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Abstract
The neural mechanism for the dyadic process of teaching is poorly understood. Although theories

about teaching have proposed that before any teaching takes place, the teacher will predict the

knowledge state of the student(s) to enhance the teaching outcome, this theoretical Prediction-

Transmission hypothesis has not been tested with any neuroimaging studies. Using functional

near-infrared spectroscopy-based hyperscanning, this study measured brain activities of the

teacher–student pairs simultaneously. Results showed that better teaching outcome was associ-

ated with higher time-lagged interpersonal neural synchronization (INS) between right temporal-

parietal junction (TPJ) of the teacher and anterior superior temporal cortex (aSTC) of the student,

when the teacher’s brain activity preceded that of the student. Moreover, time course analyses

suggested that such INS could mark the quality of the teaching outcome at an early stage of the

teaching process. These results provided key neural evidence for the Prediction-Transmission

hypothesis about teaching, and suggested that the INS plays an important role in the successful

teaching.

K E YWORD S

functional near-infrared spectroscopy, hyperscanning, interpersonal neural synchronization, predic-

tion, teaching

1 | INTRODUCTION

Theories about teaching suggest that teaching must involve joint men-

tal activities between the teacher and her/his student(s) (Kline, 2015;

Nurmi & Kiuru, 2015; Palincsar, 1998; Ryan & Deci, 2000). In particular,

before any teaching takes place, the teacher will predict the knowledge

state of the student(s), that is, to figure out their Zone of Proximal

Development (i.e., ZPD, Vygotsky, 1978), which will help the teacher

formulate an appropriate representation of the knowledge to be trans-

mitted to the student(s). This process of transmitting knowledge from

the teacher to the student is known as the Prediction-Transmission

hypothesis (Figure 1a). Although this hypothesis is widely accepted, it

has not been directly tested with neural evidence.

Several previous studies have examined the neural mechanism of

some aspects of teaching that may be of relevance to the Prediction-

Transmission hypothesis. For example, Dikker et al. (2017) recently

found that the neural synchronization between pairs of students could

reflect the level of the students’ social engagement in a classroom. This

study, however, did not examine the teacher–student relationship. Two

studies specifically examined the teaching process using functional

near-infrared spectroscopy (fNIRS)-based hyperscanning (Holper et al.,

2013; Takeuchi, Mori, Suzukamo, & Izumi, 2017), and found significant
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correlations between the averaged brain activities of the teacher and

those of the students who acquired the knowledge taught to them, but

not between the brain activities of the teacher and the students who

did not acquire the knowledge. However, neither study tested the

Prediction-Transmission hypothesis as described above. Finally, one

study on speaker-listener’s neural coupling found that the listener’s

brain activity was coupled with the speaker’s brain activity with a time

lag, which suggested that the listener was involved in a prediction pro-

cess to help him/her to understand the subsequent speech information

(Stephens, Silbert, & Hasson, 2010). Unlike a conversation involving

the interlocutors who play a comparable role, however, teaching

involves an asymmetry of the knowledge states of the teacher and the

student(s), with the teacher knowing much more than the students do.

Consequently, the teacher is in a position to know what to teach, how

much to teach, and how to teach, etc., whereas the student(s) would

not know the content of the material to be taught and how the teacher

would teach them. In this context, it seems logical that the teacher

would involve the Prediction-Transmission process, whereas the stu-

dent(s) would not be able to effectively predict what the teacher would

do. This conjecture has yet to be tested. Furthermore, it remains

unclear whether such prediction by the teacher would enhance the

teaching outcome, that is, better knowledge transmission from the

teacher to the student(s).

Another unresolved issue in teaching is whether different teaching

styles are associated different teaching outcomes. For example, while

some studies showed that students benefited more from lecturing than

interactive teaching when the learning materials are abstract (Hein

et al., 2012; Wetzel, Potter, & O’Toole, 1982), other studies did not

find this difference (Aitkin, Bennett, & Hesketh, 1981; Coop & Brown,

1970). Moreover, video teaching was reported to be just as efficient as

teaching in the traditional face-to-face style (Tallent-Runnels et al.,

2006). As far as we know, no neuroimaging studies have examined the

potential neural differences between teaching styles.

This study addressed the above issues by employing the fNIRS-

based hyperscanning approach because fNIRS has clear advantages

over other techniques such as fMRI and EEG in terms of portability,

high tolerance of movement artifacts, and measurements of local

hemodynamic effect. In terms of brain areas of interest to this study,

previous studies have clearly implicated the prefrontal cortex (PFC) in

teacher–student interactions (Holper et al., 2013; Takeuchi et al.,

2017); the temporal-parietal junction (TPJ) in the processing of others’

mental state (i.e., mentalizing and interpersonal prediction) (Carter,

Bowling, Reeck, & Huettel, 2012; Dobbins, Long, Dedrick, & Clemons,

1990), memory retrieval (Bzdok et al., 2013), and asymmetrical social

interactions (i.e., leader-follower) (Jiang et al., 2015); and the superior

temporal cortex in the representation of semantic knowledge needed

for teaching (Correia et al., 2014; Pobric, Lambon Ralph, & Zahn, 2016).

Focusing on these three brain areas, this study aimed (a) to identify the

interpersonal neural synchronization (INS) that would be associated

with teachers’ prediction process and (b) to determine any potential

modulating effect of teaching style on the prediction process.

2 | MATERIALS AND METHODS

2.1 | Participants

Four healthy adults (2 females, mean age52562.4 years) were

recruited from a postgraduate teacher training program at Beijing Nor-

mal University and assigned as teachers. All teachers had received

teacher training for 6 or 7 years (4 years of undergraduate and 2 or 3

years of graduate training). In addition, 60 healthy undergraduate stu-

dents were recruited from universities in Beijing through advertise-

ments (30 females, mean age52362.3 years). The 60 students were

pseudorandomly (equal numbers of males and females for each group)

split into 3 groups for the 3 teaching styles (to be described in the next

section). The 20 students in each group were randomly assigned to the

4 teachers. Each teacher taught 5 students in the one-on-one format

for each teaching style. All participants were right-handed (Oldfield,

1971) and had normal or corrected-to-normal vision. The average age

of the students did not differ significantly by teaching style (F(2,

57)50.01, p5 .99).

Written informed consent was received from all subjects. The

study protocol was approved by the Institutional Review Board of the

State Key Laboratory of Cognitive Neuroscience and Learning, Beijing

Normal University.

