,p P, % 0

063p

we can derive the potential energy associated with each
component associated with coupled HM processes in
fractured rock masses. We further combine with NMM
approximations expressed by Egs. (49)—(53) and project
the integration into a 2D Cartesian coordinate system and
derive the potential energy for the solid as follows:

1. the strain energy for elastic porous rock is:

spacefluid flow fields, respectively. Specifically, D
represents DOFs in terms of displacements and P
represents DOFs in terms of pressure head. For 2D
analysis, f and s are the

spaceP. ¥4

spacenT( )
X 2
spaceEBDdxay  spacewhere B = ARSfpace: 2 T

spacesubsets of vector (1, x, y, x, y, xy, ...) . For
example in

u
space

2. the potential energy associated with initial stress is:
5. The potential energy associated with deformation

spaceP Y — Z
spaceD"B"r' dxdy
spaceeffects on fluid flow is:

d65p

x p
spacer 0
Py Ya

space_2ac
-

T
space D'B'm'OP — D~

space
"m"™OP

space\dxdy a75p

3. spacethe potential energy associated with point
loading is:

P,% —D'T'F 366b

where T = w'f".
4. the potential energy associated with surface loading is:
Z

ob
spaceD
where D™ is the time-iteration choice for D.

For fracture zones modeled as deformable porous media
where indirect coupling is manifested by changes in
material properties with effective stress or deformation, we
spaceP, Va-

spaceD"T"F.dC,
C
spacederive the following expressions:

67

1. The strain energy: . .
spaceb. the potential energy associated with body loading is:
Z

1, 1.
spaceP Y zsz r__X*C'BD p~ X*"D'B"CC"BD

acer T
Py % - D T Fudxdy a68p
6. the potential energy associated with a given
displacement boundary condition is:
S ef 1 2
pace 2g 2
— 1 -
b pii-1» ID'T'HTD Jdxd
m
spacet '6%4
space
wePg % gy D'TT — u-T 6TD — u-p 969p

7. the potential energy associated with the work done by
fluid flow on the solid is:

spacewhere b B"C""C'B'’

2. The potential energy associated with work done by
domainlﬂow

PsYacZ P'G'F'HFGP p 2hHFGP

spacePi % —caZ P'O™m'BD — p,m'BD dX d70p

)

space? (oot o7m

here O = w's".

spacep POOP- POPJdxdy - ¢

spaceh
X

o77p

=1\)
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SO, We can derive
energy for fluid flow:

e 1ollowing potentiad

1. The potential energy associated with domain flow in
porous media is:

spaceThe other expressions are similar to the expressions
as for porous media after coordinate transformation from
frac- ture-zone local to global coordinates.

Adding the potential energy component expressed by

spaceP; Y4 c Z
spacel
PT

spaceG KGP b 2hKGP
spaceEgs. (64)—(70) and Egs. (71)—(75), we have
the total

potential energyT G" for mechanical analysis and total
space? )

spacepotential energy
spacefor fluid flow analysis. The equilibrium

spalceb MD
spaceP’OTOP — PTOP~
spacedxdy b ¢

spacehdvdX
X

a71p
spaceequations are derived by minimization of the total
potential energy for mechanics and fluid flow.
Specifically, equation qG"/qdi = 0 represents the
mechanical equilibrium on the

spacewhere G = (g¢/gx, ¢/qy)"O, P~ is the time-
iteration choice for P, and D is the time step,

respectively.
2. The potential energy associated with fluid gravity is:

spaceith physical cover and qG%qp; = 0 represents the
equilib- rium of flux on the ith physical cover. The final
equilibrium equation is expressed as:

spgaceP Y —cZ hdvdX 972b
oy ” st ! !
space - D L
o C P Q
space
P

3. spaceThe%otential energy associated with Dirichlet
boundary condition is:

Z% ep
whe i isjthe element of matrix N, representing the
space
PD C

Co

( )
spacen'K P'"G'OP p h"OP — P'G"p- — h'p- dGCp
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physical cover i, derived by: space2 m

space673p

4. The potential energy associated with Neumann

spaceNj;
§Baceo P
od;od;

spaced79pP

spaceboundary condition is:

( )
PxY% —cZ q-TOPp g-Ty dCy
space o

d74p

spaceS; is the element of matrix S, representing the
contribution of fluid flow of physical cover j on
deformation of physical cover i, derived by:

space

SI Ya spaceOZPm
od op

spaced80p

spacecolumn, (2) a porous elastic infinite-long layer, (3) a
rock dogﬂgbgpr}taining a dominant fracture and (4) a rock

do
ma
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aceC; is e element of matrix C, representing the fluid
flowS-ontribution of physical cover j on deformation of

physical cover i, derived by:

o’Pf
spacepressure fluid injection. In the first two examples, we
compare our modeling results with analytical solutions and
present the results in terms of accuracy and convergence
efficienqi.

