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Contributed by Stanley J. Osher, March 4, 2021 (sent for review November 30, 2020; reviewed by Hailiang Liu and Renyuan Xu)

We present APAC-Net, an alternating population and agent con-
trol neural network for solving stochastic mean-field games
(MFGs). Our algorithm is geared toward high-dimensional
instances of MFGs that are not approachable with existing solu-
tion methods. We achieve this in two steps. First, we take advan-
tage of the underlying variational primal-dual structure that MFGs
exhibit and phrase it as a convex–concave saddle-point prob-
lem. Second, we parameterize the value and density functions
by two neural networks, respectively. By phrasing the problem
in this manner, solving the MFG can be interpreted as a spe-
cial case of training a generative adversarial network (GAN). We
show the potential of our method on up to 100-dimensional MFG
problems.

mean-field games | generative adversarial networks |
Hamilton–Jacobi–Bellman | optimal control | optimal transport

Mean field games (MFGs) are a class of problems that
model large populations of interacting agents. They have

been widely used in economics (1–4), finance (2, 5–7), industrial
engineering (8–10), swarm robotics (11, 12), epidemic modeling
(13, 14), and data science (15–17). In MFGs, a continuum popu-
lation of small rational agents play a noncooperative differential
game on a time horizon [0,T ]. At the optimum, the agents
reach a Nash equilibrium, where they can no longer unilaterally
improve their objectives. Given the initial distribution of agents
ρ0 ∈P(Rn), where P(Rn) is the space of all probability densi-
ties, the solution to MFGs are obtained by solving the system of
partial differential equations (PDEs),

− ∂tφ− ν∆φ+H (x ,∇φ) = f (x , ρ) (HJB)
∂tρ− ν∆ρ− div(ρ∇pH (x ,∇φ)) = 0 (FP)
ρ(x , 0) = ρ0, φ(x ,T ) = g(x , ρ(·,T )),

[1.1]

which couples a Hamilton–Jacobi–Bellman (HJB) equation and
a Fokker–Planck (FP) equation. Here, φ : Rn × [0,T ]→R is the
value function, i.e., the policy that guides the agents; H : Rn ×
Rn→R is the Hamiltonian, which describes the physics of the
environment; ρ(·, t)∈P(Rn) is the distribution of agents at
time t ; f : Rn ×P(Rn)→R denotes the interaction between the
agents and the population; and g : Rn ×P(Rn)→R is the termi-
nal condition, which guides the agents to the final distribution.
Under standard assumptions, i.e., convexity of H in the second
variable, and monotonicity of f and g—namely, that∫

Rn

(f (y , ρ1)− f (y , ρ2))d(ρ1− ρ2)(y)> 0 for all ρ1 6= ρ2,

and similarly for g—then the solution to Eq. 1.1 exists and is
unique. See refs. 18–20 for more details. Although there are a
plethora of fast solvers for the solution of Eq. 1.1 in two and
three dimensions (20–25), numerical methods for solving Eq. 1.1
in high dimensions are practically nonexistent due to the need
for grid-based spatial discretization. These grid-based methods

are prone to the curse of dimensionality, i.e., their computa-
tional complexity grows exponentially with spatial dimension
(26). Thus, grid-based methods cannot be tractably used on,
e.g., modeling an energy-efficient heating, ventilation, and air-
conditioning system in a complex building, where the dimensions
can be as high as 1,000 (27).

Our Contribution. We present APAC-Net, an alternating pop-
ulation and agent control neural network approach geared
toward high-dimensional MFGs in the deterministic and stochas-
tic case. To this end, we phrase the MFG problem as a
saddle-point problem (19, 22, 28) and parameterize the value
function and the density function. This formulation provides
some alleviation to the curse of dimensionality by avoiding
the use of spatial grids or uniformly sampling in high dimen-
sions. While spatial grids for MFGs are also avoided in ref.
29, their work is limited to the deterministic setting (ν= 0).
APAC-Net models high-dimensional MFGs in the stochastic
setting (ν > 0). It does this by drawing from a natural con-
nection between MFGs and generative adversarial neural net-
works (GANs) (30) (Section 3), a powerful class of generative
models that have shown remarkable success on various types
of datasets (30–35).

1. Variational Primal-Dual Formulation of MFGs
We derive the mathematical formulation of MFGs for our frame-
work; in particular, we arrive at a primal-dual convex–concave
formulation tailored for our alternating networks approach. An

Significance

Mean-field games (MFGs) is an emerging field that models
large populations of agents. They play a central role in many
disciplines, such as economics, data science, and engineering.
Since many applications come in the form of high-dimensional
stochastic MFGs, numerical methods that use spatial grids are
prone to the curse of dimensionality. To this end, we exploit
the variational structure of potential MFGs and reformulate
it as a generative adversarial network (GAN) training prob-
lem. This reformulation allays a bit the curse of dimensionality
when solving high-dimensional MFGs in the stochastic setting,
by avoiding spatial grids or uniform sampling in high dimen-
sions, and instead utilizes the structure of the MFG and its
connection with GANs.

Author contributions: A.T.L., S.W.F., W.L., L.N., and S.J.O. designed research; A.T.L., S.W.F.,
and L.N. performed research; and A.T.L., S.W.F., W.L., L.N., and S.J.O. wrote the paper.y

Reviewers: H.L., Iowa State University; and R.X., University of Southern California.y

The authors declare no competing interest.y

Published under the PNAS license.y
1 A.T.L and S.W.F contributed equally to this work.y
2 To whom correspondence may be addressed. Email: atlin@math.ucla.edu, swufung@
mines.edu, or sjo@math.ucla.edu.y

Published August 2, 2021.

