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ALL λ-SEPARABLE FRISCH DEMANDS AND

CORRESPONDING CARDINAL UTILITY FUNCTIONS

ETHAN LIGON

Abstract. Frisch demands depend on prices and a multiplier λ
associated with the consumer's budget constraint. The case in
which demands or expenditures are separable in λ is the case of
greatest empirical interest, since in this case latent variable meth-
ods can be adopted to control for consumer wealth when estimating
demands.

Subject only to standard, modest, regularity conditions, we pro-
vide a complete characterization of all Frisch demand systems and
of the utility functions that rationalize these demand systems when
either quantities demanded or consumption expenditures is sepa-
rable in λ.

Quantities demanded are λ-separable if and only if the ratio-
nalizing utility function is additively separable in these quantities.
In contrast, expenditures are λ-separable if and only if marginal
utilities for these expenditures belong to one of two simple para-
metric families. With n goods, the �rst family has 2n parameters,
and corresponds to Houthakker's �direct addilog� utility function.
The second family has 3n parameters and is new. It corresponds
to a family of utility functions which have Stone-Geary utility as
a limiting case.

1. Introduction

Frisch demand systems are demands written as a function of prices
and a multiplier λ on the consumer's budget constraint. This paper
provides a complete characterization of an important class of Frisch
demand systems, where some function of either quantities demanded or
expenditures is additively separable in λ, and where the demand system
can be rationalized by the maximization of a well-behaved (�valid�)
utility function.
The case in which quantities demanded are λ-separable implies only

one important restriction on the rationalizing utility functions: these
utility functions must be additively separable. It follows that any λ-
separable Frisch demand system must be separable, with demands for
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2 ETHAN LIGON

any particular good depending only on λ and on own-price. This rules
out any �speci�c substitution� e�ects (Theil 1975), but permits unre-
stricted Hicks-Allen substitution or complementarity.
The second case, in which expenditures are λ-separable, is much

more restrictive. Not only must the rationalizing cardinal utility func-
tion be additively separable, but the cardinal utility function must
belong to a particular simple parametric family which generalizes the
Stone-Geary and Constant Elasticity of Substitution systems: if there
are n goods, there can be no more than 3n independent parameters in
both the utility function and in the Frisch demand system.
When estimating a demand system one is typically concerned with

measuring two things: demand responses to changes in price, and de-
mand responses to changes in resources. A conclusion one might draw
from the analysis of this paper is that λ-separable demand systems are
useless for estimating speci�c substitution e�ects. However, for some
applications this disadvantage may be o�set by the very �exible Engel
curve behavior they generate.
The class of demand systems we describe includes all of the ratio-

nalizable Frisch demand systems which have been estimated in the
literature. Finally, this class includes a new and interesting demand
system which generalizes the Stone-Geary linear expenditure system in
such a way as to permit quite �exible Engel curve behavior.
Frisch demand systems arise very naturally from the �rst order con-

ditions of the standard consumer's problem. Because they're so nat-
ural it's hard to know how early their introduction was, but certainly
by 1930 Frisch (Frisch 2011) was making use of what he would later
(Frisch 1959) call �want-independent� demands that depend only on λ
and own-price. James Heckman and Thomas MaCurdy led a modern
revival of the use of these demands (James J. Heckman 1974; James J
Heckman 1976; Heckman and MaCurdy 1980; MaCurdy 1981), call-
ing them λ-constant demands. Martin Browning seems to have given
the demand system the name �Frisch� in the nineteen eighties (Brown-
ing 2005). The literature has generally assumed that Frisch demands
are λ-separable, at least in part because when one considers life-cycle
demand then one can use latent variable methods to estimate or to
control for variation in consumers' permanent income (e.g., James J.
Heckman 1974; James J Heckman 1976; MaCurdy 1983; Att�eld and
Browning 1985; Browning, Deaton, and Irish 1985; Blundell, Brown-
ing, and Meghir 1994; Hayashi, Altonji, and Kotliko� 1996; Blundell,
Pistaferri, and Saporta-Eksten 2016).
But Frisch demands are not invariant to monotonic transformations