iV
op op

@®@ A Ya a78

b

space

spaced81p
space

5.1 Example 1: modeling of direct HM coupling

spaceL; is the element of matrix L, representing loading term

and derived by:



oP™
spacein a poroelastic column supporting vertical
loading on the top

spaceL; ¥4 -
spaced82b od

spaceln order to demonstrate the efficiency and accuracy
of the

new NMM code for modeling coupled HM behavior of
spaceand flux term Q; as the element of matrix Q, derived
by:

oP*
QYa- —

opi
In the matrices N, L and C, Q, time step and previous time-
step displacements and pressure heads may be included
representing inertial and compression of the fluid—solid
system, respectively. In the equilibrium Eq. (78), all the
terms are calculated by simplex integration. Simplex inte-
gration, proposed by Shi [31], achieves analytical solution
for polynomials over elements of arbitrary shape.

a83p

4.3 Time iteration

Following the original NMM for mechanical analysis by
Shi [30], we use the implicit scheme. The reason is that the
nonlinear behavior may be very strong, especially for the
porous fractures, and thereby the changes between
different time steps may be very large. So it is desirable to
use implicit scheme for high accuracy. In each time step,
the displacement increments and fluid pressure are
calculated. After each time step, the displacements and
initial stress are updated as follows:

Daiiblb A Daiib p dDaiile 584b

The stress is calculated by Eq. (37).

For this nonlinear problem, we use a direct solver to
solve the global equilibrium equations for faster conver-
gence rate.

5 Demonstration examples

On the basis of the above formulation for coupled HM
behavior in fractured rock masses, we developed a new
computer code. To demonstrate the accuracy and compu-
tational efficiency of the NMM model and computer code,
we employed four example problems: (1) a porous elastic

spaceporous deformable media, we simulate the common
veri- fication example of a poroelastic column supporting
ver- tical loading on the top boundary. We choose the

same model geometry, boundary conditions and properties
as in [16]. The model geometry and boundary conditions
are shown in Fig. 5. The column is 80 m high and 20 m
wide. The Young’s modulus is 3.7 9 10° Pa, and the

Poisson’s ratio is 0.35. The permeability coefficient is 2 9
10~® m/s. The loading is evenly applied on the top
boundary of the column with a boundary stress of 200 kPa.
First, we set an infinite Biot’s modulus and use the
developed NMM code with fixed mesh of different sizes
when kv = 2, kv = 4, kv = 8 and kv = 16 to simulate this
problem, where kv represents the half number of mesh
layers. The mesh geometry of different mesh sizes is as
shown in Fig. 6, and

bl dd b d
p =0> ty=F0
qn=0’
1,=0, 1,0
I
80m "
A
4,0,
| 570,4,=0
;
20m
Fig. 5 Model geometry and boundary conditions

space
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with slight deviation for Te coarsest mesi involving onty
12 elements (kv = 2). Furthermore, we study the sensi-
tivity of the calculation with different choices of Biot’s

spaceFig. 6 Mesh geometry with different sizes

Table 1 Comparison of computation parameters of different mesh modulus. Figure 8 shows the evolution of settlement and
Space fluid pressure with different values of Biot’s modulus.
4 1 Good agreemegibetween analytical and numerical solu-
pdy, tb¥i— F, X space8 * 1
) W t ahcF, 1 e
0 02n P 1P
s 1 )/ 1 /
pace__ 1 — PRy’ o space _662nbwppzct
space " space
sin a85p
space spacetions, for example when the Biot’s modulus is 6 MPa,
652’;% .1p verifies the accuracy for the tranzient problems involving
pacesizes Biot’s modulus. As we can see, Biot’s modulus may play
Number of Number of physical = Settlement an important role in this trangient processes, slowing down
element covers (m)
. space b
kv =2 12 13 —2.69362 @ o (b) 200000
skv =4 40 31 —2.69352 1 kv=2
kv=8 144 93 —2.69348 R tv=g = 150000
kv =16 642 367 —2.69339 T b SN o
Analytical - - —2.693841 - analytical solution o
c - =]
2 -1sf @ 100000}
: :
. 5 of o
solution [3] n 'S
T 50000
kv is the half number of mesh layers -2.5F
3 1 1 1 ol
. . . 5000 10000 15000 20000
the computation parameters are listed in Table 1. As we t(d)

can see the deviation of the calculated settlement from the
analytical solution is no more than 0.02 %, herein the Fig. 7 Comparison of the calculated a settlement (m) and b fluid
larger deviation with denser mesh may be due to small pressure (Pa) evolution with NMM using different sizes of mesh and
elements along the vertical boundaries, on which the given the analytical solution by Biot [3]
displacement boundary condition is realized by penalty
method with large penalty spring stiffness.

