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52.7 

EDGEDIFFRACTED FLOQUET WAVES AT A 
TRUNCATED ARRAY OF DIPOLES 

F. CAPOLINO’, A. NETO’, M. ALBANI’, S. MACI’ 

’College of Engzneerzng, Unzu. of Szena, Vza Roma 56, 53100, Szena, Italy 
’Dept.  of Elee. Eng., Unzu. of Florence, Vaa ,?.Marta 3, Florence, Italy 

1. INTRODUCTION 

The electromagnetic modeling of large finite arrays has been the object of 
recent investigations [1][2]. A rigorous element by element method of 
moments (MOM) becomes too complex and computationally inefficient when 
the size increases, so that large arrays are usually studied by supposing the 
structure as infinite The technique which is proposed in [1][2], accounts for 
the edge effects by a windowing approach, which is based on a Physical 
Optics (PO)-type approximation and on the active Green’s function concept. 
This latter terminology denotes the near-field radiated by a finite array of 
elementary sources. To efficiently calculate the active free-space Green’s 
function, a Floquet waves (FWs) representation as that proposed in [3-51 may 
be used. This representation allows one to interpret the radiation (or 
scattering) of a finite phased array as a superposition of FW distributions on 
the global aperture of the array. Consequently, each FW radiation integral 
can be asymptotically represented by the FWs themselves plus ray 
contributions from the edge of the array. In this paper the Green’s function of 
an array of dipoles which is truncated in one dimension and infinite in the 
other is formulated. The dipoles are considered of uniform amplitude and 
linearly phased for including a scan beam description. By invoking the 
locality of the high-frequency phenomena, the actual finite distribution may 
be treated by using local edges. The problem is firstly formulated by 
superimposing the near field contributions of each source. Next, the global 
radiation from the structure is represented in terms of a spectral integral 
which is asymptotically evaluated. 

2. FORMULATION 

The geometry of the problem is shown in Fig. 1. An array of phased dipoles 
of unit current amplitude is considered which is infinite in the z-direction and 
truncated in the z-direction. Both a Cartesian and a cylindrical reference 
systems with their z-axis along the array edge are introduced, so that the 
array is extended for z>O, y=O, respectively. The period is d, and d, in the x 
and z direction, respectively. All the dipoles are oriented along the unit 
vector 2 and they are linearly phased so that 

where (x’,z’) z (nd,,md,) is the position of the dipole n,m. The electric field 
at  F (x,y,z) E (p,cj,z) is 

0 3 0 3  

E(F)= 5 (7; nd,,md,). f(nd,,md,) (1) 
n = ~  m=-m 

where 7 is the free-space electric field dyadic Green’s function at the 
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observation point r'. Its spectral Fourier representation is 

In (2) the branch of k,,=dlc"-k: -e is chosen to provide Im(k,,)<O in the 
top Rieman sheet of the k ,  complex plane for real k,. After using ( 2 )  in (I) ,  
the order of integration and summation are interchanged; next the 
summation in n is calculated in closed form, and the Poisson formula is 
applied to the summation in m [ 5 ] ;  thus, leading to 

where kz,=?,12rq/d,. are the FW propagation constants in z direction and 
the integration path detours the poles clockwise These are located at 
kzp=7~,+27rp/d,, that are the FW propagation constants in I direction. In 

order to evaluate each integral in 
(4). the contour is deformed onto 
the steepest descent path (SDP) 

,,$ through its pertinent saddle point. 
The poles captured in this 
deformation give rise to residue 
contributions representing the FWs 
of the doubly infinite array of 
dipoles. In particular the poles 
such that E P + g q  < k2 are 
associated to homogeneous Floquet 
waves (HFWs) while a11 the others 
are associated to evanescent 
Floquet waves (EFWs) The 
asymptotic evaluations of the 
integrals along the SDP provide 
diffracted FWs outcoming from the 
edge of the array 

i 
i 

/ 

/@ ,* < d  /B f 

- 
dx 

Fzg 1 Geometry of the canonzcal problem 
t h e  truncated array of dzpoles 

3. HIGH-FREQUENCY SOLUTION 

Evaluating the integration on the SDP by the Van der Wacrdcn tcchniquc, 
Ieads to 
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Z(?)= q=-m 2 Zy(?)+@(- r )  ' (5) 

where ,@:w(F) is and 3 arises from the residues and from the SDP 
integration, respectively; i.e., 

In (6) and (7) F is the transition function of the Uniform Theory of 
Diffraction, U is the Heaviside unit step function, 

$ p q  = 2) , 
and 

6& =2kpqp sin2 ( 2 ) I ~pq=-sgn[cos$pq] 

In (7) P denotes the amqunt of poles extracted in the Van der Waerden 
procedure. The sum of all ECw represents the FWs of the doubly infinite 
array exce t for the unit step function that bounds their region of existence 
at 4 = 4;; The speed of convergence of the FW series is very rapid, due to 
the exponential attenuation of the EFWs when the observation point is 
located away from the array surface. 

The disappearing of a J?W contribution is smoothly compensated by the 
corrisponding term inside q ( F ) ,  so that the latter may be interpreted as its 
relevant diffracted field. The diffracted rays of each truncated FW arise from 
different diffraction points (one for each q )  The FWs diffract at the edge of 
the array following a generalized Fermat principle, as it occurs for the 
diffraction at metallic edges. The diffraction points moves far away the 
observation point as the phase velocity of the FW decreases. To each 
diffraction point, a diffraction cone with semi-angle p =cos-'(ICZ / I C )  is 
associated. When ICz,  approaches IC (cut-off condition of tKe FW o? the z 
direction), the diffaction cone angle 0, tends to vanish; after that, the 
diffracted field becomes evaneshent along the p direction, so that it represents 
reactive energy located around the edge; owing to this behaviour, also the 
series in q of the diffracted fields is rapidly convergent. It is worth noting that 
at the cut off condition of the mode (scan-blindness) the diffracted field 
diverge, as expected from the resonant behaviour of the entire array. 
However, in this case the singularity of the diffracted field is compensated by 
other diffraction contributions coming from other edges of the finite 
structures. 

1080 



4. NUMERICAL RESULTS 

Numerical tests of the solution have been performed in order to validate the 
formulation for large, rectangular arrays. The contributions from the four 
finite edges are accounted for each FW, following a GTD scheme. When the 
diffraction points are located Figure 2 presents the electric field radiated by 
a broadside array of 200 x 10 equi-amplitude dipoles with period X / 2  in both 
directions. The radiated field is referred to a coordinate system with its origin 
at the center of the array and its z-axis perpendicular to the array plane. 
Both E,  and E,  are plotted versus the scan angle 8 on a plane at 45" from the 
E-plane, and at a distance 5A from the center of the array. 

A reference solution has been constructed by spatial summation of the 
contributions from each dipole. The agreement between our solution 
(continuos line) and the reference solution (dashed line) has been found very 
satisfactory in all cases in which the contributions from the corners of the 
array can be neglected. 

3 2) -10 .- 
'-r 

-25 

Ee 
. Spatial - - - 
. Fws- 
I 

o io 20 30 10 50 60 70 80 90 
scan angle ($ =45") 

Fig. 2 Electric field radiated b y  an 200x10 array. Comparzson between F W s  
solution and spatial summation of  dipole radiated field. 
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