of the consumer's utility function; thus, for any particular (invariant)
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Marshallian demand system there exists a equivalence class of Frisch
demands, and within this class almost none of the demands will be
additively-separable in λ. This has two important and perhaps under-
appreciated consequences. The �rst is that if a Frisch demand system
is λ-separable it will remain so only under linear transformations of a
particular cardinal utility function. This paper uses this fact to derive
the particular cardinal utility functions which correspond to particular
λ-separable Frisch demand systems. The second is that λ-separability
imposes a quite di�erent structure on demand and utility than does
the analogous property of income being additively separable in a Mar-
shallian demand system (Lewbel 1987), and in some important ways
λ-separability is much less restrictive.
Thus, this paper makes two contributions. The �rst, and more fun-

damental, is to identify all the cardinal utility functions which are
consistent with λ-separable Frisch demand functions. The second is
to show that�even though these particular utility functions are quite
special�the resulting demand systems are in fact quite �exible. They
allow for quite unrestricted Hicks-Allen substitution and complemen-
tary, and their implied income elasticities and corresponding Engel
curve behavior are greatly improve on any of the Marshallian demand
structures that are typically observed in the literature.

2. Properties of Frisch Demands

We begin with some properties which hold for any Frisch demand
system. Among these are some which are well-known in the literature,
and others which are less well understood.

2.1. Preliminaries. Let Un be the set of strictly increasing, strictly
concave, twice-continuously di�erentiable functions mapping Rn

+ into
R, and call Un the set of valid utility functions over Rn

+.
For a consumer with a utility function U ∈ Un with a total budget

x̄ > 0 facing prices p ∈ Rn, a Lagrangian formulation of the consumer's
problem is to solve maxc∈Rn+ U(c) + λ(x̄ − p>c), with λ the Lagrange
multiplier.
Frisch demands map the product of positive quantity λ and n prices

into n quantities demanded. We say that

Condition 1. An n-vector of Frisch demands f(p, λ) is rationalized
by U if there exists a U ∈ Un such that

(1)
∂U

∂ci
≡ ui(f(pλ)) = piλ

for all pλ, λ > 0 in any open subset of Rn
+ for i = 1, . . . , n.
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Similarly, we say a given f is rationalizable if there exists a U ∈ Un
which rationalizes f .
Condition 1 basically requires that demands be interior solutions to

the problem of maximizing some valid utility function subject to a bud-
get constraint. If a consumer has a utility function U , and solutions
to that consumer's problem are characterized by the �rst order condi-
tions (1), then these demands will also be solutions to this consumer's
problem.

Remark 1. Condition 1 implies some properties of Frisch demands,
already well-known in the literature. These include:

(1) f is continuously di�erentiable.
(2) The matrix F = [fij] is symmetric and negative-de�nite.
(3) Demands f are strictly decreasing in λ.
(4) fii < 0.
(5) f(p, λ) is positive homogeneous of degree zero in (p, 1/λ).
(6) Frisch expenditures xi(p, λ) ≡ pifi(p, λ) are positive homoge-

neous of degree one in (p, 1/λ).

An immediate consequence of property 5 (homogeneous of degree
zero) is that Frisch demands f(p, λ) ≡ f(pλ, 1). Thus (in a minor
abuse of notation) these demands can be written simply as f(pλ), which
depends only on n arguments.

2.2. Transformations and Translations. Marshallian demands are,
of course, invariant to monotonic transformations of the utility func-
tion. This is not true of Frisch demands. If a utility function U ∈ Un
rationalizes a Frisch demand system f(p, λ), then any monotonic trans-
formation of this utility functionM(U) ∈ Un will rationalize some other
Frisch demand system fM(p, λ), with the two demand functions related
by the identity fM(p, λM ′(U(f(p, λ)))) ≡ f(p, λ). Thus, corresponding
to any particular Marshallian demand system is a class of equivalent
Frisch demands.
While monotonic transformations of utility yield di�erent Frisch de-

mand systems, each of these di�erent Frisch demand systems still cor-
responds to a single Marshallian demand system c(p, x). Now consider
a di�erent sort of operation involving the translation of the demand
system. In particular, let the function d(p) be continuously di�eren-
tiable and homogeneous degree zero. Then for any rationalizable Frisch
demand f(p, λ), a translated demand f̃(p, λ) = f(p, λ) + d(p) is also
rationalizable, but by some other utility function Ũ ∈ Un which is not
a monotonic transformation of U .
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2.3. λ-separability. Now we turn our attention from general prop-
erties of Frisch demands to the special properties of those demands
when they satisfy a certain separability condition that we call λ-
separability. We consider two alternative notions: �rst that quantities
are λ-separable; second, that expenditures are λ-separable.1

