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We compute the twist-three fragmentation contribution to the transverse single spin asymmetry (SSA) in
light hadron production p↑p → hX and p↑A → hX including the gluon saturation effect in the unpolarized
nucleon/nucleus. Together with the results in our previous paper, this completes the full evaluation of the
SSA in this process in the “hybrid” formalism. We argue that the dependence of SSAs on the atomic mass
number in the forward region can elucidate the relative importance of the soft gluon pole contribution from
the twist-three quark-gluon-quark correlation in the polarized nucleon and the twist-three fragmentation
contribution from the final state hadron.

DOI: 10.1103/PhysRevD.95.014008

I. INTRODUCTION

Transverse single spin asymmetries (SSAs) in inclusive
hadron production in nucleon-nucleon scattering,
p↑p → hX, remain one of the long standing puzzles in
hadron physics. In recent years, the physicists at the
Relativistic Heavy Ion Collider (RHIC) have planned
and explored the SSAs in the forward hadron production
in nucleon-nucleus collisions, p↑A → hX [1,2]. This not
only provides additional information on the underlying
mechanism for the SSA phenomena but also help us
understand the small-x saturation of the gluon distributions
in large nuclei.
In a previous paper [3], we have computed the SSA of

light hadrons in proton-nucleus collisions p↑A → hX
including the small-x gluon saturation effect in the nucleus.
We adopted the so-called hybrid approach [4,5] where the
collinear twist-three Efremov-Teryaev-Qiu-Sterman
(ETQS) functions [6,7] are used on the polarized proton
side and the unintegrated (kT-dependent) gluon distribution
is used on the nucleus side. We find that leading terms in
the forward region come from the soft-gluon pole con-
tributions of the twist-three ETQS matrix elements in the
transversely polarized nucleon. In particular, the so-called
derivative term will dominate the SSA in the forward
region. From this, we concluded that the asymmetry AN
does not depend on the saturation scale of the nucleus. Of
course, for a complete evaluation in this hybrid approach,
we also have to take into account the twist-three fragmen-
tation function contributions (see, also, [8]). The goal of
this paper is to carry out this part of the calculation.
In the purely collinear framework, the twist-three frag-

mentation function contribution has been first studied in [9]
and completed in [10] (see a recent review [11]). The gauge

and Lorentz invariance of the result has been recently
established [12]. In the forward region of p↑A collisions,
the saturation effect in the nucleus becomes important. The
effect of saturation on the fragmentation contribution has
been so far considered only in the kT-factorization
approach [13] which involves the Collins function [14].
However, in the Sivers-type contribution, we have found
[3] that the kT-factorization approach [15] misses the
dominant derivative term. Whether this happens also in
the fragmentation contribution is phenomenologically
important, especially in view of the recent claim [16] that
the SSA in p↑p → hX is completely dominated by the
“genuine twist-three” fragmentation function, with both the
Sivers and Collins contributions playing only a minor role.
However, the assumption of a large genuine twist-three
fragmentation function made in [16] has not been tested yet
because there are no other available experimental data
sensitive to this function. In this paper, we show that the
dependence of SSA on the mass number of the nucleus, as
recently measured at RHIC [2], can be such a test.
In the hybrid formalism,1 the single transverse spin-

dependent cross section can be schematically written as

Eh
d3Δσðp↑A → hXÞ

d3 ~Ph

¼ ϵijSTiPhj

Z
xF

dz
z2

fDh=qðzÞGFðxp; xpÞ ⊗ Fðxg; PhT=zÞ

þ h1ðxpÞĤðzÞ ⊗ Fðxg; PhT=zÞg: ð1Þ

1The twist-three contribution from the unpolarized nucleon/
nucleus in the current kinematics is suppressed in the small-x
calculations and neglected in this paper.
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The first term is what we have calculated in Ref. [3], and
the second term is the object of this paper. In the above
equation, ST represents the traverse polarization vector of
the projectile, and PhT is the transverse momentum of the
final state hadron. Here, h1ðxpÞ is the collinear leading-
twist quark transversity distribution function, and DðzÞ is
the leading-twist fragmentation function, whereas
GFðxp; xpÞ and ĤðzÞ represent the twist-three ETQS
distribution from the polarized nucleon and the twist-three
fragmentation function, respectively. The small-x satura-
tion physics is encoded in the unintegrated gluon distri-
bution (or the dipole gluon distribution) Fðxg; kTÞ.
Although both of the contributions in (1) are classified
as twist-three in the collinear approach, the underlying
mechanisms are different. The twist-three terms associated
with the incoming polarized nucleon comes from the initial/
final state interaction effects which are necessary to
generate a phase from the pole contributions. On the other
hand, the twist-three fragmentation function contributions
do not need a phase from the scattering amplitudes as we
show in the following calculations. Because of this

difference, we expect that the two contributions depend
differently on the saturation scale (or the atomic mass
number).
The rest of the paper is organized as the following. In