PNAS 2021 Vol. 118 No. 31 e2024713118 https://doi.org/10.1073/pnas.2024713118 | 1 of 10

http://orcid.org/0000-0003-2345-3689
http://orcid.org/0000-0002-2926-4582
http://orcid.org/0000-0002-2218-5734
http://orcid.org/0000-0002-6227-0941
http://orcid.org/0000-0002-7900-4658
https://www.pnas.org/site/aboutpnas/licenses.xhtml
mailto:atlin@math.ucla.edu
mailto:swufung@mines.edu
mailto:swufung@mines.edu
mailto:sjo@math.ucla.edu
https://doi.org/10.1073/pnas.2024713118
https://doi.org/10.1073/pnas.2024713118
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2024713118&domain=pdf


MFG system Eq. 1.1 is called potential, if there exist functionals
F ,G such that

δρF = f (x , ρ) and δρG= g(x , ρ), [2.1]

where

〈δρF(ρ),µ〉= lim
h→0

F(ρ+ hµ)−F(ρ)

h
, ∀ µ,

〈δρG(ρ),µ〉= lim
h→0

G(ρ+ hµ)−G(ρ)

h
, ∀ µ.

[2.2]

That is, there exist functionals F ,G such that their variational
derivatives with respect to ρ are the interaction and terminal
costs f and g from Eq. 1.1. A critical feature of potential MFGs is
that the solution to Eq. 1.1 can be formulated as the solution to a
convex–concave saddle-point optimization problem. To this end,
we begin by stating Eq. 1.1 as a variational problem (19, 22) akin
to the Benamou–Brenier formulation for the Optimal Transport
(OT) problem:

inf
ρ,v

∫ T

0

{∫
Ω

ρ(x , t)L(x , v(x , t))dx +F(ρ(·, t))
}
dt +G(ρ(·,T ))

s.t. ∂tρ− ν∆ρ+∇· (ρv) = 0, ρ(x , 0) = ρ0(x ),
[2.3]

where L : Rn ×Rn→R is the Lagrangian function corre-
sponding to the Legendre transform of the Hamiltonian H ,
F ,G : P(Rn)→R are mean-field interaction terms, and v : Rn ×
[0,T ]→Rn is the velocity field. Next, setting φ as a Lagrange
multiplier, we insert the PDE constraint into the objective to get

sup
φ

inf
ρ(x ,0)=ρ0(x),v∫ T

0

{∫
Ω

ρ(x , t)L(x , v(x , t))dx +F(ρ(·, t))
}
dt +G(ρ(·,T ))

−
∫ T

0

∫
Ω

φ(x , t) (∂tρ− ν∆ρ+∇· (ρ(x , t)v(x , t)) dx dt .

[2.4]
Finally, integrating by parts and minimizing with respect to v to
obtain the Hamiltonian via H (x , p) = infv {−p · v +L(x , v)}, we
obtain

inf
ρ(x ,0)=ρ0(x)

sup
φ∫ T

0

{∫
Ω

(∂tφ+ ν∆φ−H (x ,∇φ))ρ(x , t) dx +F(ρ(·, t))
}
dt

+

∫
Ω

φ(x , 0)ρ0(x )dx −
∫

Ω

φ(x ,T )ρ(x ,T )dx +G(ρ(·,T )).

[2.5]
Here, our approach follows that of refs. 22, 36, and 37. This for-
mula can also be obtained in the context of HJB equations in
density spaces (23) or by integrating the HJB and the FP equa-
tions in Eq. 1.1 with respect to ρ and φ, respectively (28). In
ref. 28, it was observed that all MFG systems admit an infinite-
dimensional two-player general-sum game formulation, and the
potential MFGs are the ones that correspond to zero-sum games.
In this interpretation, Player 1 represents the mean field or the
population as a whole, and their strategy is the population den-
sity ρ. Furthermore, Player 2 represents the generic agent, and
their strategy is the value function φ. The aim of Player 2 is
to provide a strategy that yields the best response of a generic
agent against the population. This interpretation is in accord with
the intuition behind GANs, as the key observation is that under
mild assumptions on F and G, each spatial integral is really an

expectation from ρ. The formulation Eq. 2.5 is the cornerstone
of our method.

2. Connections to GANs
GANs. In GANs (30), we have a discriminator and generator,
and the goal is to obtain a generator that is able to produce
samples from a desired distribution. The generator does this by
taking samples from a known distribution N and transforming
them into samples from the desired distribution. Meanwhile, the
purpose of the discriminator is to aid the optimization of the
generator. Given a generator network Gθ and a discriminator
network Dω , the original GAN objective is to find an equilibrium
to the minimax problem

inf
Gθ

sup
Dω

Ex∼ρ0 [logDω(x )]+Ez∼N [log(1−Dω(Gθ(z )))]. [3.1]

Here, the discriminator acts as a classifier that attempts to dis-
tinguish real images from fake/generated images, and the goal of
the generator is to produce samples that “fool” the discriminator.