2.2 | Experimental tasks and materials

To assess teaching outcome, we asked the “teachers” to teach the “stu-

dents” about numerical reasoning, that is, looking for the hidden rule

about numerical relationship among a given sequence of numbers. We

FIGURE 1 A hypothesized mechanistic model based on teaching
theories. Specifically, teaching should start with high-quality com-
munications between the teacher and the student ‹. Before the
knowledge is actually taught fl, the teacher will predict the stu-
dent’s knowledge state › (Vygotsky, 1978), whereby to formulate
an appropriate representation of the knowledge that can be trans-
mitted to the student fi. When these processes proceed success-
fully, knowledge will be transmitted from the teacher to the
student. Otherwise, the transmission will fail [Color figure can be
viewed at wileyonlinelibrary.com]
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selected numerical reasoning tasks as the content for teaching because

they are novel to most young adults and yet can be taught within 10–

20 min. This content was selected from a national standard guidebook

[Chinese Civil Servants Administrative Professional Knowledge Level

Tests (CCSAPAT), 2014] that aims to measure and improve various

abilities including numerical reasoning in young adults (18–40 years

old). Numerical reasoning involves finding hidden relations among a

given number sequence. For instance, the number sequence of “2, 4, _,

8, 10, 12” follows the rule that all numbers are even numbers that dif-

fer by the constant of 2, so “6” is the correct answer. CCSAPAT has

proven to have good validity and reliability (Wu, 2013). The students in

our sample had not been exposed to CCSAPAT.

Eight training examples were selected from CCSAPAT’s training

section, each of which represented a specific approach to numerical

reasoning. These approaches have proven to be fast and efficient in

finding the hidden rules under various conditions. For instance, if a

number sequence was composed of fractions, for example, 12, 1,
7
6,

5
4,

13
10,

_, one should consider the numerator and denominator separately. The

numerators (after converting the fractions into a sequence of increasing

magnitude) have a difference of 3 (1, 4, 7, 10, 13), while the denomina-

tors have a difference of 2 (2, 4, 6, 8, 10). Thus, the missing next num-

ber should be 16
125

4
3. The specific approach was described in a teaching

script.

All teaching was in the format of one teacher to one student (Fig-

ure 2a). Each of the 4 teachers taught the same content to 3 groups of

individual students in 3 different styles, that is, lecturing, interactive,

and video. Prior to the experiment, all teachers were trained for

teaching the contents. First, all teachers were given the 8 examples

and the teaching script for each teach style. For the lecturing style, the

teacher explained to the student the steps for solving each example.

The teacher did not ask questions and the student was not allowed to

ask questions, either. For the interactive style, the teacher first pre-

sented an example on a computer screen, and the student read and

thought about the problem for about 20 s. Next, the teacher would

guide the student to solve the problem according to the approach

described in the script, in a Q&A approach. For the video style, the vid-

eos were recorded when the teacher simulated the lecturing style alone

(her/his fNIRS data were collected at this time). Then, the students

learnt by watching the video alone while being scanned with fNIRS.

All teachers were required to prepare teaching at home for 2 days.

They practiced with each other in the lab until they were satisfied with

their own teaching performance in both lecturing and interactive teach-

ing styles. Then they demonstrated teaching to the experimenter in a

one-on-one format until their performance met the approval of the

experimenter.

2.3 | Experimental procedures

Data collection started with a 10-min resting-state session, which

served as a baseline. During this session, the participants were required

to keep still with their eyes closed, relax their mind, and remain as

motionless as possible (Jiang et al., 2012).

The teaching session immediately followed the resting-state ses-

sion. For lecturing and interactive styles, the teacher and the student

FIGURE 2 Experimental setup and teaching outcome. (a) Experimental paradigm. Teacher–student pairs were seated in a room side-by-
side in front of a computer, similar to a typical tutoring setting. They went through the three teaching styles, the order of which was coun-
terbalanced across teacher–student pairs. (b) fNIRS data acquisition. Customized optode sets covered the frontal, temporal, and parietal cor-
tices. Measured channels are marked by numbers. The position was confirmed by MRI of one typical participant (normalized to the MNI
coordinate space). (c) Distribution of teaching outcome. Each point represents the difference between post- and pre-test scores. The scores
have been converted into T scores [Color figure can be viewed at wileyonlinelibrary.com]
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sat side-by-side in front of a table in a silent room (Figure 2a). For the

video style, only the student sat in front of a table with a computer

screen on the table. The length of the teaching periods was flexible and

up to the teacher and the student. They lasted 13–26 min. The whole

experimental procedures were video recorded.

2.4 | Behavioral tests

Students’ knowledge of numerical reasoning was tested immediately

before the onset of resting-state session and after the end of the

teaching session. A total of 30 4-choice items were selected from

CCSAPAT’s test bank. To create equivalent pre- and post-tests, addi-

tional 8 participants not involved in this experiment were recruited to

take the 30-item test and their scores (% correct) were used to index

the difficulty levels of the 30 items. Three items with potentially con-

fusing expressions (based on subjects’ feedback) were deleted. Seven

items with highest (>70%) and lowest levels of accuracy (<30%) were

also deleted for their lack of contribution to the variance and to avoid

the ceiling and flooring effects. The remaining 20 items were randomly

split into two halves, one for the pretest and the other for the post-

test. The difficulty levels of the pre- and post-tests did not differ based

on the 8 pilot testing participants’ scores [t(18)50.974, p5 .343]. For

the actual experiment, the participants had 20 min to finish each of the

tests. All students finished the test within this time limit.

2.5 | fNIRS data acquisition

The imaging data were collected from the teacher and the student

simultaneously during teaching using an ETG-4000 optical topography

system (Hitachi, Japan). Four sets of the customized optode probes

were used in each pair. Each set had 4 emitters and 4 detectors that

consisted of 10 measurement channels (30 mm optode separation). For

each participant, the probe sets covered the bilateral frontal, temporal,

and parietal cortices. The probe set on the left hemisphere was more

anterior, whereas that on the right was more posterior, to better cover

the left frontal cortex and right temporal-parietal cortex. CH2 was

placed at FP1 on the left hemisphere, and CH19 was placed at F8 on

the right hemisphere, according to the international 10–20 system (Fig-

ure 2b). The probe sets were checked and adjusted to ensure consis-

tency within the teacher–student pair and across pairs.

To confirm the anatomical position of each optode, MRI was

obtained from one typical participant with a high-resolution T1-

weighted magnetization-prepared rapid gradient echo sequence (TR5

2,530 ms; TE53.30 ms; flip angle578; slice thickness51.3 mm; in-

plane resolution51.3 3 1.0 m2; number of interleaved sagittal

slices5128). SPM8 (Statistical Parametric Mapping, Wellcome Depart-

ment of Cognitive Neurology, London, UK) was used to normalize the

MRI to the standard MNI coordinate space with a modulated normal-

ization method (Ashburner & Friston, 2005). According to the Auto-

mated Anatomical Labeling template (Tzourio-Mazoyer et al., 2002),

the anatomical positions below the optode were identified. This infor-

mation was used to provide neurofunctional explanations of the

significant teaching outcome or the teaching style effects (see below)

based on the CH combinations’ roughly corresponding brain areas.