Sec. II, we compute the twist-three fragmentation contri-
bution in the hybrid approach without including the
saturation effect in the target. We explicitly check that,
at large-PhT , our result agrees with the previous result
obtained in the collinear factorization framework [10]. We
then include the saturation effects and present the complete
formula in Sec. III. Finally in Sec. IV, we discuss the
phenomenological consequences of our result.

II. FRAGMENTATION CONTRIBUTION TO SSA

In this section, we compute the fragmentation contribu-
tion to SSA in the hybrid approach in the “dilute” limit, i.e.,
without including the saturation effect in the target. Our
starting point is Eq. (54) of Ref. [17] which was derived for
semi-inclusive DIS (SIDIS) ep↑ → ehX but is valid also
for p↑p → hX. The spin-dependent part of the cross
section is

Eh
dσfrag

d3 ~Ph

¼ 1

4sð2πÞ3
�Z

dz
z2

Tr½ΔðzÞSðzÞ� þ
Z

dz
z2

ImTr

�
Δα∂ðzÞ

∂SðKÞ
∂Kα

�
K¼Ph

z

−
Z

dz1dz2
z21z

2
2

P

�
1

1=z2 − 1=z1

�
ImTr½Δα

Fðz1; z2ÞðSLα ðz1; z2Þ þ SRα ðz1; z2ÞÞ�
�
; ð2Þ

where Pμ
h is the momentum of the measured hadron

species h whose mass is neglected P2
h ¼ 2Pþ

h P
−
h −

P2
hT ¼ M2

h ≈ 0. The momenta of the polarized and un-
polarized protons are denoted by pμ and qμ, respectively.
The center-of-mass energy is then s ≈ 2pþq−. Here, Δ’s
describe the fragmentation process into h, and S’s
represent the rest of the cross section. We are interested
in the forward region Pþ

h ≫ PhT ≫ P−
h and keep only the

leading contributions in PhT=P
þ
h . In this kinematics, S

and SL are depicted in the first and the last two diagrams
of Fig. 1, respectively. (SR is the mirror image of SL.) In
our approach, the transverse momentum of the final state
hadron PhT comes from the intrinsic transverse momen-
tum of the small-x gluon from the unpolarized target.
This is why we only consider 2 → 1 scattering instead of
2 → 2 scattering.
The twist-three fragmentation functions are contained in

Δ’s as

FIG. 1. Fragmentation contribution to single spin asymmetry in the hybrid approach. The left diagram represents the first two terms in
(2). The middle and the right diagrams represent the last term in (2).
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ΔðzÞ ¼ M
2z

σλαiγ5ϵλαwPhê1̄ðzÞ þ…; ð3Þ

Δα∂ ¼ M
2
γ5

Ph

z
γλϵ

λαwPh ~eðzÞ þ…; ð4Þ

Δα
Fðz1; z2Þ ¼

M
2
γ5

Ph

z2
γλϵ

λαwPhÊFðz1; z2Þ þ…; ð5Þ

where M is the proton mass. We use the conventions
Dμ ¼ ∂μ − igAμ, γ5 ¼ iγ0γ1γ2γ3, and ϵλαwPh ≡ ϵλαρσwρPhσ

with ϵ0123 ¼ þ1. The two-dimensional antisymmetric ten-
sor ϵij is defined as ϵ12 ¼ −ϵ21 ¼ 1 so that ϵþ−ij ¼ ϵij (we
use Latin letters i, j, l ¼ 1, 2 for transverse indices). Here,
wμ is a vector which satisfies the conditions Ph · w ¼ 1 and
w2 ¼ 0. Explicitly,

ðwþ; w−; wiÞ ¼ 1

2E2
h

ðP−
h ; P

þ
h ;−Pi

hÞ

≈
1

ðPþ
h Þ2

ðP−
h ; P

þ
h ;−Pi

hÞ: ð6Þ

The largest component is w− ≈ 1=Pþ
h . The three functions

in (3)–(5) are not totally independent. They satisfy the
relation

ê1̄ðzÞ
z

− Im~eðzÞ ¼
Z

dz0

z02
P

1

1=z0 − 1=z
ImÊFðz0; zÞ: ð7Þ

The relevant distribution function for the transversely
polarized proton is the transversity distribution h1ðxÞ,

hpjψψ̄ jpi ¼ 1

8
hψ̄iγ5σμνψiiγ5σμν þ…

¼ −
pþSTi
2

Z
dxh1ðxÞiγ5σ−i þ…; ð8Þ

where ~ST is the transverse spin vector normalized as
~S2T ¼ 1.