Wasserstein GANs. In Wasserstein GANs (31), the motivation
is drawn from OT theory, where now the objective func-
tion is changed to the Wasserstein-1 (W1) distance in the
Kantorovich–Rubenstein dual formulation

inf
Gθ

sup
Dω

Ex∼ρ0 [Dω(x )]−Ez∼N [Dω(Gθ(z ))], s.t. ‖∇Dω‖≤ 1,

[3.2]
and the discriminator is required to be 1-Lipschitz. In this set-
ting, the goal of the discriminator is to compute the W1 distance
between the distribution of ρ0 and Gθ(z ). In practice, using
the W1 distance helps prevent the generator from suffering
“mode collapse,” a situation where the generator produces sam-
ples from only one mode of the distribution ρ0; for instance,
if ρ0 is the distribution of images of handwritten digits, then
mode collapse entails producing only, say, the 0 digit. Origi-
nally, weight-clipping was to enforce the Lipschitz condition of
the discriminator network (31), but an improved method using a
penalty on the gradient was used in ref. 32.

GANs ↔ MFGs. A Wasserstein GAN can be seen as a particular
instance of a deterministic MFG (19, 22, 38). Specifically, con-
sider the MFG Eq. 2.5 in the following setting. Let ν= 0, G be
a hard constraint with target measure ρT (as in OT), let F = 0,
and let H be the Hamiltonian defined by

H (x , p) =1‖p‖≤1 =

{
0 ‖p‖≤ 1

∞ otherwise
, [3.3]

where we note that this Hamiltonian arises when the Lagrangian
is given by L(x , v) = ‖v‖2. Then, Eq. 2.5 reduces to,

sup
φ

∫
Ω

φ(x )ρ0(x ) dx −
∫

Ω

φ(x )ρT (x ) dx

s.t. ‖∇φ(x )‖≤ 1,

[3.4]

where we note that the optimization in ρ leads to ∂tφ−
H (x ,∇φ) = 0. And since H (p) =1‖p‖≤1, we have that ∂tφ=
0, and φ(x , t) =φ(x ) for all t . We observe that the above
is precisely the W1 distance in the Kantorovich–Rubenstein
duality (39).

3. APAC-Net
Rather than discretizing the domain and solving for the function
values at grid-points, APAC-Net avoids them by parameterizing
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the function and solving for the function itself. We make a small
commentary that this rhymes with history, in moving from the
Riemann to the Lebesgue integral: The former focused on grid-
points of the domain, whereas the latter focused on the function
values.

The training process for our MFG is similar to that of GANs.
We initialize the neural networks Nω(x , t) and Nθ(z , t). We
then let

φω(x , t) = (1− t)Nω(x , t) + tg(x ),

Gθ(z , t) = (1− t)z + tNθ(z , t), [4.1]

where z ∼ ρ0 are samples drawn from the initial distribution.
Thus, we set ρ(·, t) =Gθ(·, t)#ρ0, i.e., the push-forward of ρ0.
We make a small comment that this idea of sampling to solve a
PDE is similar in spirit to that of the Feynman–Kac approach. In
this setting, we train Gθ(·, t) to produce samples from ρ(·, t). We
note that φω and Gθ automatically satisfy the terminal and initial
condition, respectively. In particular, Gθ produces samples from
ρ0 at t = 0.

Our strategy for training consists of alternately training Gθ
(the population) and φω (the value function for an individual
agent). Intuitively, this means we are alternating the population
and agent control neural networks (APAC-Net) in order to find
the equilibrium. Specifically, we train φω by first sampling a batch
{zb}Bb=1 from the given initial density ρ0 and {tb}Bb=1 uniformly
from [0, 1]; so, we are really sampling from the products of the
densities ρ0 and Unif([0, 1]). Next, we compute the push-forward
xb =Gθ(zb , tb) for b = 1, . . . ,B . We then compute the loss,

lossφ=
1

B

B∑
b=1

φω(xb , 0) +
1

B

B∑
b=1

∂tφω(xb , tb)

+ ν∆φω(xb , tb)−H (∇xφω(xb , tb)),

[4.2]

where we can optionally add a regularization term

penalty =λ
1

B

B∑
b=1

‖∂tφω(xb , tb) + ν∆φω(xb , tb)

−H (∇xφω(xb , tb)) + f (xb , tb)‖ ,

[4.3]

to penalize deviations from the HJB equations (29, 40). This
extra regularization term has also been found effective in, e.g.,
Wasserstein GANs (3), where the norm of the gradient (i.e., the
HJB equations) is penalized. Finally, we back-propagate the loss
to the weights of φw . To train the generator, we again sample
{zb}Bb=1 and {tb}Bb=1 as before and compute

lossG =
1

B

B∑
b=1

∂tφω(Gθ(zb), tb) + ν∆φω(Gθ(zb), tb)

−H (∇xφω(Gθ(zb), tb)) + f (Gθ(zb), tb).

[4.4]

Finally, we back-propagate this loss with respect to the weights
of Gθ (see Algorithm [Alg.] 1).

4. Related Works
High-Dimensional MFGs and Optimal Control. To the best of our
knowledge, the first work to solve MFGs efficiently in high
dimensions (d = 100) was done in ref. 29. Their work consisted
of using Lagrangian coordinates and parameterizing the value
function using a neural network. Finally, to estimate the den-
sities, the instantaneous change of variables formula (41). This

Algorithm 1: APAC-Net

Require: ν diffusion parameter, G terminal cost, H Hamiltonian,
f interaction term.