We begin with the case in which quantities are λ-separable:

Condition 2. The Frisch demand for good i, fi is λ-separable if there
exist functions (φi, ai, bi) such that

(2) φi(fi(pλ)) = ai(p) + bi(λ),

with φi strictly increasing and continuously di�erentiable; and ai either
non-constant or zero.

Demands are separable (not just λ-separable) if they depend only
on own-price; that is, in addition to (2) we have (in another abuse
of notation) ai(p) = ai(pi).

2 Our condition generalizes the notion
of quantities being separable in Browning, Deaton, and Irish (1985),
which require that the functions φi be the identity function (i.e., that
fi(pλ) = ai(p) + bi(λ)).
Note that since any rationalizable Frisch demand is continuously dif-

ferentiable (by Remark 1), then assuming φi continuously di�erentiable
is enough to guarantee that any valid f satisfying (2) will have ai and
bi continuously di�erentiable.
Alternatively, we may require that expenditures be λ-separable:

Condition 3. The Frisch expenditures on good i, xi(p, λ) ≡ pifi(pλ)
are λ-separable if there exist functions (φi, ai, bi) such that

(3) φi(xi(p, λ)) = ai(p) + bi(λ),

with φi continuously di�erentiable and ai either non-constant or zero.

As with demands, we say that expenditures are separable if, in ad-
dition to being λ-separable, the ai(p) in Condition 3 depends only on
own-price pi; i.e., ai(p) = ai(pi).
Note that while rationalizability is a property of the entire system

of demands and expenditures, (λ-) separability is a property of a par-
ticular good. In particular it's possible that some but not all demands
or expenditures are (λ-) separable.

1. These notions generalize what Browning, Deaton, and Irish (1985) called,
respectively, "Case 1" and "Case 2" demands

2. Frisch (1959) calls this property �want independence,� to distinguish it from
the much stronger property of independence of Marshallian demands.
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3. Demands and utilities when demands are λ-separable

We now observe that, for any i = 1, . . . , n, equations (1) and Condi-
tion 2 form a system of functional equations in four unknown functions
(ui : Rn

+ → R, φi : R → R, ai : Rn
+ → R, bi : R → R). Finding a

solution to this system allows us to construct a pair (f, U), with f
λ-separable and rationalized by some U ∈ Un.
Both of these systems have many solutions, and it's not very chal-

lenging to �nd one. We instead follow the example of Gorman (1953)
or Lewbel (1987) and describe the set of all possible solutions to one
or the other of these systems of functional equations.
The key to characterizing the set of all possible solutions involves

noticing that by combining Condition 1 and Condition 2 we obtain

φi(fi(pλ)) = ai(p) + bi(λ).

If we de�ne k(z) = φi(fi(e
z)), g(y) = ai(e

y), and h(z) = ai(e
z), then

by the change of variables z = log λ and y = log p we have

(4) k(z + y) = g(y) + h(z),

which is known as Pexider's equation (Aczél and Dhombres 1989). This
single functional equation has the remarkable property that a solution
determines all three of the functions k, g, h; and so our proof exploits
what is known of these solutions along with basic properties of all
valid demands to give a complete characterization of the set of valid
λ-separable demands in Theorem 1.
This brings us to our main result pertaining to λ-separable quanti-

ties.

Theorem 1. If Frisch demands satisfy Condition 1 then demand for
any good i also satisfying Condition 2 takes the form

φi(fi(λp)) = αi − βi log pi − βi log λ

while the marginal utility of good i takes the form

(5) ui(c) = exp (αi − φi(ci)/βi)
for some constants αi, positive constants βi, and φi some strictly in-
creasing, continuously di�erentiable function.