The analytical solution of the settlement and the fluid
pressure evolution for this problem was derived by Biot
[3], expressed as:

0 b¥%
Spi ) p lumn and a and c are

the 1solidation constants
derined by BIot [3].

We compare the calculated results of the settlement
evolution for different mesh sizes to the analytical
solution in Egs. (85) and (86). The time step we used for
the sim- ulation is 100 days, and the simulated time span
is as long as 20,000 days. From Fig. 7a we see that even
with the coarsest mesh using 4 layers and 12 elements, we
could achieve excellent results. We further choose a point
A located at (10, 40 m) and calculate the fluid pressure
evolution and compare with the analytical solution
according to Eq. (86). We find good agreement in Fig. 7b
between the numerical results and the analytical solution,

2



boundary (Fig. 10a). The Young’s modulus is 4 MPa, and
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Fig. 8 Sensitivity of a settlement (m) and b fluid pressure (Pa) with
the different choices of the Biot’s modulus
space
the settlement and pressure dissipation process. With an
increase of Biot’s modulus, its influence on the coupled
HM process is reduced. Specifically, if Biot’s modulus is
20 MPa, its effect on this problem can be ignored. How-
ever, in order to eliminate the transient effect by Biot’s
modulus and focus on the fluid—solid interaction as a
transient term, we set infinite values in other examples.
From this example, we show that our new NMM model
for coupled HM modeling in porous media is accurate even
when using a rather coarse mesh.

5.2 Example 2: modeling of direct coupled processes
in an infinite poroelastic layer subjected
to loading on the top face

Figure 9 shows a semi-infinite poroelastic media subjected
to a 6-m-long strip loading with a stress magnitude of
20 kPa on the top face.

We first choose the 100 m 9 100 m numerical model
with drained top boundary and impermeable bottom

space
}
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:
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Fig. 9 Model geometry and boundary conditions

the Poisson’s ratio is 0. The permeability coefficient is
2.5 9 1078 m/s. By symmetry we extract the right half of
the model from the line passing through AC to simulate

Analytical Sol

. NMM Solution

1

the
space
(a) (b)
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Fig. 10 a NMM mesh and comparison of the evolution of calculated
vertical displacements at b point A and c point B with the analytical
solution by McNamee and Gibson [18]
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Fig. 11 Evolution of vertical displacement of points A, B and C

5000
Time (d)

coupled HM behavior. Points A and B located at (0, 100)
and (3, 100) are points used for comparison of numerical
and analytical results. McNamee and Gibson [18] provided
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ratio is 0. We calculate the evolution of vertical displace-
ments at points A and B using a coarse mesh (Fig. 10a) and
compare with the analytical solution as shown in Fig. 10b,
c. We see that our model result agrees very well with the
analytical solution for this case.

Then we change the model dimension to 30 m wide
and 12 m high with Poisson’s ratio 0.3. We first calculate
the evolution of vertical displacement at the three points
A (0, 6), B (0, 12), C (3, 12), as shown in Fig. 11. Note
that the points A, B and C are different from the ones
shown in Fig. 9; therefore, the vertical displacement at
point B is the largest. Furthermore, we output the fluid
pressure distribution at different stages calculated by our
NMM code, as shown in Fig. 12. From Fig. 12 we can
clearly see the process of fluid pressure dissipation at
different times.

space
5.3 Example 3: NMM modeling of direct
and indirect coupled HM processes
under vertical loading and fluid
injection

In order to demonstrate the formulation for considering
both direct and indirect coupled hydro-mechanical pro-
cesses in rock with fractures, we simulate a rectangular
rock domain containing a fracture zone subjected to
instantaneous vertical loading and a constant pressure
fluid injection. The model geometry, boundary conditions
and the mesh are as shown in Fig. 13a, b, respectively.
The material parameters are listed in Table 2. In this case,
the initial thickness of the fracture zone is 0.1 m, whereas
the mechanical fracture aperture for the assumed
dominant fracture flow path is 1 9 10™* m (0.1 mm)
and with an

equivalent hydraulic aperture of 59 10 m (50
Im). This is at an initial effective vertical stress of —8
MPa (a negative stress values signifies compressive
stress) involving an initial total vertical stress of —8
MPa and a zero initial fluid pressure. Note that the
given displacement boundary conditions and material
interfaces for mechanical analysis are realized by the
penalty method and the stiff- ness of the penalty spring
go is determined as suggested by Shi [30].