Require: Initialize neural networks Nω and Nθ , batch size B
Require: Set φω and Gθ as in Eq. 4.1
while not converged do

train φω :
Sample batch {(zb, tb)}B

b=1 where zb∼ ρ0 and tb∼Unif(0, T)
xb←Gθ(zb, tb) for b = 1, . . . , B.
`0← 1

B

∑B
b=1 φω(xb, 0)

`t← 1
B

∑B
b=1 ∂tφω(xb, tb) + ν∆φω(xb, tb)

−H(∇xφω(xb, tb))
`HJB←λ 1

B

∑B
b=1 ‖∂tφω(xb, tb) + ν∆φω(xb, tb)
−H(∇xφω(xb, tb)) + f(xb, tb)‖

Back-propagate the loss `total = `0 + `t + `HJB to ω weights.
train Gθ :
Sample batch {(zb, tb)}B

b=1 where zb∼ ρ0 and tb∼Unif(0, T)
`t← 1

B

∑B
b=1 ∂tφω(Gθ(zb, tb), tb) + ν∆φω(Gθ(zb, tb), tb)

−H(∇xφω(Gθ(zb, tb), tb)) + f(Gθ(zb, tb), tb)
Back-propagate the loss `total = `t to θ weights.

combination allowed them to successfully avoid using spatial
grids when solving deterministic MFG problems (ν= 0) with
quadratic Hamiltonians. Besides only computing MFGs with
ν= 0, another limitation is that for nonquadratic Hamiltoni-
ans, the instantaneous change of variables formula may lead to
high computational costs when estimating the density. APAC-
Net circumvents this limitation by rephrasing the MFG as a
saddle-point problem Eq. 2.5 and using a GAN-based approach
to train two neural networks instead. For problems involving
high-dimensional optimal control and differential games, spa-
tial grids were also avoided (20, 23, 24, 42, 43). However, these
methods are based on generating individual trajectories per
agent and cannot be directly applied to MFGs without spa-
tial discretization of the density, thus limiting their use in high
dimensions.

Reinforcement Learning. Our work bears connections with multia-
gent reinforcement learning (RL), where neither the Lagrangian
L nor the dynamics (constraint) in Eq. 2.3 are known. Here,
a key difference is that multiagent RL generally considers
a finite number of players. Ref. 44 proposes a primal-dual
distributed method for multiagent RL. Refs. 16 and 45 pro-
pose a Q-Learning approach to solve these multiagent RL
problems. Ref. 17 studies the convergence of policy gradient
methods on mean-field RL problems, i.e., problems where the
agents try instead to learn the control, which is socially opti-
mal for the entire population. Ref. 46 uses an inverse RL
approach to learn the MFG model along with its reward function.
Ref. 47 proposes an actor–critic method for finding the Nash
equilibrium in linear-quadratic MFGs and establishing linear
convergence.

Generative Modeling with OT. There is a class of works that focus
on using OT, a class of MFGs, to solve problems arising in data
science and, in particular, GANs. Ref. 48 presents a tractable
method to train large-scale generative models using the Sinkhorn
distance, which consist of loss functions that interpolate between
Wasserstein (OT) distance and Maximum Mean Discrepancy
(MMD). Ref. 49 proposes a mini-batch MMD-based distance to
improve training GANs. Ref. 50 proposes a class of regularized
Wasserstein GAN problems with theoretical guarantees. Ref.
51 uses a trained discriminator from GANs to further improve
the quality of generated samples. Ref. 52 phrases the adversar-
ial problem as a matching problem in order to avoid solving a
minimax problem. Finally, ref. 53 provides an excellent survey
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on recent numerical methods for OT and their applications to
GANs.

GAN-Based Approach for MFGs. Our work is most similar to ref.
38, where a connection between MFGs and GANs is also made.
However, APAC-Net differs from ref. 38 in two fundamental
ways. First, instead of choosing the value function to be the gen-
erator, we set the density function as the generator. This choice is
motivated by the fact that the generator outputs samples from
a desired distribution. It is also aligned with other generative
modeling techniques arising in continuous normalizing flows (40,
54–56). Second, rather than setting the generator/discriminator
losses as the residual errors of Eq. 1.1, we follow the works
of refs. 19, 22, 23, and 28 and utilize the underlying varia-
tional primal-dual structure of MFGs (see Eq. 2.5); this allows
us to arrive at the Kantorovich–Rubenstein dual formulation of
Wasserstein GANs (39).

5. Numerical Experiments
We demonstrate the potential of APAC-Net on a series of high-
dimensional MFG problems. We note that the below examples
would not have been possible with previous grid-based methods,
as the number of grid-points required to even start the problem
grows exponentially with the dimension. We also illustrate the
behavior of the MFG solutions for different values of ν and use
an analytical solution to illustrate the accuracy of APAC-Net. We
also provide additional high-dimensional results in Appendix B.

Experimental Setup. We assume without loss of generality T = 1,
unless otherwise stated. In all experiments, our neural networks
have three hidden layers, with 100 hidden units per layer. We
use a residual neural network (ResNet) for both networks, with
skip connection weight 0.5. For φω , we use the Tanh activa-
tion function, and for Gθ , we use the ReLU activation function.
For training, we use ADAM with β= (0.5, 0.9), learning rate
4× 10−4 for φω , learning rate 1× 10−4 for Gθ , weight decay
of 10−4 for both networks, batch size 50, and λ= 1 (the HJB
penalty parameter) in Alg. 1.