A. First term

Let us calculate the three terms in (2) one by one. The
integrand of the first term reads

Tr½ΔðzÞSðzÞ� ¼ −g2CF
MpþSTi

4z
ϵλαwPhê1̄ðzÞ

Z
dxh1ðxÞ

Z
d3kTr½iγ5σ−iγνσλαiγ5γμ�

×
hqjAμðkÞAνð−kÞjqi

N2
c − 1

ð2πÞ4δð4Þ
�
xpþ k −

Ph

z

�

¼ −ð2πÞ4g2MSTi
8Nc

ϵλαwPh
ê1̄ðzÞ
z

h1ðxÞTr½iγ5σ−iγνσλαiγ5γμ�hqjAμðkÞAνð−kÞjqi; ð9Þ

where CF ¼ N2
c−1
2Nc

and kμ ¼ ð0; k−; ~kTÞ. The momentum conserving delta function fixes the components of Pμ
h as

Pþ
h ¼ xzpþ ≡ xFpþ; P−

h ¼ zk−; ~PhT ¼ z~kT: ð10Þ

Spin-dependent cross sections are often measured at fixed xF. In the forward region in which we are interested, xF ≈ 1.
Working out the trace of gamma matrices, we get

ϵλαwPhTr½iγ5σ−iγνσλαiγ5γμ�AμðkÞAνð−kÞ
¼ −8ð−ϵα−wPhðAiAα þ AαAiÞ þ ϵλiwPhðA−Aλ þ AλA−Þ − ϵ−iwPhAμAμÞ

≈
−8
Pþ
h
ðϵljPhjðAiAl þ AlAiÞ þ ϵliðPhlð2A−A− þ AjAjÞ þ Pþ

h ðA−Al þ AlA−ÞÞÞ: ð11Þ

One might be puzzled by this complicated expression
which cannot be rewritten as a gauge invariant combination
of FμνðkÞ ¼ iðkμAν − kνAμÞ þOðgÞ. In fact, the other
terms in (2) also give similar, gauge variant terms, and
the identity (7) is needed to check whether the sum is gauge
invariant [12]. However, this is beyond the scope of this

work. A simple counting argument A− ∼ q− ∼ Pþ
h ≫ Ai ∼

PhT shows that the whole expression (11) is subleading by a
factor ðPhT=P

þ
h Þ2 compared to what we keep in the end,

and at this subleading level, diagrams other than those in
Fig. 1 come into play. We thus simply ignore (11) for the
present purpose.
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B. Second term

The second term in (2) is evaluated as

ImTr

�
Δα∂ðzÞ

∂SðKÞ
∂Kα

�
K¼Ph

z

¼ −g2ð2πÞ4MSTi
2Nc

ϵλαwPhIm~eðzÞ

×
∂

∂Kα

�
h1ðKþ=pþÞ 1

4
Tr

�
iγ5σ−iγνγ5

Ph

z
γλγ

μ

�
hAμð ~KÞAνð− ~KÞi

�
K¼Ph

z

; ð12Þ

where we introduced the notation ~Kμ ¼ ð0; K−; ~KTÞ. We use the trick

∂
∂Kα

�
h1ðKþ=pþÞTr

�
iγ5σ−iγνγ5

Ph

z
γλγ

μ

�
Aμð ~KÞAνð− ~KÞ

�
K¼Ph

z

¼ ∂
∂Kα ½h1ðKþ=pþÞTr½iγ5σ−iγνγ5Kγλγμ�Aμð ~KÞAνð− ~KÞ�K¼Ph

z

− h1ðxÞTr½iγ5σ−iγνγ5γαγλγμ�AμðkÞAνð−kÞ: ð13Þ

The second term on the right-hand side has exactly the same γ-matrix structure as in (9).2 It is thus subleading in energy and
can be dropped.3 As for the first term in (13), we find