The absorption of near-infrared light at two wavelengths (695 and

830 nm) was measured with a sampling rate of 10 Hz. Based on the

modified Beer–Lambert Law, changes of the oxy-hemoglobin (HbO)

and deoxy-hemoglobin (HbR) concentrations were obtained by meas-

uring the absorption changes of fNIRS light after its transmission

through the tissue. Previous studies have shown that HbO is a sensi-

tive indicator of the change in regional cerebral blood flow (Hoshi,

2007). Thus, this study focused on the HbO concentrations only.

2.6 | Data analyses

2.6.1 | Behavioral teaching outcome

The percentage of correctly answered testing items was calculated and

used as the test score. To test the effect of teaching and teaching style

(lecturing, interactive, and video), a repeated measures ANOVA was

conducted on the test score, with the time of test (pre- vs post-test)

and teaching style as the independent variables. For subsequent analy-

ses, teaching outcome was indexed by the difference between post-

and pre-test scores after they were transformed into T scores.

2.6.2 | fNIRS data analysis

Individual-level analysis

fNIRS data collected during the resting-state and teaching sessions

were analyzed. Data from the first and last 10 s were deleted during

the preprocessing to obtain data within the period of steady state. Dur-

ing preprocessing, no filtering or detrending procedures were applied

(Cui, Bryant, & Reiss, 2012). These procedures were conducted on the

coherence value as described below. In addition, we also did not per-

form any artifact corrections at the single-subject level, as wavelet

transform coherence (WTC) normalizes the amplitude of the signal

according to each time window and thus is not vulnerable to the

transient spikes induced by movements (Nozawa, Sasaki, Sakaki,

Yokoyama, & Kawashima, 2016).

Next, a Matlab package was used to perform WTC (Grinsted,

Moore, & Jevrejeva, 2004) to assess the cross-correlation between the

two fNIRS time series generated by each pair of the participants as a

function of frequency and time (Torrence & Compo, 1998). For exam-

ple, for a specific teacher–student pair, two time-series of HbO were

obtained, one from CH1 of the teacher and the other from CH2 of the

student. The two time-series had the same length of the teaching

period because the teacher and student interacted with each other.

Then, WTC was applied to these two time-series to find regions in

the time frequency space where the two time-series co-varied. This

generated a 2-D matrix of the coherence value. In the matrix, each line

corresponded to a specific frequency point, while each column corre-

sponded to a specific time point. For more thorough information about

wavelet coherence, please see Grinsted et al. (2004) and Chang and

Glover (2010). Because there were 20 measurement channels for each

participant, 400 pairs of time-series were generated for each pair of

the participants, and WTC was thus conducted 400 times. Next, the

coherence values were time-averaged across the whole teaching
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period, and converted into Fisher z-values. These procedures were con-

ducted for each of the three teaching styles as well as the resting state.

According to previous studies (Cui et al., 2012; Jiang et al., 2012), the

coherence value increases during the task session compared to the

resting-state session. Thus, the coherence value from the resting-state

was subtracted from that of the teaching period, resulting in an index

of INS increase. At this stage, no specific frequency ranges were

selected.

Group-level analysis

To identify the INS increases that were specifically associated with the

teaching outcome and teaching style, the following steps were per-

formed. First, to identify the frequency ranges that were specifically

associated with the teaching outcome or teaching style, one-way

ANCOVA was conducted on the time-averaged coherence value of

each CH combination (400 in total) along the full frequency range

(0.01–0.7 Hz). For that analysis, the teaching style (a categorical vari-

able) was an independent variable and the teaching outcome (a contin-

uous variable) was a covariate. Following previous studies (Barrett,

Barman, Boitano, & Brooks, 2015; Guijt, Sluiter, & Frings-Dresen,

2007; Tong, Lindsey, & Frederick, 2011), data above 0.7 Hz were not

included to avoid aliasing of higher frequency physiological noise such

as cardiac activity (�0.8–2.5 Hz); data below 0.01 Hz were also not

used to remove very low frequency fluctuations; and finally, data

within the frequency range of respiratory activity (�0.15–0.3 Hz) were

not considered, either. The ANCOVA results were thresholded at

p< .0005. No further correction for multiple comparisons was applied

because this analysis was only used to identify the pattern along the

frequency range rather than to obtain the final results. For the teaching

outcome analysis, only two frequencies (i.e., 0.6Hz and 0.03 Hz) had

CH combinations whose p value survived the thresholding (Supporting

Information, Figure S1). Then, the frequencies that were around these

two frequencies and meanwhile whose p values were <0.05 were

selected, resulting in two frequency ranges, that is, 0.5–0.7 Hz and

0.02–0.03 Hz. The same procedures were applied to the analysis of

teaching style, and two frequency ranges were selected, that is, 0.3–

0.4 Hz and 0.06–0.07 Hz. Second, the coherence values within these

two frequency ranges were averaged separately. One-way ANCOVA

was conducted again, on the time-averaged and frequency-averaged

data. Results were corrected with the false discovery rate (FDR)

method for all CHs at p< .05 level. As a general approach to the multi-

ple comparisons problem, an FDR threshold is determined from the

observed p value distribution, and hence is adaptive to the amount of

signal in the data. The procedure used here is an extension (Genovese,

Lazar, & Nichols, 2002; Nichols & Hayasaka, 2003) of SPM8 (Statistical

Parametric Mapping, Wellcome Department of Cognitive Neurology,

London, UK) that implemented the Benjamini–Hochberg method (Ben-

jamini, Krieger, & Yekutieli, 2006; Benjamini & Yekutieli, 2001). The

overall procedures are summarized in Supporting Information, Figure

S2.

In addition, to examine whether and when the teacher predicted

the student’s knowledge state (per the Prediction-Transmission

hypothesis), we added various time-lags to the computation of INS

increases (Liu et al., 2017; Stephens et al., 2010). Specifically, the time

course of the teacher’s brain activity was shifted forward or backward

relative to that of the student’s brain activity by 2–14 s (step52 s) and

the INS increases were recomputed and statistically tested. Results

were corrected with the FDR method for all CHs across all time-lags at

p< .05 level.

To identify the earliest time-point whose INS increase was associ-

ated with teaching outcome and/or teaching style, the one-way

ANCOVA described above was rerun with the following five steps. First,

for the particular CH combination that showed significant results either

for teaching outcome or teaching style, its 2-D matrix of coherence val-

ues was obtained for each of the teaching styles and the resting state.