The Hamiltonians in our experiments have the form

H (x , p, t) = c‖p‖2 + f (x , ρ(x , t)), [6.1]

where f (x , ρ(x , t)) varies with the environment (either avoiding
obstacles or avoiding congestion, etc.), and c is a constant (that
represents maximal speed). Furthermore, we choose as terminal
cost

G(ρ(·,T )) =

∫
Ω

‖x − xT‖2ρ(x ,T )dx , [6.2]

which is the distance between the population and a target des-
tination. To allow for verification of the high-dimensional solu-
tions, we set the obstacle and congestion costs to only affect the
first two dimensions. In Figs. 1–4 and 6, time is represented by
color. Specifically, blue denotes starting time, red denotes final
time, and the intermediate colors denote intermediate times. We
also plot the HJB residual error—that is, `HJB in Alg. 1—on
4,096 fixed sampled points, which helps us monitor the conver-
gence of APAC-Net. As in standard machine-learning methods,

Fig. 1. Comparison of 2D solutions for different values of ν. The agents
start at the blue points (t = 0) and end at the red points (t = 1).

Fig. 2. Computation of the obstacle problem in dimensions (dim) 2, 50, and
100 with stochasticity parameter ν= 0 and 0.4. For dimensions 50 and 100,
we plot the first two dimensions.

all of the plots in this section are generated by using validation
data—i.e., data not used in training—in order to gauge gener-
alizability of APAC-Net. Further details, as well as additional
experiments, can be found in the appendix.

Effect of Stochasticity Parameter ν. We investigate the effect of
the stochasticity parameter ν on the behavior of the MFG solu-
tions. In Fig. 1, we show the solutions for two-dimensional (2D)
MFGs using ν= 0, 0.2, 0.4, and 0.6. As ν increases, the density
of agents widens along the paths due to the added diffusion term
in the HJB and FP equations in Eq. 1.1. The hatched markings
are obstacles and are described in Eqs. 6.4 and 6.5. These results
are consistent with those in ref. 57.

Obstacles. We compute the solution to an MFG where the agents
are required to avoid obstacles. In this case, we let

f (x1, x2, . . . , xd)= γobst(max{f1(x1, x2), 0}
+ max{f2(x1, x2), 0}),

[6.3]

with γobst = 5, and denoting R =

(
cos(θ)− sin(θ)
sin(θ)cos(θ)

)
with θ=π/5,

Q =

(
50
00

)
, and b = (0, 2), then

f1(x1, x2) =−v>Qv − b · v − 1,

with v = ((x1, x2)− (−2, 0.5))R.
[6.4]

Similarly, we let

f2(x1, x2) =−w>Qw + b ·w − 1,

with w = ((x1, x2)− (2,−0.5))R.
[6.5]

4 of 10 | PNAS
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Fig. 3. Computation of the congestion problem in dimensions (dim) 2, 50,
and 100 with stochasticity parameter ν= 0 and 0.4. For dimensions 50 and
100, we plot the first two dimensions.

The obstacles f1 and f2 are shown in hatched markings in Fig. 2.
Our initial density ρ0 is a Gaussian centered at (−2,−2, 0, . . . , 0)

with SD 1/
√

10≈ 0.32, and the terminal function is g(x ) =
‖(x1, x2)− (2, 2)‖2. We chose c = 8 in Eq. 6.1. The numerical
results are shown in Fig. 2. Observe that results are similar
across dimensions, verifying our high-dimensional computation.
We run the 2D problem for 200,000 (200 k) iterations and the
50- and 100-dimensional problems for 300 k iterations.

Congestion. We choose the interaction term to penalize con-
gestion, so that the agents are encouraged to spread out. In
particular, we have

F(ρ(·, t)) =

∫
Ω

∫
Ω

1

‖(x1, x2)− (y1, y2)‖2 + 1
dρ(x , t) dρ(y , t),

[6.6]

which is the (bounded) inverse squared distance, averaged over
pairs of agents. Computationally, we sample from ρ twice and
then calculate the integrand. Here, our initial density ρ0 is
a Gaussian centered at (−2, 0,−2, . . . ,−2) with SD 1/

√
10≈

0.32, the terminal function is G(x ) = ‖(x1, x2)− (2, 0)‖2, and we
chose c = 5 in Eq. 6.1. Results are shown in Fig. 3, where we
see qualitatively similar results across dimensions. We run the
2D problem for 100 k iterations and the 50- and 100-dimensional
problems for 500 k iterations.

Congestion with Bottleneck Obstacle. We combine the congestion
problem with a bottleneck obstacle. The congestion penalization
is the same as Eq. 6.6, and the obstacle represents a bottleneck—
thus, agents are encouraged to spread out, but must squeeze
together to avoid the obstacle. The initial density, terminal func-
tions, c in Eq. 6.1, and the expression penalizing congestion are

the same as in the congestion experiment above. The obstacle is
chosen to be

f (v) = γobst max

{
−v>

(
5 0
0 −1

)
v − 0.1, 0

}
,

with v = (x1, x2)

[6.7]

with γobst = 5. As intuitively expected, the agents spread out
before and after the bottleneck, but squeeze together in order
to avoid the obstacle (Fig. 4). We run the 2D problem for 100
k iterations and the 50- and 100-dimensional problems for 500 k
iterations. We observe similar results across dimensions.

Analytic Comparison. We verify our method by comparing it to an
analytic solution for dimensions 2, 50, and 100 with congestion
(γ= 0.1) and without congestion (γ= 0). For

f = γ ln(ρ), H (x , p) =
‖p‖2

2
− β‖x‖2

2
,

g(x ) =
α|x |2

2
−
(
νdα+

γd

2
ln

α

2πν

)
,

[6.8]

and ν=β= 1 in Eq. 1.1, the explicit formula for φ is given by

φ(x , t) =
α|x |2

2
−
(
dα+

γd

2
ln

α

2π

)
t ,

ρ(x , t) =
( α

2π

)
d
2 e−

α|x|2
2 ,

[6.9]

where α=
−γ+
√
γ2+4

2
. For the γ= 0.1 case, we use Kernel

Density Estimation (58, 59) to estimate ρ from samples of the
generator. The derivation of the analytic solution can be found
in Appendix A.