Since the developed nonlinear finite-thickness fracture-
zone model is new and there is no available closed-form
solution or numerical results for comparison of the tran-
sient HM response for this case, we run this simulation
step-by-step to confirm that the results are reasonable. As
the model development for fluid flow analysis was pre-
sented and verified previously [10] and the direct
coupling was verified in Examples 1 and 2, here we focus
on veri- fication of the indirect coupling algorithms. First
we applied the instantaneous vertical loading with
magnitude of 10 MPa on the top of the model and
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T 1 YSIS without fluid injection.
This results in an instantaneous closure of the fracture
considering its
space
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Fig. 12 Simulated fluid pressure (Pa) distribution at different times

space
(a) Overburden pressure F, (b)
LLLTLELLLLEL
Po OOOHAK
L
4,0, a fracture with ¢,=0,
=0, ,=0 initial aperture by | 4 =0, 1,0
Po Do
Injection
pressure p; U
e 0.5
4,0, g ,
1,=0, uy=0 o L YAV, YAYi VAYAYA
0 0204 06 08 1

Fig. 13 Schematic of a the numerical model, the boundary condi- tions
and b the mesh



nonlinear normal closure behavior with changing
normal stiffness. We get the final results with a
mechanical frac- ture aperture of 6 9 10™>m (60 1m)
at the final steady

spacestate, which is accurate according to Eq. (8)
(because the initial stress is —8 MPa, rud = —5 MPa,
and the initial mechanical aperture is 1 9 10~* m, while
the final stress is

—10 MPa. Therefore, according to Eq. (8), the
final mechanical aperture should be: (=8 9 10° 2 5 9
10% 9

19107%(=109 10°?2 59 10°) = 6 9 10~°m). Then
we conducted a simulation considering only indirect cou-
pling, i.e., we deactivate the fluid—solid interaction terms
for direct coupling associated with Egs. (33) and (34). In
this case, the coupling occurs only one way, i.e.,
mechanical deformation affects permeability, but there are
no influences of fluid pressure on mechanical field. The
mechanical and hydraulic property changes of the fracture
under loading and injection with constant pressure of
8 MPa at the left end of the fracture zone and the pressure
at the right end of the fracture zone are fixed at zero.

Lastly, we run our full package considering both direct
and indirect couplings. We output some of the results in
Figs. 14 and 15.

We compare the distribution of fluid pressure in cases
without considering coupling, only considering indirect
space

spaceTable 2 Computation parameters for coupled modeling of the con-
stant pressure injection in rock domain with a fracture zone in Fig. 13

Material Parameter Value

Fluid Mass density (gr) 1000 kg/m?
Dynamic viscosity () 19 10~ Ns/m?

Rock matrix  Young’s modulus 4 GPa
Poisson’s ratio 0.2
Permeability coefficient 59 10~° m/s
Biot—Willis coefficient (a) 1
Biot’s modulus (M) 4
Initial vertical effective stress —8 MPa

5.4 spaceExample 4: NMM analysis of coupled
HM processes under constant injection in rock
mass with a single dominant fracture

Using the similar material properties as in Example 3
listed in Table 3, we enlarge the model dimension
to 10 m 9 10 m with the 0.1 m fracture zone in the middle
(Fig. 16). The model is initially balanced with 10 MPa
initial stress, and we inject fluid at the left end of the
fracture zone with a constant pressure of 1 MPa. The right
end pressure is set as 0. We conduct this modeling for
studying the changing processes of fluid flow pressure
and

SpaceFracture zone

SpaceMass density 2300 kg/m® Initial normal
effective stress —8 MPa Bandis’ parameter
(rad) —5 MPa Initial thickness of
fracture zone 0.1 m

spacedeformation in fracture zone and surrounding rock.
Figure 17 shows the fluid pressure distribution in the
whole domain at different times after the start of the
injection. We find that the pressure distribution is not
Spacelnitial mechanical aperture of fracture
space0.1 mm

spacesymmetric from the left to right during the

transient phase

just after injection while becomes symmetric after

20 days
Space
Penalty
spring
spaceshear constant (f) 107" Pa™"
Shear constant (W) 0
Factor (f) 0.5
Residual hydraulic aperture (by,) 0
Biot-Willis coefficient (a) 1
Biot’s modulus (M) ?
Stiffness 1.6 9 10" N/m

spaceof injection, indicating that a steady state has been
reached. We further choose points A, B, C located within
the frac- ture zone at (1, 5), (2, 5) and (5, 5), respectively,
to see the pressure evolution (Fig. 18). We observe an
increase of pressure due to injection for each point and
then reach steady after 10 days of injection.

In order to study the local hydro-mechanical behavior in
the fracture, we extract a profile located at y = 5.01 m of
the fluid pressure distribution at different times, as shown
in Fig. 19. We see that from the beginning till 7 days after
spacecoupling and considering both direct and indirect
coupling, respectively, as shown in Fig. 14. The difference
of fluid pressure distribution between Fig. 14a, b is not
obvious, indicating that a steady state is reached for only
considering indirect coupling after 30-day injection.
However, in Fig. 14c, a steady state has not reached and
fluid continues to dissipate from the left to right. This
difference could be explained by that in figure b with only
indirect coupling, a steady state is reached when mechanical
deformation no longer occurs, whereas in case for Fig. 14c,
the final steady state will be reached till a balance is reached
between the interaction of mechanical and fluid flow fields.
Overall, the effects of pressure on solid deformation are not
obvious. Further, we compare the aperture change with time
at the injection point under these two conditions, shown in
Fig. 15. Ignoring the no more than 1.7 % oscillations due to
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penalty method for material interface conditions in 9 () (b)
mechanical analysis, we see that the aperture at the final
stage reduces to 6 9 10> m (60 1m) when only
considering indirect cou- pling. This value is the same as
the one in the case of pure mechanical analysis, proving its
verification. However, when considering both direct and
indirect couplings, the aperture remains steady at 6.5 9
107> m (65 1m) under the effect of fluid pressure on the
solid skeleton.
spaceinjection, the pressure tends to distribute linearly
along the fracture, indicating that a steady state is reached.