Second, the coherence values were averaged within the selected fre-

quency range(s), generating a 1-D frequency-averaged time-series of

coherence values. Third, for each teacher–student pair, the time-series of

coherence values during teaching was temporally resampled into the

same length as that during the resting state. The resampling procedure

kept the regional features (in time) but only changed the length of the

time-series. Thus, the temporal dynamics of the teaching process was still

retained. Fourth, the INS increase was obtained by subtracting the INS of

resting state from that of different teaching styles. Finally, one-way

ANCOVA with the teaching style as the independent variable and teach-

ing outcome as a covariate was conducted on the INS increase at each

time point along the time-series, resulting in two time-series of p values,

one for the teaching outcome, the other for the teaching style. The p val-

ues were corrected by FDR method across the time points (p< .05) for

the teaching outcome and teaching style respectively. Based on the time-

series of the p values, the earliest time point whose INS increase reached

significance was identified.

2.7 | Linking teaching behaviors with the INS

To link the pattern of teaching behaviors with the INS with time-lags,

additional two participants were recruited to code the teaching behav-

iors frame-by-frame based on the video of teaching with the interactive

style. Only the interactive teaching style was analyzed because (a) there

were no explicit interaction behaviors in the other two teaching styles

and (b) the INS increase with a time-lag at TPJ-aSTC was correlated

with teaching outcome regardless of the teaching style. Three teacher–

student pairs were removed due to video-recording failure. The two

coders identified the time point where the teacher just started to ask a

question and where the student just started to answer the question

within each of the 8 examples. The intraclass correlation (ICC) was con-

ducted across all the time points in each teacher–student pair to assess

the intercoder reliability. The coefficient was high (mean of Cronbach’s

Alpha50.902, SD50.082). Then, the two coders discussed the coding

results in order to reach a consensus. During this process, one addi-

tional teacher–student pair was removed because the two coders could

not reach an agreement about the coding of one specific example

(number 6). We also calculated the percentage of correct answers of

the student for each teacher-student pair. Pairs whose percentage of

correct answers was below 50% were not included in the following

analyses (3 pairs) because for these pairs, the teachers’ prediction was

3050 | ZHENG ET AL.



likely to be unsuccessful. Thus, there were 13 teacher-student pairs left.

Next, the time-durations for asking and answering questions were aver-

aged across the 8 examples and then across all teacher–student pairs by

calculating the median (here median was used because there was large

variance across examples and pairs). Finally, to test the relationship

between asking and answering questions with INS, INS at time points

immediately before the teacher asked questions and before the student

answered questions were averaged and compared to INS at other time

points.

3 | RESULTS

3.1 | Behavioral results

To demonstrate the effectiveness of teaching, test scores were trans-

formed into T scores (mean550, SD510). Repeated measures

ANOVA on test scores (time of test vs teaching style) showed a signifi-

cant main effect of time of test (F(1, 57)5502.981, p< .001), with post-

test scores being significantly higher than pretest scores. Teaching style

did not have a significant effect (F(2, 57)50.499, p5 .61), nor did the

interaction between teaching style and time of test (F(1, 57)50.58,

p5 .563). For subsequent analyses, the teaching outcome was indexed

by the change score (pre-test scores were subtracted from post-test

scores). The distribution of the teaching outcome in all teacher-student

pairs is shown in Figure 2c, which indicates a wide distribution.

3.2 | Confirmation of the INS between the teacher

and the student when their brain activities were

temporally aligned

To identify the INS increases that were associated with teaching out-

come and/or teaching style, we conducted one-way ANCOVA with the

teaching style (a categorical variable of three teaching styles) as the

independent variable and the teaching outcome (a continuous variable)

as a covariate. Results were corrected with the false discovery rate

(FDR) method for all CHs at p< .05 level. Teaching outcome was a sig-

nificant positive covariate of INS between teachers’ anterior superior

temporal cortex (aSTC, CH17) and students’ TPJ (CH3,

F(1, 56)519.297, p< .001) at the frequency band of 0.5–0.7 Hz (Figure

3a–e). There were no significant results of the teaching outcome for

other CHs and other frequency bands (p> .05, FDR corrected).

In terms of the effect of the teaching style, there was a significant

INS increase at right TPJ-TPJ (CH3, teacher-student) at the frequency

band of 0.06–0.07 Hz (F(2, 56)512.472, p< .001) (Figure 3f–j). Pairwise

comparison (p< .05, �Sid�ak correction) indicated that INS increase was sig-

nificantly lower for the video style than for the other two styles (both at

p< .001). There was no significant difference between the lecturing and

interactive teaching styles (p5 .505). It is worth noting that the effect of

teaching style was not significant for the teaching outcome-related CH

combination of aSTC-TPJ mentioned above (F(2, 56)52.844, p5 .067).

As the length of the teaching periods varied across the teacher–

student pairs, it might have affected teaching outcome and the INS

increase. To exclude this possibility, a Pearson correlation was

conducted between the teaching outcome and the length of the teach-

ing period. No significant correlation was found (r52.011, p5 .933).

Next, we repeated the one-way ANCOVA by adding the length of the

teaching period as an additional covariate. Results showed that teach-

ing outcome was still a significant positive covariate of INS at aSTC-

TPJ (CH17-3) (F(1, 55)517.548, p< .001). There was no significant

effect either for the teaching style (F(2, 55)52.273, p5 .075) or for the

length of the teaching period (F(1, 55)50.112, p5 .74).

3.3 | INS between the teacher and the student when
the teacher’s brain activity was shifted forward or

backward

The time-lag results showed that teaching outcome was a significant pos-

itive covariate of the INS increase at TPJ-aSTC (i.e., CH3–17, from the

teacher to the student) at 0.5–0.7 Hz when the teacher’s brain activity

preceded that of the student by 10 s (F(1, 56)524.889, p< .001) (Figures

3k–o and 4). No significant effect was found for the teaching style at this

time-lag (F(2, 56)50.287, p5 .752) or other time-lags (p> .05, FDR cor-

rected). Also, when the length of the teaching period was added as an

additional covariate, there was still a significant positive relationship

between the INS increase at TPJ-aSTC and the teaching outcome

(F(1, 55)523.655, p< .001). There was no significant effect either for the

teaching style (F(2, 55)5 .168, p5 .846) or for the length of the teaching

period (F(1, 55)50, p5 .999). No significant results were found when the

student’s brain activity preceded that of the teacher at any time-lags, at

any CH combinations (p> .05, FDR corrected).

3.4 | Linking the teaching behaviors with INS

The average duration for the teachers to ask a question was 7 s

(SD55), and the average duration for the students to answer a ques-

tion was 11 s (SD57). Thus, there was one round of an alternation

between asking and answering questions within about 18 s. The

teacher was more likely to make prediction about what the students’

answer might be and what to ask next. This hypothesis would predict

higher INS at time points immediately before the teacher asked the

question and immediately before the student answered the question

(i.e., before Q&A) than at other time points.

To test this hypothesis, the INS at time points before Q&A were

averaged and compared to INS at other time points. Results showed

higher INS at time points before Q&A than at other time points [t

(12)52.004, p5 .034, one-tailed]. Similar tests were conducted on the

INS increase at aSTC-TPJ, which was suggested to be associated with

actual teaching rather than prediction. No significant result was found

[t(12)51.593, p5 .069, one-tailed]. These results confirmed the earlier

hypothesis that the teacher might make predictions immediately before

she/he asked a question and the students answered the question.