Fig. 4. Computation of the congestion problem with a bottleneck in
dimensions (dim) 2, 50, and 100 with stochasticity parameter ν= 0 and 0.1.
For dimensions 50 and 100, we plot the first two dimensions.
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For d = 2, we compute the relative error on a grid of size 32×
32× 16, where we discretize the spatial domain Ω = [−2, 2]2 with
32× 32 points and the time domain [0, 1] with 16 points. Note
here that the grid-points are validation points—i.e., points that
were not used in training. For d = 50 and d = 100, we use 4,096
sampled points for validation since we cannot build a grid. We
run a total of 30 k and 60 k iterations for γ= 0 and γ= 0.1,
respectively. We validate every 1 k iterations. Fig. 5 shows that
our learned model approaches the true solution across all dimen-
sions for both values of γ, indicating that APAC-Net generalizes
well.

A Realistic Example: The Quadcopter. In this experiment, we exam-
ine a realistic scenario where the dynamics are that of a Quad-
copter (also known as Quadrotor craft), which is an aerial vehicle
with four rotary wings (similar to many of the consumer drones
seen today). The dynamics of the quadrotor craft are given as,

ẍ = u
m
l(sin(φ) sin(ψ) + cos(φ) cos(ψ) sin(θ)ρ)

ÿ = u
m
l(− cos(ψ) sin(φ) + cos(φ) sin(θ) sin(ψ)ρ)

z̈ = u
m

cos(θ) cos(φ)− g

ψ̈ = τ̃ψ
θ̈ = τ̃θ
φ̈ = τ̃φ

,

where x , y , and z are the usual Euclidean spatial coordinates,
and φ, θ, and ψ are the angular coordinates of roll, pitch, and
yaw, respectively. The constant m is the mass, to which we put
0.5 (kilogram), and g is the gravitation acceleration constant on
Earth, to which we put 9.81 (meters per second squared). The
variables u , τ̃ψ , τ̃θ , τ̃φ are the controls representing thrust and
angular acceleration. In order to fit a control framework, the
above second-order system is turned into a first-order system:

ẋ1 = x2

ẋ2 = u
m
l(sin(φ1) sin(ψ1) + cos(φ1) cos(ψ1) sin(θ1)ρ)

ẏ1 = y2

ẏ2 = u
m
l(− cos(ψ1) sin(φ1) + cos(φ1) sin(θ1) sin(ψ1)ρ)

ż1 = z2

ż2 = u
m

cos(θ1) cos(φ1)− g

ψ̇1 =ψ2

ψ̇2 = τ̃ψ
θ̇1 = θ2

θ̇2 = τ̃θ
φ̇1 =φ2

φ̇2 = τ̃φ

,

which we will compactly denote as ẋ = h(x, u), where h is the
right-hand side, x is the state, and u is the control. As can be

Fig. 5. Log relative errors in 2, 50, and 100 dimensions (dim) and for γ=

0, 0.1. Here, γ= 0 means no interaction. For the d = 2 case, we compute the
validation on a 32× 32 grid over 16 uniformly spaced timesteps with the
true φ from Eq. 6.9. For the d = 50 and 100 cases, we compute on a sample
of 4,096 sample points, sampled from the initial density.

Fig. 6. Computation of the control of the fully nonlinear multiagent quad-
copter (12 dimensions). This experiment represents a real-world example of
control, where we move the agents from one point to another, with the con-
straint of having a velocity of zero at the destination. We compute examples
with and without noise (σ> 0) and with and without congestion. The HJB
residuals (Eq. 4.3) are plotted in the graph.

observed, the above is a 12-dimensional system that is highly
nonlinear and high-dimensional. In the stochastic case, we add
a noise term to the dynamics: dx = h(x, u) dt +σ dWt , where
W denotes a Wiener process (standard Brownian motion). The
interpretation here is that we are modeling the situation when
the quadcopter suffers from noisy measurements.

In our experiments, we set our Lagrangian cost function to
be L(u) = 1

2
‖u‖22, and, thus, our Hamiltonian becomes H (p) =

1
2
‖p‖22. Our initial density ρ0 is a Gaussian in the spatial coor-

dinates (x , y , z ) centered at (−2,−2,−2) with SD 0.5, and we
set all other initial coordinates to zero (i.e., initial velocity, initial
angular position, and initial angular velocity are all set to zero).
We set our terminal cost to be a simple norm difference between
the agent’s current position and the position (2, 2, 2), and we also
want the agents to have zero velocity, i.e.,

G(ρ(·,T )) =

∫
Ω

‖(x , y , z , ẋ , ẏ , ż )− (2, 2, 2, 0, 0, 0)‖2ρ(x ,T )dx .

