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”f COMPUTER SYSTEM CROSS-FERTILIZATION: MAKING YOUR TI 980
' ' PLAY YOUR TMS 9900* :

“John D. Meng
- Lawrence. Berkeley Laboratory
,_‘Un1vers1ty of California
Berkeley, California 94720

- ABSTRACT

theingffaced with the considerable problem of wanting to use TMS 9900
éVi¢es in several small control and data acquisition applications, but
not wanting to bﬁy for a development system to do it, we developed
:several s1mp1e effective techn1ques for doing TMS 9900 programm1ng and
~debqu1ng on our TI 980 system. The 980 assembler. Tends 1tse1f eas11y to
the redefinition of operation codes- requ1red to assemb]e programs for the
9900 Also, a simple 1nterconnect1on between the 980 and the 9900
a1Tows us to operate the 9900 and to ‘monitor the operation on the 980.
Fina11y, we have developed special operatidn codes within the 980 assem-
. bler which allow us to program hardware'contro] on the'9900_system via a
~ macro-language tailored to a particular 9900 hardware configuration.

- INTRODUCTION

Back in the early days of the TMS 9900 (the spring of 1976 when the
price was $99.32 ), it became obvious that this particular dévice,was-
going to become very useful to us. We deal in one-of-a-kind app1ica-
fions,.many requirihg fairly high rates of transfer of 16-bit data. For
example, we designed and built a special-purpose disc controller for our
TI 980 system. The TMS 9900 appeared on the scene just in time to do the
job for us, and is still performing admirably. In another application,
we needed a preprocessor for data from an array of sodiuh iodide crystals
in a series of ﬁomographic experiments with heavy ions. Agdﬁh, the TMS
9900 had just appeared and is today_preprocessing‘data to be shipped to a
16-bit minicomputer system' Operating speed, the on-chip multiply, the
16- bit word 1enqth and. the CRU input- output made the device pecu11ar1y
~useful to us.

*This work was sunported by the D1v1s1on of Physical Research of the
'Department of Enerqy under Contract No. W-7405-ENG-48.
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However, several age-old problems existed back in 1976. There were
no development systems available for the TMS 9900 and even if there were,
our budget was not ready to accept what would have been a relatively
expensive item for developing a system around an as-yet untried product.
Als , although assembly language is fine for some simple jobs {and
reac red for some fast iohs), it can be a very trying and expensive diet
if toxen tno reqularly.

G tting started, we attacked these various problems in good engineer-
ing f. hion; one at a time, and using our available resources, mainly a
TI 680 A system which we inherited from a defunct series of experiments.
OQur initial thought was to develop a simple cross-assembier so we could
at leas: use the editing capabilities of the 980. From the depths of
despair ar thinking about this idea, however, came what proved proved
to be an spiration. The 980 assembler allows the definition of new
op~codes {JPD, Operation Define) using existing instructiqn'formats. It
also allows the user to define fields for new instructioms (FRM, Format a
New Instruction). Using these two features allowed us.to produce an
assembler for the TMS 9900 which executed on our TI 9B0-A system, the
entire project [(after the initial inspiration) regliring less than an
hour to implement. The TMS 9900 assembler,incliding comments, consists
of exactly 130 lines of code. .

0f course, there are some small irreconcilable differences between
the G480 and the 9900, but like the Wright Brothers we were off the ground
at Tlast.

Certain 9900 instructions correspond in form with 980 instructions.
{See Figure 1) These, of course, fit directly into the the 980 assembler
{with an OPD directive for each.) These are 9900 faorma*s 2, A, 7, and 8
which corresrond in form to 980 formats, respectively, 1, 3, 5, and 6 as
illustrated in Figure 1. The remaining 9900 instructions are impliemented
in the 980 assembler via the FRM directive. One directive is used per
class of instruction, fol wed by EOU (equivalent) statements to define
the appropriate 9300 mnemonics. Figure 2 is a listing of "SAL 99003."
This 130-Tine hblock must preceed each assembly. Notice that a JMP
instruction goes in as:

JMP ARG
whereas a MOV instruction becomes:
ART mMov,D,0,1,13.
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ADD becomes:
ART A,X,0,X,0
DATA SOURCE,DESTINATION

The system is not ideal. Routines written this way cannot be run
verbatim into any assembler existing on any 9900-based system. Also,
since the 980 assembler only recognizes 8 registers (but fortunately will
accept 16-register codes), we get meaningless error flags for some 9900
format 6 instructions. However, as a group which never had the opportu-
nity to become accustomed to 9900-based assembly language, we quickly
became fluent in our own version.

A fundamental difference between the 9900 and the 980 is memory
addressing. The 9900 uses byte addressing, except for JMP instructions,
JMP instructions use word-relative addressing, making them compatible
with 6380 field mnemonics. For example, 9900 Format 1 instructions (add,

subtract, move, compare, and, or) require:
ARY FRM 4,2,4,2,4,

the first field corresponding to an operation code and the subsequent
fields setting up addressing. Next, to allow mnemonic references to the
five fields, the following equivalences are defined {using MOV as an

example):

MoV EqQu >C

D EQU 0
1 EQU 1
X EQU 2
XINC EQU 3

The D,1,X and XINC equivalences define mnemonics for use in the two
2-bit fields (fields 2 and 4} which specify addressing type. D is for
register direct, I for indirect, X for indexed and XINC for indirect/auto
incrementing. A move instruction which is designed to move a word of data
into register 0 {rom a location pointed to by register 2, for example, is

mnemonically written as:

AR1 Mov,D,0,1,2.
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To move a word of data from some arbitrary memory location:

ART Mov,0,0,X,0
DATA SOURCE+SOURCE

SOURCE DATA VALUE

Where SOURCE is a pointer to the data word containing VALUE. In 980
language, memory addresses are assumed to be 16-bit word addresses. In
9900 language, memory is addressed by bytes. Consequently, an address
which the 980 assembler defines as a memory address must be doubled to
produce tne correct 9900 memory address. This is the reason for repre-
senting the location of SOQURCE in the above statement as SOURCE+SQURCE.
The statement source*2 could he used if the result of the multipication
is less than 32,768 (most significant bit reset). Utherwise, the
hardware multiply instruction used by the 980 assembler may reset this
bit, nroducing an incorrect value (980 hardware assumes the most
significant bit of each half of a multiply result to be a sign bit.} Qur
cne-hour assembler is displayed in Figure 2. Since we have never had the
legitimate 9900 assemhler to learn on, the peculiarities of our own
version have become conventicns to us, no longer seeming particularly

clumsy or illogical,
CARRYING ON

Now we were assembling proarams for our embryoric systems. However,
as anybody wno has tried it knows, debugging computer programs with just
an oscilloscope and selected test points (without the benefit of a
control panel) is, at best, tedious.

One possible solution to this dilemma would have been to huild a
control panel complete with Tights, switches and debugging features. Our
solution was to connect a 9900 chip to our 980 via a standard 16-in/16-out
data module. This connection allowed us to program the 980 to use a
reserved block of its memory as the memory space of the 9900. Engugh
logic was added to the connection to allow the 980 to micro-step the
9900, to generate 9900 interrupts and to implement the CRU channel (see

Figure 3).
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Next we wrote a 980 program to drive the 9900, allowing the 980 to
intervene in selected memory accesses. For example, the 980 can record
and display every memory access. Or it can select only Instruction
Acquisition {IAQ) accesses to record and display. The 980 can also
display only-write or only-read accesses; or accesses only to selected
memory locations, or only to selected IAQ Tocations. The 980 can set
breakpoints at arbitary points and then operate the 9900 chip until it
reaches a breakpoint.

Now we could write a program and run through its execution in enough
detail to be sure it would not suffer software hangups. Of course, the
9900 was not being operated at top speed, and many 9900 input/output
operations were not practical to emulate with this scheme. However, our

economy bootstrap routine was running.