3.5 | How early could the INS increase mark eventual
teaching outcome?

To identify the earliest time-point whose INS increase at aSTC-TPJ

(which was associated with teaching outcome as reported above) would
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FIGURE 3 ANCOVA results. (a–e) Results without time-lags at the frequency band of 0.5–0.7 Hz. (f–j) Results without time-lags at the fre-
quency band of 0.06–0.07 Hz. (k–o) Results when the teacher’s brain activity preceded that of the student by 10 s at the frequency band
of 0.5–0.7 Hz. (a), (f), and (k) F-maps for teaching outcome. (c), (h), and (m) F-maps for teaching style. The blue rectangle highlights the sig-
nificant result. The numbers represent CHs. (b), (g), and (l) Partial correlation plot between the INS increase and teaching outcome. (d), (i),
and (n) Pairwise comparison across the three teaching styles. The error bars indicate standard errors. (e), (j), and (o) Thresholded results that
are showed on the brain [Color figure can be viewed at wileyonlinelibrary.com]
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predict the eventual teaching outcome, ANCOVA as described above

was conducted for each time point along the time course. Results

showed that by the time of 486 s after the start of teaching, the INS

increase at aSTC-TPJ became a significant correlate of the teaching out-

come, suggesting that about eight min into the teaching period, the INS

increase could mark successful knowledge transmission (Figure 5a). No

significant effect of the teaching style was found at any time points for

the aSTC-TPJ CH combination (p> .05, FDR corrected). Meanwhile, the

teaching style-related INS increase at TPJ-TPJ as reported reached signifi-

cance after about 76 s of teaching (Figure 5b). Again, no significant results

for the teaching outcome were found at the TPJ-TPJ CH combination at

any time points (p> .05, FDR corrected).

The same time-point-by-time-point analyses were also conducted

after time lags were added to the data. For the INS increase at TPJ-

aSTC, which was associated with the teaching outcome when the

teacher’s brain activity preceded that of the student by 10 s, we found

that it reached significance around 102 s after the onset of teaching

(Figure 5c). No significant effect was found for the teaching style at

TPJ-aSTC CH combination at any time points for any time lags

(p>0.05, FDR corrected).

4 | DISCUSSION

INS has been hypothesized to be associated with teaching, but there

has been little direct evidence based on simultaneous recordings of the

neural activities of the teachers and the students. Using fNIRS-based

hyperscanning, this study measured brain activities from the teachers

and the students simultaneously, identified the INS increase associated

with a prediction process that was positively associated with teaching

outcome regardless of the teaching style.

First, we identified a significant INS increase that was positively

associated with teaching outcome between left aSTC of the teacher

and right TPJ of the student when the brain activities of the teacher

and student were temporally aligned. This finding was consistent with

previous evidence that INS could be a neural marker for social interac-

tions in the educational settings (Dikker et al., 2017), but this study

expanded from student-to-student relationship (Dikker et al., 2017) to

teacher-to-student relationship. The present finding also confirmed

that successful knowledge transmission was related to correlations of

the teacher’s and the student’s brain activities (Holper et al., 2013;

Takeuchi et al., 2017) using a novel method, that is, examining the

temporal dynamic covariation of brain activities of the teacher and

the student along the teaching process in a large sample of partici-

pants (N560 pairs). Previous evidence has shown that while left

aSTC is the modality-invariant representational hub within the seman-

tic system (Correia et al., 2014; Pobric et al., 2016), right TPJ is exclu-

sively involved in high-level mentalizing (Carter et al., 2012; Dobbins

et al., 1990) and memory retrieval (Bzdok et al., 2013). Thus, the cur-

rent findings suggested that INS at aSTC-TPJ might reflect a

knowledge-related joint mental activity between the teacher and the

student, whereby knowledge was transmitted from the teacher to the

student.

Second, when the brain activity of the teacher at right TPJ pre-

ceded that of the student at left aSTC by 10 s, a significant

FIGURE 4 A summary of the INS increase pattern. The stars indicate significance at p< .05 level with FDR correction for all CH combinations
across all time-lags. No further statistical tests were conducted on the specific CH combinations. The bar plot shows the relationship between the
INS increase and teaching behavioral pattern. The error bars indicate standard errors. Note that prediction and non-prediction indicate the aver-
aged INS across time points immediately before asking and answering questions and across other time points respectively. The star indicates a sig-
nificance at p< .05 level [Color figure can be viewed at wileyonlinelibrary.com]
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INS increase was associated with the teaching outcome but not teach-

ing style. According to the theory of language communication

(Pickering & Garrod, 2007), prediction plays an important role in both

speech production and comprehension. Both behavioral (for a review,

see Pickering & Garrod, 2007) and neural evidence (Liu et al., 2017;

Stephens et al., 2010) supports this theory. Consistent with this propo-

sition, we found that the teacher’s brain activity was associated with

subsequent brain activity of the student. Moreover, we found that the

INS increase occurred specifically at TPJ-aSTC, which is generally con-

sidered to be a key area for theory of mind (ToM) or mentalizing (Car-

ter et al., 2012). Thus, the INS increase with a time-lag at TPJ-aSTC

should reflect the function of TPJ in predicting the mental state of the

student. More specifically, the length of the time-lag (10 s) roughly cor-

responded to the amount of time the teacher used to ask a question as

well as the amount of time of the student used to answer a question.

The INS was also significantly higher immediately before the teacher

asked a question and the student answered a question than at other

time points. Therefore, it was more likely that the teacher made

predictions about what the student’s answer would be and what to ask

next. In sum, it seems that the teacher might make a prediction about

the knowledge state of the student prior to actual knowledge transmis-

sion, and then proceed to formulate an appropriate representation of

the knowledge that can be transmitted to the student (Figure 6).

We did not find a similar result of INS increase when the student’s

brain activity preceded that of the teacher. One possibility was that we

had two teaching styles that involved only one-way information flow

from the teacher to the student, that is, lecturing and video teaching.

Previous evidence has shown that in such a one-way communication

context, the speaker’s brain activity preceded that of the listener at TPJ

but not vice versa (Stephens et al., 2010). Even in the interactive teach-

ing style, the teacher still played a dominant role. Previous evidence

has shown that in a communication context that occurs within a domi-

nant relationship, the leader’s brain activity was always temporally

ahead of that of the followers (Jiang et al., 2015; Konvalinka et al.,

2014). Thus, it seems that the teacher’s prediction played a dominant

role in this study. However, our findings could not exclude the possibil-

ity that with other teaching styles not included in our study, there is

student’s prediction about the teacher’s mental state as well.