Proof. The function bi must be decreasing by Remark 1 and Condition
2, while the function ai can be non-constant or zero by assumption.
This gives us two cases to consider. Suppose ai(p) = 0 for all p. Then
Condition 1 implies that ui(φ

−1
i (bi(λ))) = λpi for all pi > 0, which

admits no solution, as the right-hand side is increasing in pi while the
left-hand side is not.



ALL λ-SEPARABLE FRISCH DEMANDS AND CORRESPONDING CARDINAL UTILITY FUNCTIONS7

Thus ai(p) must be non-constant. Then we have a system of equa-
tions

log ui(φ
−1
i (ai(p) + bi(λ))) = log λ+ log pi

for all i = 1, . . . , n. Note that we do not impose separability, allowing
ai(p) to depend on all prices.
But this takes the form of Pexider's equation. The following lemma

is just an immediate consequence of a result from Aczél and Dhombres
(1989) (Corollary 10, p. 43):

Lemma 1. The general solutions of (4) in the class of functions g, h, k :
Rn → Rm, where at least one of g, h, k is continuous at a point, are
given by the matrix equations

g(x) = Cx+ A, h(y) = Cy +B, k(z) = Cz + A+B,

where A and B are arbitrary constants in Rm and where C is an arbi-
trary m× n matrix.

Applying this lemma implies that any possible solutions must take
the form b(λ) = C log λ + A; a(p) = C log p + B; and log u(c) =
C log φ(c), where C is an n × n constant matrix; A and B are n × 1
vectors; and where φ(c) = (φi(ci))

n
i=1.

This implies that ui(c) = exp
(
αi −

∑n
j=1 βijφi(cj)

)
. This appears

to allow for speci�c substitution e�ects. But the cross-partial uij and
uji must be equal, which requires

uiβijφ
′
i(ci) = βjiφ

′
j(cj)uj

for all ci and cj, which can only hold if βij = βji = 0 for all j 6= i.
Concavity of the utility function then implies that φi(ci)/βi must be
decreasing, so that βi > 0. �

This form of utility is extremely �exible, because each φi can be an
arbitrary increasing, continuously di�erentiable function. The only re-
striction (though it's an important one) is that there can be no speci�c
substitution e�ects in this family of demand systems (with the conse-
quence that no inferior goods are allowed). (5) can be used to describe
any valid additively-separable marginal utility function, with the cor-
responding Frisch demands of Theorem 1. We summarize this point in
the following corollary of Theorem 1.

Corollary 1. Let f(λp) be rationalized by a utility function U ∈ Un,
with marginal utility function u. Then fi is λ-separable if and only if
uij = 0 for all j 6= i.
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Thus, having quantities λ-separable is equivalent to having the utility
function additively separable. However, as noted in the corollary, if
some demands are λ-separable then this is equivalent to having only
the corresponding subutility of those goods being additively separable.

4. Demands and utilities when expenditures are

λ-separable

When expenditures (rather than quantities) are λ-separable the Pex-
ider equation will no longer generally characterize demands. However,
exploiting the fact that expenditures must be linearly homogeneous, it
turns out that one can write any rationalizable λ-separable expendi-
tures in the form

k(p+ λ) = g(λ)`(p) + h(p),

which is called the generalized Pexider equation. This gives us a sin-
gle functional equation in two variables, which can be solved for the
four functions g, h, k, and `. Exploiting this allows us to describe
all rationalizable Frisch demands and utilities when expenditures are
λ-separable:

Theorem 2. If expenditures for some good i satisfy Condition 1 and
Condition 3 with φi increasing; ai(p) either non-constant or zero, and
continuous at a point; and with bi continuous at a point, then trans-
formation functions φi, Frisch demands fi and rationalizing marginal
utility ui must satisfy one of the following two cases for positive con-
stants αi, βi, and σi:

(1) (Addilog utility): φi(xi) = log(xi); fi(p, λ) = (αi/(λpi))
βi; and

ui(c) = αic
−1/βi
i .