The vertical displacements relative to the mechanical
fixed bottom boundary are shown in Fig. 20. The vertical
displacement responds to vertical strain caused by the
pressure changes that are first progressing along the frac- 0
ture from the left to the right and also by fluid pressure 0 0204 06 08 1
diffusion into the surround rock that causes deformations Fig. 14 Distribution of fluid pressure head (m) for a flow analysis
both within the fracture and in the surrounding rock without considering coupled effects, 30 days after injection, b only
(Fig. 17). Because of that, we see uplift in the entire considering indirection coupling and ¢ considering both direct and
domain under effects of fluid diffusion and expand the indirect coupling
porous system with mechanically fixed bottom and free
upper  boundaries. The final total uplift at the top Fig. 15 Aperture change with time at the injection point in simulation a
boundary is 6 cm, and most of this uplift is caused by the only considering indirect coupling and b considering both direct and
vertical expansion taking place within the rock indirect coupling
surrounding the fracture zone. Nevertheless, this example
demonstrates the ability of the model to simulate transient
HM processes in a fractured rock mass during fluid
injection into a dominant flow feature.

Corresponding to Fig. 20, we show the evolution of
vertical displacement at profile x = 1.0 m in Fig. 21. We
obviously see that the vertical displacement increases due
to expansion under increasing fluid pressure and reaches
steady state after 7 days.

space

0

0 02 04 06 08 1

6 spaceConclusions and Perspectives

In this study, we developed a new NMM model for coupled
hydro-mechanical processes in porous rock containing
dominant fractures. We used an approach to model frac-
tures as finite-thickness flow features, or fracture zones,
considered as porous media that possesses similar behavior
to that of the surrounding rock under direct coupling.
However, fracture zones are distinguished from the sur-
rounding rock because of their nonlinear behavior of
hydraulic and mechanical properties, as they are very
sensitive to deformation. This new model includes:

* A new formulation for analyzing direct HM coupling in
porous media. Based on an energy-work model, we
stringently established all components of the work



spacerelated to fluid flow and mechanical processes in
a unified form and their interaction appeared as a
direct coupling and these work components are
consistent with Biot’s equations together with initial
and boundary conditions.

* A finite-thickness fracture-zone model with an
accurate implicit technique to account for indirect
coupling associated with changes in the nonlinear
hydraulic and mechanical properties of the fractures.
We proposed a new model denoted finite-thickness
: _ " e :
dominant fracture, mineral fillings and part of adjacent
rock matrix, with both linear and nonlinear
constitutive features. We derived an implicit
formulation by directly assembling the corresponding
strain energy to consider the

space

spaceTable 3 Computation parameters for coupled modeling of the con-
stant pressure injection in rock domain with a fracture zone in Fig. 16

Material Parameter Value

Fluid Mass density (gr) 1000 kg/m?
Dynamic viscosity () 19 1073 Ns/m?

Rock matrix  Young’s modulus 100 MPa
Poisson’s ratio 0.2
Permeability coefficient 59 10~° m/s
Biot—Willis coefficient (a) 1
Biot’s modulus (M) 4
Initial vertical effective stress —10 MPa

spacereduced. With the cover-based approximation,
instead of nodal-based approximation, the
approximation order could be flexibly increased for
intense changes around fractures. With simplex
integration, high accuracy could be achieved on
arbitrarily shaped polygons.

* An implicit time-marching algorithm and an
incremen- tal formulation to solve the displacements
and initial stress for this strongly nonlinear problem.
We used the incremental formulation for solving the
displacements and initial stress in different time steps
and implicit time-marching algorithm for better
accuracy of this nonlinear problem. With the new
model, we developed

SpaceFracture zone

SpaceMass density 2300 kg/m® Initial normal
effective stress —10 MPa Bandis’ parameter
(rad) —2 MPa Initial thickness of
fracture zone 0.1m

spacea new computer code in our NMM package.