1

4
Tr½iγ5σ−iγνγ5Kγλγ

μ�AμAν

¼ δiλðK · AA− þ A−K · A − K−AμAμÞ − δ−λ ðK · AAi þ AiK · A − KiAμAμÞ
þ KλðA−Ai − AiA−Þ þ AλðK−Ai − KiA−Þ þ ðK−Ai − KiA−ÞAλ: ð14Þ

The dominant term is ∼δiλKþA−A− which combines with other terms to form the gauge invariant operator4

F−μF−
μ ¼ K−ðK−AμAμ − ð ~K · AA− þ A− ~K · AÞÞ þ ~K2A−A− þOðgÞ
¼ K−ðK−AμAμ − ðK · AA− þ A−K · AÞÞ þ K2A−A− þOðgÞ: ð15Þ

To twist-two accuracy, we only keep this term and use

hF−iF−ji
K− ¼ KiKj

K2
T

Gðxg; KTÞ;
hF−μF−

μ i
K− ¼ −Gðxg; KTÞ; ðxg ¼ K−=q−Þ; ð16Þ

where G is the unintegrated gluon distribution of the unpolarized proton. The K-derivative can be decomposed as

ϵiþwPh
∂

∂Kþ þ ϵi−wPh
∂

∂K− þ ϵijwPh
∂

∂Kj ≈ ϵij
�
Phj

Pþ
h

� ∂
∂Kþ −

∂
∂K−

�
þ ∂
∂Kj

�
: ð17Þ

The Kþ-derivative can be safely neglected. However, the K−-derivative should be kept since 1=K− ∼ z=P−
h is large. This

can be combined with the KT-derivative as

�
−
Phj

Pþ
h

∂
∂K− þ ∂

∂Kj

�
G

�
xg ¼

K−

q−
; KT

�����
K¼Ph

z

¼ d

dðPj
h=zÞ

G

�
xg ¼

P2
hT

xz2s
;
PhT

z

�
: ð18Þ

2One can replace γαγλ →
1
2
½γα; γλ� due to the presence of ϵλαwPh .

3Incidentally, if we add this term to (9), we get the combination ê1̄
z − Im~eðzÞ which appears in the identity (7).

4Note that terms proportional to K2 and Kλ can be omitted. If the Kα-derivative in (13) acts on Kλ, it gives gαλ and vanishes when
contracted with ϵλαwPh . If the derivative does not act on Kλ, then after setting Kλ ¼ Phλ=z we get zero Phλϵ

λαwPh ¼ 0. Similarly, if the
derivative acts on K2, it gives Kα and vanishes after replacing Kα → Phα=z. If the derivative does not act on K2, then again it vanishes
because K2 → P2

h=z
2 ¼ 0.
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We thus arrive at

ImTr

�
Δα∂ðzÞ

∂SðKÞ
∂Kα

�
K¼Ph

z

¼ −
g2M
2Nc

ð2πÞ4h1ðxÞIm~eðzÞSTiϵij
d

dðPj
h=zÞ

G

�
xg ¼

P2
hT

xz2s
;
PhT

z

�
: ð19Þ

C. Third term

The last term in (2) is the “genuine twist-three” contribution

ImTr½Δα
Fðz1; z2ÞðSLα ðz1; z2Þ þ SRα ðz1; z2ÞÞ�

¼ g2M
ð2πÞ4
4z2

h1ðxÞSTiϵλαwPh ImÊFðz1; z2Þ

×

�
Nc

2

Tr½iγ5σ−iγνγ5Phγλγ
β�

ðkþ Phð1=z1 − 1=z2ÞÞ2
�
δμα

�
Ph

z1
−
Ph

z2
− k

�
β

− gαβ

�
kþ 2

Ph

z1
− 2

Ph

z2

�
μ

þ δμβ

�
2kþ Ph

z1
−
Ph

z2

�
α

�

−
1

2Nc
Tr

�
iγ5σ−iγνγ5Phγλγ

μ xpþ Phð1=z1 − 1=z2Þ
ðxpþ Phð1=z1 − 1=z2ÞÞ2

γα

�
þ ðμ ↔ νÞ

� hAμðkÞAνð−kÞi
N2

c − 1
: ð20Þ

The two terms correspond to the middle and right diagrams of Fig. 1 and have different dependence on Nc. Let us first look
at the Oð1=NcÞ contribution. The quark propagator contains two terms, xp and Phð1=z1 − 1=z2Þ. The former gives