In our experiments, we set the final time to be T = 4.
We also add a congestion term to our experiments where

the congestion is in the spatial positions, so as to encourage
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agents to spread out (and thus making midair collisions less
likely):

F(ρ(x , y , z ))

= γcong
1

(2π)
3
2

∫
Ω

∫
Ω

e(− 1
2
‖(x ,y,z)−(x̂ ,ŷ,ẑ)‖22)

dρ(x , y , z )× dρ(x̂ , ŷ , ẑ ),

where in our experiments we put γcong = 20.
For hyperparameters, we use the same setup as before, except

we raise the batch size to 150. Our results are shown in Fig. 6. We
see that with congestion, the agents spread out more as expected.
Furthermore, in the presence of noise, the agents’ sensors are
noisy, and so at terminal time, the agents do not get as close to
the terminal point of (2, 2, 2). This noise also adds an envelope of
uncertainty, so we do see that the agents are not as streamlined
as in the noiseless cases.

We note that most previous attempts at modeling the behav-
ior of quadcopters relied on linearization techniques, but here,
we solve the fully nonlinear problem with neural networks. And
our approach solves the quadcopter problem in a determin-
istic and stochastic MFGs context, where we consider many
quadcopters and their interactions with each other. This multi-
agent modeling of the quadcopter would be practically infeasible
for grid-based methods, as such a grid would need to discretize a
high-dimensional space.

6. Conclusion
We present APAC-Net, an alternating population-agent con-
trol neural network approach for tackling high-dimensional
stochastic MFGs. To this end, our algorithm avoids the use
of spatial grids by parameterizing the controls, φ and ρ, using
two neural networks, respectively. Consequently, our method is
geared toward high-dimensional instances of these problems that
are beyond reach with existing grid-based methods. APAC-Net
therefore sets the stage for solving realistic high-dimensional
MFGs arising in, e.g., economics (1–4), swarm robotics (11,
12), and, perhaps most important/relevant, epidemic modeling
(13, 14). Our method also has natural connections with Wasser-
stein GANs, where ρ acts as a generative network and φ acts
as a discriminative network. Unlike GANs, however, APAC-Net
incorporates the structure of MFGs via Eqs. 2.5 and 4.1, which

Fig. 7. Computation of the congestion problem with a bottleneck in
dimensions (dim) 2, 50, and 100 with stochasticity parameter ν= 0.4. For
dimensions 50 and 100, we plot the first two dimensions.

Fig. 8. Computation of the obstacle problem where the obstacle is sym-
metric. We plot the results for dimensions (dim) 2 and 100, and for ν= 0
and ν= 0.1.

absolves the network from learning an entire MFG solution from
the ground up. Our experiments show that our method is able to
solve 100-dimensional MFGs.

Since our method was presented solely in the setting of poten-
tial MFGs, a natural extension is the nonpotential MFG setting,
where the MFG can no longer be written in a variational form.
Instead, one would have to formulate the MFG as a monotone
inclusion problem (60). Moreover, convergence properties of the
training process of APAC-Net may be investigated following the
techniques presented in, e.g., ref. 61. Finally, a practical direction
involves examining guidelines on the design of more effective
network architectures, e.g., PDE-based networks (62, 63), neural
ordinary differential equations (41), or sorting networks (64).

Appendix A. Derivation of Analytic Solution
We derive explicit formulas used to test our approximate
solutions in Section 6. Assume that ν,β > 0, γ≥ 0 and

H (x , p, t) =
|p|2

2
− β|x |2

2
, f (x , ρ) = γ ln ρ. [A.1]

Then, Eq. 1.1 becomes

−∂tφ− ν∆φ+
|∇φ|2

2
− β|x |2

2
= γ ln ρ,

∂tρ− ν∆ρ− div(ρ∇φ) = 0,

ρ(x , 0) = ρ0, φ(x ,T ) = Ψ(x ).

[A.2]

We find solutions to this system by searching for stationary
solutions first:

−ν∆φ+
|∇φ|2

2
− β|x |2

2
= γ ln ρ+ H̄ ,

−ν∆ρ− div(ρ∇φ) = 0,

[A.3]
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and then writing

φ(x , t) =φ(x )− tH̄ , ρ(x , t) = ρ(x ). [A.4]

The second equation in Eq. A.3 yields ρ= ce−
φ
ν , where c is cho-

sen so that
∫
ρ= 1. Plugging this in the first equation in Eq. A.3,

we obtain

− ν∆φ+
|∇φ|2

2
− β|x |2

2
= γ ln c− γ

ν
φ+ H̄ . [A.5]

Now, we make an ansatz that φ(x ) = α|x |2
2

. Then, we have that
∆φ= dα, ∇φ=αx , and obtain

− νdα+
α2|x |2

2
− β|x |2

2
= γ ln c− γα|x |2

2ν
+ H̄ . [A.6]

Therefore, we have that

α2 +
γα

ν
=β, H̄ =−νdα− γ ln c. [A.7]

From the first equation, we obtain that

α=
−γ+

√
γ2 + 4ν2β

2ν
. [A.8]

On the other hand, we have that∫
ρ= c

∫
e−

α|x|2
2ν dx = c

(
2πν

α

)
d
2 = 1, [A.9]

so

c =
( α

2πν

)
d
2 and H̄ =−νdα− γd

2
ln

α

2πν
. [A.10]

Summarizing, we get that for any ν,β > 0, γ≥ 0, the following is
a solution for Eq. A.2:

φ(x , t) =
α|x |2

2
−
(
νdα+

γd

2
ln

α

2πν

)
t ,

ρ(x , t) =
( α

2πν

)
d
2 e−

α|x|2
2ν ,

[A.11]

where α is given by Eq. A.8, and

g(x ) =
α|x |2

2
−
(
νdα+

γd

2
ln

α

2πν

)
T ,

ρ0(x ) =
( α

2πν

)
d
2 e−

α|x|2
2ν .