We first simulated a classical poroelastic problem of a
column under loading and compared the results with the

analytical solution derived by Biot. We found excellent
Spacelnitial mechanical aperture of

fracture
space0.1 mm

spaceagreement of our NMM solution with very
coarse mesh

Space
Penalty
spring
SpacesShear constant (f) 107 Pa™
Shear constant (W) 0
Factor (f) 0.5
Residual hydraulic aperture (b)) 0
Biot-Willis coefficient (a) 1
Biot’s modulus (M) ?
Stiffness 4.0 9 10" N/m

spacewith Biot’s analytical solution, showing the accuracy
and

efficiency of our formulation for direct coupling. Then we
modeled a poroelastic problem of an infinite layer under
loading and showed the processes of displacement changes
and fluid pressure dissipation with exact agreement to an
analytical solution. We tested the new model on a model
with a single dominant fracture. As the direct coupling was
verified in the two first examples, we compared the results
of a case considering the fracture with only indirect cou-
pling and the results of a case considering the fracture as
nonlinear porous media with both direct and indirect cou-
spacenonlinear properties of the fracture zones.
Compared with traditional approximations of the
nonlinear consti- tutive equations, this new formulation
achieves more accurate representation of the nonlinear
behavior.

+ Implementation in NMM with unconstructed mathe-
matical mesh, cover-based approximation and simplex
integration. We implemented this new formulation in
NMM. With unconstructed mathematical mesh in
NMM, meshing efficiency could be dramatically

spaceplings. We found reasonable results from these

compar- isons and showed the importance of full
consideration of both direct and indirect couplings in
coupled HM analysis involving dominant flow features.

The approach established in this analysis for the model-
ing of finite-thickness dominant flow features is a
continuous equivalent porous media with strongly
nonlinear properties. The flow features can be conveniently
discretized explicitly within the fixed mathematical mesh,
and the boundary

space
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Fig. 16 Schematic of a the numerical model, the boundary conditions
and b the mesh
space

Fig. 17 Simulated fluid pressure head (m) distribution at different times

Fig. 18 Evolution of fluid pressure at points A, B and C
Fig. 19 Evolution of fluid pressure distribution of profile y = 5.01 m

Spaceconditions are realized by penalty method and
Lagrange multiplier method for mechanical and fluid flow
analysis, respectively. This method is suitable for modeling
dominant



spaceflow features in a fracture rock mass, including
major fractures, and minor faults as well as major faults.
In the case of faults, the cross-fault permeability can be

space
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Fig. 20 Contour of vertical displacement at different times
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spacesubstantially from the along-fault
permeability, including the effects of a permeable damage
zone and an impermeable fault core. Such difference in
cross-fault versus along-fault mechanical and hydraulic
properties could be readily modeled using the finite-
thicknes3 contiliuous moc, piip rgpproach. However, for
modeling small-scale, . _afilled fractures, an
alternative discontinuous approach m 4, ;> preferable. In
that case, the fluid flow will be con- ducted mainly in the

direction along the fractures and interaction between
fractures and surrounding rock is by fluid pressure and
continuity of displacements on the sur- faces of fractures.
Together with further development for thin fractures, the
new model presented in this study can provide a
comprehensive model applicable for coupled HM analysis
fractured rock masses, including a wide range of flow
features.

space

7 ..Appendix: Derivation of the effective normal
stress in the nonlinear finite-thickness fracture
zone
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spaceThe finite-thickness fracture zone contains the linear

and nonlinear part, and the stIE]ain in normal direction can be
spaceg r -ro bx
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spaceexpressed as:
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V.e+f=0

dg, 7 oh
V-v+oa—r =0
1|r4_:':51 +Mﬁr

where o is total stress tensor, f is body force
fluild wvelocity vector, z is the Biot-—Will
(usually ranges between 0 and 1), £, is tl
strain of the porous media, M i1s Biot's moc
unit weight of the fluid, and i is the fluid hyd:
the sum of fluid pressure head p and the he
with elevation. Equation (1) represents
mechanical equilibrium, and Eq. (2) repres
balance for fluid flow. These two equation:
through fluid pressure head p and volumetric
Biot—-Willis coefficient as a factor multif
pressure in  Eqg. (1) signifies a modi
generalization of Terzaghi’s effective stress

o= d—mxyp

where o is the effective stress tensor, m' =
0] for 3D analysis or m' = 1.1, 0] for 2D
theory for describing coupled HM respon:
media was then widely used in its origin
extension formulations for the modelin
deformable media, with linear or nonlinear |

For mechanical analysis of linear elastic |
we have:

o = Ee

where E is the elastic constitutive tensor and
tensor, which could be expressed in terms of
for small-deformation analysis as follows:

£= An
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relationship to describe the behawvi
displacement under shear stress:

A
i _;+|,f.r.-'_‘m,,

where ( and ¥ are constants. Equatio
used to describe the nonlinear stress—
[6]. Examining Eq. (11) we find th
linear behavior 1s also included. We
equation for fracture shear behavior
consistent with the model for fractur
behavior.