Third, teaching style was associated with the INS increase at TPJ-

TPJ at a lower frequency band. In this study, INS that differed among

the three teaching styles was expected to reflect the neural correlates

for various levels of general communications such as visual inputs,

turn-takings, and even mutual comprehension (Jiang et al., 2012; Osaka

et al., 2015; Stephens et al., 2010). Previous fMRI evidence showed

that in a strictly controlled unidirectional communication context (i.e.,

between a speaker and a listener), INS occurred at widely distributed

brain areas including PFC, IFC, TPJ, and so on (Stephens et al., 2010).

FIGURE 5 The temporal dynamics of the relationship between
the INS increase and teaching outcome and style. (a) and (b)
Patterns when there was no time-lags. (c) Pattern when the teach-
er’s brain activity preceded that of the student by 10 s. The stars
indicate significance at p< .05 level with FDR correction for all CH
combinations across all time-lags. No further statistical tests were
conducted on the specific CH combinations. The vertical line for
each panel indicates the earliest time point that the effect reached
significance. The red and blue colors represent the results of teach-
ing outcome and teaching style, respectively [Color figure can be
viewed at wileyonlinelibrary.com]

FIGURE 6 A proposed neural mechanistic model based on the
present findings. The establishment of high-quality communication
takes about 1 min ‹. Before the knowledge is actually taught
(about 10 s before), the teacher will predict the students’ knowl-
edge state ›, whereby to formulate an appropriate representation
of the knowledge that can be transmitted to the student fi. When
the knowledge is actually taught, there will be a joint mental activ-
ity between aSTC of the teacher and TPJ of the student fl. The
numbers indicate partial correlations with teaching outcomes [Color
figure can be viewed at wileyonlinelibrary.com]
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When the communication occurred bi-directionally in a more naturalis-

tic context, INS was found at left IFC and TPJ (Jiang et al., 2015; Jiang

et al., 2012; Osaka et al., 2015). Only TPJ was identified when there

was a dominant (leader-follower) rather than an egalitarian relationship

between communicators. The present results confirmed this postula-

tion in another type of dominant social relationship, that is, teacher–

student pairs, suggesting that INS at TPJ might be a neural marker for

the dominant social relationship. A new finding of this study was that

the INS increase was significantly lower in the video-teaching style

compared to the lecturing and interactive styles despite their similar

teaching outcomes. In the video style, the teacher and the student did

not interact directly with each other, which might have led to the

decoupling of their brain activities at TPJ.

In this study, it seems that different frequency ranges were associ-

ated with different brain functions. This finding should not be directly

compared with results about frequency ranges from EEG studies

because fNIRS signal differs from EEG signal in different aspects of the

underlying neuronal activity. In previous fNIRS-based hyperscanning

study, the INS at a lower frequency range [such as 0.01–0.1 (Jiang

et al., 2012) or 0.02–0.2 (Jiang et al., 2015)] was found to be closely

associated with the turn-taking behaviors in free verbal conversations.

The INS at this frequency range is also closely associated with the

function of frontal cortex and TPJ (Balardin et al., 2017; Balconi &

Vanutelli, 2017; Jiang et al., 2012, 2015; Pan, Cheng, Zhang, Li, & Hu,

2017; Tang et al., 2016; Zhang, Liu, Pelowski, Jia, & Yu, 2017a; Zhang,

Liu, Pelowski, & Yu, 2017b). The INS at right TPJ is found to be specifi-

cally associated with a frequency range of 0.06–0.08 Hz (Tang et al.,

2016). Therefore, previous evidence is consistent with the present

finding on TPJ-TPJ at 0.06–0.07 Hz during teaching.

However, spectral analysis of the INS indicates that the INS is not

limited to the frequency range that directly corresponds to communi-

cating behavior (Nozawa et al., 2016). The frequency range of 0.43–

0.57 Hz also has an enhancement of the INS in a conversation condi-

tion as compared to the control condition (Nozawa et al., 2016). This

frequency range roughly corresponds to the present findings on TPJ-

aSTC at 0.5–0.7 Hz. This frequency range has already excluded the

potential influence of physiological activity such as cardiac (�0.8–2.5

Hz) or respiratory (�0.15–0.3 Hz) activity. Moreover, even though

there are still some residuals of the physiological influence on the INS

at this frequency range, evidence has shown that this influence will

enhance the INS in a non-interactional context (e.g., resting state)

rather than in the interactional context (Nozawa et al., 2016). More-

over, the influence of physiological activity tends to be spatially more

global and homogeneous than the neural signals (Kohno et al., 2007;

Zhang, Brooks, Franceschini, & Boas, 2005). Thus, the local enhance-

ment of the INS at 0.5–0.7 Hz is more likely to have a neural origin.

This is also consistent with recent fMRI evidence indicating the neural

relevance and functional contribution of higher frequency fluctuations

in BOLD signals (up to 0.8 Hz) (Chen & Glover, 2015; Gohel & Biswal,

2015). Recent fMRI evidence has suggested that while low-frequency

BOLD signal may reflect the general excitability (Raichle, 2011) and

spatially overlapped neural networks (Smith et al., 2012), high-

frequency BOLD signal may be confined to focal functions and offer a

more direct and precise characterization of cognitive processes (Chen

& Glover, 2015). Moreover, the temporal regions can be reliably

detected with the high-frequency BOLD signal around 0.5–0.8 Hz

(Gohel & Biswal, 2015). This is also consistent with the present findings

that the INS at TPJ-aSTC occurred at 0.5–0.7 Hz, suggesting that the

INS at this frequency range might be related to the function of TPJ-

aSTC in predicting the student’s semantic representations. However, as

little evidence exists about the functional significance of the high fre-

quency in the hemodynamic signal, we would refrain from drawing fur-

ther conclusions. Further studies are definitely required to clarify this

issue.

Finally, this study demonstrated that INS could mark knowledge

transmission at a specific stage of teaching. Previous evidence indicates

that INS reached significance at a very early stage when the roles of

communicators were assigned a priori or emerged in the task (Jiang

et al., 2015; Konvalinka et al., 2014). However, a study on teacher–stu-

dent interactions found that the brain activities of teachers and stu-

dents correlated at a later stage of teaching (Holper et al., 2013). In this

study, the onset time of the INS increase at TPJ-TPJ appeared very

early (about 1 min after the onset of teaching), which was consistent

with previous findings on general communications (Jiang et al., 2015;

Konvalinka et al., 2014); the onset time of the INS increase at TPJ-

aSTC and aSTC-TPJ appeared late (about 2 and 8 min, respectively),

which was consistent with previous findings on teaching (Holper et al.,

2013). These results suggested that different types of INS might mark

different aspects of teacher–student interactions, and the INS increase

between TPJ and aSTC could specifically mark the quality of teaching

outcome.