LANGAUAGE DEVELOPMENTS

As mentioned earlier, we deal in one-of-a kind hardware projects.
Our latest has been an X-ray fluorescence trace element analysis system
which counts secondary X-radiation from a series of samples mounted in
carriers and moved through the counting station hy a mechanical transport
mechanism, The 9900 subsvstem in this is responsible for monitoring and
moving the mechanical pieces as well as for reading and recording the raw
data in a large attached paged memory. The heavy analysis for the system
is done on an attached desk-top programmahie calculator. It is desirable
for us to produce a system which is easy to change and for which simple
changes do not require delving into the details of an assembly-language
prcgram. Consequently, we have done our 9900 assembly language program-
ming in smali packets which do¢ specific jobs for specific hardware. Each
small patket is affiliated with a driver routine which simultaneously
services several of the packets. By passing appropriate arguments to
this driver routine, the appropriate packet or sequence of packets is
called to perform the necessary job.

In order to simply and efficiently make these routines accessable to
a user in a flexible way, we have utilized the unique context-switching
capability of the 9900-based subsystem. The 9900 executes a short loop,
which controls a pseudo program-counter stepping through a list of
pseudo-instructions. The pseudo-instructions form the body of a language
tailor-made to operate the attached hardware.
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Fach pseudo-instruction is defined by a workspace pointer/program
counter pair which form the calling parameters for a 9900 BLWP instruc-
tion (Fiqure 4). The op-code for the pseudo-instruction is defined as
the pointer to the appropriate workspace pointer/program counter parame-
ter pair. To execute 2 program in pseudo-lanquage requires the 9900 loop:

START LI 0,PROGM POINTER TO FIRST STEP

(PSEUDO-PC)
RUN MoV 1,0,0,2 OPCODE IS PARAMETER POINTER
JEN START ZERO OP CODE MEANS RESTART
INT 0,0 STEP PSEUDO PC
BLWP I,2 EXECUTE THE PSEUDO- INSTRUCTION
P RUN LOOP

Each instruction execution is a context switch. A user program example

would be:

PROGM @SCAL RESET RESET SCALER
BATIMR RESET RESET TIMER
BATIMR START START TIMER
®ADC ON TURN ON ADC
FIN END. RESTART.

The operations {such as SCAL, TIMR) are defined in 980 assembly language
directives, and the ® preceeding the mnemonic (@SCAL, BTIMR} forces the
080 arsemhler to reserve an extra instruction word. Location START in
the execution loop resets the pseudo program-counter (register 0) to
point to the first statement of the user program (PRIGM). Op code 0 is
the FIN statement which signals the end of the user program (and forces a
restart). Next, the pseudo program-ccunter is stepped to point to the
next location in the user program. This is the location of the parameter
RESET. The SCAL routine will pick up this parameter and use it to direct
resetting the scaler. The SCAL routine steps the pseudo program-counter
after getting the parameter (INCT I,13), thus preparing for an exit via
RTWP after its job is finished.
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EPILOG

What we have described is not a tutorial on what to do. Nearly
everything we have done has been superceded in economic and efficient
fashion by material now available from Texas Instruments. We still use
our cross assembler simply because we have it and we are very familiar
with it., However, TIBUG achieves much of what we were attempting with
our cross-connection between the 980 and a 9900 chip, and the recent
introduction of POWER BASIC supercedes our own pseudo-language develop-
ments.

What we have described is, first of all, histery. It is a story of
challenges successfully met when a new and apparently useful device
appear °d without much manufacturer support. It is also a story of how to
Tearn in great depth ahout a new device. Finally it is a story about the
immeasurabie value of ingenuity in the face of crucial challenges coupled

with a perenial budget crunch,
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FORMAT :

2 (JUMP)

6 (PROGRAM)

7 (COWTROL)

< (MMEDIATE)

Fig. 1:
redefinitions.

by the above field definitions.