For fluid flow in fractures, the hyd
of a fracture depends on the size of
between the two fracture surfaces
hydraulic fracture aperture by, that can
to Witherspoon et al. [39]:

 bipse
ke = 12 g

where prand urare the flud density a
and g is the gravitational acceleration
hydraulic and mechanical apertures o
[27], in Eq. (12), the hydraulic apert
be:

by = by + fbm

where by, is the residual hydraulic

fracture 1s mechanically closed and f

pensates for the deviation of flow in

ture from the ideal parallel smooth fi
The boundary and mitial conditic

porous rock masses are:

u=u onil,

as given displacement boundary conc



The work associated with mechanical
strain energy, initial stress, point load
body loading and given displacemen
was derived by Shi [30]. They are as

The strain energy I, for elastic r

1, = //ﬁ”dsdﬂ

2. The work W, associated with initi
as:

W, = / £ 6,d02
LEy

3. The work done by point loading
W, =u'F
4. The work done by surface loadin

W, = f u'F.dr,
I

3. The work done by body loading
Wo = f u'Fpd
a

6. The work associated with
boundary condition W4 is expres

Wea = — %Eﬂ(“ — ) (u—1)

using the penalty method [30] and ass.
of the penalty spring.

For discontinuous analysis of frac
continuities, Shi [30] developed the a
detection, open—closed iteration and
and derived the work associated w
discontinuities. For dynamic analysis,
with inertia is also considered. In tha

A mraanr TYers

1. The work done by the fluid flow on solic
15 obtained directly from the excess f
compared to the mnitnal fluid pressure:

W = ',.Jf a(p — py) m ed2
fe

2. The work done by solid deformation or
obtained by considering how the solid
influences the mass balance of fluid
Eq. (27) we can see that the work as:
solid deformation on fluid flow could
as:

dp Osy

Wi = —2y Eiadﬂdf
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and pant of the host rock. For the dominant fractume
we consider its aperture for caloulating the hydrn
ductivity, wheneas the deformation behavior is affec
nomlinear behavior of the frcture described in By, (
a5 by the solid fmcture fillings and adjacent |
described to have linear elsstic properties. As th
pones are modeled & porows medin with different
properties from the sumounding rock, the boundar
fmcture ames are eganded as material interfaces,
placement continuity across these materal inter
realizsd by penalty method [30], and the oo
hydmulic head as well as the normal flux is realiz
Lagrange multiplier method developed by the autha

In the following we loosely define such a flow
4 fmenre pone. In this approach, we use an e
concept to represent this material behavior as fol

o BB
£ = 0 +;[J.I—I:l-n

d
Combining Eq. (8), Eq. (35) becomes:
g g

i T Hi=1
aﬂ:'—a"ﬂ -D'E :'—4:r"_:I

l.jll 1)

where n represents the compliance of fillings and
host rock within the fracture zone, Note that the
behavior of the fracture could be very strong (see
that we use an incremental algorithm o express

for displacement and stress.

Baed on the above concept, in this model, we
new formulation acoounting for the nonlinear behan
finitethickness fracture mne. Specifically, the
mechanical behavior of the fmcture zone intrinsic
ences the strain energy that could be stored in the
under deformation. Therefore, we directly introd
nonlinear melationships o energy stmin as descrit
following subsections for normal and shear deform

‘HE” — I;I-EIIE”:' +

3.21 Animplicit approach to consider the norma
change with effective stress

The nomal constitutive model ¢ xpressed in Eq. (
be rewritlen as:

(e + ) +

2n

I ¢ e e " 1z

o =
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3.22 An implicit approach to consider the fraci
mechanical behavior in the shear of rectio

The shear constitutive model expressed by Eq.
be further expressed as:

o
¢ [ba el
where e, = Aul"HE=1

Similar to the approach for fracture nomal n
behaviar, we directly express the associated stn
s

2
Mg, = f f O deDd0
]

Combined with Eq (46), EL] (47) becomes:

det
My, = ff lfb[" ”.|.|I|:.- [‘” ,":'llﬂ

By integration, Eq. (48) becomes:

_ f =1y
TR

By Taylor expansion, we have:

In (/600 1 yel®) = wb.[;‘ D foe®
Lo e
+.:-|:e£"“ﬂ}+m(n, {/bg‘ |

Substituting Eqgs. (500—(49), and projecting into
Cartesian fracture-zone coordinate system, we h

Mg, =%b|[: 1) /; f f (efﬂ)zdm

According to coordinate from global x—y o
coonlinate system, we have:

eim = CTRW™
|ds o5

B ' S e
= Wyl (58
= Wy e (59
where u and p are the variables on a certain element, u,, and
Ppe arethe vectors of physical cover functions of displacemen
and pressure head, and w, and W, are the vectors of weigh
functions of physical cover functions w,, and poe on thi
element. For an individual physical cover i, we have
wh(x,y) > 0, wh(xy) > 0 (x,y) € U
walx.y) =0, wylxy) =0 (x.y) € U,
where U is the geometric range of physical cover i.