(2) (New utility): φi(xi) = xσii ; fi(p, λ) = [(βi/(λpi))
σi + αi]

1/σi;

and ui(c) = βi (c
σi
i − αi)

−1/σi.

Proof. First, Lemma 2 establishes that (φi, ai, bi) in (3) are all either
logarithmic or positive homogeneous of some degree (−)σi.
In the logarithmic case the logarithm of demand for good i can be

written log fi(λp) = [− log pi + ai(p)] + bi(λ), which not only has ex-
penditures λ-separable, but also quantities λ-separable, thus satisfying
the conditions of Theorem 1 with φi = log, yielding the result that
log(fi(λp)) = α̃i − βi log(piλ). Let ci = fi(λp) and solve for piλ, ob-

taining piλ = αic
−1/βi
i , where αi = eα̃i must be positive.

In the homogeneous case, we have

(pifi(λp))
σi = ai(p) + bi(λ),
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or
fi(λp)

σi = p−σii ai(p) + p−σii bi(λ).

This takes the form of the generalized Pexider equation (7), with
x = log λ and y the vector log p, when the vector-valued function
k(x + y) = [fi(exp(x + y))σi ], h(y) = [ai(exp(y))e−σiyi ], g(x) =
[bi(exp(x))], and `(y) = [e−σiyi ]. Now, we seek to apply Proposition
1, which gives solutions to the system of functional equations 7�13.
Part of this system is the function ϕ(y). Using our knowledge that
`i(y) = e−σiyi and (10), it follows that in this equation the function
ϕ(y) = `(y) = [e−σiyi ]. Now, consulting the di�erent possible cases
of Proposition 1 we see that with this solution of ϕ the only cases
that can apply are the cases indicated by 2a and 2bii. The former
implies that fi(λp)

σi is a constant, so that (to be consistent with the
properties of Frisch demands) σi = 0. But then the function φi isn't
increasing, and the only solutions that are relevant to our problem are
the solutions 2bii. These imply that k(z) = Cz + B, with C and B
constant matrices, and ϕ(y) = exp(Cy). Thus C is a diagonal matrix,
with diagonal elements −σi. Using equations (11) and (12) we obtain
k(x + y) = (Cx + B)eCy + [h(y) − h(0)ϕ(y)]; then using our de�ni-
tion of h(y) in terms of p gives us fi(λp)

σi = αi/(piλ)σi + βi. Noting
that ui(c) = piλ and solving for this gives us the solution for marginal
utilities. �

4.1. Rationalizing Utility Functions. The labels of the di�erent
cases in Theorem 2 indicate names for the rationalizing utility func-
tion U having marginal utilities ui(c); for example, �Addilog� utility

(Houthakker 1960) is the utility function U(c) =
∑n

i=1 αiβi
c1−1/βi−1
βi−1

.
The Addilog system generalizes the Constant Elasticity of Substitution
(CES) system (take βi = β) and the Cobb-Douglas system is a limiting
case (take βi → 1, applying L'Hôpital's rule). Finally, the �New� case
gives what is, to the best of my knowledge, a marginal utility function
which has not previously appeared in the literature. This case gives
demands which are not linear in parameters, which may limit its use-
fulness in applied empirical work. However, when σi = 1 one obtains
the Stone-Geary utility function, which suggests that it could be used
to explore the behavior of Engel curves, perhaps exploiting a Box-Cox
approach to estimation.
Since our characterization implies that a rationalizing utility func-

tion satisfying Condition 1 and Condition 3 will itself be additively
separable, it is also possible to use Theorem 2 to construct a `mongrel'
utility function which could generate any rationalizable expenditures,
possibly combining goods with quite di�erent demand functions.
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Theorem 3. Let {S0, S1, S2} be a partition of the index set {1, . . . , n}
such that expenditures on a good i ∈ Ss satisfy case s of Theorem 2 for
s = 1, 2, and where S0 is the set of demands which satisfy none of the
cases of Theorem 2. Then expenditures are rationalized by a monotonic
transformation of U ∈ Un if and only if
(6)

U(c) = U (0)(c(0))+
∑
i∈S1

αiβi
βi − 1

(
c
1−1/βi
i − 1

)
+
∑
i∈S2

βi

∫ ci

0

(cσi − αi)−1/σi dc,

for some positive constants (αi, βi, σi)
n
i=1 and for some U (0) ∈ Um,

where m is the cardinality of S0 and where c(0) is a vector of the goods
with indices in S0.