Together, the present findings suggest a neural mechanistic model

of Prediction-Transmission for successful teaching (Figure 6). That is, a

good communication between the teacher and the student should be

established at the beginning of the teaching process, which might be a

prerequisite for teaching (see ‹ of Figure 6). With a good communica-

tion, the teacher will be able to predict the students’ knowledge state

(see › of Figure 6), whereby to formulate the appropriate representa-

tion of knowledge (see fi of Figure 6). When teaching actually happens,

knowledge is transmitted from the teacher to the student (see fl of

Figure 6). Finally, when knowledge is transmitted, the students’ knowl-

edge state will change accordingly, and the above processes will be

repeated again. Initially, the teacher’s prediction might not be success-

ful. However, after some practice (e.g., <2 min), the prediction is

improved (i.e., the INS increased significantly). Then, knowledge can be

successfully transmitted from the teacher to the student (about 8 min

into the process in this study).

ACKNOWLEDGMENTS

This work was supported by National Natural Science Foundation of

China (31622030 and 31411130158), the Fundamental Research

Funds for the Central Universities (2017EYT32 and 2017XTCX04),

and the Open Research Fund of the State Key Laboratory of Cogni-

tive Neuroscience and Learning (CNLYB1605 and CNLZD1604). The

authors declare no competing financial interests.

ZHENG ET AL. | 3055



ORCID

Guosheng Ding http://orcid.org/0000-0002-0065-6398

Chunming Lu http://orcid.org/0000-0002-0040-0587

REFERENCES

Aitkin, M., Bennett, S. N., & Hesketh, J. (1981). Teaching styles and pupil

progress - a re-analysis. British Journal of Educational Psychology, 51

(2), 170–186.

Ashburner, J., & Friston, K. J. (2005). Unified segmentation. NeuroImage,

26(3), 839–851.

Balardin, J. B., Zimeo Morais, G. A., Furucho, R. A., Trambaiolli, L., Van-

zella, P., Biazoli, C., Jr., & Sato, J. R. (2017). Imaging brain function

with functional near-infrared spectroscopy in unconstrained environ-

ments. Frontiers in Human Neuroscience, 11, 258.

Balconi, M., & Vanutelli, M. E. (2017). Interbrains cooperation: Hyper-

scanning and self-perception in joint actions. Journal of Clinical and

Experimental Neuropsychology, 39(6), 607–620.

Barrett, K. E., Barman, S. M., Boitano, S., & Brooks, H. (2015). Ganong’s
review of medical physiology. Appleton & Lange ISE.

Benjamini, Y., Krieger, A. M., & Yekutieli, D. (2006). Adaptive linear step-

up procedures that control the false discovery rate. Biometrika, 93(3),

491–507.

Benjamini, Y., & Yekutieli, D. (2001). The control of the false discovery

rate in multiple testing under dependency. Annals of Statistics, 29,

1165–1188.

Bzdok, D., Langner, R., Schilbach, L., Jakobs, O., Roski, C., Caspers, S.,

. . . Eickhoff, S. B. (2013). Characterization of the temporo-parietal

junction by combining data-driven parcellation, complementary con-

nectivity analyses, and functional decoding. NeuroImage, 81, 381–
392.

Carter, R. M., Bowling, D. L., Reeck, C., & Huettel, S. A. (2012). A distinct

role of the temporal-parietal junction in predicting socially guided

decisions. Science, 337(6090), 109–111.

Chang, C., & Glover, G. H. (2010). Time-frequency dynamics of resting-

state brain connectivity measured with fMRI. NeuroImage, 50(1), 81–
98.

Chen, J. E., & Glover, G. H. (2015). BOLD fractional contribution to

resting-state functional connectivity above 0.1 Hz. NeuroImage, 107,

207–218.

Coop, R. H., & Brown, L. D. (1970). Effects of cognitive style and teach-

ing method on categories of achievement. Journal of Educational Psy-

chology, 61(5), 400.

Correia, J., Formisano, E., Valente, G., Hausfeld, L., Jansma, B., & Bonte,

M. (2014). Brain-based translation: fMRI decoding of spoken words

in bilinguals reveals language-independent semantic representations

in anterior temporal lobe. Journal of Neuroscience, 34(1), 332–338.

Cui, X., Bryant, D. M., & Reiss, A. L. (2012). NIRS-based hyperscanning

reveals increased interpersonal coherence in superior frontal cortex

during cooperation. NeuroImage, 59(3), 2430–2437.

Dikker, S., Wan, L., Davidesco, I., Kaggen, L., Oostrik, M., McClintock, J.,

. . . Poeppel, D. (2017). Brain-to-brain synchrony tracks real-world

dynamic group interactions in the classroom. Current Biology, 27(9),

1375–1380.

Dobbins, G. H., Long, W. S., Dedrick, E. J., & Clemons, T. C. (1990). The

role of self-monitoring and gender on leader emergence: A laboratory

and field study. Journal of Management, 16(3), 609–618.

Genovese, C. R., Lazar, N. A., & Nichols, T. (2002). Thresholding of statis-

tical maps in functional neuroimaging using the false discovery rate.

NeuroImage, 15(4), 870–878.

Gohel, S. R., & Biswal, B. B. (2015). Functional integration between brain

regions at rest occurs in multiple-frequency bands. Brain Connectivity,

5(1), 23–34.

Grinsted, A., Moore, J. C., & Jevrejeva, S. (2004). Application of the cross

wavelet transform and wavelet coherence to geophysical time series.

Nonlinear Processes in Geophysics, 11(5/6), 561–566.

Guijt, A. M., Sluiter, J. K., & Frings-Dresen, M. H. W. (2007). Test-retest

reliability of heart rate variability and respiration rate at rest and dur-

ing light physical activity in normal subjects. Archives of Medical

Research, 38(1), 113–120.

Hein, V., Ries, F., Pires, F., Caune, A., Emeljanovas, A., Ekler, J. H., & Val-

antiniene, I. (2012). The relationship between teaching styles and

motivation to teach among physical education teachers. Journal of

Sports Science and Medicine, 11, 123–130.

Holper, L., Goldin, A. P., Shal�om, D. E., Battro, A. M., Wolf, M., & Sigman,

M. (2013). The teaching and the learning brain: A cortical hemody-

namic marker of teacher–student interactions in the Socratic dialog.

International Journal of Educational Research, 59, 1–10.

Hoshi, Y. (2007). Functional near-infrared spectroscopy: Current status

and future prospects. Journal of Biomedical Optics, 12(6), 062106.

Jiang, J., Chen, C., Dai, B., Shi, G., Ding, G., Liu, L., & Lu, C. (2015).

Leader emergence through interpersonal neural synchronization. Pro-

ceedings of the National Academy of Sciences, 112(14), 4274–4279.

Jiang, J., Dai, B., Peng, D., Zhu, C., Liu, L., & Lu, C. (2012). Neural syn-

chronization during face-to-face communication. Journal of Neuro-

science, 32(45), 16064–16069.