The cover functions {1 and Ppc Cin be a series of any
orider:

e = I'D (61
Ppe =5'P (62

(60,

where [ mnd 8 are the vedors of the coefficients of the degree:
of fresdom (DOFs) D and P o be solved in mechamical and
fluid flow felds, respectively. Specifically, D mepresents
DOFs in terms of displacements and P represents DOFs in
terms of pressume head. For 2D analysis, § and 8 are the
subsets of vector (1, x, v, X, }F, xy, ... Far example ir
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2, the potential energy associated with initial s
Me=- f DB ' oy

o]
3, the potential energy associated with point le
My = -D'T'F

where T = wot'.

4. the potential energy associated with surface |
m,=- f DT F.dl,

5. the potential energy associated with bady lo
Hb = = f DTTTFhllﬂi}'
6. the potential energy associated with
displacement boundary condition is:
1
I Egu{DTTT ~a')(TD - &)

7. the potential energy associated with the wor
fluid flow on the solid is:

Mg = —ya f (PTO"m"BD — p,m"BD)dQ
]

here @ = wys'.

Also, we can derive the following potential ¢
Muid Mo

1. The potential energy associated with doma:
pomus media is:

o=y f [P'"G"KGP + 20KGP

2 .
— (P"O"OP - PY'O"P) |dudy + v f |
+Mﬁ{ ) | dudy + 7 A

where G = (¥8x, &) 0, P is the time-itemt
for P, and A is the time step, respectively.
2. The polential energy associsted with fluid g

Hy=—y f Bdvdo
o

3. The potentinl energy associated with
boundary condition is:

Op=7 f n'K(P"GOP + 0"OP - P'G"p -
o



_onm

Cddpy
E',‘, is the element of matrix C, representing the
contribution of physical cover j on deformation o
cover i, derived by:
o
~ 2pidpy

Lf is the element of matrix L, representing loading
derived by:

Sy

Cy

o™

B

and flux term () as the element of matrix ), des
oI’

g = =

In the matrices N, L and C, (), time step and prev:
step displacements and pressure heads may be
representing inertial and compression of the f
system, respectively. In the eguilibriom Eq. (7
terms am: calculated by simplex integration. Sim
gration, proposed by Shi [31], achieves analytica
for polynomials over elements of arbitrary shape

4.3 Timwe iteration

Following the orginal NMM for mechanical ar
Shi [30], we use the implicit scheme. The reason
nonlinear behavior may be very strong, especial
pomus fractures, and thereby the changes betwesr
tme steps may be very lamge. 50 it is desimb
implicit scheme for high accuracy. In each time
displacement increments and fluid pressure are ¢
After each time step, the displacements and ini
are updated as follows:

Dl — pltd 4 spl+n)

The stress is calculated by Eq. (37).

For this nonlinear problem, we use a direct
solve the global equilibrivm equations for faste
gence rate.

5 Demonstration examples

Flg. 6 Mesh geometry with di ffenent azes

Table 1| Compariso of compuation paameers of dffeen me
Al

Mumbser of Mumber of plysical  Seilemen

elesfrient COVETS (i)
kv=2 12 13 — 260362
kv =4 4y ki —269352
kv=8 144 " — 26938
kv = 16 G2 367 — 269339
Analyiical - - — 280304

anlution [3]

kv is the half number of mesh layers

the computation parameters are listed in Table 1. As w
can see the deviation of the calculated settlement from th
analytical solution is no more than 02 %, herein th
larger deviation with denser mesh may be doe o sma
elements along the vertical boundaries, on which the give
displacement boundary condition is realized by penal
method with large penalty spring stiffness,

The analytical solution of the settlement and the flui
pressure evolution for this problem was derived by Bi
[3], expressed as:

B = |
wlt) = —ah.F D ———
=g iy

%_Jﬁwﬁ@

(8
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7 Appendix: Derivation of the effective n
stress in the nonlinear finite-thickness f

e zone conlaing the
an in nomnal dimeet

e LN
k= 80,'/8b, Ta

m :
Denoting x = & +W, Eq. (B8) becx

x=n{ﬂf§.{"’—*’im '] [ ) _ J,-{" 1)

Equation (89) further becomes a quadratic equat

|
n ﬂi.["’] —Enff;[" Y4 nag +a|a

IJ!:" 1)

The solution of Eq. (90) is
(@™ + o) + ]

1 =
. ] Ef;l
(e~ + *T:.n} +
o L | ~anlnel Vel + xolg
2
H By [":”
Id

And it is further expressed as:
N

K ) T
2n

When 5 =0, only nonlinear feature of the fr
considered. When { = 0, only linear feature of the
is considered Therefore, we have:

d;[-l-l’:'
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