8
OP CODE DISPLACEMENT
10 12
0P CODE L
1
OP CODE UNUSED
1112
OF CODE w
TMS 2900

FORMAT :

1 (REG-MEM)

3 (REG-REG)

5 (STATUS SKIP)

6 (SENSE SWITCH)

0
0P CODE DISPLACEMENT
0 9 12
0P CODE SR | DR
0
OP CODE
0 12
0P CODE SWITCH
980

XBL 791-7833

The correspondence between 9900 and Y8J instruction format, allowing some simple op-code
The 980 OPD directive defines a 16-bit op code independent of the >ize determined

(8)
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0001 URL
0002 o1 SAL990
0003 «
0004 HED S$AL9900 3
0005 HED DEFINE THS9900 FORMAT 1 INSTRUCTIONS C(ARITHMETIC)
000¢ DEF 8FB0T,BFER
0007 »
0008 ARI FRY 4.2:,4,2,4
0009 »
a010 D EQU 0
0011 1} EQU 1
0012 X EQU 2
0013 XINC EQU 3 TD/TS OPTIONS
0014 =
001S A EQU R ADD
0016 4B EQU 8 ADD BYTES
0017 € [X]1] 78 COMPARE
o018 CB EQU >9 COWPARE BYTES
5019 MOV EQU > HOYE
D020 nove EQU 3D MOYE BYTES
0021 § EQU y6 SUBTRACT
0022 SB EQu »7 SUBTRACT BYTES
0pa3 s2¢ EQU 4 AND
0024 S2C8B EQY 5 AND BYTES
0025 S0C EQU YE OR
102¢ SOCB EQU A3 OR BYTES
0ge?
0028 =
7029 HED DEFINE FORMAT 2 INSTRUCTIDNS (JMP)
0030 =
0031 JEGQ o0PD 213001 JHP EQUAL TO
0032 JGT oPD »1500, 1 JHP GREATER THAN
0033 JH oPpD »1800. 1 JHP HIGH
0034 JHE oed 214001 JHP HIGH OR EQUAL
0035 JL 0FD 1400, 1 JHP LOW
0036 JLE OPD »y1200.1 JMP LOW OR EQUAL
0037 JLT oPD 211001 JHP LESS THAH
0038 JHP oPD 21000, 1 JUKp
0039 JHC oPD 31700, 1 JMP HO CARRY
0040 ONE oPD >1600,1 JHP NOT EQUAL
0041 JND OPD 31900, 1 JHP HO OVERFLOW
0042 s0C oPD »1800. 1 JHP ON CARRY
3043 JOP oPD »1C00.1 JHP 00D PARITY
0044 =
0045 BIT FRH 8.8
0045 =
0047 TB EQU MF
0048 SBO EQU 10D
0049 SB2 EQU Y1E
0050 =
3051
3052 HED FORMAT 3,9,4 INSTRUCTIONS (LOG.. MPY/DIV., X0P. LR
053 =
0054 EXT FRNM 6.4,2,4
0055 =»
2056 4P EQU 3
0057 DIV EQU F
0058 cac EQU 8 COMPRRE OMES CORRESPONDING
0059 czC EQU 9 COMPARE ZEROS CORRESPONDING
:IJ 0060 LDCR EQU e LOAD CRU RFG
| J061 SYCR EQU > STORE CRU KREG
0062 XOP EQU 8 EXTENDED OPERATION
03:3 KOk EQU YA EXCLUSIVE OR
1064 » -

Fig. 2: A listing of SAL 9900.3 - TMS 9900 assembly language defined in
TI 980 terms. Formats 2,6,7, and 8 (9900 language) are defined with the
OPD directive. The remainder use the FRM directive and EQUalities for
compiete instruction definitions.



0065
( 0066
0067
0068

0070
0071
¢ 0072
0073
0074
! 0075
0076
0077

0079
0080

0082
0093
L 0084
1085

0115
011¢
¢ 0117
0118
0119
: 0120
0121
0122
L 9123
0124

0125 »
T3 012

* END OF PROGRAM MUST CONTAIN:
EQU $

0127
0128

C 0129
n1W

FIG. 2 page 2

SHF
.