[A.12]

Choosing β= ν= 1, Eq. A.11 gives the analytic solution used in
Section 6.

Appendix B: Details on Numerical Results and
More Experiments
Congestion. Here, we elaborate on how we compute the conges-
tion term,

F(ρ(x , t)) =

∫
Ω

∫
Ω

1

‖(x1, x2)− (y1, y2)‖2 + 1
dρ(x , t) dρ(y , t).

[B.1]

We do this by first using the batch {zb}Bb=1, which was used
for training (and sampled from ρ0), and then compute another

batch {yb}Bb=1, again sampled from ρ0. Letting {tb}Bb=1 be a
batch of time points uniformly sampled in [0, 1], we estimate the
interaction cost with,

F(ρ(x , t))≈
B∑

i=1

1

‖Gθ(zb , tb)−Gθ(yb , tb)‖2 + 1
. [B.2]

Congestion with Bottleneck Obstacle and Higher Stochasticity.
When choosing a stochasticity parameter ν > 0.1, the stochas-
ticity dominates the dynamics, and the obstacles do not inter-
act as much with the obstacle. We plot these results in Fig.
7, where for two dimensions, we trained for 150 k itera-
tions, and for 50 and 100 dimensions, we trained for 800 k
iterations. All environment and training parameters are the
same as in the Congestion with Bottleneck Obstacle, except that
now ν= 0.4.

Analytic Comparison. Here, we mention specifically how we per-
formed Kernel Density Estimation. Namely, in order to estimate
the density ρ, we take a batch of samples {zb}Bb=1 (during
training, this is the training batch). Then, at uniformly spaced
time points {tb}b=1⊆ [0, 1], we estimate the density with the
formula,

ρ(zb , tb)≈ 1

B

1

(σh
√

2π)d

B∑
i=1

B∑
j=1

exp
(
‖zi − zj‖2

(hσ)2

)
, [B.3]

where we choose σ=
√

γ
ν

, d is the dimension, and h =B−
1

d+4 ,
in accordance with Scott’s rule for multivariate Kernel Density
Estimation (65).

Density Splitting Via Symmetric Obstacle. Here, we compute an
example where we have a symmetric obstacle, and, thus, the gen-
erator will learn to split the density. Agents will go left or right
of the obstacle, depending on their starting position. Here, we
chose the obstacle as,

f (x1, x2, . . . , xd) =αobst max
{
−v>Qv + 0.1, 0

}
,

Q =

(
1 0.8
0.8 1

)
, v = (x1, x2),

[B.4]

and we choose γobst = 20. The environment and training param-
eters are the same as in the obstacles example in the main
text, except that we choose the HJB penalty λ in Alg. 1 to
be 0.1. Qualitatively, we see that the solution agrees with our
intuition: The agents will go left or right depending on their
starting position. Note that the results are similar across dimen-
sions, verifying our computation. For the 2d , ν= 0 case, we
trained for 100 k iterations; for the 2d , ν= 0.1 case, we trained
for 300 k iterations; for the 50d and 100d , ν= 0 case, we
trained for 500 k iterations; for the 50d ν= 0.1 case, we trained
for 1,000 k iterations; and the for the 100d , ν= 0.1 case, we
trained for 2,000 k iterations. In Fig. 8, we plot the agents
moving through the symmetric obstacles, as well as the HJB
residuals.

Data Availability. To promote access and progress, we pro-
vide our PyTorch implementation at GitHub (https://github.
com/atlin23/apac-net).
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25. M. Jacobs, F. Léger, W. Li, S. Osher, Solving large-scale optimization problems with
a convergence rate independent of grid size. SIAM J. Numer. Anal. 57, 1100–1123
(2019).

26. R. Bellman, Dynamic programming. Science 153, 34–37 (1966).
27. S. Li, S. E. Li, K. Deng, “Mean-field control for improving energy efficiency” in

Automotive Air Conditioning, Q. Zhang, S. E. Li, K. Deng, Eds. (Springer, Cham,
Switzerland, 2016), pp. 125–143.

28. M. Cirant, L. Nurbekyan, The variational structure and time-periodic solutions for
mean-field games systems. Minimax Theory Appl 3, 227–260 (2018).

29. L. Ruthotto, S. J. Osher, W. Li, L. Nurbekyan, S. W. Fung, A machine learning frame-
work for solving high-dimensional mean field game and mean field control problems.
Proc. Natl. Acad. Sci. U.S.A. 117, 9183–9193 (2020).

30. I. Goodfellow et al., “Generative adversarial nets” in NIPS’14: Proceedings of the 27th
International Conference on Neural Information Processing Systems, Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, K. Q. Weinberger, Eds. (MIT Press, Cambridge,
MA, 2014), vol. 2, pp. 2672–2680.

31. M. Arjovsky, S. Chintala, L. Bottou, “Wasserstein generative adversarial
networks” in ICML’17: Proceedings of the 34th International Conference
on Machine Learning, D. Precup, Y. W. Teh, Eds. (JMLR, 2017), vol. 70,
pp. 214–223.

32. I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. C. Courville, “Improved training
of Wasserstein GANs” in NIPS’17: Proceedings of the 31st International Conference
on Neural Information Processing Systems, U. von Luxburg, I. Guyon, S. Bengio,
H. Wallach, R. Fergus, Eds. (Curran Associates, Inc., Red Hook, NY, 2017), pp.
5767–5777.
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