xpþϵλαwPhTr½iγ5σ−iγνγ5Phγλγ
μγ−γα þ ðμ ↔ νÞ�hAμAνi

¼ 16Pþ
h

z2
ϵλ−wPhhAλðP−

hA
i − Pi

hA
−Þ þ ðP−

hA
i − Pi

hA
−ÞAλ þ δiλðA−Ph · Aþ Ph · AA− − P−

hA
μAμÞi: ð21Þ

Using relations such as

A−Ph · Aþ Ph · AA− − P−
hA

μAμ ¼
z2
k−

ðk2TA−A− þ k−kiðA−Ai þ AiA−Þ − ðk−Þ2AiAiÞ

¼ −
z2
k−

F−μF−
μ ð22Þ

and (16), we can rewrite (21) in the form

16
Pþ
h

k−
ϵλ−wPhhF−

λ F
−i þ F−iF−

λ − δiλF
−μF−

μ i ≈ 16Pþ
h ϵ

j−þlw−Phl

�
2kjki

k2T
þ δij

�
Gðxg; kTÞ

¼ −16ϵijPhjGðxg; kTÞ: ð23Þ

The other term Phð1=z1 − 1=z2Þ can be evaluated as

ϵλαwPhTr½iγ5σ−iγνγ5Phγλγ
μPhγα� ¼ −Pμ

hϵ
λαwPhTr½γ−γiγνðγλPhγα − γαPhγλÞ�

¼ −2iPμ
hP

ρ
hϵ

λαwPhϵλαρσTr½γ−γiγνγσγ5�
¼ −16Pμ

hPhσϵ
−iνσ: ð24Þ

Multiplying by AμAν and adding the μ ↔ ν terms, we get

− 16ϵijðPhjðPh · AA− þ A−Ph · AÞ − P−
h ðPh · AAj þ AjPh · AÞÞ

¼ −8ϵijz22

�
−2

kj
k−

F−μF−
μ þ F−μFjμ þ FjμF−μ − F−

j ∂μAμ − ∂μAμF−
j

�
: ð25Þ

The first term gives the gluon distribution G, while the other terms are subleading. The factor in the denominator is
simplified as
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�
xpþ

�
1

z1
−

1

z2

�
Ph

�
2

¼
~P2
hT

z2

�
1

z1
−

1

z2

�
: ð26Þ

Next we compute the OðNcÞ contribution. It is easy to see that the terms proportional to δμα in the three-gluon vertex do

not contribute. (Note that Kγ− ¼ Ph
z2
γ−.) The terms proportional to gαβ can be evaluated similarly to (24)

8Phσ

�
ϵ−iνσ

�
kμ þ 2Pμ

h

�
1

z1
−

1

z2

��
þ ϵ−iμσ

�
kν þ 2Pν

h

�
1

z1
−

1

z2

���
AμAν

¼ 16z22

�
1

z1
−

1

z2

�
ϵij

k−

�
−kjF−μF−

μ þ k−

2
ðFjμF−μ þ F−μFjμÞ

�
− 8

z22
z1
ϵijð∂μAμF−

j þ F−
j ∂μ · AμÞ: ð27Þ

Among the terms proportional to δμβ, only the term 2kα gives a nonvanishing contribution. Using kα ¼ðPhα−δ−αP
þ
h Þ=z2, we

get

−
16Pþ

h

z2
½ϵj−wPhðP−

h ðAjAi þ AiAjÞ − Pi
hðAjA− þ A−AjÞÞ þ ϵi−wPhðPh · AA− þ A−Ph · A − P−

hA
μAμÞ�

≈ −
16

z2

�
1

2
ϵjlðFjlF−i þ F−iFjlÞ þ ϵijPhj

z2
k−

F−μF−
μ

�
: ð28Þ

The factor in the denominator is

�
kþ

�
1

z1
−

1

z2

�
Ph

�
2

¼ −
~P2
hT

z1z2
: ð29Þ

All in all, (20) becomes

ImTr½Δi
Fðz1; z2ÞðSLα ðz1; z2Þ þ SRα ðz1; z2ÞÞ� ¼ −g2MN

ð2πÞ4
4z2

h1ðxÞSTi
ImÊFðz1; z2Þ

Nc

×

�
8z22
P2
T
ϵijPhj

Gðxg; kTÞ
N2

c − 1

�
N2

c þ
1

z1ð 1z2 − 1
z1
Þ
�
−
4z32
P2
T
ϵijh∂ · AF−

j þ F−
j ∂ · Ai

�
;

ð30Þ

where we omitted higher twist terms. We kept the gauge-dependent terms just to note that the prefactor 1=ðN2
c − 1Þ has been

canceled so that they have the sameNc dependence as the other gauge dependent terms in (9). Below we omit them because
they are also subleading.