SLa
SRR
SRC
SRL

8FBOT
BFER

HED
FRA

EQU
EQU
EQU
EQU

HED

oPD
0PD
0PD
OPD

oPp
oPD
0ed
0PD

oPD
uPD
oPD
oPD

HED

aPb
oPD
oPD
oPR

HED

gpPD
oPD
0PD
0PD
oPD
oPD

oPD
oPD

ORG
EQYU
EQYU
HED
LIig

BUFTOP

*
= BLENG
]
-
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FORMAT 5 INSTRUCTIONS (SHIFT)
8,4.4
A SHIFT LEFT ARITHMETIC
>8 SHIFT RIGHT ARITHMETIC
>8 SHIFT RIGHT CIRCULAR
>9 SHIFT RIGHT LOGICAL
FORMAT & INSTRUCTIONS (PROGRAM)
2740,2 ABSOLUTE VALUE
>440.2 BRANCH
1680,2 BRANCH, LINK
2400,2 BRANCH; LOAD WORKSPACE POINTER
2460.2 CLEAR
1600.,2 DECREMENT
>640,2 DECREMENT 8Y 2
2580.,2 IRCREMENT
»5C0,2 INHCREMENT BY 2
3540,2 INVERY
2500.2 HEGATE
»700.2 SET ONES
>6C0.2 SUAP BYTES
1480,2 EXECUTE
FORMAT ? INSTRUCTIONS (CONTROL)
>3C0.,5
>340.5
2340,5
>380,%5
FORMAT 8 IHSTRUCTIONS (IMMEDIATE)
2220.,7 ADD IMMEDIATE
¥240.7 GHD IMMEDIATE
2280,7 COMPARE [MMEDIATE
2200.7 LOAD IMMEDIATE
2300,7 LOAD INTERRUPT MASK, IMMEDIATE
Y2ED.7 LOAD WORKSPACE PTR IMMEDIATE
3260.7 OR IMMEDIATE
22C0.7 STORE STATUS REGISTER
Y2R0,7 STORE WORKSPACE POINTER

START OF THS 9900 MEMORY

[t}
$
$
SAL9900.3

EQU 16384-BUFTOP
BSS BLENG
R



980 DATA MODULE CONNECTIONS

Fig. 3:

(1)

POWER CLOCK

I STEP [S7E
SYNC

RESET

INTERRUPT REQ

INTERRUPT * 4
HOLD "

. LOAD

—

uf‘ i

READY

RESET

TMS 9900

HOLD
| LOAD
HOLD A
MEMEN

_STATUS BITS )

1AQ
WAIT
CRUOUT _ CRUIN

LBL 8755

ADDRESS

CRUCLK

4

Y

L

> > »
N - O
T
SNOILOINNOD ITNAON VLVA 086

EXT

S | INSTR

TO CRU CARD

| RESET J

X8L 791-7835

Logic required to connect the 980 as 9900 memory and control,



EXECUTOR

USER PROGRAM
(LIST OF PRE-DEFINED
OPERATIONS)

|
RO : (PSEUDO - PC) w—

RUN MOV RO-—»R2
INCT RO
BLWP |,RO

Fig. 4:

PSEUDO - PC

STEP PSEUDO - PC
EXECUTE A STEP
RETURN POINT

—| USEROP {————

{ ARG )

{ USER OP I

i
i

!

R13 (REVERSE POINTER)

(WP)

(PC)

(WP)

(PC)
]

-

BLWP TABLE
FOR PREDEFINED OPS

» R13 POINTS 70
PSEUDO - PC WHICH
POINTS TO ARG

GET ARG
STEP PSEUDO - °C

[
PERFORM OP

1

1
RYWP (EXIT)

L

XBL 791-7834

Linkage required for running the user program in the user pseudo-language.
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