Proof. Necessity is trivial. For su�ciency, write utility as the sum of
three components U(c) = U (0)(c(0)) +U (1)(c(1)) +U (2)(c(2)), using a no-
tation similar to that de�ned for S0. Because U is valid by assumption,
it is strictly increasing, strictly concave, and continuously twice di�er-
entiable. Each of the components U (1) and U (2) share these properties
by Theorem 2, and U (0) inherits these properties from U . �

Thus, this 'mongrel' utility function can combine or simultaneously
rationalize several di�erent kinds of demand systems.

5. Discussion

5.1. Separability. As we've shown, any λ-separable system (whether
in quantities or expenditures) is also separable in the stronger sense
that demand for some good i depends only on λ and own-price pi.
In a Frisch demand system, this implies that for such goods there is
no �speci�c substitution e�ect� (Theil 1975), and that the Frischian
substitution matrix F = [fij] is diagonal.
This does not, of course imply that the Slutsky substitution ma-

trix S is diagonal, or that there cannot be Hicks-Allen substitution or
complementarity. The two substitution matrices are related by

S = F + η

(
∂c

∂x

)(
∂c

∂x

)>
,

where the vector ∂c/∂x gives the Engel e�ects of the change in Marshal-
lian demand in response to a change in total expenditures, and where
η = λ/(x∂λ/∂x) is what Frisch called "money �exibility". But neither
F nor η is invariant to monotonic transformations of a rationalizing
utility function.
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In particular (and unlike the Marshallian case) if there exists a sep-
arable Frisch demand system that is rationalized by a utility func-
tion U , then it will not generally also be rationalized by M(U) (where
M : R → R is any monotonic transformation). Instead, M(U) will
validate a di�erent Frisch demand system fM , and the system fM will
only be separable if M is linear. Thus, having F diagonal imposes
much weaker restrictions on demand than would having S diagonal.

5.2. Price Elasticities. What can be said about the price response
of λ-separable Frisch demands? There are two cases we're interested
in; the price response of Frisch demands, and the price response of the
corresponding Marshallian demands. We consider these in turn.
First, because of the separability of the Frisch demands it's apparent

that there are no cross-price substitution e�ects, since ∂fi/∂pj = 0 for
any i 6= j. This is what's meant when we say that these demands
feature no �speci�c substitution� e�ects. As for own-price response,
we need to consider the quantities-separable case separately from the
expenditures-separable case.
For quantities separable, we have no restrictions aside from those

implied by the �rst order condition ui(fi(pi, λ)) = piλ (but note that
because of the separability in this case marginal utility and fi depend
only on ci and pi, respectively). This implies that $∂ fi/∂ pi = λ/uii,
and that the price elasticity be equal to \([uiici/ui]

-1; that is, that the
own-price elasticity for good i is equal to the elasticity of marginal
utility of good i (note the resemblance to the reciprocal of the usual
measure of relative risk aversion). Since U is strictly concave, it follows
that this elasticity must be negative, but is otherwise unrestricted.
The expenditures-separable case inherits the connection between

price response and utility functions observed in the quantities sepa-
rable case, but from Theorem 2 we know that the form of the marginal
utility function is much more restricted. In particular, for the addilog
case we obtain an own price elasticity of −βi: this can take on any
negative value, but is constant for all levels of income or λ. For the
�new� utility case the elasticity will be given by αi/c

σi
i − 1; since we

must have ci ≥ α
1/σi
i it follows that the price elasticity is constrained

to lie between zero (at the lowest possible levels of income) and minus
one (as income goes to plus in�nity).