D. Comparison to the fully collinear result

Summing (19) and (30), we finally obtain, relabeling z2 → z,

Eh
dσfrag

d3Ph
¼ Mαsπ

2

Ncs
STiϵij

Z
dz
z2

h1ðxÞ
�
−Im~eðzÞ d

dðPj
h=zÞ

G

�
xg ¼

P2
hT

xz2s
;
PhT

z

�

þ 4Phj

Z
dz1
z21

z
1
z −

1
z1

ImÊFðz1; zÞ
N2

c − 1

Gðxg; PhT=zÞ
P2
hT

�
N2

c þ
1

z1ð1z − 1
z1
Þ
��

: ð31Þ

Let us check if (31) is consistent with the result previously obtained in the collinear twist-three framework relevant in the
high-PhT region [10]. At large PhT ≫ ΛQCD and small-x, we can use (cf. [18])

Gðxg; PhT=zÞ ≈
αs
2π2

z2

P2
hT

Z
dx0

x0
Gðx0ÞPggðxg=x0Þ ≈

Ncαs
π2

xz4s
P4
hT

Z
dx0Gðx0Þ; ð32Þ

where GðxÞ is the usual collinear gluon distribution and Pgg is the splitting function. Equation (31) reduces to
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Eh
dσfrag

d3Ph
¼ 4Mα2s

Z
dz
z3

h1ðxÞϵijSTiPhj
xz6

ðP2
hTÞ3

Z
dx0Gðx0Þ

×

�
−Im~eðzÞ þ

Z
dz1
z21

1
1
z −

1
z1

ImÊFðz1; zÞ
N2

c − 1

�
N2

c þ
1

z1ð1z − 1
z1
Þ
��

: ð33Þ

This should be compared with Eq. (15) of [10] which uses different notations for the fragmentation functions,

Mê1̄ ¼ −MhH; MNIm~e ¼ 2MhĤ; MImÊFðz1; zÞ ¼ 2Mhz2Ĥ
I
FUðz; z1Þ: ð34Þ

Taking the limit ŝ ≫ jt̂j in the quark-gluon channel (ŝ ¼ xx0s, t̂ ¼ −2 x
z p

þP−
h ¼ −P2

hT=z
2 are the partonic Mandelstam

variables), we find

Eh
dσfrag

d3 ~Ph

¼ −
2α2sMh

s
ϵijSTiPhj

Z
dz
z3

Z
dx0

x0
1

xŝ2
h1ðxÞGðx0Þ

×

�
HðzÞ
z

þ 2z
N2

c − 1

Z
dz1
z21

ĤI
FUðz; z1Þ
ð1z − 1

z1
Þ2

�
2xŝ3

t̂3

¼ 4α2sMhϵ
ijSTiPhj

Z
dz
z3

Z
dx0h1ðxÞGðx0Þ

×

�
−2ĤðzÞ þ 2z2

N2
c − 1

Z
dz1
z21

ĤI
FUðz; z1Þ
1
z −

1
z1

�
N2

c þ
1

z1

1
1
z −

1
z1

��
xz6

ðP2
hTÞ3

; ð35Þ

where we used (7). This agrees perfectly with (33).

III. INCLUDING SATURATION EFFECTS

We now include the gluon saturation effects. We closely follow the strategy used in [3]. The diagrams to be computed are
shown in Fig. 2. The zigzag lines represent the Wilson line U arising from the eikonal exponentiation

igγμAa
μðkÞta → γþ

Z
d2~xT
ð2πÞ3 e

i~xT ·~kT ðUð~xTÞ − 1Þ; Uð~xTÞ ¼ exp

�
ig
Z

dxþA−
a ðxþ; ~xTÞta

�
: ð36Þ

In the high energy limit, the unpolarized target can be viewed as a highly Lorentz contracted shockwave. The multiple
scatterings (the zigzag lines) between the polarized proton and the target can only occur either before or after the collinear
gluon splitting. This is why we only need to consider the two diagrams as shown in Fig. 2.

FIG. 2. Fragmentation contribution with saturation effects. The zigzag lines represent the multiple insertion of the A− field in the
eikonal approximation.