Kline, M. A. (2015). How to learn about teaching: An evolutionary frame-

work for the study of teaching behavior in humans and other ani-

mals. Behavioral and Brain Sciences, 38, e31.

Kohno, S., Miyai, I., Seiyama, A., Oda, I., Ishikawa, A., Tsuneishi, S., . . .

Shimizu, K. (2007). Removal of the skin blood flow artifact in func-

tional near-infrared spectroscopic imaging data through independent

component analysis. Journal of Biomedical Optics, 12(6), 062111.

Konvalinka, I., Bauer, M., Stahlhut, C., Hansen, L. K., Roepstorff, A., &

Frith, C. D. (2014). Frontal alpha oscillations distinguish leaders from

followers: Multivariate decoding of mutually interacting brains. Neuro-

Image, 94, 79–88.

Liu, Y., Piazza, E. A., Simony, E., Shewokis, P. A., Onaral, B., Hasson, U.,

& Ayaz, H. (2017). Measuring speaker-listener neural coupling with

functional near infrared spectroscopy. Scientific Reports, 7, 43293.

Nichols, T., & Hayasaka, S. (2003). Controlling the familywise error rate

in functional neuroimaging: A comparative review. Statistical Methods

in Medical Research, 12(5), 419–446.

Nozawa, T., Sasaki, Y., Sakaki, K., Yokoyama, R., & Kawashima, R. (2016).

Interpersonal frontopolar neural synchronization in group communi-

cation: An exploration toward fNIRS hyperscanning of natural inter-

actions. NeuroImage, 133, 484–497.

Nurmi, J.-E., & Kiuru, N. (2015). Students’ evocative impact on teacher

instruction and teacher–child relationships. International Journal of

Behavioral Development, 39(5), 445–457.

Oldfield, R. C. (1971). The assessment and analysis of handedness: The

Edinburgh inventory. Neuropsychologia, 9(1), 97–113.

Osaka, N., Minamoto, T., Yaoi, K., Azuma, M., Shimada, Y. M., & Osaka,

M. (2015). How two brains make one synchronized mind in the infe-

rior frontal cortex: fNIRS-based hyperscanning during cooperative

singing. Frontiers in Psychology, 6, 1811.

Palincsar, A. S. (1998). Social constructivist perspectives on teaching and

learning. Annual Review of Psychology, 49(1), 345–375.

Pan, Y., Cheng, X., Zhang, Z., Li, X., & Hu, Y. (2017). Cooperation in lovers: An

fNIRS-based hyperscanning study. Human Brain Mapping, 38(2), 831–841.

3056 | ZHENG ET AL.

http://orcid.org/0000-0002-0065-6398
http://orcid.org/0000-0002-0040-0587


Pickering, M. J., & Garrod, S. (2007). Do people use language production

to make predictions during comprehension. Trends in Cognitive Scien-

ces, 11(3), 105–110.

Pobric, G., Lambon Ralph, M. A., & Zahn, R. (2016). Hemispheric speciali-

zation within the superior anterior temporal cortex for social and

nonsocial concepts. Journal of Cognitive Neuroscience, 28(3), 351–360.

Raichle, M. E. (2011). The restless brain. Brain Connectivity, 1(1), 3–12.

Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facil-

itation of intrinsic motivation, social development, and well-being.

American Psychologist, 55(1), 68.

Smith, S. M., Miller, K. L., Moeller, S., Xu, J., Auerbach, E. J., Woolrich,

M. W., . . . Ugurbil, K. (2012). Temporally-independent functional

modes of spontaneous brain activity. Proceedings of the National

Academy of Sciences of the United States of America, 109(8), 3131–
3136.

Stephens, G. J., Silbert, L. J., & Hasson, U. (2010). Speaker-listener neural

coupling underlies successful communication. Proceedings of the

National Academy of Sciences of the United States of America, 107(32),

14425–14430.

Takeuchi, N., Mori, T., Suzukamo, Y., & Izumi, S.-I. (2017). Integration

of teaching processes and learning assessment in the prefrontal

cortex during a video game teaching–learning task. Frontiers in Psy-

chology, 7,

Tallent-Runnels, M. K., Thomas, J. A., Lan, W. Y., Cooper, S., Ahern, T. C.,

Shaw, S. M., & Liu, X. (2006). Teaching courses online: A review of

the research. Review of Educational Research, 76(1), 93–135.

Tang, H., Mai, X., Wang, S., Zhu, C., Krueger, F., & Liu, C. (2016). Inter-

personal brain synchronization in the right temporo-parietal junction

during face-to-face economic exchange. Social Cognitive and Affective

Neuroscience, 11(1), 23–32.

Tong, Y., Lindsey, K. P., & Frederick, B. D. (2011). Partitioning of physio-

logical noise signals in the brain with concurrent near-infrared spec-

troscopy and fMRI. Journal of Cerebral Blood Flow & Metabolism, 31,

2352–2362.

Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analy-

sis. Bulletin of the American Meteorological Society, 79(1), 61–78.

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard,

O., Delcroix, N., . . . Joliot, M. (2002). Automated anatomical labeling

of activations in SPM using a macroscopic anatomical parcellation of

the MNI MRI single-subject brain. NeuroImage, 15(1), 273–289.

Vygotsky, L. S. (1978). Mind in society. Cambridge, MA: MIT Press.

Wetzel, J. N., Potter, W. J., & O’Toole, D. M. (1982). The influence of

learning and teaching styles on student-attitudes and achievement in

the introductory economics course - A case-study. Journal of Eco-

nomic Education, 13(1), 33–39.

Wu, S. (2013). The special teaching materials of quantity relations in the

2014 national civil service examinations, the administrative professional

ability test. China University of Politic Science and Law Press.

Zhang, M., Liu, T., Pelowski, M., Jia, H., & Yu, D. (2017a). Social risky

decision-making reveals gender differences in the TPJ: A hyperscan-

ning study using functional near-infrared spectroscopy. Brain and

Cognition, 119, 54–63.

Zhang, M., Liu, T., Pelowski, M., & Yu, D. (2017b). Gender difference in

spontaneous deception: A hyperscanning study using functional near-

infrared spectroscopy. Scientific Reports, 7, 7508.

Zhang, Y., Brooks, D. H., Franceschini, M. A., & Boas, D. A. (2005). Eigenvec-

tor-based spatial filtering for reduction of physiological interference in

diffuse optical imaging. Journal of Biomedical Optics, 10(1), 011014.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the sup-

porting information tab for this article.

How to cite this article: Zheng L, Chen C, Liu W, et al. Enhance-

ment of teaching outcome through neural prediction of the stu-

dents’ knowledge state. Hum Brain Mapp. 2018;39:3046–3057.

https://doi.org/10.1002/hbm.24059

ZHENG ET AL. | 3057

https://doi.org/10.1002/hbm.24059