12 ETHAN LIGON

6. Conclusion

An enormous literature relies on speci�cations of Frisch demand
functions which are λ-separable.3 This paper is the �rst to give a
comprehensive description of the consequences of assuming this sort of
separability, building on an incomplete description given by Browning,
Deaton, and Irish (1985). We give a complete characterization of all the
λ-separable Frisch demand functions and the cardinal utility functions
that rationalize these demand functions.
The results are striking. First, λ-separability of a demand system

turns to be equivalent to having an additively-separable utility func-
tion. Second, λ-separability of an expenditure system is equivalent
to having an additively-separable utility function belonging to one
of two parametric families. The �rst family is the addilog family of
Houthakker (1960), having two parameters for every good. This has
as special cases HARA, CES, and Cobb-Douglas utilities. The second
family has not been previously described, but has three parameters for
every good, with the Stone-Geary system as a special case.
Because (some monotonic transformation of) any utility functions

consistent with λ-separable Frisch demands or expenditures are addi-
tively separable, λ-separability implies that there can be no speci�c
substitution e�ects between goods. However, Hicks-Allen substitution
and complementarity is comparatively unrestricted.
While these utility functions may be rather poorly suited for mod-

eling cross-price demand responses, they appear to be very well suited
to modeling Engel curve behavior. This provides a very sharp con-
trast to the usual sorts of Marshallian analysis, in which demand sys-
tems (Stone-Geary, CES, AIDS, Rotterdam, Translog) which can be
rationalized by valid utility functions require linear Engel curves. In
contrast, the parametric utility functions consistent with λ-separable
Frisch expenditures feature extremely �exible Engel curves; the only
important restriction is that inferior goods are not allowed.

7. Appendix

In this appendix, we �rst supply a lemma pertaining to the homo-
geneity of λ-separable expenditure systems, and then provide some
necessary results on the solutions to Pexider equations.

3. A somewhat arbitrary selection of examples includes Heckman and MaCurdy
(1980), Browning, Deaton, and Irish (1985), Altonji, Hayashi, and Kotliko� (1992),
Blundell, Browning, and Meghir (1994), Blundell (1998), Baxter, Jermann, and
King (1998), Pistaferri (2003), Hayashi and Prescott (2008), Ham and Reilly (2013),
and Blundell, Pistaferri, and Saporta-Eksten (2016).
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7.1. Homogeneity.

Lemma 2. If demand for good i satis�es Condition 1 and Condition
3, then the functions φi, ai and bi are either all logarithmic or φi and
ai are both positive homogeneous of some degree σi, while bi is positive
homogeneous of degree −σi.

Proof. From Remark 1 expenditures xi are homogeneous of degree one
in (p, 1/λ). Exploiting Condition 3 then implies that

xi = φ−1
i (ai(p) + bi(λ))

is similarly homogeneous of degree one. The function φi must then
either be homogeneous of degree σi, with φi(xi) = xσii , or else φi(xi) =
log(xi). In either case Frisch quantities can be written as

ci = fi(pλ) =
1

pi
φ−1
i (ai(p) + bi(λ))− di(p)

for some function di homogeneous of degree zero.
We consider the power and logarithmic cases in turn.
First suppose that φi(x) = xσi . Then the sum ai+bi must also be ho-

mogeneous of degree σi in (p, 1/λ), and the individual functions ai and
bi respectively either homogeneous of degree σi and −σi or else the zero
function. It follows that fi(p, r) = φ−1

i (ai(p)/p
σi
i + bi(λ)/pσii ) − di(p),

and that ai(p)/p
σi
i and bi(λ)/pσii are either zero or positive homogeneous

of degree zero, so that

(ai(pθ) + bi(λ/θ)) = θσi(ai(p) + bi(λ)) = θσiai(p) + θσibi(λ).

for any positive scalar θ. Di�erentiating this with respect to 1/λ estab-
lishes that b′i is homogeneous of degree σi−1, so that bi is homogeneous
of degree σi (by Euler's theorem of positive homogeneous functions).
A similar argument involving the gradient with respect to p establishes
the same for ai.
For the logarithmic case, φ(xi) = log(xi) = log(pi) + log(ci) implies

that

fi(p, λ) + di(p) = exp (ai(p) + bi(λ)− log(pi))

which must be positive homogeneous of degree zero in (p, 1/λ). This
implies that for any θ > 0

ai(θp) + bi(λ/θ)− log(θpi) = ai(p) + bi(λ)− log(pi),

which in turn implies that

ai(θp) + bi(λ/θ) = ai(p) + bi(λ) + log(θ),

implying that both ai and bi are linear in logs of (p,λ). �
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7.2. Generalized Pexider Equation Applied to Vector Spaces.