SINGLE SPIN ASYMMETRY …. II. FRAGMENTATION … PHYSICAL REVIEW D 95, 014008 (2017)

014008-7



The unintegrated gluon distribution Gðxg; kTÞ is converted to the correlation function of Wilson lines

xgGðxg; kTÞ
k2T

→
Nc

2π2αs

Z
d2xTd2yT
ð2πÞ2 ei~kT ·ð~xT−~yT Þ

hqj 1
Nc
Tr½U†ð~yTÞUð~xTÞ�jqi

hqjqi
≡ Nc

2π2αs
Fðxg; kTÞ; ð37Þ

where hqjqi ¼ 2q−ð2πÞ3δð3Þð0Þ ¼ 2q−
R
dxþd2~xT . Evaluated at xg ¼ P2

hT
xz2s, (37) becomes

G

�
xg;

PhT

z

�
→

xsNc

2π2αs
F

�
xg;

PhT

z

�
: ð38Þ

In the derivative term of (31), which now comes from the left diagram of Fig. 2, it is enough to make this replacement. The
genuine twist-three terms are more complicated because they involve an extra collinear gluon which can be dressed by the
Wilson line as shown in the right diagram of Fig. 2. Still, the topology of the diagram is very similar to the one considered in
[3]. We find that their color structures are exactly the same and read

Z
d2~xTd2~yTd2~zT

ð2πÞ6 ð2πÞ2δð~kT þ ~lT − ~PhT=z2Þei
~kT ·~zþi~lT ·~xT−i

~PhT
z2

·~y

×

	
Tr½U†ð~yÞUð~zÞ�Tr½U†ð~zÞUð~xÞ� − 1

Nc
Tr½U†ð~yÞUð~xÞ�




≈ hqjqiδð2Þð~kT þ ~lT − ~PhT=z2Þ
�

N2
cR

d2~x
Fðxg;lTÞ − δð2Þð~kTÞ

�
Fðxg; PhT=z2Þ; ð39Þ

where we used the large-Nc approximation in the nonlinear term

hqjTr½U†ð~yÞUð~zÞ�Tr½U†ð~zÞUð~xÞ�jqi ≈ hqjTr½U†ð~yÞUð~zÞ�jqihqjTr½U†ð~zÞUð~xÞ�jqi
hqjqi : ð40Þ

We now compute the hard part. There are two propagator denominatorsZ
dl− 1

ððPh
z1
− lÞ2 þ iϵÞððxpþ l − Ph

z1
Þ2 þ iϵÞ : ð41Þ

The two poles in l− are located in the opposite sides of the real axis because ÊFðz1; z2Þ has a support at z1 > z2 [17]. We
pick up the pole at ðPh

z1
− lÞ2 ¼ 0 at which

1

ðxpþ l − Ph
z1
Þ2 ¼ −

z2

z1ð~PhT
z1

− ~lTÞ2
: ð42Þ

As for the numerator, we only need to calculate the component μ ¼ ν ¼ þ,

ϵλαwPhTr

�
iγ5σ−iγþγ5Phγλγ

þ
�
Ph

z1
− l

�
γβ
��

−2gαβ
�
1

z1
−

1

z2

�
Pþ
h þ 2δþβ kα

�
≈
32ðPþ

h Þ2
z1

ϵij
�
Phj

z1
− lj

�
:

We thus arrive at the product

Z
d2~kTd2~lT

Phj

z1
− lj

ð~PhT
z1

− ~lTÞ2
δð2Þ

�
~kT þ ~lT −

~PhT

z2

��
N2

cR
d2~xT

Fðxg;lTÞ − δð2Þð~kTÞ
�
Fðxg; PhT=z2Þ

¼
Z

d2~lT

Phj

z1
− lj

ð~PhT
z1

− ~lTÞ2
�

N2
cR

d2~xT
Fðxg;lTÞ − δð2Þ

�
~lT −

~PhT

z2

��
Fðxg; PhT=z2Þ: ð43Þ

In the dilute limit, Fðxg;lTÞ → δð2Þð~lTÞ
R
d2~xT and (43) correctly reduces to the combination in (33)
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z1
Phj

~P2
hT

�
N2

c þ
1

z1ð 1z2 − 1
z1
Þ
�
Fðxg; PhT=z2Þ: ð44Þ

In the general case, we can perform the angular integral

Z
d2~lT

Phj

z1
− lj

ð~PhT
z1

− ~lTÞ2
FðlTÞ ¼ 2πz1

Phj

P2
hT

Z
PhT=z1

0

lTdlTFðlTÞ ð45Þ

and obtain

Eh
dσfrag

d3 ~Ph

¼ M
2
STiϵij

Z
dz
z2

xh1ðxÞ
�
−Im~eðzÞ d

dPj
h=z

F

�
xg;

PhT

z

�

þ 4
Phj

P2
hT

Z
∞

z

dz1
z21

z
1
z −

1
z1

ImÊFðz1; zÞ
N2

c − 1

�
2πN2

cR
d2~xT

Z
PhT=z1

0

lTdlTFðxg;lTÞ þ
1

z1ð1z − 1
z1
Þ
�
Fðxg; PhT=zÞ

�
: ð46Þ

This is the main result of this paper. If we assume the form

Fðxg;lTÞ ¼
R
d2~xT
πQ2

s
e−l

2
T=Q

2
s ; ð47Þ

which is a good approximation when l2
T ≤ Q2

s , we get

2πN2
cR

d2~xT

Z
PhT=z1

0

lTdlTFðlTÞ ¼ N2
cð1 − e

−
P2
hT

z2
1
Q2
s Þ: ð48Þ

Thus the effect of saturation is to reduce the OðN2
cÞ

contribution for PhT < z1Qs.

IV. DISCUSSION

The total spin-dependent cross section in the saturation
regime is the sum of (46) and the soft gluon pole
contribution calculated in [3],

Eh
dσSGP

d3 ~Ph

¼ −
πMxF

2ðN2
c − 1Þ ϵ

ijSTi

Z
1

xF

dz
z3

DðzÞ
�
−

1

ðPhT=zÞ2
∂

∂Pj
h=z

�
P2
hT

z2
Fðxg; PhT=zÞ

�
GFðx; xÞ

þ 2Phj=z

ðPhT=zÞ2
Fðxg; PhT=zÞx

d
dx

GFðx; xÞ
�
; ð49Þ

where GFðx; xÞ is the Qiu-Sterman function [7]. (As shown
in [3], the contribution from the soft fermionic pole
vanishes in the saturation region.) Note that in (49) the
Pj
h-derivative acts on P2

hT times F, not F itself as in (46).
Let us discuss the phenomenological implications of our

result. Consider the dependence of the asymmetry AN on
the atomic mass number A. In the kT-factorization
approach, one only has the Collins-like term proportional
to Im~e ∼ Ĥ in (46). Assuming the form (47), one gets

∂
∂Pj

h

F ∼
Pj
h

Q2
s
F; ð50Þ

at low momentum PhT < Qs. Since Q2
s ∝ A1=3, one finds

that AN ∝ A−1=3, namely, the asymmetry is suppressed in
pA collisions. This is essentially the result of [13]. Turning
to the other terms in (46) proportional to ImÊF, we see that
the OðN2

cÞ term scales as

Phj

P2
hT

ð1 − e
−

P2
hT

z2
1
Q2
s Þ ∼ Phj

Q2
s

ð51Þ

for ΛQCD ≪ PhT ≪ Qs. Therefore, this term also leads to
the behavior AN ∼ A−1=3. On the other hand, the OðN0

cÞ
term has a different PhT dependence ∼Phj=P2

hT which
implies AN ∼ A0. However, a recent study [16] suggests
that this term is numerically small compared to the
other terms in (46). We thus conclude that AN from
the twist-three fragmentation functions (46) scales as
AN ∼ A−1=3 in the forward region at low momentum
ΛQCD ≪ PhT ≪ Qs. This is in contrast to the observation
in [3] that AN from the ETQS function (49) is indepen-
dent of A. Indeed, the dominant term in the forward
region is expected to be the derivative term x d

dx GFðx; xÞ.
Since its coefficient is proportional to Phj=P2

hT , we
get AN ∼ A0.
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Experimentally, the preliminary STAR data [2] show that
AN is almost independent of A at least up to xF ¼ 0.7. This
favors the interpretation that SSA is dominated by the
derivative term in (49). However, such an interpretation is
inconsistent with the recent fit to the p↑p → hX data in
[16]. There it was concluded that neither the Sivers nor
Collins contribution extracted from the SIDIS data is
sufficient to explain the observed asymmetry. To resolve
this problem, the authors assumed that the genuine twist-
three function ImÊF ∼ ĤI

FU, not previously constrained by
any data, is large. In particular, the term proportional to N2

c
in (46) was found to be the dominant contribution. Yet, our
result (48) shows that this term is most strongly affected by
the saturation effect and, as we have just argued, gives rise

to the scaling AN ∼ A−1=3. We thus think more work and
more data are needed to finally pin down the origin of SSA
in QCD.
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