We now introduce our main tool for solving the functional equations
implied by separability and rationalizability; this tool is an application
of what is called the generalized Pexider equation, when the domain of
application is limited to real vector spaces.
Consider the generalized Pexider equation

(7) k(x+ y) = g(x)l(y) + h(y)

where

g(x) =
k(x)− h(0)

l(0)
(8)

ϕ(y) =
l(y)

l(0)
(9)

ψ(y) = h(y)− h(0)
l(y)

l(0)
(10)

k(x+ y) = k(x)ϕ(y) + ψ(y)(11)

κ(x) = k(x)− k(0)(12)

κ(x+ y) = κ(x)ϕ(y) + κ(y).(13)

Next we give statements of two related lemmata. The �rst is just
a statement of the solution of the well-known functional equation of
Cauchy applied to real vector spaces; the second is a statement of the
solution to what is sometimes called Cauchy's exponential equation,
again for real vector spaces.

Lemma 3. Let f : Rn → Rm, with f continuous at a point. Then if

(14) f(x+ y) = f(x) + f(y)

then f(x) = Cx for some constant m× n matrix C.

Also

Lemma 4. Let h : Rn → Rm. If

h(x+ y) = h(x)h(y)

then either h(x) = 0 or h(x)=ef(x), where f is an arbitrary solution to
Cauchy's equation (14).

Corollary 2. Any solution to the functional equation of Lemma 4
which is continuous and non-constant is of the form

h(x) = exp(Cx),

where C is a constant matrix and the exp operator is element by ele-
ment.
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The following is just a restatement of Theorem 15.1 of Aczél and
Dhombres (1989), and describes all solutions to the generalized Pexider
equation (7) over the general domain of Abelian groupoids.

Theorem 4. For any x, y in an Abelian groupoid, solutions to (7) will
satisfy one of:

(1) If ϕ(x) = 1 for all x, then κ(x) is an arbitrary function; ψ(x) =
κ(x); and k(x) = κ(x) +B. Or;

(2) if ϕ(x0) 6= 0 for some x0, then we have C = κ(x0)
ϕ(x0)−1

; and κ(x) =

C[ϕ(x)− 1]; and two sub-cases:
(a) C = 0; κ(x) = 0; ϕ(x) arbitrary; k(x) = B; ψ(y) =

B(1− ϕ(y)); or
(b) C 6= 0; k(x) = Cϕ(x) + B; ψ(x) = B(1 − ϕ(x)); where

ϕ(x) satis�es ϕ(x + y) = ϕ(x)ϕ(y) (Cauchy's exponential
equation); and where κ(x) satis�es κ(x+ y) = κ(x) + κ(y)
(Cauchy's equation).

If we restrict the domain under consideration to a real vector space,
then we can give explicit solutions to (7), as follows:

Proposition 1. For any x, y ∈ Rn, solutions to (7) will satisfy one of:

(1) If ϕ(x) = 1 for all x, then κ(x) = ψ(x) = Cx and k(x) =
Cx+B, where B ∈ Rm. Or;

(2) if ϕ(x0) 6= 0 for some x0, then we have C = κ(x0)
ϕ(x0)−1

; and κ(x) =

C[ϕ(x)− 1]; and two sub-cases:
(a) C = 0; κ(x) = 0; ϕ(x) arbitrary; k(x) = B; ψ(y) =

B(1− ϕ(y)); or
(b) C 6= 0; k(x) = Cϕ(x)+B; ψ(x) = B(1−ϕ(x)); κ(x) = Cx;

and one of:
(i) ϕ(x) = 0;
(ii) ϕ(x) = exp(Ax); or
(iii) ϕ(x) = exp(f(x)), f nowhere continuous.

Proof. Just a specialization of Theorem 4 to the case in which domain is
a real vector space, which then allows subsequent application of Lemma
4 and Lemma 3. �
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